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Abstract. Grid Replica systems are gaining foothold in real end user
systems, and are used in an increasing number of large scale projects. As
such, many of the properties of these systems are well understood.

This paper how to handle some minor shortcomings of todays data replica
systems, in respect to consistency management, and to their ability to
handle derived data sets. We think that both features will allow replica
systems to gain wider acceptance in the GIS community.

1 Introduction

Distributed replica systems add real value to large data centric projects: an
inspection of success stories like GriPhyN [1], LIGO [2,3] and the CERN Data
Grid [4] show the central role replica systems play in their overall architecture. It
is interesting that the number of basic concepts found in these replica system is
small compared to the overall number of concepts provided by modern systems
such as SRB [5,6]. Here, basic concepts are those provided by all replica systems
and minimally required by all data management use cases [7,8].

— hierarchical logical name space with attributes (meta data)

— attribute access and manipulation

— data access and manipulation
distributed architecture

— latency management
— back end system support

That list is, for example, completely implemented by the Globus Replica Loca-
tion Service RLS [9,10], the CERN Replica Management System Reptor [11,12],
the Storage Resource Broker SRB [5,6], and others. Successful deployment of
these systems dominate todays landscape of data grids [1,2,3,4,13,14].

There exists, however, a set of use cases which, with the above set of properties,
fail to be implementable, at least for large scale projects where scalability and
maintainability are of increasing concern. We present 2 of these use cases in the
next section, review the properties of existing replica systems in respect to these
use cases in Sect. 3, and describe required additional properties in Sect. 4. We
will propose a simple implementation on top of existing replica system in Sect. 5.

2 Discussion of Replica System Use Cases

2.1 Linguistic Scenario
The linguistic field of language acquisition is, although not commonly known,
very data intensive and depends heavily on language corpora: for the linguistic



analysis, human speech has to be recorded, transcribed and prepared as input
for analysis tools. These steps are supported by Language Resource Archives
(LRA), which also play a crucial role in development and testing of linguistic
models, but also in language documentation and preservation [15,16].
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(1) The recording of a longitudinal language corpus takes several months or
years, depending on the design of the linguistic study. Video and audio tapes
are digitized, in accordance with the format requirements of the used LRA,
and form the first version of the main tier of the new corpus in that LRA.

(2) The first annotation, a transcription of the audio tier, is added, again con-
forming to the LRA standards.

(8) A first preliminary and exploratory data analysis is performed, allowing for
planning of promising research topics, and motivating the addition of further,
research-specific annotation tiers.

(4) New dependent tiers are added to the corpus (usually morpho-syntactic
tiers), and allow a first detailed research analysis.

(5) Different research groups obtain limited access to the data. Data are not
prepared for publication at this stage, so data sharing occurs in controlled
conditions: read and write access control is required for all tiers.

(6) New tiers are added which allow for a final analysis of the data, in respect to
the various research questions motivated by the preliminary analyzes in (3),
(4) and (5). This causes a split of the corpus, as changes and additions on the
main tier or on dependent tiers are caused by different research objectives.

(7) A public version of the corpus is prepared by several groups which obtained
access in (5). That public version allows a variety of research groups to use
the corpus and associated tiers for their work.

4 All steps described in this use case are very time intensive and expensive, as there
are no automatic or semi-automatic ways to transcribe spoken child language.



(8) Various tiers get subsequently added to the corpus by the public, and existing
tiers continue to be changed by various groups, in various formats, increasing
thereby the diversity, quality and usability of the published corpus.

At the present, LRA’s only publish corpora as described in (7), as a single,
cleaned, final and static version. The requirements vary with the LRA, but re-
quire significant effort, so that (a) only a small percentage of the data is made
publicly available and (b) corpora are usually published years after their collec-
tion. The branches described in (5), (6) and (8) are not available for research
as the LRA’s do not allow for the coexistence of different corpus versions. Con-
sidering the intended corpus life time and usage (the linguistic community still
uses data that were recorded in the 70s) this is an unfortunate situation.

The extension of LRA’s with collaborative features will lower the entry require-
ments for smaller language collection projects, and would help to open their
widely dispersed data collections to the community. It also would allow them to
use the collaborative features of LRA’s very early in the corpus lifetime.

2.2 Data Management in Geographic Information Systems

GIS draw their input data from a large variety of resources [17,18], which also
implies a large variety of ownerships and copyrights [19]. Further, the trans-
formation of these data, as required by any typical GIS system [20], imply the
creation and maintenance of derived data sets, which, in our opinion, leads to
similar collaborative requirements as the described linguistic use case.

The use case presented here is based on a scenario from the SCOOP hurricane
forecasting project [21] (SCOOP: SURA Coastal Ocean Observing and Predic-
tion). The Scoop-GIS has the goal to provide automated regular forecasts for
gulf area hurricane tracks and storm surges. It models a data driven workflow
using a central data archive as data repository for incoming, intermediate and
resulting data sets. Although it is an realistic use case, it is not planned to im-
plement it anytime soon: the SCOOP community is too small to be concerned
about scalability. In particular, contrary to the scenario below SCOOP does not
perform data replication and does not use collections.

(1) The National Hurricane Center in Miami, Florida (NHC), part of the Na-
tional Oceanic and Atmospheric Administration (NOAA) provides the main
input data for any hurricane forecast process. If a hurricane forms, the NHC
provides track information for its ‘center of pressure’ in a 6 hour rhythm.

(2) NHC starts the execution of the workflow by placing the track data into
the archive. That triggers the University of Florida (UF) which derives 4
additional tracks from the original NHC track by rotating that about +5 and
+10 degree. The UF also calculates wind fields for all 5 tracks, and adds
the wind fields to the archive. Meta data annotations are used to maintain
dependency information between the various data sets.

(8) The placement of the wind fields triggers large simulation codes for various
aspects of the cyclone system, for each wind field: Wave Watch 3 (WW3)



simulations predict ocean wave amplitudes; ADvanced CIRCulation models
(ADCIRC) predict storm surges in coastal regions, etc.

(4) The long running codes from (3) predict up to 72 hours of the cyclones
development. Simulations snapshots are taken after 6 hours and are used
as more realistic boundary conditions for the next run of the workflow. The
simulation models hence need a couple of iterations to stabilize.

(5) Additional wind fields are sometimes provided by 3rd parties, e.g. by the
Naval Research Laboratory of the US Navy (NRLMRY) or by the National
Center for Environmental Prediction (NCEP). These wind fields start again
predictive WW8 and ADCIRC simulations, but are, due to their singular
inputs, not subject to the iterative boundary adjustment described in (4).

(6) The prediction outputs are stored in the data archive, and are used by
SCOOP members and 3rd parties for automated or interactive visualizations,
combining both static data sources (e.g. topological data), the original track
data, and the predicted cyclone behavior over the next 72 hours.

(7) Both the 72 hour forecasts and the intermediate forecast results (such as
the 6-hour snapshots) can be used to spawn off regional forecasts, leading to
downscaled versions of step (3), (4) and (6).

2.3 Basic Operations in the Use Cases

The basic operations required in the presented GIS scenario are similar to those
required by the linguistic scenario: derived data sets play a central role, and
versioning, consistency, and access policies need to be addressed, by maintaining
the scalability of the overall system.

Versioning and Consistency: A change to a data set creates a derived data
set. Similar as in Concurrent Version Systems (as CVS or Subversion), such
changes may get merged into the original data set, or create a branch, leaving
the original data intact. Step (5) of the linguistic use case is a good example of
that process. In the GIS scenario, the original hurricane track received by the
NHC is used to create four derived tracks, which create new data sets (branches).

Ownership and Permissions: The owner of a data set decides who can read
and/or write the data. If data are read-only, a private copy can still be created
and changed. That process, however, must not pollute the original ownership
and permissions. For example, the original hurricane track is owned by NHC.
The UFL copies that track, and re-added four additional versions to the archive:
these should have the same or less access permissions as the initial NHC track.
In the linguistic use case, dependent tiers should share the same permissions as
the tiers they depend upon, and should hence inherit these permissions.

3 Consistency and Scalability in Data Grids

The basic functionality of replica systems is simple: a replica catalog maintains
a mapping between logical names (entities) and a set of distributed identical
physical files (replicas). Often, entities are annotated with meta data.



In order to be scalable and performant in distributed environments, replica sys-
tems deploy a variety of latency hiding, data caching and other optimization
techniques, which can make the implementation of a replica system non-trivial.
The basic feature set described above is, however, easy to implement, and is
representative for the majority of replica systems.

3.1 Consistency Considerations

The basic operations listed above have subtle implications for data consistency
of replicas, but also for the consistency of the name space of the replica catalog.
For example, as two remote users change two replicas of the same entry at the
same time, the replicas will cease to be identical. Similarly, operations in the
logical file hierarchy can result in inconsistencies.

The problem is somewhat simplified by the fact that name space and meta data
are often held in a central (though often replicated) data bases [22]. Hence,
consistency can be provided by insuring consistency of that data base, which is
in itself a well understood and solved problem. Also, the replication of these data
bases over a small and rather static set of services is well implementable [23,10].

Operations on the logical namespace are usually small and, in fact, often atomic.
The same does not hold for operations on the replicas: the access patterns to
the physical files are difficult to predict, and consist of potentially large num-
bers of small operations. The provision of consistency for the replicas therefore
constitutes a significantly more difficult problem — see [22] for discussion.

3.2 Scalability Properties

Scalability issues of replica systems in respect to replica location management,
selection, provisioning and transport are basically solved [10,9,12]. Data consis-
tency, however, is expensive and impacts the scalability of these systems [22].
Todays grid replica system thus rarely provide consistency guarantees, and are
often targeting on Write-Once-Read-Many use cases [10].

Scalability of ownership and permission enforcement are often provided by exter-
nal systems, such as GAS [24] and GridShib [25]. These are known to scale well
for large environments, allowing replica systems to profit from their scalability.
It must be noted that the user level management of ownerships and permissions
can be tedious. Domain specific interfaces are often required for that task [26].
We think that the scalability of ownership management breaks the shown use
cases: the creation of derived data sets would require the intervention of the
owner of the original data set, to approve or decline the derivations dependent
on the data access policy intended for the new data set.

4 Data Versioning in Replica Systems

4.1 Consistency and Versioning

As discussed in the last section, consistency is usually considered to be a property
of an instance of an entity which is under the management of the system: that



entity is consistent if all its replicas are identical; it becomes inconsistent if
one replica gets changed; and can become consistent again as these changes get
propagated to all other replicas [22].

We want the reader to take the perspec-

tive of the end users: consistency then of- data local copy
ten means that any operation performed renceitony checkout

on any replica of an entry is reflected by

any subsequent operation on any (same or

other) replica of that entry. <=Gi
For example, data written to a particular Cfi commit

replica should be retrievable by a subse-
quent read operation on that entry. The
entry would be inconsistent if that read
operation would not return the new data,
because it happened to get performed on
a replica which is not yet in sync with the
changed replica instance. Fig. 2. Proposal: Changing a replicas
results in a new version of its entity.

Now, from that perspective it would actu-
ally be simple to achieve consistency with
the following scheme:

1. A replica systems entry A is tagged to have an initial version id A-1, and has
2 replicas A-1a and A-1b.

2. A end user intends to perform a write operation on A. On open (), the replica
system performs a copy () of any replica to A-2a, which is not yet published
in the replica catalog. The user edits that replica.

3. On completion of the edit, the replica A-2a is published as new entry, which

— is a new version of A, named A-2
— has only one replica (that is A-2a)

4. A-2 gets lazily replicated for availability etc., and slowly spreads in the sys-
tem (A-2b).

5. Any subsequent read operation on A is automatically rerouted to the newest
version A-2.

With the above schema, A never gets into an inconsistent state. The scheme
does introduce, however, the possibility conflicts when multiple users edit A at
the same time. We will discuss that point below, and propose a solution.

The schema involves only operations which are very well supported by todays
replica systems, and are known to perform well, and to be scalable:

— replica selection based on meta data (version)

— replication (local copy, spreading of new entry)

— change meta data

— publish new entry
The reader might feel familiar with the described scheme — in fact it is the
very scheme which is used by concurrent versions systems such subversion [27]:



changes are performed on local copies of an entity, which is then synchronized
with the central repository and with other, distributed copies. Changes always
result in a completely new version of the entity — only performance optimizations
lead to the more efficient exchange of differential updates.

The user causing the creation of a new version is the owner of that new version,
as he created the new entity, and registered it to the system. For that, write
access to the collection hosting the original entity is required. That change in
ownership does not imply a change of permissions to other users — by default, the
original access policy should stay in place. The new owner can however change
access permissions. We don’t see any violation of the security contract here, as
the user could have softened these permissions by creating an unprotected private
copy anyway, as he was allowed to create a copy in the first place. Further, the
permissions for the collection does not change, so that the new access permissions
cannot circumvent a more stringent access policy on that collection.

Trade-Offs and Optimizations

The approach to treat data edits implicitly as version bumps has two significant
drawbacks. Firstly, the algorithm requires additional storage space as it increases
the numbers of entities in the system on each edit, and all entity versions need
to get replicated. Secondly, as mentioned above, it introduces conflicts when
multiple users are editing replicas of the same entity.

It is tempting to shrug off the space ———

. . . . data local copy
trade-off as “insignificant in nowadays pository |
unlimited storage systems”, but that focal copy

H edit
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We think, however, that (a) the algo- commit
rithm as-is fits those use cases which
have only a limited and comparably small
number of write operations, and that (b)
very simple space optimizations can be Fig. 3. Proposal: race conditions can

applied. Those space optimizations can, effectively be avoided by modeling them
for example, weed out versions which are 55 hranching.

superseded by newer versions, have never
been used, and are not explicitly tagged for keeping (e.g. for auditing).

‘ ’ edit

Resolving Conflicts

Conflict could of course be resolved manually. That however seems impractical
for large binary data we are considering here. The conflicts could also be resolved
by treating all new replicas not only as new versions, but as branches.

In th linguistic use case, branching is effectively what happens in step (5): two
groups change the content of a collection, incompatibly, at the same time: branch-
ing is the natural way to cope with such operations.
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5 Implications for Data Grid Implementations

The previous sections motivated the introduction of two basic capabilities, ver-
sioning and branching, on top of conventional replica systems. Both operations
can be build upon a very small set of basic operations:

— attach meta data to entities (version/branch information)
— update meta data consistently

— replica selection based on these meta data

— replication (local copies, spreading of new entries)

— publish new entries

As discussed in Sect. 3, these operations are all available in replica systems and
perform and scale well. The most critical operation is the meta data update, as
it requires consistency management for meta data — as discussed above, that is
well understood and implemented in typical replica systems [10,12,22,23].

Further, the implementation of versioning and branching operations does not
need to be atomic. The initial step is, in both cases, the creation of a replica
which is not registered in the replica catalog — which is an supported operation.
After changing that replica, it needs to be registered as new entry, i.e. with a new
set of meta data — again a supported operation. The implementation of versioning
and branching can hence, in our opinion, be implemented on top of existing and
deployed replica systems, in user space (although an implementation as system
extension would allow for more efficient space and availability optimization, as
described earlier).

6 Conclusion

We propose to extend existing replica systems with scalability enhancing fea-
tures: (a) automatic entity versioning on replica changes, and (b) automated
branching on colliding replica changes. Combined with sticky permission and
ownership policies of entity collections, this would allow for

— performant consistency on concurrent data changes
— scalable permission maintenance

interactive collaborative usage of data

— community shared data maintenance

The only trade-off we are aware off is an increase in storage space, depending on
the number of writes, which can be relieved by optimizing storage policies.

These features should allow to apply grid replica techniques to large scale GIS
environments, and would allow the GIS community to benefit from the positive
effects replica systems showed in other scientific and commercial environments.

We are aware that this paper is rather silent on the specific details of ownership
and permission management, and their application to the described use cases.
We felt that this topic was not adequately to be handled in the limited space
available, and thus will present that in a future publication.
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