
XOS-SSH: A Lightweight User-Centric Tool to Support Remote Execution
in Virtual Organizations

An Qin Haiyan Yu Chengchun Shu Bing Xu
Institute of Computing Technology, Chinese Academy of Sciences

Beijing,China
{qinan,shuchengchun,xubing}@software.ict.ac.cn

yuhaiyan@ict.ac.cn

Abstract

Large-scale virtual organizations (VOs) often comprise
resource providers from different administrative do-
mains, each probably with a specific security model.
Grids try to solve this problem by providing a new se-
curity infrastructure featured with single-sign on (SSO).
However, the usability of Grids is often impaired by the
complicity of configuring and maintaining the new secu-
rity infrastructure as well as adapting to new interfaces
of security enabled services. The co-existing of differ-
ent Grid platforms and SSO solutions among resource
providers makes this situation even worse. In this paper,
we present XOS-SSH, a lightweight user-centric tool to
support remote execution of jobs among heterogeneous
nodes of VOs. XOS-SSH is a modified version of the
widely used OpenSSH tool based on several OS-level
VO support mechanisms developed in XtreemOS project
[21]. XOS-SSH adopts a pluggable framework that is
capable of supporting different authentication schemes
and making them transparent to shell users. The per-
formance evaluation of XOS-SSH around NAS Parallel
Benchmarks (NPB) shows that our current implementa-
tion incurs trivial overhead comparing to the unmodified
one.

1 Introduction

Virtual Organizations(VOs) have generated increasing
attention from both research and industry communities
for that they support augmented and cost-effective re-
source sharing among geographically distributed service
providers (SPs). The foremost issue of building VOs is
the integration of different security models adopted by
different administrative domains in order to provide a
unified and seamless access to users. This issue needs
to be addressed in a scalable way without compromising
on usability and flexibility.

Grids [15] try to solve the cross-domain security issue

by providing new security infrastructures featured with
single sign on (SSO) [23]. As a de-factor standard, Grid
Security Infrastructure (GSI) [11] enables SSO access
of nodes by introducing proxy certificates and delega-
tion [28]. However, domain administrators and end users
are often frustrated by the complicity of configuring and
maintaining a new security infrastructure. From our ex-
periences on deploying Grid software on China National
Grid [6], there are several reasons hindering the promo-
tion of Grid software in a production testbed:

• Grid software is generally provided as a heavy soft-
ware stack which consists of many tightly coupled
components, and any mis-configured one of them
could stop the working of the whole software. Our
survey shows that it generally takes three or four
days for a professional engineer to make Grid soft-
ware work smoothly, whereas deploying packages
of current Linux distributions only takes minutes for
unpacking and installation.

• Both administrators and end users need to maintain
a new set of security data (e.g. credentials, mapping
files) together with existing ones managed by tra-
ditional security frameworks such as NIS/YP [27],
kerberos [26] and LDAP [12]. A typical example is
that a new Grid user needs to be enrolled in grid-
map files of each node besides the allocation of lo-
cal accounts in each node. Another example is that
proxy certificates need to be renewed periodically
for long running jobs. Such additional effort could
be partially saved by developing automatic routine
services while at the risk of exposing new security
holes.

• For HPC developers and end users, security-enabled
Grid services nowadays exhibit new access inter-
faces to them which generally beyond the knowl-
edge and skill of them. For example, programming
with Grid services with WS-Security [24] is a non-

trivial task for traditional Fortran developers. The
user survey of NSF cyberinfrastructre [2] shows that
only 18% of TeraGrid users have experienced with
Grid tools in 2005, and 10% of users have used grid
tools in production runs in 2006, while another in-
teresting result is that scp is the most popular data
management tool (up to 52% of users). Compar-
ing to daily used Linux utilities to launch processes,
the job execution on Grid nodes is generally a very
complex workflow due to the layered security in-
frastructure working behind.

In large-scale VOs, the co-existing of different Grid
platforms, such as Globus [15], Glite [20], Unicore [13]
and OMII [3], together with several SSO solutions like
Shibboleth [14] and Liberty alliance [1], make the VO-
level resource sharing more complicate than ever. The
problem of Grid interoperability has been proposed for
several years whereas there are no simple solution for it
due to the fact of lacking common accepted standards.

In this paper, we present XOS-SSH, a lightweight
user-centric tool to support remote execution of jobs
among heterogeneous nodes of VOs. XOS-SSH is a
modified version of the widely used OpenSSH tool. It is
based on several OS-level VO support mechanisms de-
veloped in XtreemOS project [21]. XOS-SSH adopts a
pluggable framework that is capable of supporting dif-
ferent authentication schemes and making them transpar-
ent to shell users. The performance evaluation of XOS-
SSH around NPB [9] benchmarks shows that our current
implementation incurs trivial overhead comparing to the
unmodified one.

The rest of the paper is organized as follows: we first
analyze related technologies in section 2 and identify
several key challenges in our design in section 3. Then,
we address the detailed design issues in section 4 and
carry out performance evaluations in section 5. Finally,
we discuss related work in section 6 and conclude the
paper in section 7.

2 Background

In this section, we present related techniques that moti-
vate us to implement a lightweight remote execution tool
for end users, which could deal with security challenges
in consuming resources from several heterogeneous do-
mains in a VO.

2.1 XtreemOS and VOs

XtreemOS [21] is a European project that aims to design,
implement, evaluate and distribute an open source oper-
ating system, which supports Grid applications and runs
on a range of platforms, from clusters to mobile devices.

The goal is to provide an abstract interface to local re-
sources, as a traditional OS does for a single computer.
XtreemOS is based on the existing Linux OS. A set of
system services, extending those found in Linux, pro-
vide users with the capabilities associated with Grid mid-
dleware. This native support means that XtreemOS will
significantly ease the management and use of VOs with-
out compromising on efficiency, flexibility, and back-
ward compatibility. From the perspective of end users,
they do not need to learn new interfaces and tools to use
VOs as most tools will expose the standard UNIX com-
mands familiar to users. Also, applications will not need
to be re-factored to run on VOs as most XtreemOS APIs
are POSIX-compliant. As part of the XtreemOS work, a
ssh-based remote execution tool is developed to facilitate
end users to launch jobs and move data among nodes of
a VO, which aims to overcome many of the barriers to
the use of VOs.

2.2 OS-level plug-in frameworks

In Linux/Unix-like distributions, Operating System (OS)
is equipped with some pluggable frameworks and in-
terfaces, which can be exploited by system develop-
ers to customize the OS behaviors. With these plug-
gable frameworks, customized modules can manually
be plugged in system and interact with system software
via standard interfaces, without any modification in OS
codes. In XtreemOS, we have leveraged Pluggable Au-
thentication Module (PAM) and Name Service Switch
(NSS) to insert VO support functionalities into OS [21].

PAM, originally proposed by sun, is now widely used
in Linux/Unix-like distributions. Its pluggable frame-
work enables system administrators to choose authenti-
cation scheme for specific applications [25]. In large-
scale VOs , SPs may belong to different domains which
adopt different authentication schemes and security pro-
tocols. Specific PAM modules developed for each au-
thentication model could be used by SPs without affect-
ing applications. In addition, PAM modules could also
be used to perform authorization and resource usage en-
forcement.

NSS is also a pluggable framework for name resolving
of Linux system objects such as users, groups and hosts.
In NSS, query against traditional Unix file-based infor-
mation stores (e.g. /etc/passwd and /etc/group)
could be substituted with querying other databases such
as NIS+, LDAP and customized NSS modules [5] [29].
NSS APIs are standard libc calls and NSS mod-
ules could be configured outside the application (by
/etc/nsswitch.conf). With NSS, we can develop
customized modules to process user related information
(such as resolving Distinguished Name of a Grid user to
a local account) while making this transparent to legacy

2

applications.

2.3 OpenSSH-based modification

In our design, we modify the OpenSSH [4] to support
secure communication among nodes with different secu-
rity models. The modification based on OpenSSH can
benefit from several aspects.

Firstly, OpenSSH is a standard component in
Linux/Unix-like OS nowadays. It is extensively used by
end users for secure login and data transmission (e.g.
scp, sftp) among local and remote nodes. Many
projects adopt it as a standard secure channel for com-
munication. For example, parallel applications built
upon MPI depend on OpenSSH to launch processes on
trusted nodes. Extending OpenSSH to support VOs
could greatly improve the usability for end users and pro-
vide transparency to traditional parallel applications.

Secondly, OpenSSH is open-source and it has a
well-designed crypto library as well as an extensible
code skeleton. Extensions could be added into current
OpenSSH without affecting its original functionalities.
The extended OpenSSH can turn back to the original au-
thentication method if customized extensions fail. Also,
system administrators could determine whether the ex-
tensions are enabled.

Lastly, the latest OpenSSH release was implemented
as a PAM-aware application [25], which means that it
could be configured to use customized PAM modules to
do authentication against VO users.

3 Challenges

Several challenges still remain when developing a secure
remote execution tool among heterogeneous nodes in a
VO.

The first challenge is the design of efficient protocol
to support multiple authentication models. In a large-
scale networked environment, the communication chan-
nel between heterogeneous nodes needs to securely carry
sufficient information to prove users’ identities and at-
tributes. The protocol of data transmission is to be de-
signed as flexible as possible to accommodate multiple
authenticate models while keeping the packet size small,
as redundant data could reduce the efficiency of authen-
tication processing codes.

The second is the support of multiple authentication
models at server-side. Additional work needs to be done
to make OpenSSH work seamlessly with PAM and NSS
modules. Various client credentials need to be securely
passed from client-side to server-side and then to PAM
modules. As PAM framework allows multiple mod-
ules to work together for a PAM-aware application, there
should be a negotiation process to determine which set of

PAM modules are put into action for a specific authenti-
cation model.

The third is the scalable support for large amount of
VO users. This scalability issue lies in two aspects: a)
concurrent accessing of the same SP node by numerous
VO users needs to be differentiated and isolated; b) the
management of user accounts in a node needs to be per-
formed in a scalable manner without compromising on
security in terms of access control and accounting. Tra-
ditionally, system administrator may allocate a local ac-
count for each VO user in each SP node to guarantee the
isolation among them. However, this could be a night-
mare for administrators when there are large amount of
users in VOs where memberships of users and access
rules of nodes are dynamically changing. To achieve a
scalable node-level VO support , it is natural to allow
VO users to access nodes without pre-allocation of local
accounts.

4 Design and Implementation

In this section, we will present our design in details. We
introduce the overall architecture first, then we explain in
details how we address challenges mentioned above.

4.1 Overview

The overall architecture upon which current XOS-SSH
works is shown in Figure 1. A VO user obtains an
X.509 certificate from a VO manager service (e.g. from
the Credential Distribution Authority (CDA)[30] or from
Globus SimpleCA [11]) and presents it to a PAM-aware
application running in a VO node. This PAM-aware ap-
plication checks XOS-Cert for validity and whether the
requested account already exists. For a VO user who has
been granted to access but with no corresponding local
account, an Account Mapping Service (AMS) maps the
user’s identity to a dynamically created virtual account
in local nodes (discussed later). After the VO user is au-
thenticated, the mapping information of VO-level users
and groups could be obtained by the NSS extensions via
standard libc calls. The AMS guarantees that only au-
thorized processes can obtain this information.

As a PAM-aware application, OpenSSH is extended
to use the new developed PAM and NSS modules. It is
worth mention that the current architecture is not bundled
with a specific security model (i.e. not limited in fitting
with default VO model of XtreemOS).

4.2 Protocol

Currently, standard OpenSSH do not support authentica-
tion methods based upon X509-based certificate. XOS-
SSH extends the OpenSSH by introducing a customized

3

SSHD

libpam
Model-specific
PAM module
(pam_xos.so)

libc
Model-specific
NSS module
(libnss_xos.so)

Mappings
database

Account Mapping Service
AMS

1. authentication
request

2/6. PAM configured
to use specific

module

4. authentication
success

7. mapping request and
store mapping relationship

NSS subsystem
PAM subsystem

3. store credential

5. account
confirmed
request

8. account
confirmed
success

1. user information
request

2. NSS configured
to use specific

module

3. mapping
information

request

4. mapping
information

5. user
information

Prototype-specific component

System standard component

SSH

Model-specific
 trusted CA

(e.g. CDA, SimpleCA)

VO management

1. cert request

2. user XOS_cert

3. converation
4. show

credential to
server

PAM disposal phrase

NSS disposal phrase

OpenSSH-supported
cred accessing

Figure 1: Overall architecture

packet format and communication protocol. The packet
format is illustrated as Figure 2. A packet is composed
of SSH header (HDR) followed by a series of segments,
each of which representing a user credential within a spe-
cific authentication model. Data fields of each segment
are explained as follows.

HDR sender_name domain_name

sig_flag key_alg security_token signature

sender_name domain_name

sig_flag key_alg security_token signature

Figure 2: Packet format in XOS-SSH

• sender name: The name of the sender (e.g. DN
or usernmae), which is to be checked with security
token by sever-side.

• domain name: The field is holding the informa-
tion to tell server-side which category of authenti-
cation models the user certificate is belonged to, so
that PAM can choose corresponding module for cer-
tificate verification.

• security token: security related data to prove
the user’s identity and attributes (e.g. password,
proxy certificate, attribute certificate).

• sig flag, key alg and signature: Each
segment is attached with a signature which is signed
with sender’s private key. The key alg de-
notes the signature algorithm and the sig flag is
marked with whether the segment is signed.

The packet format is flexible, because several seg-
ments containing same fields can be glued together and
each segment may belong to different authentication
models. The length of each segment is variable because
not all the fields are necessary in some authentication
models. (e.g. MyProxy [18]).

Although communication data are encrypted by
OpenSSH, it can only guarantee that data are from the
right peer rather than the right user. For example, ma-
licious users may capture other users’ proxies and then
send them to SPs via legal clients. The server can not find
this potential attack if nothing is done to defend the at-
tacker. Hence, customized protocol need to be defined to
consolidate OpenSSH, by signing message packet with
user private key. To the GSI model for example, the
customized protocol requires client to pack sender’s DN
and proxy into same segment, and then signs the segment
with private key before transmission. In server-side, pub-
lic key would be fetched from proxy to verify signature.
Next, sender’s DN would be checked whether it matches
the DN of proxy. Further, PAM module plugged in server

4

would verify user proxy. The procedure collaborating
with PAM authentication is to guarantee the packet is
from right user.

4.3 Pluggable modules for specific authen-
tication models

As mentioned above, pluggable modules are utilized to
cope with heterogeneity of authentication models. The
key issue is to specify interaction agreement between
PAM and SSH server. In our implementation, model-
specific PAM conversation handlers are developed to
pass private identity information from SSH server to the
PAM modules. The interaction agreement defined in
handler is specific to given authentication model. Each
module has its own handler, to get information from
application. Due to feature of PAM-aware application,
SSH server can be configured to use a chain of sev-
eral PAM modules. Each PAM module in the chain
first requests domain information from packet (defined
in domain name), and determine whether it is suitable
to process user credential. If a PAM module takes charge
of credential process, the rest information will be passed
by its conversation handler, according to model-specific
interaction agreement. Generally, each PAM module
only processes those credentials matching given authen-
tication model. If there are several modules matching
the same authentication model, priority will follow the
chain.

With the help of PAM framework, customized mod-
ules could be easily developed to fit with new authenti-
cation models. Currently, we have developed two spe-
cific PAM modules, pam xos.so and pam gsi.so,
for XtreemOS model and GSI-like model; the third one
for MyProxy is ongoing. The pam xos.so is devel-
oped to authenticate users with certificate issued by CDA
in XtreemOS project [30]; the other one, pam gsi.so,
is used to authenticate those with certificates observed
RFC3820 [17] used in Globus and VOMS [8].

4.4 User mapping

As discussed in section 3, when there are large number of
VO users with all kinds of authentication credentials con-
currently access resources or execute remote commands
in the same SP node, it is critical to guarantee the iso-
lation of users in terms of resource usage, security and
fail-recover in a scalable manner. We first analyze cur-
rent OS mechanisms to address the issue and then pro-
pose a ”virtual account” mapping mechanism to address
the scalable accessing and isolation.

In current OS, there exist two items named uid and
gid. Users are identified and isolated by their uids

which constructs a container including all resources (pro-
cess, file, memory, etc) labeled with given uid. And,
they can share their resources via gid. Currently, per-
mission checking and file access control in OS are per-
formed based on uid and gid. Without the modifica-
tion of kernel, we could make use of existing mecha-
nisms to realize the isolation of VO users if each VO user
can be mapped onto local uid and gids.

Unlike the Globus grid-mapfile approach [11], we are
not going to prepare several accounts in each SP server
for user accessing. Because all user or group informa-
tion are requested via libc interfaces and further re-
turned by NSS subsystem, a specific NSS module and
an AMS are developed to provide virtual account for
each VO user. The virtual account means they are ac-
counts owning uid and gid, but they are not stored in
system databases (/etc/passwd and /etc/group),
and they are agnositic to local applications but recog-
nized by kernel. Figure 3 depicts the mapping mecha-
nism of virtual accounts.

When an application requests user information, the
request will first be filtered in a specific NSS mod-
ule (libnss xos.so in figure 3, for example) to de-
termine the type of request. If the request is not of
VO user, libnss xos.so will free the request. If
so, libnss xos.so will ask AMS for the informa-
tion. The information will be encapsuled as struct
passwd, which can be used as normal data structure.
Hence, it is not necessary to have the pre-allocated ac-
counts in SP server.

The total number of pre-allocated accounts is hard to
cater for concurrent accessing of large-scale users, so it
is not easy to guarantee isolation in this approach. Also,
the approach aggravates the administrative burden be-
cause pre-allocated accounts would be added in system
databases (via useradd).Compared with physical ac-
counts, scalability support of virtual account lies in that
a) user information is not stored in system databases but
in separate databases built with BerkelyDB [22], and b)
the allocation of uid and gid can be expanded to wider
boundary, from 0 to 232 − 1 (the length of integer word).

Since each VO user has a local mapped account (either
physical account or virtual account), OS can isolate and
control their behaviors like conversational local users.
Resource control, security control and fault isolation can
be maintained via original mechanisms. Furthermore, to
enhance the fault isolation and alleviate the burden of
garbage collection, files created by VO users are stored
in global filesystem such as NFS, but local temporary
files will be cleared out when they log out.

5

libc
Model-specific
NSS module
(libnss_xos.so)

Mapping
databases

Account Mapping Service
AMS

NSS subsystem
2. NSS configured

to use specific
module

Prototype-specific component

System standard component

...

... ...

...

standard
NSS module
(libnss_file.so)

System
databases

3. NSS configured
to use standard

module

network users

local users

kernel

local account

/etc/passwd
/etc/group

1. user information
request

4. user information

user mapping

Information request

Figure 3: using mapping

5 Performance Evaluation

In this section we present our performance evaluations,
which we design to address various important metrics
of remote execution in distributed environment. We first
evaluate the basic performance with respect to response
time of authentication, average transfer rate and network
connections, comparing with OpenSSH. Finally, we ex-
amine the impact of our prototype on hosted parallel ap-
plication using NAS Parallel Benchmarks (NPB) [9].

5.1 Experimental Environment Setup

We implement our prototype based on OpenSSH-4.5pl,
and name it with XOS-SSH because it is developed for
XtreemOS project [21]. We compare our prototype with
OpenSSH (version 4.5) on a simulated distributed envi-
ronment, which contains four virtual machine nodes in
a physical server. The simulated environment is built on
DELL PowerEdge 1950 with Intel Xeon L5310 1.60GHz
CPU, 3.25G memory, and 80G disk. We construct
four virtual machine nodes with VMware server (ver-
sion 1.0.4) and each virtual machine node is equipped
with single 1.6 GHz CPU, 388M memory and 8.0G disk.
CentOS4.3 is running in each virtual machine node and
is connected with Ethernet. We deploy our prototype on
this simulated distributed environment and then carry out
our experiments.

5.2 Basic Performance Evaluation

The basic performance is evaluated with simple and
easygoing methodology, which is widely used in
OpenSSH developer community. Although the method-
ology is not imprecise, it can illustrate the differ-
ence between XOS-SSH and OpenSSH in authentica-
tion and transfer traffic. To compare the authentication
time, we use the command ”time ssh IPaddress
/bin/true” in console.

As shown in Figure 4, the time in user mode is same,
but the time in kernel mode is longer for XOS-SSH than
that for OpenSSH. As mentioned above, XOS-SSH has
to deal with the complex authentication models, so it
needs more time in kernel mode to deal with certificate
verification, not just password.

Figure 4: authentication time

For evaluation of network connection, the next experi-

6

ment is set to transfer a 100M file from client to server by
scp. With wireshark [7], a traffic analyzer, we show
the statistics information in Table 1.

Although packet format and protocol have been used
to transmit more content in XOS-SSH, there is no much
influence on transmitting big blocks of data with scp.
As illustrated by average package size (Avg. package
size), XOS-SSH packs more content in each packet. This
also influences the total number of transmitted packages
and the average speed of package transmission, as shown
in Table 1. Both of them are decreased in XOS-SSH,
but transmission speed reduces too. The tradeoff shows
trivial overhead comparing with OpenSSH.

5.3 Evaluation of Parrallel Applications on
XOS-SSH

The OpenSSH is widely used to provide secure commu-
nication for HPC parallel applications, so we also eval-
uate the actual impact of XOS-SSH on hosted parallel
HPC applications. The experiment is constructed to use
NAS Parallel Benchmarks (NPB) [9], derived from the
computing kernels common on Computational Fluid Dy-
namics (CFD) applications.

The experiment uses MPICH2 to construct the HPC
experiment, which is a popular MPI tools to build MPI
applications. Below the MPICH2, both OpenSSH and
XOS-SSH provide a basic infrastructure for secure com-
munication, which connects two heterogeneous trusted
domains together. Each domain contains two nodes. One
of trusted domain is configured as XtreemOS authenti-
cation model, and the other is used GSI authentication
model. The difference between two authentication mod-
els lies in delegation fashion: XtreemOS model can not
provide proxy delegation (at least, current implementa-
tion can not support), whereas GSI model can. There-
fore, we design a pseudo proxy to smooth the difference.
The pseudo proxy mechanism helps XtreemOS users del-
egate a proxy for remote authentication, which is short-
lifetime proxy only containing the address of client and
a temporary password, which can be used only once for
server to seek client and do authentication similarly as
MyProxy fashion [18].

Figure 5 and 6 show the results of NPB running on
XOS-SSH and OpenSSH. NPB benchmarks of class A
and class B was selected in experiment because class A is
proposed for workstation and class B is for small parallel
systems constructed by high-end workstations [10]. All
the items in NPB benchmarks are tested twice running
on four nodes and the avenge experimental value serves
as our experimental data.

As shown in Figure 5, XOS-SSH has lower Millions of
Operations per second (Mop/s) than OpenSSH in small
size of Class A benchmarks. However, when computa-

tional size is expended to Class B, XOS-SSH has more
improvement, especially in some benchmarks such as
LU, SP, and BT, which is more related to applications.
In Class A benchmarks, the average Mop/s of XOS-SSH
is 724.255, comparing to 830.405 of OpenSSH. But in
Class B, XOS-SSH is higher than OpenSSH in average
Mop/s, with the ratio of 655.75:630.61.

The compassion of consumed time also illustrates the
trivial overhead between XOS-SSH and OpenSSH, as
shown in Figure 6. In Class A benchmarks, the average
consumed time of XOS-SSH is 41.6525 while OpenSSH
is 37.5488. However, in Class B benchmarks, the ratio
of average consumed time has reduced, with 4499.858
of XOS-SSH and 4230.563 of OpenSSH. In Class B of
Figure 7, we have not provided the time of FT, because
total consumed time of FT benchmark is higher than any
other benchmark (34452.87:32234.22, in seconds), so
that more comparison details can be shown in Figure.

6 Related works

In this paper, we discuss the design of lightweight remote
execution tool based on OpenSSH and OS-level exten-
sions. Other similiar SSO support tools include those
implemented in the Grid Security Infrastructure (GSI),
GSI-SSH [16][28] and MyProxy [18]. The GSI-SSH
is also a patched version of OpenSSH to authenticate
users within the GSI framework. MyProxy [18] pro-
vides an online repository for storing proxy certificates
for users, which are accessed by providing normal user-
name/password pair. They are not designed as a flexible
framework to support other kinds of authentication mod-
els.

For security issues, maintaining a new set of security
data has caused new work burden to both administrators
and end users. Traditional security frameworks such as
NIS/YP [27], Kerberos [26] and LDAP [12] provide cen-
tralized identity management, but at the risk of single
point of failure. The mechanisms of Globus mapfile [11]
has limitation of scalability when deploying in large-
scale Grid applications. Some works such as [19] pro-
vide plug-ins for GSI to improve the limitation of grid-
mapfile, however the Globus-dependent plug-ins can not
be applied to other authentication models. In our design,
the virtual account mapping mechanism built upon NSS
extensions addressed the scalability issue while provid-
ing support for legacy applications.

7 Conclusion and Future work

In this paper, we present several issues hindering the uti-
lization of current Grid software and identify challenges
to realize remote execution cross heterogeneous security

7

Traffic statistics OpenSSH XOS-SSH
Between first and last package 27.328 sec 23.843 sec
Packages 112967 79365
Avg. packages/sec 4133.815 3328.692
Avg. package size 996.000 bytes 997.000 bytes
Bytes 112534474 79205972
Avg. bytes/sec 4117988.014 3322022.483
Avg. MBit/sec 32.944 26.576

Table 1: Traffic statistics of OpenSSH and XOS-SSH

(a) NPB benchmarks of Class A to evaluate execution speed (b) NPB benchmarks of Class B to evaluate execution speed

Figure 5: Comparison of millions of operations per second (Mop/s)

(a) Consumed time of running Class A benchmarks (b) Consumed time of running Class B benchmarks

Figure 6: Comparison of consumed time (seconds)

domains in VOs. We developed XOS-SSH, a lightweight
user-centric tool by patching OpenSSH to use OS ex-
tensions developed in XtreemOS project. With the help
of pluggable framework, specific authentication mod-
els could be processed by XOS-SSH in a unified way.
Our design addresses several challenges by fully exploit-
ing existing mechanisms in OS, including flexible proto-
col design to transfer authentication information, model-
specific PAM modules and scalable user mapping Our
design significantly smoothes the gap between adminis-
trative domains built with specific authentication mod-
els, in term of seamless remote execution. We evaluate
our solution through a set of experiments to measure its

impact on parallel applications. The experimental data
of performance show that our prototype incurs trivial
overhead comparing to standard OpenSSH. Although our
prototype can easily integrate heterogeneous domains to-
gether, the experiments in this paper have not covered the
measurement of efficiency when there are huge amount
of domains. We will continue to exploit existing OS ex-
tensions to support resource sharing on VOs in a secure,
flexible and scalable manner.

8

8 Acknowledgments

This research is supported by XtreemOS project under
European Commision FP6 Contract (No. 033576). We
would like to thank Luis Pablo Prieto, Erich Focht, Yvon
Jegou and Zhiwei Xu for their support and insightful dis-
cussion.

References

[1] Liberty Alliance. http://www.projectliberty.org/.

[2] NCSA/SDSC Cyberinfrastructure User Survey 2005&2006.
http://www.ci-partnership.org/survey/.

[3] Open middleware infrastructure institute (omii).
http://www.omii.ac.uk/.

[4] Openssh. http://www.openssh.org/.

[5] System databases and name service switch.
http://www.gnu.org/software/libc/manual/html node/Name-
Service-Switch.html.

[6] The China National Grid (CNGrid) Project.
http://i.cs.hku.hk/ clwang/grid/CNGrid.html.

[7] Wireshark. http://www.wireshark.org/.

[8] ALFIERIA, R., CECCHINIB, R., CIASCHINIC, V., DELLAGNEL-
LOD, L., FROHNERE, A., LOIXRENTEYF, K., AND SPATAROG,
F. From gridmap-file to VOMS: managing authorization in a
Grid environment. Future Generation Computer Systems 2005,
21 (2005), 549–558.

[9] BAILEY, D., BARSZCZ, E., BARTON, J., BROWNING, D.,
R.L., CARTER, DAGUM, L., FATOOHI, R., FREDERICKSON,
P., LASINSKI, T., SCHREIBER, R., SIMON, H., VENKATAKR-
ISHNAN, V., AND WEERATUNGA, S. The Nas Parallel Bench-
marks. International Journal of High Performance Computing
Applications 5, 3 (1991), 63–73.

[10] BAILEY, D., HARRIS, T., SAPHIR, W., DER WIJNGAART,
R. V., WOO, A., AND YARROW, M. The NAS Parallel Bench-
marks 2.0. Tech. rep., NAS Technical Report NAS- 95-020, 1995.

[11] BUTLER, R., ENGERT, D., FOSTER, I., KESSELMAN, C.,
TUECKE, S., VOLMER, J., AND WELCH., V. A National-Scale
Authentication Infrastructure. IEEE Computer 33, 12 (2000), 60–
66.

[12] CARTER, G. LDAP system administration. O’Reilly & Asso-
ciates, Inc, 2003.

[13] E., D. W., AND S., D. F. UNICORE: A Grid Computing Envi-
ronment. In Lecture Notes in Computer Science (Springer Berlin
/ Heidelberg, 2001), Springer, pp. 81–92.

[14] ERDOS, M., AND CANTOR, S. Shibboleth-Architecture
DRAFT v0.5. http://shibboleth.internet2.edu/docs/draft-
internet2-shibboleth-architecutre-05.pdf.

[15] FOSTER, I., KESSELMAN, C., AND TUECKE, S. The anatomy
of the grid: Enabling scalable virtual organizations. Interna-
tional Journal of High Performance Computing Applications 15,
3 (2001), 200–222.

[16] GSI-ENABLED OPENSSH. http://grid.ncsa.uiuc.edu/ssh/.

[17] HOUSLEY R., POLK W., F. W., AND SOLO, D. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile [RFC 3280], 2002.

[18] J, N., AND V, T. S. W. An online credential repository for
the grid: MyProxy. In 10th IEEE International Symposium
on High Performance Distributed Computing (HPDC-10 ’01)
(2001), pp. 104–112.

[19] JANKOWSKI, M., WOLNIEWICZ, P., AND MEYER, N. Virtual
User System for Globus Based Grids. In Proceedings of Cracow
Grid Workshop (Cracow’04) (2005), pp. 316–322.

[20] LAURE, E., AND HEMMER, F. Middleware for the Next Gener-
ation Grid Infrastructure. In Proceedings of Computing in High
Energy and Nuclear Physics (CHEP) (2004).

[21] MORIN, C. Xtreemos: a grid operating system making your com-
puter ready for participating in virtual organizations. In Proceed-
ings of ISORC’07 (July 2007), vol. 5, pp. 347–368.

[22] OLSON, M. A., BOSTIC, K., AND SELTZER, M. Berkeley db.
In Proceedings of 1999 USENIX Annual Technical Conference
(1999), pp. 183–192.

[23] PASHALIDIS, A., AND MITCHELL, C. A taxonomy of single
sign-on systems. In Proc. ACISP’03 (2003), pp. 249–257.

[24] ROSENBERG, J., AND REMY, D. Securing Web Services with
WS-Security: Demystifying WS-Security, WS-Policy, SAML, XML
Signature, and XML Encryption. O’Reilly & Associates, Inc,
2004.

[25] SAMAR, V. Unified login with pluggable authentication modules
(PAM). Proceedings of the 3rd ACM conference on Computer
and communications security (1996), 1–10.

[26] STEINER, J., NEUMAN, C., AND SCHILLER, J. I. Kerberos:
An authentication service for open network systems. In Proc.
USENIX Winter Conf (Feb 1988), pp. 192–202.

[27] STERN, H., EISLER, M., AND LABIAGA, R. Managing NFS
and NIS. O’Reilly & Associates, Inc, 2001.

[28] WELCH1, V., FOSTER, I., KESSELMAN, C., MULMO, O.,
PEARLMAN, L., TUECKE, S., GAWOR, J., MEDER, S., AND

SIEBENLIST, F. X.509 Proxy Certificates for Dynamic Delega-
tion. In 3rd Annual PKI R&D Workshop (2004).

[29] XTREEMOS CONSORTIUM. D2.1.2 node-level VO support spec-
ification. XtreemOS deliverable, November 2007.

[30] XTREEMOS CONSORTIUM. D3.5.4: Second Specification of Se-
curity Services. XtreemOS deliverable, November 2007.

9

