
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Overview of XOSAGA Programming Interfaces
D3.1.10

Due date of deliverable: April 1st 2010
Actual submission date: May 10th 2010

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.1

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.0 / Last edited by Thilo Kielmann / May 10th 2010

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 16/03/10 Mathijs den Burger VUA initial draft
0.99 09/04/10 Thilo Kielmann VUA version for internal review
1.0 10/05/10 Thilo Kielmann VUA final version

Reviewers:
Michael Schöttner (UDUS), André Lage (INRIA)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.1.1 Specification of XtreemOS API extensions to the set of

POSIX specifications
VUA∗, all partners except CDC

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
This document presents an overview of XOSAGA, the programming interfaces to
XtreemOS, its components and services. XOSAGA forms a coherent set of modu-
lar API packages, based on OGF’s Simple API for Grid Applications (SAGA) [2].
XOSAGA extends SAGA by packages for handling XtreemOS user certificates
(XtreemOS contexts), job submission and resource management, the XtreemFS
file system, the Scalaris publish-subscribe system, the Object Sharing System
(OSS), and the Distributed Servers.

This document contains the programming-language independent specifications
of the XOSAGA package API’s. XOSAGA has been implemented in C++, in
Java, and in Python. The programming-language bindings (the concrete syntax
and semantics) for these programming languages are described separately, along
with the respective implementations.

1

Contents
Executive Summary 1

1 Introduction 4

2 XtreemOS context 5
2.1 Example . 7

3 Job Submission and Resource Management 8
3.1 Specification . 8
3.2 Specification Details . 17

3.2.1 Class resource_description 17
3.2.2 Class resource . 18
3.2.3 Class reservation . 19
3.2.4 Class resource_service 20
3.2.5 Class application_description 26
3.2.6 Class job_service . 27

3.3 Example . 31

4 XtreemFS 32

5 Scalaris and OSS 32
5.1 Shared buffers . 33

5.1.1 Specification . 33
5.1.2 Specification details . 35
5.1.3 Example . 41

5.2 Shared events . 43
5.2.1 Specification . 43
5.2.2 Specification details . 44
5.2.3 Example . 47

5.3 Shared properties . 48
5.3.1 Specification . 48
5.3.2 Specification details . 48
5.3.3 Example . 51

6 Distributed Servers 52
6.1 Specification . 52
6.2 Specification Details . 53
6.3 Example . 62

7 Summary 64

2

Bibliography 64

3

1 Introduction
The API for the XtreemOS operating system has to meet multiple and conflicting
requirements. First of all, it has to be congruent with POSIX API’s and their look-
and-feel, in order to serve traditional Linux applications, as XtreemOS is based on
Linux. Second, the XtreemOS API should also serve existing grid applications,
thus following grid-related standards. And finally, XtreemOS-specific functional-
ity needs to be exposed to new applications that wish to exploit XtreemOS to the
fullest extent.

The resolution of these conflicting requirements lies in defining an API for
XtreemOS that is based on the Simple API for Grid Applications (SAGA), a stan-
dard defined by the Open Grid Forum (OGF) [2]. SAGA has been accepted
as a middleware and service-independent API for grid infrastructures, thus al-
lows XtreemOS to serve grid applications that had been developed for other,
middleware-based systems. Also, SAGA has been designed following the look-
and-feel of POSIX API’s, also making Linux applications feel “at home” on
XtreemOS. Finally, SAGA has a modular and extensible design, allowing to add
new packages that give access to XtreemOS-specific functionality and services.

SAGA thus forms the core of the XtreemOS API. Together with the XtreemOS-
specific extension packages we call the API XOSAGA. These packages provide
interfaces for handling XtreemOS user certificates (XtreemOS contexts), job sub-
mission and resource management, the XtreemFS file system, the Scalaris publish-
subscribe system, the Object Sharing System (OSS), and the Distributed Servers.

This document contains the programming-language independent specifications
of the XOSAGA package API’s. XOSAGA has been implemented in C++, in
Java, and in Python. The programming-language bindings (the concrete syntax
and semantics) for these programming languages are described separately, along
with the respective implementations.

An integral part of the XtreemOS API is defined by the OGF recommendation
document GFD.90 [2], which has been shaped and contributed by the XtreemOS
team throughout the development of the XtreemOS software. We refrain from in-
cluding its 324 pages in this document. Instead, we briefly summarize the SAGA
core packages, and only present the XOSAGA extensions in full detail in the
following sections. (The API documentation that is part of the three implemen-
tations also covers the core SAGA API, rendered in the respective programming
languages, C++, Java, and Python.)

Figure 1 shows the classes and interfaces of the SAGA core API. At the top,
the so-called “look and feel” packages are shown. These packages deal with all
non-functional aspects and mandate a uniform look-and-feel for all the functional
packages (shown in lower part), as well as for the XOSAGA extension packages
as defined in the following sections. From the look-and-feel packages, it is im-

4

portant to mention the context class that gets extended for handling XtreemOS
user certificates. From the functional packages we highlight the job management
package, that is extended by XOSAGA for providing access to the Application
Execution Management system (AEM). Likewise, the name space and file man-
agement packages are extended to provide access to the XtreemFS file system.
The following sections provide the detailed specifications of all XOSAGA exten-
sion packages. Structure, organization, and layout of these sections follow the
SAGA standard document [2].

Error Handling

Functional Packages
Replica ManagementName Space Mngmt.File Management

Streams

Job Management

Look & Feel

Task Model Monitoring Model

RPC

Base Object Attribute Interface I/OSecurity

error_hand.

interface

implements

inherits

class

async

rpc

metrictask_cont. task

steerable

monitorable

callback

job_servicejob

job_self logical_filens_directoryfile

streamstream_serv. ns_entry

directory logical_dir.

job_desc

iovec

parameter

contextsession

permissions URL

bufferattributeobject

exception

Figure 1: The SAGA classes and interfaces, according to [2].

2 XtreemOS context
In XtreemOS, VO management is based on XtreemOS-specific certificates. These
certificates are issued and administered by VO management services, and used
and interpreted both by other XtreemOS-specific services as well as the different
flavours of the XtreemOS operating system. The latter is done via kernel modules
that authenticate and authorize users via these XtreemOS certificates [7].

In the SAGA API [2], the saga::context class provides the functionality
of a security information container. A saga::context object can be attached to
a saga::session handle, and as such be available to all SAGA objects instan-
tiated in that session. Multiple contexts can co-exist in one session, and it is up to
the implementation to choose the correct context for a specific method call.

A context has a set of attributes which can be set/get via the SAGA attributes
interface (that is implemented by the saga::context class). Which attributes
a context actually evaluates depends on its type. A SAGA implementation can
implement multiple types of contexts. The implementation must document which

5

context types it supports, and which values to the Type attribute are used to iden-
tify these context types. Also, the implementation must document which default
values it supports for the various context types, and which attributes need to be or
can be set by the application.

The XtreemOS API therefore uses saga::context objects to encapsulate
XtreemOS certificates. The Type attribute of such an XtreemOS context has the
value ’xtreemos’.

If a user has installed an XtreemOS certificate in his home directory, an XOSAGA
implementation provides default values for the following attributes:

name: UserCert
desc: location of a user certificate to use
mode: ReadWrite
type: string

name: UserKey
desc: location of the private key for a user
mode: ReadWrite
type: string

Applications can also set these attributes themselves to use another user certificate
than the default one.

In addition, the implementation provides the following (read only) attributes
for XtreemOS contexts, providing the relevant information from XtreemOS cer-
tificates [7]:

name: GlobalPrimaryVOName
desc: the primary VO that a user is associated with
mode: ReadOnly
type: string

name: GlobalPrimaryRoleName
desc: the primary role that a user is associated with
mode: ReadOnly
type: string

name: GlobalPrimaryGroupName
desc: the primary group that a user is associated with
mode: ReadOnly
type: string

name: GlobalSecondaryGroupNames
desc: the list of secondary groups a user is associated with
mode: ReadOnly
type: array<string>

6

2.1 Example

Figure 2 shows a Java program that creates a SAGA session and adds an XtreemOS
context to it. When a local XtreemOS certificate is installed, various attributes of
the certificate will be printed.

1 import org.ogf.saga.error.SagaException;
2 import org.ogf.saga.session.Session;
3 import org.ogf.saga.session.SessionFactory;
4 import org.ogf.saga.context.Context;
5 import org.ogf.saga.context.ContextFactory;
6 import eu.xtreemos.xosaga.context.XosContext;
7

8 public class XtreemOSContextExample {
9

10 public static void main(String... args) {
11 try {
12 // add a deep copy of the context to the default session
13 Session defaultSession = SessionFactory.createSession();
14 Context c = ContextFactory.createContext("xtreemos");
15 defaultSession.addContext(c);
16

17 // get the initialized copy of the context from the session
18 Context[] contexts = defaultSession.listContexts();
19 c = contexts[0];
20

21 // print some attributes of the context
22 System.out.println("XtreemOS key file: " +
23 c.getAttribute(Context.USERKEY));
24 System.out.println("XtreemOS certificate: " +
25 c.getAttribute(Context.USERCERT));
26 System.out.println("- Global primary VO name: " +
27 c.getAttribute(XosContext.GLOBAL_PRIMARY_VO_NAME));
28 System.out.println("- Global primary role name: " +
29 c.getAttribute(XosContext.GLOBAL_PRIMARY_ROLE_NAME));
30 System.out.println("- Global primary group name: " +
31 c.getAttribute(XosContext.GLOBAL_PRIMARY_GROUP_NAME));
32

33 System.out.println("- Global secondary group names:");
34 String attr = XosContext.GLOBAL_SECONDARY_GROUP_NAMES;
35 for (String name : c.getVectorAttribute(attr)) {
36 System.out.println(" - " + name);
37 }
38 } catch (SagaException e) {
39 System.err.println("Exception: " + e.getMessage());
40 }
41 }
42 }

Figure 2: Example Java program that prints attributes of an XtreemOS context

7

3 Job Submission and Resource Management
XOSAGA applications can submit and monitor XtreemOS jobs via the existing
SAGA package saga.job [2]. However, XtreemOS also provides resource man-
agement and the feature to restart jobs. This requires an extension of the existing
SAGA API, which is provided by the XOSAGA resource management extension
package. It consists of eight classes, partially extending existing SAGA classes,
partially implementing existing SAGA interfaces. The relationships between the
new XOSAGA classes and the ’old’ SAGA classes and interfaces is shown in
Figure 3. We specify the XOSAGA classes in the following.

SAGA Job Management

SAGA Look−and−Feel

XOSAGA Resource Management

steerable

job

job_desc

job job_service

job_self

serviceresource

reservation resource_

job_self

async monitorable

attribute

description
application_

description

resource_

permissions

object

job_service

Figure 3: The relations between the XOSAGA resource management package and
the existing SAGA classes and interfaces.

3.1 Specification
package xosaga.resource {

class resource_description : implements saga::object
implements saga::attributes

{
CONSTRUCTOR (out resource_description obj)
DESTRUCTOR (in resource_description obj)

// Attributes:
//
// name: TotalCPUCount
// desc: total number of cpus to be provided
// mode: ReadWrite, optional

8

// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, DRMAA
//
// name: TotalPhysicalMemory
// desc: Estimated amount of memory to be provided
// mode: ReadWrite, optional
// type: Float
// value: -
// notes: - unit is in MegaByte
// - memory usage of the job is aggregated
// across all processes of the job
// - semantics as defined by JSDL
// - available in JSDL
//
// name: CPUArchitecture
// desc: compatible processor for job submission
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - allowed values as specified in JSDL
// - semantics as defined by JSDL
// - available in JSDL
//
// name: OperatingSystemType
// desc: compatible operating system for job submission
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - allowed values as specified in JSDL
// - semantics as defined by JSDL
// - available in JSDL
//
// name: CandidateHosts
// desc: list of host names which are to be considered
// by the resource manager as candidate targets
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - semantics as defined by JSDL
// - available in JSDL
//
// name: Queue
// desc: name of a queue to place the job into
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - While SAGA itself does not define the

9

// semantics of a "queue", many backend systems
// can make use of this attribute.
// - not supported by JSDL

}

class xosaga::resource : implements saga::object
implements saga::async
implements saga::attributes
implements saga::permissions
implements saga::monitorable

{
// no CONSTRUCTOR
DESTRUCTOR (in xosaga::resource obj);

get_resource_description (out xosaga::resource_description rd);
}

enum state
{

New = 1,
Running = 2,
Done = 3,
Canceled = 4,

}

class reservation : implements saga::object
{

// no CONSTRUCTOR
DESTRUCTOR (in xosaga::reservation obj);

get_state (out state state);

get_resources (out array<resource> reserved);

// Attributes:
//
// name: ReservationID
// desc: reservation identifier as returned by the
// resource service
// mode: Read, optional
// type: String
// value: -
// notes: -
//
// name: CreationTime
// desc: time stamp of the reservation creation in
// the resource manager
// mode: Read, optional
// type: Int

10

// value: -
// notes: - format: number of seconds since epoch
//
// name: Starttime
// desc: time stamp indicating when
// the reservation starts
// mode: Read
// type: Int
// value: -
// notes: - format: number of seconds since epoch
//
// name: ExpirationTime
// desc: time stamp indicating when
// the reservation ends
// mode: Read
// type: Int
// value: -
// notes: - format: number of seconds since epoch

}

class resource_service : implements saga::object
implements saga::async

{
CONSTRUCTOR (in session s,

in saga::url rm = "",
out resource_service obj);

DESTRUCTOR (in resource_service obj);

discover (in resource_description rd,
out array<string> resource_ids);

reserve (in resource_description rd,
in int start_time,
in int expiration_time,
out reservation reserved);

reserve (in array<string> resource_ids,
in int start_time,
in int expiration_time,
out reservation reserved);

cancel (in reservation res,
in float timeout);

list (out array<string> reservation_ids);

get_reservation (in string reservation_id,
out reservation res);

11

get_resource (in string resource_id,
out resource res);

}

class application_description : implements saga::object
implements saga::attributes

{
CONSTRUCTOR (out application_description obj);

DESTRUCTOR (in application_description obj);

// Attributes:
//
// name: Executable
// desc: command to execute.
// type: String
// mode: ReadWrite
// value: ’’
// notes: - this is the only required attribute.
// - can be a full pathname, or a pathname relative
// to the ’WorkingDirectory’ as evaluated on the
// execution host.
// - semantics as defined in JSDL
// - available in JSDL, DRMAA
//
// name: Arguments
// desc: positional parameters for the command.
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
//
// name: SPMDVariation
// desc: SPMD job type and startup mechanism
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - as defined in the SPMD extension of JSDL
// notes: - semantics as defined in JSDL
// - available in JSDL, SPMD extension
// - the SPMD JSDL extension defines the value to be
// an URI. For simplicity, SAGA allows the
// following strings, which map into the respective
// URIs: MPI, GridMPI, IntelMPI, LAM-MPI, MPICH1,
// MPICH2, MPICH-GM, MPICH-MX, MVAPICH, MVAPICH2,
// OpenMP, POE, PVM, None.

12

// - the value ’Empy’ (default) indicates that the
// application is not a SPMD application.
// - as JSDL, SAGA allows other arbitrary values.
// The implementation must clearly document which
// values are supported.
//
// name: NumberOfProcesses
// desc: total number of processes to be started
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, SPMD extension
//
// name: ProcessesPerHost
// desc: number of processes to be started per host
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, SPMD extension
//
// name: ThreadsPerProcess
// desc: number of threads to start per process
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, SPMD extension
//
// name: Environment
// desc: set of environment variables for the job
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - exported into the job environment
// - format: ’key=value’
// - semantics as specified by JSDL
// - available in JSDL, DRMAA
//
// name: WorkingDirectory
// desc: working directory for the job
// mode: ReadWrite, optional
// type: String
// value: ’.’
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
//
// name: Interactive

13

// desc: run the job in interactive mode
// mode: ReadWrite, optional
// type: Bool
// value: ’False’
// notes: - this implies that stdio streams will stay
// connected to the submitter after job submission,
// and during job execution.
// - if an implementation cannot handle interactive
// jobs, and this attribute is present and ’True’,
// job creation MUST throw an ’IncorrectParameter’
// error with a descriptive error message.
// - not supported by JSDL, DRMAA
//
// name: Input
// desc: pathname of the standard input file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
// - will not be used if ’Interactive’ is ’True’
//
// name: Output
// desc: pathname of the standard output file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
// - will not be used if ’Interactive’ is ’True’
//
// name: Error
// desc: pathname of the standard error file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
// - will not be used if ’Interactive’ is ’True’
//
// name: FileTransfer
// desc: a list of file transfer directives
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - translates into jsdl:DataStaging
// - used to specify pre- and post-staging
// - semantics as specified in JSDL
// - staging is part of the ’Running’ state

14

// - syntax similar to LSF (see earlier notes)
// - available in JSDL, DRMAA
//
// name: Cleanup
// desc: defines if output files get removed after the job
// finishes
// mode: ReadWrite, optional
// type: String
// value: ’Default’
// notes: - can have the Values ’True’, ’False’, and
// ’Default’
// - On ’False’, output files MUST be kept after the
// job finishes
// - On ’True’, output files MUST be deleted after
// the job finishes
// - On ’Default’, the behaviour is defined by the
// implementation or the backend.
// - translates into ’DeleteOnTermination’ elements
// in JSDL
//
// name: JobStartTime
// desc: time at which a job should be scheduled
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - Could be viewed as a desired job start time, but
// that is up to the resource manager.
// - format: number of seconds since epoch
// - available in DRMAA
// - not supported by JSDL
//
// name: TotalCPUTime
// desc: estimate total number of CPU seconds which the job
// will require
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - intended to provide hints to the scheduler.
// - available in JSDL, DRMAA
// - semantics as defined in JSDL
//
// name: JobContact
// desc: set of endpoints describing where to report job
// state transitions.
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - format: URI (e.g. fax:+123456789,
// sms:+123456789, mailto:joe@doe.net).

15

// - available in DRMAA
// - not supported by JSDL
//
// name: CheckpointPeriodicity
// desc: how frequently should the job be checkpointed, in
// seconds
// type: Int
// mode: ReadWrite, optional
// notes: - a value of 0 means no periodic checkpointing
// - default value is implementation dependant
// - proposed by D2.1.1
//
// name: NumberOfKeptCheckpoints
// desc: how many checkpoints should be kept for this job
// type: Int
// mode: ReadWrite, optional
// value: ’1’
// notes: - proposed by D2.1.1
//
// name: FinalStorage
// desc: set of pathnames to use to store the checkpoint
// type: Vector string
// mode: ReadWrite, optional
// value: -
// notes: - if no path if given, a default path will be
// selected by the System Checkpointer, presumably
// on the local node
// - proposed by D2.1.1
//
// name: CheckpointPolicy
// desc: how the checkpoint is produced
// type: Vector string
// mode: ReadWrite, optionnal
// value: -
// notes: - if no policy is given, a default policy will be
// chosen
// - If more than one policy is given, the first
// policy available for the checkpoint service will
// be used
// - possible CheckpointPolicies include:
// Safe: the checkpoint file is completly written
// before the checkpoint call returns
// LocalFirst: the checkpoint file is written
// locally before the end of the system
// checkpoint and moved to its final destination
// later
// MemoryFirst: the checkpoint is saved in memory
// at the end of the system checkpoint and moved
// to its final destination later

16

// - proposed by D2.1.1
}

class job_service : extends saga::job_service
{
CONSTRUCTOR (in session s,

in url rm = "",
out job_service obj)

DESTRUCTOR (in job_service obj)

create_job (in application_description ad,
in resource_description rd,
out job job);

create_job (in application_description ad,
in array<string> resource_ids,
out job job);

create_job (in application_description ad,
in string reservation_id,
out job job);

}

}

3.2 Specification Details
3.2.1 Class resource_description

The resource_description class is collecting those attributes from SAGA’s
job_description class that are related to selecting suitable resources.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out resource_description obj);
Inputs: -
Outputs: obj: the newly created object
PreCond: -
Postcond: -
Perms: -
Throws: NotImplemented

NoSuccess

- DESTRUCTOR
Purpose: destroy the object

17

Format: DESTRUCTOR (in resource_description obj);
Inputs: obj: the object to destroy
Outputs: -
PreCond: -
Postcond: -
Perms: -
Throws: -

3.2.2 Class resource

The resource class is a container for the information identifying a compute re-
source. It has a single method for retrieving its resource description.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in resource obj);
Inputs: obj: the object to destroy
Outputs: -
PreCond: -
Postcond: -
Perms: -
Throws: -

- get_resource_description
Purpose: Retrieve the description of the discovered resource.
Format: get_resource_description (out resource_description rd);
Inputs: -
InOuts: -
Outputs: rd: a description of the resource
PreCond: -
PostCond: - the returned resource description is a deep copy

(no state is shared after method invocation)
Perms: Query
Throws: NotImplemented

DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - There may be cases when the resource description
is not available, e.g. when the resource is one of
many discovered resources and/or a description of
the individual resource can not be constructed.
In this case, a ’DoesNotExist’ exception is
thrown, with a descriptive error message.

18

3.2.3 Class reservation

The reservation class is a container for the information identifying a reserva-
tion. Like jobs, reservations have different states, shown in Figure 4. A newly
constructed reservation can either be in the state New or Running. New denotes
that the start time of the reservation has not yet been reached. Running denotes
that the resource(s) reserved by the reservation are currently accessible, i.e, the
time at the resource(s) lies between start time and expiration time. Once the time
at the resource has reached the expiration time, the reservation’s state changes to
Done. The state Canceled can only be reached from the state Running. A reserva-
tion can be canceled by invoking the cancel() method on the reservation object,
or by some external party like the remote resource itself or a resource broker ser-
vice.

New Running

CanceledDone

Final State

intern

construction

cancel()

construction

intern

intern

Initial State

Figure 4: The XOSAGA reservation state model.

- DESTRUCTOR
Format: DESTRUCTOR (in reservation obj);
Purpose: destroy the object
Format: DESTRUCTOR (in resource obj);
Inputs: obj: the object to destroy

19

Outputs: -
PreCond: -
Postcond: -
Perms: -
Throws: -

- get_state
Purpose: Get the state of the task.
Format: get_state (out state state);
Inputs: -
InOuts: -
Outputs: state: state of the reservation.
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

Timeout
NoSuccess

Notes: - a ’Timeout’ or ’NoSuccess’ exception indicates
that the backend was not able to retrieve the
reservation state.

- get_resources
Purpose: Get the reserved resources.
Format: get_resources (out array<resource> reserved);
Inputs: -
InOuts: -
Outputs: reserved: the reserved resources
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

3.2.4 Class resource_service

The class resource_service is modeled after SAGA’s job service. Its con-
structor has parameters describing a possible back-end resource broker. Further, it
has methods for discovering resources according to a resource description, for re-
serving resources, either from resource ids, or directly from a resource description.
Reservations can explicitly be canceled. The list method lists all active reserva-
tions of the resource service. For completeness, the methods get_reservation
and get_resource map ids to their respective container objects.

- CONSTRUCTOR
Purpose: create the object

20

Format: CONSTRUCTOR (in session s,
in saga::url rm = "",
out resource_service obj);

Inputs: s: session to associate with the object
rm: contact point of the resource manager

InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectURL
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - ’rm’ defaults to an empty URL - in that case, the
implementation must perform a resource discovery,
or fall back to a fixed value, or locate a valid
resource manager in any other way. If that is not
possible, a ’NoSuccess’ exception MUST be
thrown, and MUST indicate that a resource manager
URL is needed. The expected behaviour MUST be
documented (i.e. if a default is available).

- if the resource manager identified by the rm URL
cannot be contacted (e.g. does not exist), a
’NoSuccess’ exception is thrown.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in resource_service obj);
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - reservations created by this resource_service

instance are not affected by the destruction, and
are in particular not canceled.

Perms: -
Throws: -

- discover
Purpose: discover resources matching the resource description
Format: discover (in resource_description rd,

out array<string> resource_ids);
Inputs: rd: description of resource to be discovered
InOuts: -

21

Outputs: resource_ids: the identifiers of the discovered
resources

PreCond: -
PostCond: - rd is deep copied (no state is shared after method

invocation)
Perms: -
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

- reserve
Purpose: reserve the resources that match a resource description
Format: reserve (in resource_description rd,

in int start_time,
in int expiration_time,
out reservation reserved);

Inputs: rd: description of the resource(s) to
reserve

start_time: requested start time of the
reservation, in number of seconds
since the epoch

expiration_time: requested expiration time of the
reservation, in number of seconds
since the epoch

InOuts: -
Outputs: reservation: a reservation object representing the

successful reservation
PreCond: -
PostCond: - rd is deep copied (no state is shared after method

invocation)
Perms: -
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the resource description contains values that
are outside of the allowed range, or cannot be
parsed, or are otherwise invalid and not usable for
creating a resource instance, a ’BadParameter’
exception is thrown, which MUST indicate which
attribute(s) caused this exception, and why.

22

- if the reservation fails because no matching
resources are available in the requested time
interval, a ’NoSuccess’ exception MUST be thrown,
which MUST indicate the failure.

- An implementation MAY use default values for start
time and expiration time (like ‘‘as soon as
possible,’’ and ‘‘15 minutes duration’’) and MAY
deviate from the requested time interval. An
implementation MUST document such behavior.

- reserve
Purpose: reserve the resources identified by their resource ids
Format: reserve (in array<string> resource_ids,

in int start_time,
in int expiration_time,
out reservation reserved);

Inputs: resource_ids: array of resource ids
start_time: requested start of reservation,

in number of seconds since the epoch
expiration_time: requested expiration of reservation,

in number of seconds since the epoch
InOuts: -
Outputs: reservation: a reservation object representing the

successful reservation
PreCond: -
PostCond: - rd is deep copied (no state is shared after method

invocation)
Perms: -
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if any of the resource ids is invalid, a
’BadParameter’ exception is thrown, which MUST
indicate which id(s) caused this exception.

- if the reservation fails because some identified
resources are unavailable in the requested time
interval, a ’NoSuccess’ exception MUST be thrown,
which MUST indicate the failure. In this case,
no resource will be reserved at all.

- An implementation MAY use default values for start
time and expiration time (like ‘‘as soon as
possible,’’ and ‘‘15 minutes duration’’) and MAY
deviate from the requested time interval. An
implementation MUST document such behavior.

23

- cancel
Purpose: cancel a reservation
Format: cancel (in reservation res,

in float timeout);
Inputs: res: the reservation to cancel

timeout: time to free resources
InOuts: -
Outputs: -
PreCond: - the reservation is in the state ’New’ or ’Running’.
PostCond: - the reservation is in ’Canceled’ state.
Perms: -
Throws: NotImplemented

IncorrectState
Timeout
NoSuccess

Notes: - for resource deallocation semantics, see
Section 2 of the SAGA specification.

- if cancel() fails to cancel the reservation
immediately, and tries to continue to cancel the
reservation in the background, the reservation
state remains ’Running’ until the cancel operation
succeeded. The state then changes to ’Canceled’.

- if the reservation is in the ’Done’ state, the call
has no effect, and, in particular, does NOT change
the state to ’Canceled’. This is to avoid race
conditions.

- a ’NoSuccess’ exception indicates that the backend
was not able to initiate the cancelation of the
reservation.

- for timeout semantics, see Section 2 of the SAGA
specification.

- list
Purpose: Get a list of reservations that are currently known

by the resource manager.
Format: list (out array<string> reservation_ids);
Inputs: -
InOuts: -
Outputs: reservation_ids: an array of reservation identifiers
PreCond: -
PostCond: -
Perms: Query on reservations identified by the returned ids
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - which reservations are viewable by the calling user

24

context, and how long a resource manager keeps
reservation information, are both implementation
dependent.

- a returned reservation id may translate into a
reservation (via get_reservation()), which is not
controllable by the requesting application (e.g.
it could cause an ’AuthorizationFailed’ exception).

- get_reservation
Purpose: Given a reservation identifier, this method returns

a reservation object representing this reservation.
Format: get_reservation (in string reservation_id,

out reservation res);
Inputs: reservation_id: reservation identifier as returned

by the resource manager
InOuts: -
Outputs: reservation: a reservation object representing

the reservation identified by
reservation_id

PreCond: - the reservation identified by reservation_id is
managed by the resource_service.

PostCond: -
Perms: Query on the reservation.
Throws: NotImplemented

BadParameter
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - in general, only a resource service representing
the resource manager which made the reservation
may be able to handle the reservation id, and to
identify the reservation -- however, other
resource services may succeed as well.

- if the resource manager can handle the
reservation_id, but the referenced reservation
is not alive, a ’DoesNotExist’ exception is thrown.

- if the resource manager cannot parse the
reservation_id at all, a ’BadParameter’ exception
is thrown.

- get_resource
Purpose: Given a resource identifier, this method returns

a resource object representing this resource.
Format: get_resource (in string resource_id,

out resource res);
Inputs: resource_id: resource identifier as returned by the

resource manager

25

InOuts: -
Outputs: resource: a resource object representing the

resource identified by resource_id
PreCond: - resource identified by resource_id is managed by

the resource_service.
PostCond: -
Perms: Query on the resource.
Throws: NotImplemented

BadParameter
DoesNotExist
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - in general, only a resource_service representing
the resource manager which discovered the resource
may be able to handle the resource_id, and to
identify the resource -- however, other
resource_services may succeed as well.

- if the resource manager can handle the
resource_id, but the referenced resource
is not alive, a ’DoesNotExist’ exception is thrown.

- if the resource manager cannot parse the
resource_id at all, a ’BadParameter’ exception
is thrown.

3.2.5 Class application_description

The application_description class is collecting those attributes from SAGA’s
job_description class that are related to the application itself, augmented by
the attributes for checkpointing from D2.1.1 [6].

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (out application_description obj);
Inputs: -
Outputs: obj: the newly created object
PreCond: -
Postcond: -
Perms: -
Throws: NotImplemented

NoSuccess

- DESTRUCTOR

26

Purpose: destroy the object
Format: DESTRUCTOR (in application_description obj);
Inputs: obj: the object to destroy
Outputs: -
PreCond: -
Postcond: -
Perms: -
Throws: -

3.2.6 Class job_service

The class job_service is extending SAGA’s job service class. It adds three
methods for creating jobs using an application_description, in combi-
nation with a resource_description, a reservation_id, or an array of
resource_id’s.

- CONSTRUCTOR
Purpose: create the object
Format: CONSTRUCTOR (in session s,

in url rm = "",
out job_service obj)

Inputs: s: session to associate with the object
rm: contact url of the resource manager

InOuts: -
Outputs: obj: the newly created object
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectURL
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - ’rm’ defaults to an empty string - in that case,
the implementation must perform a resource
discovery, or fall back to a fixed value, or find a
valid rm contact in any other way. If that is not
possible, a ’BadParameter’ exception MUST be
thrown, and MUST indicate that a rm contact string
is needed. The expected behaviour MUST be
documented (i.e. if a default is available).

- if the rm identified by the rm URL cannot be
contacted (i.e. does not exist), a ’BadParameter’

27

exception is thrown.

- DESTRUCTOR
Purpose: destroy the object
Format: DESTRUCTOR (in job_service obj)
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - jobs created by this job_service instance are not

affected by the destruction, and are in particular
not canceled.

Perms: -
Throws: -
Notes: -

- create_job
Purpose: create a job instance
Format: create_job (in application_description ad,

in resource_description rd,
out job job);

Inputs: ad: description of the application to submit
rd: description of the resource(s) required

for the job
InOuts: -
Outputs: job: a job object representing the submitted

job instance
PreCond: - ad has an ’Executable’ attribute.
PostCond: - job is in ’New’ state

- ad and rd are deep copied (no state is shared after
method invocation)

- ’Owner’ of the job is the id of the context used
for creating the job.

Perms: -
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - calling run() on the job will submit it to the
resource, and advance its state.

- if the application description does not have a
valid ’Executable’ attribute, a ’BadParameter’
exception is thrown.

- if the application or resource descriptions contain
values that are outside of the allowed range, or
cannot be parsed, or are otherwise invalid and not

28

usable for creating a job instance, a ’BadParameter’
exception is thrown, which MUST indicate which
attribute(s) caused this exception, and why.

- create_job
Purpose: create a job instance
Format: create_job (in application_description ad,

in array<string> resource_ids,
out job job);

Inputs: ad: description of application to be
submitted

resource_ids: identifications for the resources
provided to the job

InOuts: -
Outputs: job: a job object representing the

submitted job instance
PreCond: - ad has an ’Executable’ attribute.
PostCond: - job is in ’New’ state

- ad is deep copied (no state is shared after method
invocation)

- ’Owner’ of the job is the id of the context used
for creating the job.

Perms: -
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - calling run() on the job will submit it to the
resource, and advance its state.

- if the application description does not have a
valid ’Executable’ attribute, a ’BadParameter’
exception is thrown.

- if the application description contains values that
are outside of the allowed range, or cannot be
parsed, or are otherwise invalid and not usable for
creating a job instance, a ’BadParameter’ exception
is thrown, which MUST indicate which attribute(s)
caused this exception, and why.

- if one or more resource_ids are invalid, a
’BadParameter’ exception is thrown, which MUST
indicate which resource_id(s) caused this
exception, and why.

- create_job
Purpose: create a job instance
Format: create_job (in application_description ad,

29

in string reservation_id,
out job job);

Inputs: ad: description of application to submit
resource_ids: identification for a reservation

holding resources provided to the job
InOuts: -
Outputs: job: a job object representing the

submitted job instance
PreCond: - ad has an ’Executable’ attribute.
PostCond: - job is in ’New’ state

- ad is deep copied (no state is shared after method
invocation)

- ’Owner’ of the job is the id of the context used
for creating the job.

Perms: -
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - calling run() on the job will submit it to the
resource, and advance its state.

- if the application description does not have a
valid ’Executable’ attribute, a ’BadParameter’
exception is thrown.

- if the application description contains values that
are outside of the allowed range, or cannot be
parsed, or are otherwise invalid and not usable for
creating a job instance, a ’BadParameter’ exception
is thrown, which MUST indicate which attribute(s)
caused this exception, and why.

- if the reservation_id is invalid, a ’BadParameter’
exception is thrown.

30

3.3 Example
Figure 5 shows an example Java program that uses the SAGA job package to
execute ’/bin/hostname’ on a single node. The URL ’xos:///’ of the job service
will use the local AEM configuration. The stdout and stderr output is put in the
files ’hostname.out’ and ’hostname.err’, respectively. The programs registers two
callback methods: one for the job’s state, and one for AEM-specific detailed state.
The program waits until the job has been executed, after which the output files can
be found in the XtreemFS home volume of the user.

1 import org.ogf.saga.context.Context;
2 import org.ogf.saga.error.SagaException;
3 import org.ogf.saga.job.*;
4 import org.ogf.saga.monitoring.*;
5 import org.ogf.saga.url.*;
6

7 public class JobExample implements Callback {
8

9 public static void main(String[] args) {
10 try {
11 URL serverURL = URLFactory.createURL("xos:///");
12 JobService js = JobFactory.createJobService(serverURL);
13

14 JobDescription jd = JobFactory.createJobDescription();
15 jd.setAttribute(JobDescription.EXECUTABLE, "/bin/hostname");
16 jd.setAttribute(JobDescription.TOTALCPUCOUNT, "1");
17 jd.setAttribute(JobDescription.OUTPUT, "hostname.out");
18 jd.setAttribute(JobDescription.ERROR, "hostname.err");
19

20 Job job = js.createJob(jd);
21 job.addCallback(Job.JOB_STATE, new JobExample());
22 job.addCallback(Job.JOB_STATEDETAIL, new JobExample());
23 job.run();
24 job.waitFor();
25 } catch (SagaException e) {
26 System.err.println("Exception: " + e.getMessage());
27 }
28 }
29

30 public boolean cb(Monitorable m, Metric metric, Context c) {
31 try {
32 String value = metric.getAttribute(Metric.VALUE);
33 String name = metric.getAttribute(Metric.NAME);
34 System.out.println("Callback called for metric " + name +
35 ", value = " + value);
36 } catch (SagaException e) {
37 System.err.println("Error: " + e.getMessage());
38 }
39 return true; // keep the callback
40 }
41 }

Figure 5: Java SAGA program that executes /bin/hostname on a single node

31

4 XtreemFS
XtreemFS provides access to remote files via a local proxy file system using FUSE
and Linux VFS. XtreemFS file systems are organized in named volumes that are
registered in an XtreemFS Directory Service.

An XtreemFS volume can be mounted into the client machine’s local file sys-
tem via the XtreemFS client application. After mounting has succeeded, files can
be accessed via the POSIX file API to local files.

An XOSAGA application can access the XtreemFS file system via the existing
SAGA packages saga.namespace and saga.file; no further API extensions
are needed. However, the XtreemFS access layer exposes the local file system
mounting to the application, which introduces a small but additional manage-
ment overhead. XOSAGA relieves users from this overhead by mounting required
XtreemFS volumes automatically.

Referring to files and directories on a certain XtreemFS volume is done via
URLs with the scheme ’xtreemfs’. The syntax of these URLs is as follows:

xtreemfs:// volume @ host [:port] path

volume is the name of the XtreemFS volume.
host is the host name of the XtreemFS Directory Service at which the

volume is registered.
port is the port number the XtreemFS Directory Service listens to.
path is the path of the file or directory in the volume.

All URL parts are mandatory, except for the port number. Without a port number,
the default port 32638 is used. An example XtreemFS URL is:

xtreemfs://vol42@host.example.com:12345/dir/file.txt

This URL refers to the file ’/dir/file.txt’ on an XtreemFS volume named ’vol42’.
This volume is registered at the XtreemFS Directory Service at ’host.example.com’
that listens to port 12345.

5 Scalaris and OSS
XOSAGA provides a new package xosaga.sharing. This package provides
three types of objects that can be shared between the processes of a distributed
SAGA application: shared buffers, shared properties and shared events.

32

Shared buffers expose the functionality of the Object Sharing Service (OSS)
at the SAGA level. OSS provides a transparent and consistent data sharing ser-
vice, as described in D3.4.3 (Design report for advanced XtreemFS and OSS fea-
tures) [8]. Currently, it features memory-mapped files and transactional memory
for volatile memory objects. In XOSAGA, such memory regions are made avail-
able as special SAGA buffers.

Shared properties and shared events allow an XOSAGA application to use the
Scalaris system [4] developed in WP3.2. Scalaris provides a publish-subscribe
ring on top of a scalable, transactional, distributed key-value store. In XOSAGA,
the publish-subscribe rings are expressed as shared events, while the key-value
stores are available as shared properties.

5.1 Shared buffers
A shared buffer is a special SAGA buffer that can be shared between multiple
application processes. Each shared buffer lives in a domain with a certain consis-
tency model. All shared buffers in the same domain are synchronized with each
other using the consistency model of the domain. Each buffer has a unique name
specified by the user. Different application processes can identify the same shared
buffer using its name.

5.1.1 Specification

package xosaga.sharing {

class shared_buffer_service
{

CONSTRUCTOR (in saga::url bootstrap,
in saga::url local = "",
out shared_buffer_service obj);

DESTRUCTOR (in shared_buffer_service obj);

create_strict_domain (in string name,
out strict_domain d);

create_transactional_domain
(in string name,
out transactional_domain d);

}

class consistency_domain
{

get_name (out string name);

33

create_buffer (in string name,
in int size,
out shared_buffer buf);

memory_map (in string path,
in int offset,
in int length,
out shared_buffer buf);

get_buffer (in string name,
in float timeout = -1.0,
out shared_buffer buf);

}

class strict_domain : extends consistency_domain
{

// no additional methods
}

class transactional_domain : extends consistency_domain
{

begin (out transaction_id tid);

commit (in transaction_id tid);

abort (in transaction_id tid);

permit_abort (in transaction_id tid);

}

class shared_buffer : extends saga::buffer
// from buffer saga::object
// from buffer saga::error_handler

{
DESTRUCTOR ();

get_name (out string name);
}

class transaction_id
{

// no public methods, immutable object
}

34

5.1.2 Specification details

Class shared_buffer_service

The xosaga::shared_buffer_service class offers consistency domain man-
agement functionalities for shared buffers. Domains can be created with a specific
consistency model to be enforced upon the shared buffers of each domain. At this
point, the API includes transactional and weak consistency models.

- CONSTRUCTOR
Purpose: create an service to manage shared buffers with

various types of consistency.
Format: CONSTRUCTOR (in saga::url bootstrap,

in saga::url local,
out shared_buffer_service obj);

Inputs: bootstrap: the bootstrap information for the
service, e.g, an address of a peer or
server to contact. Example URL:
’oss://host.com:12345’, which connects
to another OSS at host.com, port 12345

local: the local address to bind to. If empty,
the default local address is used.

InOuts: -
Outputs: shared_buffer_service: the newly created service
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState

IncorrectURL
Notes: - An implementation may only allow a single instance

of a shared buffer service. In that case, all
subsequently created instances MUST throw
an ’IncorrectState’ exception.

- DESTRUCTOR
Purpose: destroys the manager of shared buffers
Format: DESTRUCTOR (in shared_buffer_service obj);
Inputs: shared_buffer_service: the service to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: consistency domains and buffers created by

this service are not affected.
Perms: -
Throws: -
Notes: -

- create_strict_domain

35

Purpose: create a domain for buffers with strict consistency
Format: create_strict_domain (in string name,

out strict_domain d);
Inputs: name: the name of the strict consistency domain. It

uniquely identifies this domain on all nodes
that participate in the same shared buffer
service.

InOuts: -
Outputs: d: the strict consistency domain

with the given name.
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- create_transactional_domain
Purpose: create a domain for buffers with transactional

consistency
Format: create_transactional_domain

(in string name,
out transactional_domain d);

Inputs: name: the name of the transactional consistency
domain. It uniquely identifies this domain
on all nodes that participate in the same
shared buffer service.

InOuts: -
Outputs: d: the transactional consistency domain

with the given name.
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

Class consistency_domain

The xosaga::consistency_domain class offers generic management oper-
ations on a consistency domain, independent of its consistency model. It also
provides the API for obtaining the handle to a shared buffer and releasing it.

- get_name
Purpose: returns the name of this consistency domain
Format: get_name (out string name);
Inputs: -

36

InOuts: -
Outputs: name: the name of this consistency domain
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- create_buffer
Purpose: create a new shared buffer in this

consistency domain. All buffers
in the same consistency domain
(i.e. with the same name) are kept
consistent with each other.

Format: create_buffer (in int size,
out shared_buffer buf);

Inputs: size: the size of the new buffer in bytes
InOuts: -
Outputs: buf: the created buffer
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: - if size < 0, a ’BadParameter’ exception

MUST be thrown

- memory_map
Purpose: map a local file into a new shared buffer

in this consistency domain. All buffers
in the same consistency domain
(i.e. with the same name)
are kept consistent with each other.

Format: memory_map (in string path,
in int offset,
in int length,
out shared_buffer buf);

Inputs: path: the path of the local file to map
into memory

offset: the offset in the file where
the mapping starts

length: the amount of bytes to map,
starting from offset

InOuts: -
Outputs: buf: a new shared buffer containing

the memory-mapped file
PreCond: -
PostCond: -

37

Perms: -
Throws: BadParameter

NoSuccess
Notes: - if the given file cannot be read from

or written to, a ’BadParameter’ exception
MAY be thrown
- if offset < 0, length < 0, or
offset + length > file.get_size(),
a ’BadParameter’ exception MUST be thrown

- get_buffer
Purpose: get a shared buffer that is already created in this

consistency domain (possibly on another node). This
method blocks until the buffer is available or a
timeout occurs.

Format: get_buffer (in string buf_name,
in float timeout,
out shared_buffer buf);

Inputs: name: the name of a shared buffer
timeout: the amount of seconds to wait until

the buffer is available.
InOuts: -
Outputs: buf: the existing shared buffer
PreCond: -
PostCond: -
Perms: -
Throws: Timeout

NoSuccess
Notes: - if no buffer with the given name exists in

this consistency domain after <timeout> seconds,
a ’Timeout’ exception MUST be thrown.

Class strict_domain

The xosaga::strict_domain class creates shared buffers with a strict consis-
tency model. It provides no additional methods.

Class transactional_domain

The xosaga::transactional_domain class provides specific operations for
the transactional consistency model.

- begin
Purpose: begin a transaction on all shared buffers in this

domain

38

Format: begin (out transaction_id tid);
Inputs: -
InOuts: -
Outputs: tid: the identifier of this transaction
PreCond: -
PostCond: -
Perms: -
Throws: NoSuccess
Notes: -

- commit
Purpose: end a transaction
Format: commit (in transaction_id tid);
Inputs: tid: the identifier of this transaction
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

NoSuccess
Notes: - if the given transaction id is not known, a

’DoesNotExist’ exception MUST be thrown

- abort
Purpose: unconditionally abort a transaction
Format: abort (in transaction_id tid);
Inputs: tid: the identifier of this transaction
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

NoSuccess
Notes: - if the given transaction_id is not known, a

’DoesNotExist’ exception MUST be thrown

- permit_abort
Purpose: permit aborting a transaction during the duration of

this method call
Format: permit_abort (in transaction_id tid);
Inputs: tid: the identifier of this transaction
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

39

NoSuccess
Notes: - if the given transaction_id is not known, a

’DoesNotExist’ exception MUST be thrown

Class shared_buffer

This class provides access to a shared buffer.

- DESTRUCTOR
Purpose: destroys this shared buffer
Format: DESTRUCTOR (in shared_buffer obj);
Inputs: shared_buffer: the shared buffer to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the local memory used by this shared buffer is

released automatically when the buffer was created
on this node

Perms: -
Throws: -
Notes: -

- get_name
Purpose: return the name of this shared buffer
Format: get_name (out string name);
Inputs: -
InOuts: -
Outputs: name: the name of this shared buffer
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- set_size
Notes: - overrides set_size() in saga::buffer. This method

MUST always throw a ’NotImplementedException’

- set_data
Notes: - overrides set_data() in saga::buffer. This method

MUST always throw a ’NotImplementedException’

- close
PostCond: - other nodes can still access the contents of this

shared buffer

40

Class transaction_id

This class is an immutable object without any public methods.

5.1.3 Example

The example C++ program in Figure 6 demonstrates the use of a shared buffer
with transactional consistency. Without arguments, the program acts as a server
that creates a shared buffer called ’example_buffer’ in the transactional domain
’example_domain’. The server writes ’hello’ into the buffer and then waits until
it contains ’world’. With arguments, the program runs as a client. The client first
looks up the buffer ’example_buffer’ using a timeout of 5 seconds. When the
buffer is found, the client waits until it contains ’hello’. It then prints the size of
the buffer and writes ’world’ into it. When the server notices the new value it
terminates.

41

1 #include <iostream>
2 #include <string.h>
3 #include <xosaga/xosaga.hpp>
4

5 using namespace xosaga::sharing;
6 using namespace std;
7

8 int main(int argc, const char* argv[]) {
9 string bootstrap_url("");

10 string local_url("oss://127.0.0.1");
11

12 if (argc > 1) { // I’m the client
13 bootstrap_url = local_url;
14 local_url = "oss://127.0.0.2";
15 }
16

17 shared_buffer_service sbs(bootstrap_url, local_url);
18 transactional_domain dom = sbs.create_transactional_domain("example_domain");
19 string buf_name("example_buffer");
20 saga::ssize_t buf_size = 20;
21

22 if (bootstrap_url.empty()) { // I’m the server
23 shared_buffer buf = dom.create_buffer(buf_name, buf_size);
24 char* data = (char*)buf.get_data();
25 transaction_id tid = dom.begin();
26 strcpy(data, "hello");
27

28 while (data[0] != ’w’) { // wait until shared buffer contains ’world’
29 dom.commit(tid);
30 usleep(100000);
31 tid = dom.begin();
32 }
33 cout << "Content of " << buf_name << ": " << data << endl;
34 dom.commit(tid);
35 } else { // I’m the client
36 shared_buffer buf = dom.get_buffer(buf_name, 5);
37 char* data = (char*)buf.get_data();
38

39 transaction_id tid = dom.begin();
40 while (data[0] != ’h’) { // wait until shared buffer contains ’hello’
41 dom.commit(tid);
42 usleep(100000);
43 tid = dom.begin();
44 }
45

46 cout << "Size of " << buf_name << ": " << buf.get_size() << endl;
47 strcpy(data, "world");
48 dom.commit(tid);
49 }
50

51 usleep(200000); // give OSS time to sync
52 return 0;
53 }

Figure 6: Example C++ XOSAGA program using shared buffers

42

5.2 Shared events

The shared_events object in the xosaga.sharing package provides access
to a publish-subscribe system. It is designed to provide access to the publish-
subscribe functionality of the Scalaris system, but the interface is generic enough
to support other publish-subscribe systems too.

An XOSAGA application process can publish events under a certain topic.
Both events and topics are string values. Processes can also subscribe to certain
topics, after which they will receive the events that are published under these
topics. New events are processed in callback functions that are provided when
subscribing to a topic.

5.2.1 Specification

package xosaga.sharing {

class shared_events
{
CONSTRUCTOR (in saga::url bootstrap_info,

out shared_events obj);

DESTRUCTOR (in shared_events obj);

publish (in string topic,
in string content);

subscribe (in string topic,
in callback cb);

unsubscribe (in string topic);
}

interface callback
{
cb (in shared_events se,

in string topic,
in string content);

}

}

43

5.2.2 Specification details

Class shared_events

This class provides the methods to publish events under certain topics and sub-
scribe to events.

- CONSTRUCTOR
Purpose: create a service that manages shared events

within a publish-subscribe ring.
Format: CONSTRUCTOR (in saga::url bootstrap_info,

out shared_events obj);
Inputs: bootstrap_info: the bootstrap information for the

service. Example URL:
’pubsub://host.com:12345’, which
connects to a publish-subscribe
ring at host.com, port 12345

InOuts: -
Outputs: shared_events: the newly created service
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState

IncorrectURL
NoSuccess

Notes: - An implementation may only allow a single
instance of a shared events service. In that
case, all subsequently created instances MUST
throw an ’IncorrectState’ exception.

- DESTRUCTOR
Purpose: close an service that manages shared events

within a publish-subscribe ring.
Format: DESTRUCTOR (in shared_events obj);
Inputs: obj: the service to close
InOuts: -
Outputs: -
PreCond: -
PostCond: no more events will be received from this service.
Perms: -
Throws: -
Notes: -

- publish
Purpose: publish a topic (update) within a pub-sub ring.
Format: publish (in string topic,

in string content);
Inputs: topic: the topic to be updated

44

content: the content to be published under
this topic.

InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: -

- subscribe
Purpose: subscribe to receive updates about a topic within

a pub-sub ring.
Format: subscribe (in string topic,

in callback cb);
Inputs: topic: the topic of interest

cb: the callback to process updates for this
topic.

InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: -

- unsubscribe
Purpose: stop receiving updates about a topic within a

pub-sub ring.
Format: unsubscribe (in string topic);
Inputs: topic: the topic that is not interesting anymore.
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
NotImplemented

Notes: -

Interface callback

This interface specifies a method that handles incoming events. This method has
to be provided when subscribing to a certain topic.

45

- cb
Purpose: provide a callback method to handle events for which

this callback was registered by a subscribe method.
Format: publish (in shared_events se,

in string topic,
in string content);

Inputs: se: the ring of shared events
topic: the updated topic
content: the content published under ’topic’.

InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

46

5.2.3 Example

The Java program shown in Figure 7 demonstrates the use of the shared events
package. The program connects to a local publish/subscribe daemon and sub-
scribes to the topic "example topic". It then publishes the value "Hello world!" in
this topic and waits for the updated value to arrive in the callback method. Finally,
it unsubscribes from "example topic" again.

1 import org.ogf.saga.error.SagaException;
2 import org.ogf.saga.url.*;
3 import eu.xtreemos.xosaga.sharing.*;
4

5 public class SharedEventsExample implements Callback {
6

7 public static void main(String[] args) {
8 new SharedEventsExample().run();
9 }

10

11 public void run() {
12 String topic = "example topic";
13

14 try {
15 URL sagaURL = URLFactory.createURL("boot@localhost");
16 SharedEvents s = SharingFactory.createSharedEvents(sagaURL);
17

18 System.out.println("Subscribing to " + topic);
19 s.subscribe(topic, this);
20

21 System.out.println("Publishing value in " + topic);
22 s.publish(topic, "Hello world!");
23

24 System.out.println("Waiting for update...");
25 synchronized(this) {
26 try {
27 wait();
28 } catch (InterruptedException ignored) {
29 }
30 }
31 System.out.println("Unsubscribing from " + topic);
32 s.unsubscribe(topic);
33 } catch (SagaException e) {
34 System.err.println("Exception: " + e.getMessage());
35 }
36 }
37

38 public void cb(SharedEvents se, String topic, String content) {
39 System.out.println("Received update of " + topic + ": " + content);
40 synchronized (this) {
41 notifyAll();
42 }
43 }
44 }

Figure 7: Example Java XOSAGA program using shared events

47

5.3 Shared properties
The shared_properties object in the xosaga.sharing package provides ac-
cess to a distributed key-value storage. It is designed to provide access to the
transactional distributed key-value storage of Scalaris, but can be applied to any
key-value storage.

A shared_properties object is identified by a URL. When multiple XOSAGA
application processes use a shared properties object with the same URL, they can
see each others modifications.

5.3.1 Specification

package xosaga.sharing
{

class shared_properties
{

CONSTRUCTOR (in saga::url bootstrap_info,
out shared_properties obj);

DESTRUCTOR (in shared_properties obj);

put (in string key,
in string value);

get (in string key,
out string value);

remove (in string key);

}
}

5.3.2 Specification details

Class shared_properties

This class offers methods for shared management of properties.

- CONSTRUCTOR
Purpose: create an service to manage shared properties within

a key-value store.
Format: CONSTRUCTOR (in saga::url bootstrap_info,

out shared_properties obj);
Inputs: bootstrap_info: the bootstrap information for the

service. Example URL:

48

’transstore://host.com:12345’,
which connects to a key-value store
at host.com, port 12345.

InOuts: -
Outputs: obj: the newly created service
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState

IncorrectURL
NoSuccess

Notes: - An implementation may only allow a single instance
of a shared properties service. In that case, all
subsequently created instances MUST throw
an ’IncorrectState’ exception.

- DESTRUCTOR
Purpose: close an service that manages shared properties

within a key-value store.
Format: DESTRUCTOR (in shared_properties obj);
Inputs: obj: the service to close
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- put
Purpose: store a (new) value for this key.
Format: put (in string key,

in string value);
Inputs: key: the key to store the value for.

value: the value to store.
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: - An implementation MAY throw a ’BadParameter’

exception if the value is a reserved string
(e.g. THISKEYHASBEENDELETED).

- get
Purpose: lookup the value stored under this key.
Format: get (in string key,

49

out string value);
Inputs: key: the key to look up
InOuts: -
Outputs: value: the value stored under this key.
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

DoesNotExist
NoSuccess

Notes: - if there is no such key in the store, a
’DoesNotExist’ exception MUST be thrown. An
implementation MAY throw a ’DoesNotExist’
exception if the returned value is a reserved
string.

- remove
Purpose: delete this key and the value stored under it
Format: remove (in string key);
Inputs: key: the key to delete.
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
NotImplemented

Notes: - An implementation may store a special string
as the value of a deleted key (for example,
’THISKEYHASBEENDELETED’).

50

5.3.3 Example

The use of shared properties is demonstrated in the Java program shown in Fig-
ure 8. The program connects to a local publish/subscribe daemon, creates the
shared key-value pair (’example key’, ’hello world!’) and removes it again.

1 import org.ogf.saga.error.SagaException;
2 import org.ogf.saga.url.*;
3 import eu.xtreemos.xosaga.sharing.*;
4

5 public class SharedPropertiesExample {
6

7 public static void main(String[] args) {
8 try {
9 URL u = URLFactory.createURL("boot@localhost");

10 SharedProperties sp = SharingFactory.createSharedProperties(u);
11

12 String key = "example key";
13

14 System.out.println("Creating shared key-value pair");
15 sp.put(key, "hello world!");
16

17 System.out.println("Shared value of " + key + ": " + sp.get(key));
18

19 System.out.println("Removing key-value pair");
20 sp.remove(key);
21 } catch (SagaException e) {
22 System.err.println("Exception: " + e.getMessage());
23 }
24 }
25 }

Figure 8: Example Java XOSAGA program using shared properties

51

6 Distributed Servers
The distributed servers, as implemented by WP3.2, provide a TCP stream inter-
face to their clients. They achieve high availability and fault tolerance through
forming a redundant group of server machines that can hand-over client connec-
tions to each other, without the clients noticing.

Distributed Servers provide location transparent networked services [5]. Clients
connect to a single distributed server address for a service and may be moved
transparently among multiple locations. Mobile IPv6 (MIPv6) route optimiza-
tion [3] does the heavy lifting: all IPv6 connections from a client are atomically
changed directly to each location, avoiding triangular routing. The distributed
server address is simply an IPv6 [1] address. In the terminology of Distributed
servers, a client first connects to a contact node. A client may then be trans-
parently handed off to different servers for load-balancing or for client-specific
processing. The server endpoint of all of the client’s connections are transferred
along with the handoff operation. Distributed servers are described in Deliver-
ables D3.2.2, D3.2.6 and D3.2.11 [9, 10, 11].

6.1 Specification
package xosaga.ds
{

class ds_service
{

CONSTRUCTOR (in saga::session s,
in string name,
in handoff_policy policy = NULL,
out ds_service obj);

DESTRUCTOR (in ds_service obj);

serve (in float timeout = -1.0,
out saga::stream stream);

get_client (in saga::stream stream,
out ds_client client);

get_all_clients (out array<ds_client> clients);

get_all_streams (out array<saga::stream> streams);

get_all_targets (out array<saga::url> targets);

handoff (in ds_client client,
in float timeout = -1.0,

52

out saga::url target);

handoff_to (in saga::url target,
in ds_client client,
in float timeout = -1.0);

receive_handoff (in float timeout = -1.0
out ds_client client);

close (in bool binding_reset = True);
}

class ds_client
{

CONSTRUCTOR (out ds_client client);

DESTRUCTOR (in ds_client obj);

get_url (out saga::url obj_url);

get_streams (out array<saga::stream> streams);

set_message (in saga::buffer msg = NULL);

get_message (out saga::buffer msg);
}

interface handoff_policy
{

get_target (in ds_client client,
in array<saga::url> options,
out saga::url target)

}

class round_robin_handoff_policy: implements handoff_policy
{

// no additional methods
}

}

6.2 Specification Details
Class ds_service

The ds_service accepts new incoming connections as SAGA streams, allows to
hand off all streams connected with the same client to another Distributed Servers

53

node, and accepts such a handoff operation.

- CONSTRUCTOR
Purpose: create a service to access a running Distributed

Servers daemon
Format: CONSTRUCTOR (in saga::session s,

in string name,
in handoff_policy policy,
out ds_service obj);

Inputs: s: session to be used for object creation
name: a name recognized by the local Distrib-

uted Server daemon that maps to a local
address

policy: the handoff policy to use
InOuts: -
Outputs: obj: the newly created service
PreCond: -
PostCond: obj can now serve incoming client connections.
Perms: -
Throws: IncorrectState

IncorrectURL
NotImplemented
BadParameter
NoSuccess

Notes: - if there is no local Distributed Servers daemon
running, a ’NoSuccess’ exception MUST be thrown.

- if the local daemon does not know the given name, a
’DoesNotExist’ exception MUST be thrown.

- the local daemon MAY only allow one instance of a
ds_service per name per machine. In that case, all
subsequently created instances with a name that has
already been used MUST throw an ’AlreadyExists’
exception.

- the handoff policy can be NULL; in that case, the
handoff() method without a target URL parameter
will always throw an ’IncorrectState’ exception.

- DESTRUCTOR
Purpose: destructor of the ds_service object
Format: DESTRUCTOR (in ds_service obj)
Inputs: obj: the ds_service object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the service is closed
Perms: -
Throws: -

54

Notes: - if the service was not closed before, the
destructor performs a close() on the instance,
and all notes to close() apply.

- serve
Purpose: Wait for an incoming client connection
Format: serve (in float timeout,

out saga::stream stream);
Inputs: timeout: number of seconds to wait
InOuts: -
Outputs: stream: new connected stream object
PreCond: -
PostCond: - all postconditions of saga::stream_service.serve()

apply.
- the session of the returned stream is that of the

ds_service object.
- the associated ds_client object also contains the

new stream.
Perms: - all permissions of saga::stream_service.serve()

apply.
Throws: NotImplemented

BadParameter
PermissionDenied
AuthorizationFailed
AuthenticationFailed
IncorrectState
Timeout
NoSuccess

Notes: - all notes from saga::stream_service.serve() apply.

- get_client
Purpose: returns the client associated with a stream
Format: get_client (in saga::stream stream,

out ds_client client);
Inputs: stream: a connected stream
InOuts: -
Outputs: client: the ds_client object associated with

the given stream
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

BadParameterException
IncorrectState
NotImplemented

Notes: - if no client is associated with the given stream, a
’DoesNotExist’ exception MUST be thrown.

- if the given stream is not connected, a
’BadParameter’ exception MUST be thrown.

55

- get_all_clients
Purpose: returns all clients currently handled by this

ds_service object.
Format: get_all_clients (out array<ds_client> clients);
Inputs: -
InOuts: -
Outputs: clients: all clients currently handled by

this ds_service object.
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState

NotImplemented
Notes: -

- get_all_streams
Purpose: returns all streams of all clients.
Format: get_all_streams (out array<saga::stream> streams);
Inputs: -
InOuts: -
Outputs: streams: all streams of all clients
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented
Notes: - the array is a shallow copy; streams served later

are not reflected in the array.

- get_all_targets
Purpose: get the URLs of all the handoff targets.
Format: get_all_targets (out array<saga::url> targets);
Inputs: -
InOuts: -
Outputs: targets: all possible handoff targets.
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
IncorrectState
NoSuccess

Notes: - the number of possible handoff targets CAN be zero.

- handoff
Purpose: hand off all streams of a client to another node

determined by the handoff policy of this ds_service.

56

Format: handoff (in ds_client client,
in float timeout,
out saga::url target);

Inputs: client: the client to hand off
timeout: number of seconds to wait

InOuts: -
Outputs: target: the URL of the node selected for the

handoff
PreCond: - if an application-specific ’message’ object has

been set via ds_client.set_message(), it will be
passed to the other server along with the handoff.

PostCond: - the client object does not contain any streams
anymore.

Perms: -
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
BadParameter
DoesNotExist
Timeout
IncorrectState
NoSuccess

Notes: - the handoff target is determined by calling the
get_target() method of the handoff policy of this
ds_service

- any exception thrown by the handoff policy MUST
be forwarded

- if the given client is not handled by this
ds_service, a ’DoesNotExist’ exception MUST be
thrown.

- if no handoff policy was given in the CONSTRUCTOR,
an ’IncorrectState’ exception MUST be thrown.

- after a successful handoff, all subsequent method
calls on the client MUST throw an ’IncorrectState’
exception (except for the DESTRUCTOR and close()).

- which streams are contained in the given client
object is irrelevant; ALL streams from this client
known by the local daemon are handed off.

- handoff
Purpose: hand off all streams of a client to a specific node
Format: handoff (in saga::url target,

in ds_client client,
in float timeout);

Inputs: target: the target server to which the client
has to be handed off

client: the client that is to be handed off
timeout: number of seconds to wait

57

InOuts: -
Outputs: -
PreCond: - if an application-specific ’message’ object has

been set via ds_client.set_message(), it will be
passed to the target server along with the handoff.

PostCond: - the client object does not contain any streams
anymore.

Perms: -
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
BadParameter
DoesNotExist
Timeout
IncorrectState
NoSuccess

Notes: - if the target does not exist, a ’DoesNotExist’
exception MUST be thrown

- if the given client is not handled anymore by this
ds_service, a ’DoesNotExist’ exception MUST be
thrown.

- after a successful handoff, all subsequent method
calls on the client MUST throw an ’IncorrectState’
exception (except for the DESTRUCTOR and close()).

- which streams are contained in the given client
object is irrelevant; ALL streams from this client
known by the local daemon are handed off.

- receive_handoff
Purpose: receive all streams of a client that are handed off

by another node.
Format: receive_handoff (in float timeout,

out ds_client client);
Inputs: timeout: number of second to wait
InOuts: -
Outputs: client: the client object that has been

handed off
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the contact node could not be contacted,

58

an ’IncorrectState’ exception MUST be thrown.
- the returned client MUST contain the

application-specific ’message’ object that was
set by the node that handed off the client.

- close
Purpose: Closes all streams of all clients handled by the

local daemon and cleans up the daemons state.
Format: close (in bool binding_reset);
Inputs: binding_reset: whether to clear all bindings of all

clients handled by the current node
or not

InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout

Notes: - all subsequent method calls on this object MUST
throw an ’IncorrectState’ exception, except for the
CONSTRUCTOR, DESTRUCTOR and close().

- if binding_reset is true, all clients will connect
to the contact node when they start a new connec-
tion.

Class ds_client

A ds_client object contains all streams that are connected with a particular
client. It can also contain an application-specific message (a SAGA buffer) that
is passed to the target of a handoff operation, or has been received from another
node during a handoff operation.

There are two ways to retrieve a ds_client object:

1. via ds_service.get_client(), using one of its associated streams re-
turned by ds_service.serve()

2. via ds_service.receive_handoff()

In the second case, the ds_client may contain a message that was set by the
node that handed off the client.

59

A ds_client object is a shallow copy of a part of the state of the local Dis-
tributed Servers daemon. In particular, the object will not contain any new streams
that arrived after it was constructed. Hence, a ds_client object simply acts
as the identifier of a remote node. Each call to ds_service.get_client()
may return a new object with independant state. The message contained in a
ds_client is also local to that particular instance.

- DESTRUCTOR
Purpose: destroys the object
Format: DESTRUCTOR (in ds_client obj);
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the client is closed
Perms: -
Throws: -
Notes: - if the client was not closed before, the

destructor performs a close() on the instance,
and all notes to close() apply.

- get_url
Purpose: returns the url that identifies the client
Format: get_url (out saga::url obj_url);
Inputs: -
InOuts: -
Outputs: obj_url: url of the client
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
NoSuccess

Notes: - the URL MUST consist of the scheme ’ipv6://’
followed by the IPv6 address of the client.

- get_streams
Purpose: returns all streams connected with this client
Format: get_streams(out array<saga::stream> streams);
Inputs: -
InOuts: -
Outputs: streams: list of streams connected with this client
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState

60

NoSuccess
PermissionDenied

Notes: - the returned array is a shallow copy; any
subsequent streams connected with this client that
are served later will not be included in the array.

- set_message
Purpose: sets application specific data that will be sent

along with a handoff
Format: set_message (in saga::buffer msg);
Inputs: msg: buffer containing application-specific

data, or NULL.
InOuts: -
Outputs:
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
Notes: - any message set previously will be overwritten

- using NULL as a message effectively removes it

- get_message
Purpose: returns the application-specific data of this client
Format: get_message (out saga::buffer msg);
Inputs: -
InOuts: -
Outputs: msg: the application-data associated with

this client
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
Notes: - the data can have been set by another node that

handed off this client.
- if no data has been set, NULL MUST be returned.

Interface handoff_policy

A handoff_policy chooses one target node from a set of possible targets. An
implementation of such a policy must be provided to a ds_service object, which
will use it for all handoff operations. Handoff policies can be very application-
specific.

61

- get_target
Purpose: returns the URL of the node a client should be

handed off to.
Format: get_target (in ds_client client,

in array<url> options,
out saga::url target)

Inputs: client: the client object to select a target for
options: the possible targets to select

InOuts: -
Outputs: target: the selected target
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

NoSuccess
Notes: - if there are no possible targets, a ’DoesNotExist’

exception MUST be thrown.

6.3 Example
Figure 9 shows an example Java SAGA program that uses Distributed Servers.
Without arguments, it runs a ’frontend’ process that accepts incoming streams
(i.e. TCP sockets). Each stream is handed off to the first available other node
(determined by the ’PickFirstPolicy’ object given to the constructor of the DsSer-
vice object). The frontend counts the incoming connections, and sends a message
along with the handoff containing the latest count. With arguments, the program
runs a ’backend’ process that accepts clients that are handed off. The backend
then closes all streams of each client.

62

1 import java.util.List;
2 import org.ogf.saga.buffer.*;
3 import org.ogf.saga.error.*;
4 import org.ogf.saga.stream.Stream;
5 import org.ogf.saga.url.URL;
6 import eu.xtreemos.xosaga.ds.*;
7

8 public class DsExample {
9

10 public static void main(String args[]) {
11 try {
12 HandoffPolicy p = new PickFirstPolicy();
13 DsService service = DsFactory.createDsService("/tmp/dsdaemon", p);
14

15 if (args.length == 0) { // run frontend
16 for (long i = 1; ; i++) {
17 Stream stream = service.serve();
18 DsClient client = service.getClient(stream);
19

20 String data = "client " + i;
21 Buffer dataBuf = BufferFactory.createBuffer(data.getBytes());
22 client.setMessage(dataBuf);
23

24 URL dst = service.handoff(client);
25 System.out.println("Handed off " + data + " to " + dst);
26 }
27 } else { // run backend
28 while (true) {
29 DsClient client = service.receiveHandoff();
30 Buffer b = client.getMessage();
31 System.out.println("Accepted " + new String(b.getData()));
32 for (Stream s: client.getStreams()) s.close();
33 }
34 }
35 } catch (SagaException e) {
36 System.err.println("Fatal error: " + e.getMessage());
37 }
38 }
39

40 private static class PickFirstPolicy implements HandoffPolicy {
41

42 public URL getTarget(DsClient client, List<URL> options)
43 throws DoesNotExistException, NoSuccessException {
44 if (options.isEmpty()) {
45 throw new DoesNotExistException("No options to choose from");
46 } else {
47 return options.get(0);
48 }
49 }
50 }
51 }

Figure 9: Example Java XOSAGA program using Distributed Servers

63

7 Summary

This document has presented an overview of XOSAGA, the programming inter-
faces to XtreemOS, its components and services. The API for the XtreemOS
operating system has to meet multiple and conflicting requirements. First of all,
it has to be congruent with POSIX API’s in order to serve traditional Linux appli-
cations. Second, the XtreemOS API should also serve existing grid applications,
and finally, XtreemOS-specific functionality needs to be exposed to applications.
XOSAGA addresses these conflicting requirements by being based on OGF’s Sim-
ple API for Grid Applications (SAGA). Together with the XtreemOS-specific ex-
tension packages we call the API XOSAGA. These packages provide interfaces for
handling XtreemOS user certificates (XtreemOS contexts), job submission and
resource management, the XtreemFS file system, the Scalaris publish-subscribe
system, the Object Sharing System (OSS), and the Distributed Servers.

This document contains the programming-language independent specifications
of the XOSAGA package API’s. XOSAGA has been implemented in C++, in
Java, and in Python. The programming-language bindings (the concrete syntax
and semantics) for these programming languages are described separately, along
with the respective implementations. An integral part of the XtreemOS API is
defined by the OGF recommendation document GFD.90 [2]. In here, we only
present the XOSAGA extension packages themselves. (The API documentation
that is part of the three implementations also covers the core SAGA API, rendered
in the respective programming languages, C++, Java, and Python.)

To summarize, this documents provides a comprehensive description of the
XOSAGA extension packages that provide access to XtreemOS-specific mod-
ules and services. Together with the SAGA core specification, and most promi-
nently with the language-specific documentation of the three XOSAGA imple-
mentations, it allows application programmers to access the XtreemOS operating
system.

References

[1] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6). RFC 2460,
December 1998.

[2] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Klei-
jer, Andre Merzky, John Shalf, and Christopher Smith. A Simple API for
Grid Applications (SAGA). Grid Forum Document GFD.90, January 2008.
Open Grid Forum (OGF).

64

[3] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC 3775,
June 2004.

[4] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: Reliable Transactional
P2P Key/Value Store - Web 2.0 Hosting with Erlang and Java. In Proceed-
ings of the 7th ACM SIGPLAN Erlang Workshop, Victoria, BC, Canada,
September 2008.

[5] Michał Szymaniak, Guillaume Pierre, Mariana Simons-Nikolova, and
Maarten van Steen. Enabling service adaptability with versatile any-
cast. Concurrency and Computation: Practice and Experience,
19(13):1837–1863, September 2007. http://www.globule.org/
publi/ESAVA_ccpe2007.html.

[6] Linux XOS Specification. Deliverable D2.1.1, XtreemOS Consortium,
2007.

[7] Second Specification of Security Services. Deliverable D3.5.4, XtreemOS
Consortium, 2007.

[8] Design report for advanced XtreemFS and OSS features. Deliverable D3.4.3,
XtreemOS Consortium, 2008.

[9] XtreemOS Consortium. First Prototype Version of Ad Hoc Distributed
Servers. Deliverable D3.2.2, November 2007.

[10] XtreemOS Consortium. Reproducible evaluation of distributed servers. De-
liverable D3.2.6, December 2008.

[11] XtreemOS Consortium. Extended version of the distributed servers platform.
Deliverable D3.2.11, December 2009.

65

http://www.globule.org/publi/ESAVA_ccpe2007.html
http://www.globule.org/publi/ESAVA_ccpe2007.html

	Executive Summary
	Introduction
	XtreemOS context
	Example

	Job Submission and Resource Management
	Specification
	Specification Details
	Class resource_description
	Class resource
	Class reservation
	Class resource_service
	Class application_description
	Class job_service

	Example

	XtreemFS
	Scalaris and OSS
	Shared buffers
	Specification
	Specification details
	Example

	Shared events
	Specification
	Specification details
	Example

	Shared properties
	Specification
	Specification details
	Example

	Distributed Servers
	Specification
	Specification Details
	Example

	Summary
	Bibliography

