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Executive summary

Work package WP3.2 is dedicated to building a collection of highly-available
and scalable services as a support of the development of the XtreemOS infrastruc-
ture. We therefore designed and built several services that respectively address is-
sues of distribution transparency, information dissemination, service and resource
discovery, fault-tolerance, and inter-service communication. In addition, we in-
vestigated the relationships between XtreemOS and the emerging area of Cloud
computing.

The present deliverable mostly aims at delivering our service implementations.
These implementations can be found in the publicly-available svn repository of the
XtreemOS project. We complement this code delivery with a brief description of
each delivered service and its contribution to the project as a whole.



1 Introduction

Work package WP3.2 is dedicated to building a collection of highly-available and
scalable services as a support of the development of the XtreemOS infrastructure.
We therefore designed and built several services that respectively address issues of
distribution transparency (see Section 2), information dissemination (Section 3),
service and resource discovery (Section 4), fault-tolerance (Section 5), and inter-
service communication (Section 6). In addition, we investigated the relationships
between XtreemOS and the emerging area of Cloud computing (Section 7).

The present deliverable mostly aims at delivering our service implementations.
These implementations can be found in the publicly-available svn repository of the
XtreemOS project. We complement this code delivery with a brief description of
each delivered service and its contribution to the project as a whole.

2 Design and implementation of distributed servers

When building a large-scale distributed service made of multiple service instances,
it is important to give users a simple contact address where queries can be sent.
The Distributed Servers system provides location transparent services using a sin-
gle distributed server address that clients connect to and can thereafter be moved
transparently among multiple locations [39]. Mobile IPv6 (MIPv6) route opti-
mization transparently adjusts the clients’ connections [20]: all IPv6 connections
from the client are atomically changed to each location in order to avoid triangu-
lar routing. The TCP Connection Passing (TCPCP) Linux kernel module handles
migrating the network stack at the server end [1]. The set of nodes that manages
the distributed server address is composed of a contact node—to which a client
first connects—and a set of server nodes that can accept or initiate client hand-
offs. The distributed server address is simply a mobile IPv6 address [11]. When
a client is handed off, the server endpoint of all of the client’s IP connections
are transferred to different server for load-balancing or for client-specific process-
ing. However, Distributed Servers can provide server mobility, inverting the mo-
bile host functionality of MIPv6. The Distributed Servers system depends on all
parties—clients and servers—possessing and using IPv6 addresses with support
for Mobile 1Pv6, which is well supported in most modern operating systems.

The standard MIPv6 implementation in Linux is handled by a user-level dae-
mon, called mip6d, that manages mobility events. Different roles in MIPv6 are
handled by different configurations of the same mip6d daemon: the Mobile Host
(MH) changes network addresses generating mobility events; the Home Agent
(HA) manages the MH home address in the home network for connectivity of new
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Figure 1: Overview of Distributed Servers design architecture. All MIPv6 control
packets from server nodes are routed through IPv6 tunnels to a spoofed Home
Agent on the Contact Node. The route optimization packets (HoTi,HoT) are then
routed to the real Home Agent, which in turn routes them to the client node.

connections; and the Correspondent Node (CN) represents the other endpoint of
connections with the MH during mobility events [20].

Our design places the mip6d in a controlled environment without modifying
the MIPv6 implementation to simulate mobility of the server end of a connection
to clients. The relationship between the MIPv6 and Distributed Servers termi-
nology is straightforward. Figure 1 shows the relationships between the different
servers and the client. The Home Agent (HA) is a component of MIPv6 and
serves precisely the same role in Distributed Servers. The Distributed Servers
contact node accepts new connections from clients and is registered with the HA,
appearing as the Mobile Host. Other server nodes accept client handoffs from
the contact node and other server nodes. Both the contact node and set of server
nodes are configured as Mobile Hosts in the MIPv6 terminology. Clients that
contact these nodes should be configured as Correspondent Nodes.

A typical client handoff proceeds as follows: (1) the TCPCP module at the
donor is used to freeze all of the clients’ connections and to copy the state from the
corresponding network stack; (2) the donor sends the saved state to the receiver;
(3) the receiver uses the TCPCP module to recreate the corresponding connections
to the client; (4) the dsco daemon at the receiver injects spoofed packets to cause
mip6d to initiate Mobile IPv6 route optimization; and (5) the dsco daemon at the



donor injects spoofed packets to break the clients bindings in the mip6d at the
donor. The routing of MIPv6 packets is illustrated in Figure 1.

Distributed Servers provide an abstraction that allows a group of server pro-
cesses to appear as a single entity to its clients, all while transferring a client’s
connection between servers in the group. The Distributed Servers platform was
first included in XtreemOS 2.1. It uses a collection of scripts, a kernel mod-
ule, and a system-level daemon to provide the Distributed Servers abstraction to
applications. Applications use a separate library called Gecko to manage client
handoffs between different servers [40]. The Gecko library provides a high-level
API that coordinates client handoffs and communicates with the system-level dsco
daemon. This daemon then injects or drops packets to manipulate the unmodified
Mobile IPv6 mip6d daemon to implement Distributed Servers behavior at each
server.

3 Design and implementation of a scalable
publish/subscribe system

Developing large-scale distributed services is a hard problem. The two main is-
sues are scalability and fault tolerance. Therefore, we based the PubSub service
on distributed hash tables (DHT, [38]) which are a proven technology particularly
suited for our scenario. They provide a key-value store with efficient lookups
given the value of an item. The cost of lookups in DHTs scales logarithmically
with the size of the system. So even in very large deployments low latency lookups
are possible, while the throughput scales almost linearly with the number of nodes.
The DHT organizes the participating nodes in a ring structure which is autonomi-
cally maintained and repaired when nodes join or leave the system.

For XtreemOS, we extended an existing key-value store, Scalaris [31], to sup-
port PubSub primitives. In contrast to other distributed key-value stores, it sup-
ports the execution of arbitrary transactions on the stored data. Scalaris is made up
of three layers: (a) a P2P overlay, (b) a primitive key-value store and (c) a transac-
tion layer. The overlay layer provides the aforementioned properties: scalability
and failure tolerance. The second layer implements a simple key-value store with
replication and weak consistency. The transaction layer extends the second layer
with transactions and strong consistency. A lot of efforts in XtreemOS went into
tuning and improving these three layers. The resulting data store is used by SRDS
for storing monitoring information.

The PubSub service is topic based, i.e. nodes can subscribe to topics identified
by a keyword and messages can be published to all subscribers of a given topic. It
is implemented as an application running on top of Scalaris. It uses transactions
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for maintaining the subscriber lists for each topic. The transactions guarantee
that all subscribe and unsubscribe operations are executed atomically. Parts of the
overlay structure are used to efficiently deliver the messages to the subscribers.
Scalaris is implemented in Erlang, a functional programming language de-
signed for distributed and fault-tolerant systems. For the key-value store as well
as the PubSub service, we provide an API based on HTTP and JSON. This API
can be easily accessed from most programming languages. For Java, we provide
a separate library which provides a more convenient API that hides the aspects
concerning the communication between the Java process and Scalaris.

4 Design and implementation of a service/resource
discovery system

The Service and Resource Directory Service (SRDS) is a meta-service allowing
both modules of an XtreemOS system and users, as well as their applications, to
keep track in an efficient and scalable way of the distributed status of the system.

The main task of SRDS within the XtreemOS architecture is to locate re-
sources according to the user needs, in this interacting primarily with the Ap-
plication Execution Management (AEM) service and with the Resource Selection
Service (RSS). Beside the resource directory service, the SRDS manages a wide
range of directory services, including the job directory service (JDS), the mobile
device directory service and the XOSD directory service.

The mechanism used to locate resources within XtreemOS exemplifies the
SRDS approach. When looking for resources, the SRDS leverages a combina-
tion of two distinct P2P approaches, the RSS one (very scalable and efficient in
answering queries based on constant-valued attributes of resources) and a DHT
network (still scalable and more suited to dynamically changing data), that pro-
vides additional information needed to refine the query results.

4.1 SRDS

The key requisites of the SRDS are those of the XtreemOS platform itself: scal-
ability with respect to the platform size and to the number of users, in terms of
service time, throughput, and reliability. The SRDS software architecture, shown
in Figure 2, is layered and inherently distributed, exploiting multiple P2P tech-
niques to meet those constraints.

e On each node of the XtreemOS platform, a lightweight service hub pro-
vides the SRDS API through the DIXI service bus, as well as through other
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Figure 2: SRDS overall architecture and main modules, which is present in each
XtreemOS enabled non-mobile device.

selectable adapters (Facade, in the figure). This means that each SRDS end-
point will typically receive queries originated on the same machine, but it
is also able to authenticate and serve remote service requests (e.g. from
mobile devices).

e The SRDS Query-Provider Layer transforms client requests into a combi-
nation of primitive operations over the various overlay, thus providing com-
plex query functionalities. Both the interface and the query transformation
layers are implemented in Java.

e In order to store and retrieve data, each physical machine participates in
one or more P2P networks, possibly of different type. Networks are dy-
namically enabled according to the characteristics of each one and to the
current system needs. Each query is thus forwarded through the networks
from where information will be gathered. The P2P network exploited can
be implemented in Java and run on the same or on a separate Java VM,
or can be used with Java adapters, like it happens with Scalaris. Dynamic
activation and interface adaptation to more independent DHT networks is
performed by the SRDS internal Information Management Layer (see also
Figure 3).

The ability to leverage a set of P2P networks, each one providing different
functionalities and properties, allows to achieve a good performance/overhead
trade-off for a broad set of query kinds. Besides, SRDS inherits the common
scalability and fault-tolerance traits of the P2P approaches it uses.

SRDS decouples the underlying physical overlay network from the logical
high level service, by using a name-space mechanism. According to the require-
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ments of each SRDS client, a specific set of data (e.g. the list of active XtreemOS
Jobs) is mapped into a subspace of a specific DHT, without interfering with data
related to other services concurring on the same physical Distributed Hash Table
(DHT).

Three different P2P overlay networks are integrated in the SRDS architec-
ture. The Scalaris network (which also supports the publish/subscribe XtreemOS
service, and is described earlier in this document) is used when a transactional
behaviour is needed to control concurrent modification of the distributed data.
The RSS network, also described in this document, is exploited to achieve the
best scalability in resource location with respect to resource attributes which are
constant during the resource lifetime. A generic P2P construction framework,
OverlayWeaver [37] is used as foundation layer for general purpose directory ser-
vices.

For the sake of providing greater scalability to the directory services, in the
framework of the XtreemOS project a research activity focusing on P2P support
for complex queries has been pursued. Here we only report the XtreemOS related
part of the P2P line of research currently developed at ISTI-CNR. Two different
DHT solutions have been developed in order to provide scalable multi-attribute

Information Management Layer
Information Management Layer

Scalaris ow
DHT Layer DHT Layer DHT Layer
. | |
DHT Ring DHTRing = | DHTRing

&~/

namespace 2
(a) Single DHT Ring (b) Multiple DHT Rings
Figure 3: Different implementations of the DHT layer, exploiting either a single

DHT ring to hold the information of multiple namespaces (key space partitioning)
or a distinct DHT ring for each namespace.



range-queries over a DHT overlay, and one of the two has been integrated within
the SRDS.

The Distributed Digest Trie (DDT) approach [4] has been developed as a gen-
eralisation of the CONE approach [41]. DDT provides search functionalities over
dynamic data, based on a distributed trie data structure and customisable digest
functions. DDT improves on the CONE approach as it provides full-fledged range
queries and supports customisable digest functions to tune the accuracy/overhead
trade-off, where CONE behaves like a distributed heap and can only handle one-
side-bounded queries. DDT has been integrated in the Overlay Weaver framework,
but is not currently used within XtreemOS.

The REMED (REduce MEssages in Dht) original mechanism [16] has been
added to the OverlayWeaver framework, extending the MAAN approach [3].
REMED supports range queries over dynamically changing data with reduced
overhead. The optimization focuses on the updates needed for data stored within
the DHT. In REMED, data update frequency is dynamically tuned according to the
popularity of specific attributes as measured by the queries received, and taking
into account the impact on the query results. REMED integrates with the existing
MAAN query resolution mechanism, and is implemented as an additional Over-
layWeaver module. Its use in the SRDS specifically allows efficient space-based
retrieval of objects from the Mobile-Device Directory Service.

4.2 RSS

The role of the Resource Selection Service (RSS) is to search for resources that
match a set of criteria specified in the job description files. The search in RSS is
done only based on static resource attributes (e.g., the CPU frequency, the amount
of memory, the version of a software library). Specifically, RSS handles queries
that define a desired range for each of the static attributes that describe the re-
sources. In a further step, SRDS filters the set of resources provided by RSS
according to dynamic parameters.

RSS is a decentralized service, in which the resource nodes are organized in
a P2P overlay. Each node provides information about itself (that is, its own static
attribute values). The nodes are placed in a virtual multi-dimensional space, in
which each attribute corresponds to one dimension. The coordinates of the nodes
in this space correspond to their attribute values. In order to allow for efficient
searching, the space is recursively divided into nested cells, with the nodes main-
taining connections to other nodes from the neighboring cells.
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The RSS overlay is maintained by using gossip protocols. The Cyclon proto-
col [43] has the role of periodically providing each node with references to a set of
other random nodes from the system. On top of Cyclon, we use a modified version
of the Vicinity protocol [44] to maintain links to nodes that belong to neighboring
cells, for all the possible directions in the multi-dimensional space and for all the
nesting levels.

A query can be initiated by any node in the system, and is routed through the
overlay links until it reaches the cells that overlap with the required ranges. This
routing mechanism is important for scalability, as the number of hops needed to
reach a matching cell does not depend on the system size. Also, due to the use of
gossip protocols, the system is tolerant to node failures. More details about the
design and performance of RSS can be found in [9].

The nodes participating to an RSS overlay belong to the same Virtual Organi-
zation; in a multi-VO grid there should be a separate RSS overlay for each VO. In
order to prevent attacks, RSS provides authentication mechanisms to ensure that
the overlay only contains node belonging to the respective Virtual Organization.
The nodes are authenticated with X.509 certificates and all messages exchanged
among them are digitally signed.

RSS is implemented in Java, its parameters (including the set of static at-
tributes) can be modified through a configuration file. Most of the communication
within the overlay is done through TCP and, for efficiency, the nodes maintain
persistent connections to their neighbors.

5 Design and implementation of a virtual node sys-
tem

In a distributed application some processes may have a key role so that their failure
would be critical to the entire application. In case the application has interaction
with the outside world also availability suffers.

We propose replication as a solution to both issues. Replication increases
availability of services on one side and, on the other side, provides reliability of
critical components. The Virtual Nodes replication framework provides replica-
tion support for Java services.

Replication is expensive in terms of performance. Thus, it is important to fine-
tune replication strategies towards the needs of the application to be replicated.
Therefore, Virtual Nodes comes with high configurability as its key feature. Ba-
sically, there are three main parameters to be set at server-side. The number and
location of replicas determines the degree of resilience to node failures. The repli-
cation strategy defines the operations the replicated service is allowed to execute
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and also decides on the achievable throughput and computation power required.
Finally, the middleware adapter sets the API clients have to use in order to access
the service.

Virtual Nodes supports two basic replication strategies: active replication and
passive replication. In passive replication requests are only executed by a single
and fixed replica (called leader) which pushes modifications of the application
state to the other replicas (called backups). Passive replication imposes barely
any restrictions on the code of the replicated application so that it can be widely
applied. As a downside, it requires sequential execution of requests. Active repli-
cation in turn is more rigid with regards to implementation restrictions. It requires
that the implementation of the application be deterministic. This is due to the
fact that all replicas execute requests independently and still have to have consis-
tent states. On the upside, it allows concurrent execution of request, as long as
scheduling of threads is deterministic. Virtual Nodes comes with a set of deter-
ministic scheduling algorithms that allow a fine-grained tuning of concurrency. A
consequence of concurreny is higher throughput when using active replication.

Virtual Nodes is one of very few replication frameworks that does neither
require a fixed configuration of the number of replicas nor the locations they run
on. This means, that it is possible to add and remove replicas at run-time and to
even instantiate them on locations that have not been known at startup of the very
first replica. All location- and configuration-related issues are handeled within the
replica group in a distributed manner. An instance of Virtual Nodes is completely
self-contained in a way that it also replicates its management information. This
makes it independent from third-party services that may constitute a single-point
of failure.

Finally, Virtual Nodes is opaque towards the middleware API the client ap-
plication uses. It is only required to implement a middleware adapter that maps
invocations of the middleware API to calls of the framework. For the time being,
Virtual Nodes comes with adapters for Java RMI and the Distributed XtreemOS
Interface which cover nearly all applications being used in XtreemOS. Both mid-
dleware adapters provide a powerful yet simple user interface to service providers
(i.e., administrators) and are fully transparent to service users. In particular, the
code of a client application does not need to be modified when the service is repli-
cated with Virtual Nodes.

The usability of Virtual Nodes was shown by replicating an off-the-shelf POP3
service in less than a week. Furthermore, the successfull integration of Virtual
Nodes with DIXI in order to replicate XtreemOS’ application execution manage-
ment (AEM) infrastructure makes Virtual Nodes a key component to the reliability
of XtreemOS.
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6 Distributed XtreemOS Infrastructure (DIXI)

During the development of XtreemOS components, most notably the AEM, a need
emerged for a framework and a message bus that would offer quick prototyping of
the services, provide a staging environment for the XtreemOS services, simplify
a development of a distributed system, composed of services, provide a commu-
nication layer between services running on the same node and provide commu-
nication between the nodes. To accommodate these requirements, we developed
the Distributed XtreemOS Infrastructure (DIXI). The related WP3.2 task was fo-
cused on meeting additional requirements expressed by the developers to adopt
the framework. In this section we summarise the features of the framework, while
the detailed description can be found in [48].

The framework consists of two main parts: the development helper tool, and
the runtime environment. The development helper tool’s purpose is to analyse the
implementation of any DIXI hosted components’ code, and produce such aux-
iliary code that can be derived from the service interfaces. The auxiliary code
enables that user’s services can easily be integrated into the DIXI framework, and
thus instantly be able to communicate and cooperate with any other service within
the framework.

The second main part consists of the runtime libraries that enable the deploy-
ment of the services, their hosting in the staging environment, and the actual abil-
ity to exchange service messages throughout the distributed environment. In this
respect the framework acts as a messaging bus. The stages hosted within the same
memory space use memory message queues. To gain inter-process and inter-host
communication capabilities, it also includes a special stage which supports the
message transportation using plain TCP/IP socket connectivity as well as the SSL
communication to gain privacy and the ability to properly authenticate the client
and server.

The stages implemented and running as services within the DIXI environment
represent a top layer which, unless required otherwise, is not aware of the specifics
of the target service location or the kind of transport that would be required to
invoke the service call and get the result back. This is made possible because the
framework performs the needed look-up of the hosts running the target service,
and directing the messages to their proper destination. In this process it takes
advantage of the high availability services such as Scalaris to publish the services’
presence. Intrinsically, we have added mechanisms to control individual stages’
lifetime, and the configuration of the framework has become scripting-friendly.

The runtime part is complete with the libraries that can be used by the clients
that are not a part of DIXI themselves. The bindings are provided for Java and
C. Further, the clients can use their own implementation of the communication
modules, since the service messages are exchangeable with the DIXI hosts using
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Java binary serialization, or using XML. Initially the clients acted as a special case
of DIXI services, requiring a server socket to be accessible from the VOs. For
the final release, we enabled a proxy service permitting the utility of real clients
connecting from NAT or from behind a firewall. On top of the client programs
developed with usage of the client libraries, the users can also employ a DIXI
console which contains commands directly obtained from the services” API.

The DIXI has therefore become an integral part of XtreemOS, hosting many
of the services itself and bridging others with wrappers.

7 Cloud computing services

Contrary to other tasks within WP3.2, the task on Cloud computing services did
not primarily aim at producing any specific service. Rather, it was meant as a sup-
port for investigating the relationships between XtreemOS and the then-emerging
area of Cloud computing. The results of this investigation can be found in deliv-
erable D3.2.15 [47]. Although this was not the prime goal of the task, one side
product of our investigations is the port of the open-source HBase NoSQL data
service to XtreemOS..

Relational databases (RDBMS) such as MySQL and Oracle have been popu-
lar for decades thanks to their conceptual simplicity, the great expressive power
of the SQL query language, and the performance improvements that have been
brought by decades of development. However, their great expressive power also
makes it very difficult to scale them up by using large numbers of computers in-
stead of a single powerful database server. Because users are assumed to be likely
to query any set of data items from the database through a single query, distributed
RDBMSs often rely on full replication to distribute their computation across mul-
tiple machines. Read queries can thus be addressed to any replica, and scale very
well. On the other hand, update queries must in one way or another be propagated
to all replicas. This means that, when using N database replicas, each replica
must process % x ReadQueries + WriteQueries. When the number of write
queries alone grows beyond the capacity of a single replica server, no additional
improvement can be brought by adding extra replicas. The only solution to scale
an application further is to use data partitioning [45]. Partitioning data manually
is a difficult process, so developers prefer to rely on automatic data partitioning.

A new family of scalable database systems is being developed for Cloud com-
puting environments, exemplified by Amazon.com’s SimpleDB [2], Google’s Big-
table [6], Yahoo’s PNUTS [7] and Facebook’s Cassandra [21]. Although all these
systems are slightly different from each other, they all rely on the same underlying
principles. These systems scale nearly linearly with the number of servers they
are using, thanks to the systematic use of automatic data partitioning. On the other
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hand, they do not support the SQL language and rather provide a simpler query
language. Data are organized in tables, which can be queried by primary key only.
Similarly, these systems do not support join operations. As restrictive as such lim-
itations may look, they do allow to build useful applications. Scalable database
systems typically provide weak consistency guarantees such as eventual consis-
tency [42] or single-record transactions, but one can apply stronger consistency as
an added layer on top [46].

To demonstrate how XtreemOS can be a great platform for PaaS Cloud com-
puting, we ported the HBase system [18] (an open-source clone of Bigtable) to
XtreemOS. This provides XtreemOS with a scalable database service that can be
used by Grid applications to store and query their structured data.

8 Conclusion

In conclusion, WP3.2 has delivered a collection of services that allowed the con-
struction of XtreemOS as a successful software development project.

In addition to producing code, it should be noted that WP3.2 has also been
very successful in terms of academic publications. Over the course of the project
the work package has published 3 journal articles [8, 35, 39], 1 book chapter [24],
11 papers in international conferences [4, 9, 14, 15, 25, 26, 27, 28, 32, 34, 36],
13 papers in international workshops [5, 10, 12, 13, 16, 17, 19, 22, 23, 29, 31,
33, 49] and 1 paper in a non peer-reviewed venue [30], notwithstanding papers
currently under review or soon to be submitted.
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