
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Final Release of XtreemFS and OSS
D3.4.7

Due date of deliverable: 31-MAR-2010
Actual submission date: 09-APR-2010

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.4

Responsible institution: ZIB
Editor & and editor’s address: Björn Kolbeck

Zuse Institute Berlin
Takustr. 7

14195 Berlin
Germany

Version 1.0 / Last edited by Björn Kolbeck / 25-FEB-2010

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)



Revision history:
Version Date Authors Institution Section affected, comments

0.1 25.02.10 Björn Kolbeck, Jan Stender ZIB Initial draft with updated XtreemFS User Guide
0.2 05.03.10 Florian Müller UDUS updated OSS User Guide
0.3 18.03.10 Björn Kolbeck ZIB List changes/new features
0.4 24.03.10 Kim-Thomas Möller UDUS Added descriptions of changes/new features in OSS
0.5 09.04.10 Jan Stender ZIB Made final changes according to Nicolas’ and San-

drine’s comments

Reviewers:
Nicolas Vigier (EDGE-IT), Zhouyi Zhou (ICT)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.4.5 Object Sharing Service UDUS∗

T3.4.7 XtreemFS Client-Side Caching NEC∗

T3.4.8 XtreemFS File Replication ZIB∗

T3.4.9 XtreemFS Automatic Replica Management BSC∗

T3.4.10 XtreemFS Testing, Performance, Compatibility and Mainte-
nance

CNR∗

T3.4.11 XtreemFS Consistent Snapshots ZIB∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader



Contents

1 Executive Summary 11

2 The XtreemFS User Guide 13

2.1 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 About XtreemFS . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 What is XtreemFS? . . . . . . . . . . . . . . . . . . . . 16

What makes XtreemFS a distributed file system? 16

What makes XtreemFS a replicated file system? 16

2.3.2 Is XtreemFS suitable for me? . . . . . . . . . . . . . . 17

XtreemFS is ... . . . . . . . . . . . . . . . . . . 17

XtreemFS is not ... . . . . . . . . . . . . . . . . 18

2.3.3 Core Features . . . . . . . . . . . . . . . . . . . . . . . 18

Distribution. . . . . . . . . . . . . . . . . . . . . 18

Replication. . . . . . . . . . . . . . . . . . . . . 18

Striping. . . . . . . . . . . . . . . . . . . . . . . 19

Security. . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 20

XtreemFS Components. . . . . . . . . . . . . . 21

2.4 XtreemFS Services . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . 21

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . 22

Installing from Pre-Packaged Releases . . . . . . . . . . 22

1



Installing from Sources . . . . . . . . . . . . . . . . . . 23

2.4.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . 23

A Word about UUIDs . . . . . . . . . . . . . . . . . . 23

Automatic DIR Discovery . . . . . . . . . . . . . . . . 24

Authentication . . . . . . . . . . . . . . . . . . . . . . 24

Configuring SSL Support . . . . . . . . . . . . . . . . . 25

Converting PEM files to PKCS#12 . . . . . . . 25

Importing trusted certificates from PEM into a
JKS . . . . . . . . . . . . . . . . . . 26

Sample Setup . . . . . . . . . . . . . . . . . . . 26

List of Configuration Options . . . . . . . . . . . . . . 28

admin password optional
. . . . . . . . . . . . . . . . . . . . 29

authentication provider
. . . . . . . . . . . . . . . . . . . . 29

babudb.baseDir
. . . . . . . . . . . . . . . . . . . . 29

babudb.cfgFile optional
. . . . . . . . . . . . . . . . . . . . 29

babudb.checkInterval optional
. . . . . . . . . . . . . . . . . . . . 30

babudb.compression optional
. . . . . . . . . . . . . . . . . . . . 30

babudb.debug.level optional
. . . . . . . . . . . . . . . . . . . . 31

babudb.localTimeRenew experimental, optional
. . . . . . . . . . . . . . . . . . . . 31

babudb.logDir
. . . . . . . . . . . . . . . . . . . . 32

babudb.maxLogfileSize optional
. . . . . . . . . . . . . . . . . . . . 32

babudb.pseudoSyncWait optional
. . . . . . . . . . . . . . . . . . . . 33

2



babudb.repl.backupDir experimental, optional
. . . . . . . . . . . . . . . . . . . . 33

babudb.repl.chunkSize experimental, optional
. . . . . . . . . . . . . . . . . . . . 33

babudb.repl.participant experimental, optional
. . . . . . . . . . . . . . . . . . . . 34

babudb.repl.sync.n experimental, optional
. . . . . . . . . . . . . . . . . . . . 34

babudb.ssl.authenticationWithoutEncryption
experimental, optional

. . . . . . . . . . . . . . . . . . . . 34

babudb.ssl.enabled experimental, optional
. . . . . . . . . . . . . . . . . . . . 35

babudb.ssl.service creds experimental, op-
tional

. . . . . . . . . . . . . . . . . . . . 35

babudb.ssl.service creds.container exper-
imental, optional

. . . . . . . . . . . . . . . . . . . . 35

babudb.ssl.service creds.pw experimental, op-
tional

. . . . . . . . . . . . . . . . . . . . 35

babudb.ssl.trusted certs experimental, op-
tional

. . . . . . . . . . . . . . . . . . . . 36

babudb.ssl.trusted certs.container exper-
imental, optional

. . . . . . . . . . . . . . . . . . . . 36

babudb.ssl.trusted certs.pw experimental, op-
tional

. . . . . . . . . . . . . . . . . . . . 36

babudb.sync
. . . . . . . . . . . . . . . . . . . . 37

babudb.worker.maxQueueLength optional
. . . . . . . . . . . . . . . . . . . . 38

3



babudb.worker.numThreads optional
. . . . . . . . . . . . . . . . . . . . 38

capability secret
. . . . . . . . . . . . . . . . . . . . 38

capability timeout optional
. . . . . . . . . . . . . . . . . . . . 39

checksums.enabled
. . . . . . . . . . . . . . . . . . . . 39

checksums.algorithm
. . . . . . . . . . . . . . . . . . . . 39

debug.level optional
. . . . . . . . . . . . . . . . . . . . 40

debug.categories optional
. . . . . . . . . . . . . . . . . . . . 41

dir service.host
. . . . . . . . . . . . . . . . . . . . 42

dir service.port
. . . . . . . . . . . . . . . . . . . . 42

discover optional
. . . . . . . . . . . . . . . . . . . . 42

geographic coordinates optional
. . . . . . . . . . . . . . . . . . . . 42

hostname optional
. . . . . . . . . . . . . . . . . . . . 43

http port
. . . . . . . . . . . . . . . . . . . . 43

listen.address optional
. . . . . . . . . . . . . . . . . . . . 43

listen.port
. . . . . . . . . . . . . . . . . . . . 43

local clock renewal
. . . . . . . . . . . . . . . . . . . . 44

monitoring
. . . . . . . . . . . . . . . . . . . . 44

4



monitoring.email.programm
. . . . . . . . . . . . . . . . . . . . 44

monitoring.email.receiver
. . . . . . . . . . . . . . . . . . . . 44

monitoring.email.sender
. . . . . . . . . . . . . . . . . . . . 45

monitoring.max warnings
. . . . . . . . . . . . . . . . . . . . 45

no atime
. . . . . . . . . . . . . . . . . . . . 45

object dir
. . . . . . . . . . . . . . . . . . . . 45

osd check interval
. . . . . . . . . . . . . . . . . . . . 46

remote time sync
. . . . . . . . . . . . . . . . . . . . 46

report free space
. . . . . . . . . . . . . . . . . . . . 46

service timeout s
. . . . . . . . . . . . . . . . . . . . 46

ssl.enabled
. . . . . . . . . . . . . . . . . . . . 47

ssl.grid ssl
. . . . . . . . . . . . . . . . . . . . 47

ssl.service creds
. . . . . . . . . . . . . . . . . . . . 47

ssl.service creds.container
. . . . . . . . . . . . . . . . . . . . 48

ssl.service creds.pw
. . . . . . . . . . . . . . . . . . . . 48

ssl.trusted certs
. . . . . . . . . . . . . . . . . . . . 48

ssl.trusted certs.container
. . . . . . . . . . . . . . . . . . . . 48

5



ssl.trusted certs.pw
. . . . . . . . . . . . . . . . . . . . 48

startup.wait for dir
. . . . . . . . . . . . . . . . . . . . 49

uuid
. . . . . . . . . . . . . . . . . . . . 49

2.4.3 Execution and Monitoring . . . . . . . . . . . . . . . . 49

Starting and Stopping the XtreemFS services . . . . . 49

Web-based Status Page . . . . . . . . . . . . . . . . . . 50

DIR Service Monitoring . . . . . . . . . . . . . . . . . 50

2.4.4 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . 51

2.5 XtreemFS Client . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . 52

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . 52

Installing from Pre-Packaged Releases . . . . . . . . . . 52

Installing from Sources . . . . . . . . . . . . . . . . . . 53

2.5.2 Volume Management . . . . . . . . . . . . . . . . . . . 53

Creating Volumes . . . . . . . . . . . . . . . . . . . . . 54

Deleting Volumes . . . . . . . . . . . . . . . . . . . . . 54

Listing all Volumes . . . . . . . . . . . . . . . . . . . . 55

2.5.3 Accessing Volumes . . . . . . . . . . . . . . . . . . . . 55

Mounting and Un-mounting . . . . . . . . . . . . . . . 55

Mount Options . . . . . . . . . . . . . . . . . . . . . . 56

2.5.4 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . 56

2.6 XtreemFS Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . 59

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . 59

Installing from Pre-Packaged Releases . . . . . . . . . . 60

Installing from Sources . . . . . . . . . . . . . . . . . . 61

2.6.2 Maintenance Tools . . . . . . . . . . . . . . . . . . . . 61

MRC Database Conversion . . . . . . . . . . . . . . . . 61

6



Scrubbing and Cleanup . . . . . . . . . . . . . . . . . . 62

Setting the Service Status . . . . . . . . . . . . . . . . 63

2.6.3 User Tools . . . . . . . . . . . . . . . . . . . . . . . . . 63

Showing XtreemFS-specific File Info . . . . . . . . . . 64

Changing Striping Policies . . . . . . . . . . . . . . . . 64

Read-Only Replication . . . . . . . . . . . . . . . . . . 65

Automatic On-Close Replication . . . . . . . . . . . . . 68

Changing OSD and Replica Selection Policies . . . . . 69

Setting and Listing Policy Attributes . . . . . . . . . . 70

2.6.4 Vivaldi . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.7 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.7.1 Authentication Policies . . . . . . . . . . . . . . . . . . 71

UNIX uid/gid - NullAuthProvider . . . . . . . . . . . . 72

Plain SSL Certificates - SimpleX509AuthProvider . . . 72

XtreemOS Certificates - XOSAuthProvider . . . . . . . 72

2.7.2 Authorization Policies . . . . . . . . . . . . . . . . . . 73

2.7.3 OSD and Replica Selection Policies . . . . . . . . . . . 73

Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 74

Predefined Policies . . . . . . . . . . . . . . . . . . . . 74

Filtering Policies . . . . . . . . . . . . . . . . . 74

Grouping Policies . . . . . . . . . . . . . . . . . 75

Sorting Policies . . . . . . . . . . . . . . . . . . 76

2.7.4 Striping Policies . . . . . . . . . . . . . . . . . . . . . . 77

2.7.5 Plug-in Policies . . . . . . . . . . . . . . . . . . . . . . 77

3 The OSS Library Interface and User Guide 79

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Changes and New Features . . . . . . . . . . . . . . . . . . . . 79

3.2.1 Transaction Management . . . . . . . . . . . . . . . . . 80

3.2.2 Communication . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Installation of OSS . . . . . . . . . . . . . . . . . . . . . . . . 80

7



3.3.1 Installing OSS Using the Distribution Packages . . . . 81

3.3.2 Building and Installing OSS from Source . . . . . . . . 81

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . 81

Compilation . . . . . . . . . . . . . . . . . . . . . . . . 82

Installation . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.3 Testing the OSS Installation . . . . . . . . . . . . . . . 83

Simple test of Object Sharing . . . . . . . . . . . . . . 83

The Raytracer Application . . . . . . . . . . . . . . . . 84

3.4 Developing Applications using OSS . . . . . . . . . . . . . . . 85

3.4.1 Internal Interface of the OSS Library . . . . . . . . . . 85

3.4.2 Linking against the OSS Library . . . . . . . . . . . . 88

3.5 Performance Measurements . . . . . . . . . . . . . . . . . . . 88

A XtreemFS Appendix 91

A.1 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2 XtreemOS Integration . . . . . . . . . . . . . . . . . . . . . . 91

A.2.1 XtreemFS Security Preparations . . . . . . . . . . . . . 91

A.3 Hadoop Integration . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3.2 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . 94

A.4 Command Line Utilities . . . . . . . . . . . . . . . . . . . . . 97

B OSS Appendix 99

B.1 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.2 OSS Configuration Options . . . . . . . . . . . . . . . . . . . 99

B.2.1 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . 99

debug level for whole build process . . . . . . . . . . . 100

debug glib . . . . . . . . . . . . . . . . . . . . . . . . . 100

debug networking . . . . . . . . . . . . . . . . . . . . . 100

Per-file debug levels . . . . . . . . . . . . . . . . . . . . 100

B.2.2 Code generation . . . . . . . . . . . . . . . . . . . . . . 100

8



Processor Architecture . . . . . . . . . . . . . . . . . . 100

B.2.3 Library Interface . . . . . . . . . . . . . . . . . . . . . 100

oss mmap . . . . . . . . . . . . . . . . . . . . . . . . . 101

oss sync/oss push/oss pull . . . . . . . . . . . . . . . . 101

oss nameservice get/oss nameservice set . . . . . . . . 101

nameservice consistency . . . . . . . . . . . . . . . . . 101

miscellaneous debug functions . . . . . . . . . . . . . . 101

unstable library interface . . . . . . . . . . . . . . . . . 101

oss wait . . . . . . . . . . . . . . . . . . . . . . . . . . 101

hashmap . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2.4 Communication . . . . . . . . . . . . . . . . . . . . . . 102

Overlay Routing . . . . . . . . . . . . . . . . . . . . . 102

Superpeer Network . . . . . . . . . . . . . . . . . . . . 102

B.2.5 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 102

monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 102

log monitor data to file . . . . . . . . . . . . . . . . . . 103

periodic dump . . . . . . . . . . . . . . . . . . . . . . . 103

short log . . . . . . . . . . . . . . . . . . . . . . . . . . 103

clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

object mmap . . . . . . . . . . . . . . . . . . . . . . . 103

object alloc . . . . . . . . . . . . . . . . . . . . . . . . 103

object free . . . . . . . . . . . . . . . . . . . . . . . . . 103

read fault . . . . . . . . . . . . . . . . . . . . . . . . . 103

write fault . . . . . . . . . . . . . . . . . . . . . . . . . 104

read access . . . . . . . . . . . . . . . . . . . . . . . . 104

write access . . . . . . . . . . . . . . . . . . . . . . . . 104

B.2.6 Memory allocator . . . . . . . . . . . . . . . . . . . . . 104

mspace allocation from dlmalloc . . . . . . . . . . . . . 104

millipage implementation . . . . . . . . . . . . . . . . . 104

simple list allocator . . . . . . . . . . . . . . . . . . . . 104

9



replica management . . . . . . . . . . . . . . . . . . . . 105

diff computation and transfer . . . . . . . . . . . . . . 105

B.2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . 105

build raytracer . . . . . . . . . . . . . . . . . . . . . . 105

build wissenheim . . . . . . . . . . . . . . . . . . . . . 105

B.2.8 Remote installation . . . . . . . . . . . . . . . . . . . . 105

10



Chapter 1

Executive Summary

This document contains an updated version of the two user guides for the
XtreemFS File System and for the Object Sharing Service (OSS).

The XtreemFS user guide describes the release 1.2.1 of XtreemFS, the final
release within the XtreemOS project which is included in XtreemOS 2.1.
The documentation provided in D3.4.6 has been revised. In particular, we
have added a new HDFS-compatible XtreemFS client that simplifies using
XtreemFS for cloud computing applications that are built with the Hadoop
Framework (see Section A.3.1). We have also added Vivaldi network coordi-
nates which are used to automatically select the closest replica for a client
based on network latency (see Section 2.6.4). A list of changes and new
features in XtreemFS 1.2.1 compared to previous versions can be found in
Section 2.1.

The OSS user guide describes the release 0.5 of the Object Sharing Service.
The user guide contains a description of the internal library interface as well
as the installation and usage of OSS.

In comparison to OSS release 0.4, which has been described in D3.4.6, OSS
0.5 implements ultra-peer based transaction validation, multithreading sup-
port for transactions and a highly concurrent network layer. These new
features are described in Section 3.2. Section 3.4.1 documents the changes
to the internal library interface, and Section 3.5 contains some new perfor-
mance measurements comparing different transaction commit protocols. The
configuration options for OSS 0.5 can be found in Appendix B.2.

11



12



Chapter 2

The XtreemFS User Guide

2.1 Changes

This is a summary of the most important changes in release 1.2:

• asynchronous MRC backups
This feature allows administrators to create a backup of the MRC
database without interrupting operations. The MRC creates an in-
stantanious snapshot of it’s database and writes this snapshot to disk
in a background process.

• vivaldi
XtreemFS now includes modules for calculating Vivaldi network coor-
dinates to reflect the latency between OSDs and clients. An OSD and
replica selection policy for Vivaldi is also available. For details, see Sec.
2.6.4.

• renamed binaries
We renamed most binaries to conform with Linux naming conventions,
e.g. xtfs mount is now mount.xtreemfs. However, we added links
with the old names for compatibility. For a full list see Sec. A.4.

• “Grid SSL” mode
In this mode, SSL is only used for authentication (handshake) and
regular TCP is used for communication afterwards. For more details
see Sec. 2.4.2.

• the xctl utility
The new release includes a command line utility xctl for starting and

13



stopping the services. This tool is useful if you don’t want a package
based installation or if you don’t have root privileges. This utility also
runs the automatic XtreemFS tests.

• experimental Hadoop file system driver
XtreemFS includes an experimental driver for Hadoop. With this driver
XtreemFS can be used as a replacement for HDFS, it offers the same
semantics and API. The HDFS driver is a native Java client and cir-
cumvents the VFS and FUSE layer.

• native Java client
The Java client offers an API similar to Java’s java.io.File and
java.io.RandomAccessFile. In addition, the Java client offers meth-
ods to control advanced, XtreemFS specific features like striping and
replication.

Summary of important changes in release 1.2.1:

• server status
Each server (especially OSDs) have a persistent status which can be
online or dead/removed. This status must be changed manually and
is used by the scrubber tool to identify dead OSDs which have been
removed from the system.

• enhanced scrubber
The scrubber is now able to remove replicas which are stored on OSDs
that are marked as dead/removed. The scrubber will create new repli-
cas for that file if a complete replica still exists and a sufficient number
of OSDs is available. In addition, the scrubber marks replicas as “com-
plete” if they contain all objects of the original file.

2.2 Quick Start

This is the very short version to help you set up a local installation of
XtreemFS.

1. Download XtreemFS RPMs/DEBs and install

(a) Download the RPMs or DEBs for your system from the XtreemFS
website (http://www.xtreemfs.org)

14

http://www.xtreemfs.org


(b) open a root console (su or sudo)

(c) install with rpm -Uhv xtreemfs*-1.2.x.rpm

2. Start the Directory Service:
/etc/init.d/xtreemfs-dir start

3. Start the Metadata Server:
/etc/init.d/xtreemfs-mrc start

4. Start the OSD:
/etc/init.d/xtreemfs-osd start

5. If not already loaded, load the FUSE kernel module:
modprobe fuse

6. Depending on your distribution, you may have to add users to a special
group to allow them to mount FUSE file systems. In openSUSE users
must be in the group trusted, in Ubuntu in the group fuse. You
may need to log out and log in again for the new group membership to
become effective.

7. You can now close the root console and work as a regular user.

8. Wait a few seconds for the services to register at the directory service.
You can check the registry by opening the DIR status page in your
favorite web browser http://localhost:30638.

9. Create a new volume with the default settings:
mkfs.xtreemfs localhost/myVolume

10. Create a mount point:
mkdir ~/xtreemfs

11. Mount XtreemFS on your computer:

mount.xtreemfs localhost/myVolume ~/xtreemfs

12. Have fun ;-)

13. To un-mount XtreemFS:
umount.xtreemfs ~/xtreemfs

You can also mount this volume on remote computers. First make sure that
the ports 32636, 32638 and 32640 are open for incoming TCP connections.
You must also specify a hostname that can be resolved by the remote ma-
chine! This hostname has to be used instead of localhost when mounting.

15

http://localhost:30638


2.3 About XtreemFS

Since you decided to take a look at this user guide, you probably read or
heard about XtreemFS and want to find out more. This chapter contains
basic information about the characteristics and the architecture of XtreemFS.

2.3.1 What is XtreemFS?

XtreemFS is a file system for a variety of different use cases and purposes.
Since it is impossible to categorize or explain XtreemFS in a single sen-
tence, we introduce XtreemFS by means of its two most significant proper-
ties: XtreemFS is a globally distributed and replicated file system.

What makes XtreemFS a distributed file system? We consider a file
system as distributed if files are stored across a number of servers rather
than a single server or local machine. Unlike local or network file systems,
a distributed file system aggregates the capacity of multiple servers. As a
globally distributed file system, XtreemFS servers may be dispersed all over
the world. The capacity can be increased and decreased by adding and
removing servers, but from a user’s perspective, the file system appears to
reside on a single machine.

What makes XtreemFS a replicated file system? We call it a repli-
cated file system because replication is one of its most prominent features.
XtreemFS is capable of maintaining replicas of files on different servers. Thus,
files remain accessible even if single servers, hard disks or network connec-
tions fail. Besides, replication yields benefits in terms of data rates and access
times. Different replicas of a file can be accessed simultaneously on different
servers, which may lead to a better performance compared to simultaneous
accesses on a single server. By placing file replicas close the consuming users
and applications in a globally distributed installation, the effects of network
latency and bandwidth reduction in wide area networks can be mitigated.
However, replication is transparent to users and applications that work with
XtreemFS; the file system is capable of controlling the life cycle and access of
replicas without the need for human intervention or modifications of existing
applications.

16



2.3.2 Is XtreemFS suitable for me?

If you consider using XtreemFS, you may be a system administrator in search
of a better and more flexible alternative to your current data management
solution. Or you may be a private user in need of a file system that can be
easily set up and accessed from any machine in the world. You might also be
someone looking for an open-source solution to manage large amounts of data
distributed across multiple sites. In any case, you will wonder if XtreemFS
fulfills your requirements. As a basis for your decision, the following two
paragraphs point out the characteristics of XtreemFS.

XtreemFS is ...

... an open source file system. It is distributed freely and can be used by
anyone without limitations.

... a POSIX file system. Users can mount and access XtreemFS like any
other common file system. Application can access XtreemFS via the
standard file system interface, i.e. without having to be rebuilt against a
specialized API. XtreemFS supports a POSIX-compliant access control
model.

... a multi-platform file system. Server and client modules can be installed
and run on different platforms, including most Linux distributions, So-
laris, Mac OS X and Windows.

... a globally distributed file system. Unlike cluster file systems, an XtreemFS
installation is not restricted to a single administrative domain or clus-
ter. It can span the globe and may comprise servers in different ad-
ministrative domains.

... a failure-tolerant file system. As stated in the previous section, repli-
cation can keep the system alive and the data safe. In this respect,
XtreemFS differs from most other open-source file systems.

... a secure file system. To ensure security in an untrusted, worldwide
network, all network traffic can be encrypted with SSL connections,
and users can be authenticated with X.509 certificates.

... a customizable file system. Since XtreemFS can be used in different
environments, we consider it necessary to give administrators the pos-
sibility of adapting XtreemFS to the specific needs of their users. Cus-
tomizable policies make it possible change the behavior of XtreemFS

17



in terms of authentication, access control, striping, replica placement,
replica selection and others. Such policies can be selected from a set of
predefined policies, or implemented by administrators and plugged in
the system.

XtreemFS is not ...

... a high-performance cluster file system. Even though XtreemFS reaches
acceptable throughput rates on a local cluster, it cannot compete with
specialized cluster file systems in terms of raw performance numbers.
Most such file systems have an optimized network stack and protocols,
and a substantially larger development team. If you have huge amounts
of data on a local cluster with little requirements but high throughput
rates to them, a cluster file system is probably the better alternative.

... a replacement for a local file system. Even though XtreemFS can be
set up and mounted on a single machine, the additional software stack
degrades the performance, which makes XtreemFS a bad alternative.

2.3.3 Core Features

The core functionality of XtreemFS is characterized by a small set of features,
which are explained in the following.

Distribution. An XtreemFS installation comprises multiple servers that
may run on different nodes connected on a local cluster or via the Internet.
Provided that the servers are reachable, a client module installed on any
machine in the world can access the installation. A binary communication
protocol based on Sun’s ONC-RPC ensures an efficient communication with
little overhead between clients and servers. XtreemFS ensures that the file
system remains in a consistent state even if multiple clients access a com-
mon set of files and directories. Similar to NFS, it offers a close-to-open
consistency model in the event of concurrent file accesses.

Replication. Since version 1.0, XtreemFS supports read-only replication.
A file may have multiple replicas, provided that the it was explicitly made
read-only before, which means that its content cannot be changed anymore.
This kind of replication can be used to make write-once files available to
many consumers, or to protect them from losses due to hardware failures.

18



Besides complete replicas that are immediately synchronized after having
been created, XtreemFS also supports partial replicas that are only filled
with content on demand. They can e.g. be used to make large files accessible
to many clients, of which only parts need to be accessed.

Currently, XtreemFS does not support replication of mutable files. From
a technical perspective, this is more challenging than read-only replication,
since XtreemFS has to ensure that all replicas of a file remain consistent
despite attempts to concurrently write different replicas, as well as network
and component failures. However, we are planning on supporting full read-
write replication with future XtreemFS releases.

Striping. To ensure acceptable I/O throughput rates when accessing large
files, XtreemFS supports striping. A striped file is split into multiple chunks
(“stripes”), which are stored on different storage servers. Since different
stripes can be accessed in parallel, the whole file can be read or written
with the aggregated network and storage bandwidth of multiple servers.
XtreemFS currently supports the RAID0 striping pattern, which splits a file
up in a set of stripes of a fixed size, and distributes them across a set of
storage servers in a round-robin fashion. The size of an individual stripe as
well as the number of storage servers used can be configured on a per-file or
per-directory basis.

Security. To enforce security, XtreemFS offers mechanisms for user au-
thentication and authorization, as well as the possibility to encrypt network
traffic.

Authentication describes the process of verifying a user’s or client’s identity.
By default, authentication in XtreemFS is based on local user names and
depends on the trustworthiness of clients and networks. In case a more
secure solution is needed, X.509 certificates can be used.

Authorization describes the process of checking user permissions to execute
an operation. XtreemFS supports the standard UNIX permission model,
which allows for assigning individual access rights to file owners, owning
groups and other users.

Authentication and authorization are policy-based, which means that differ-
ent models and mechanisms can be used to authenticate and authorize users.
Besides, the policies are pluggable, i.e. they can be freely defined and easily
extended.

19



Figure 2.1: The XtreemFS architecture and components.

XtreemFS uses unauthenticated and unencrypted TCP connections by de-
fault. To encrypt all network traffic, services and clients can establish SSL
connections. However, using SSL requires that all users and services have
valid X.509 certificates.

2.3.4 Architecture

XtreemFS implements an object-based file system architecture (Fig. 2.1): file
content is split into a series of fixed-size objects and stored across storage
servers, while metadata is stored on a separate metadata server. The meta-
data server organizes file system metadata as a set of volumes , each of which
implements a separate file system namespace in form of a directory tree.

In contrast to block-based file systems, the management of available and used
storage space is offloaded from the metadata server to the storage servers.
Rather than inode lists with block addresses, file metadata contains lists of
storage servers responsible for the objects, together with striping policies that
define how to translate between byte offsets and object IDs. This implies that
object sizes may vary from file to file.

20



XtreemFS Components. An XtreemFS installation contains three types
of servers that can run on one or several machines (Fig. 2.1):

• DIR - Directory Service
The directory service is the central registry for all services in XtreemFS.
The MRC uses it to discover storage servers.

• MRC - Metadata and Replica Catalog
The MRC stores the directory tree and file metadata such as file name,
size or modification time. Moreover, the MRC authenticates users and
authorizes access to files.

• OSD - Object Storage Device
An OSD stores arbitrary objects of files; clients read and write file data
on OSDs.

These servers are connected by the client to a file system. A client mounts
one of the volumes of the MRC in a local directory. It translates file system
calls into RPCs sent to the respective servers.

The client is implemented as a FUSE user-level driver that runs as a normal
process. FUSE itself is a kernel-userland hybrid that connects the user-land
driver to Linux’ Virtual File System (VFS) layer where file system drivers
usually live.

2.4 XtreemFS Services

This chapter describes how to install and set up the server side of an XtreemFS
installation.

2.4.1 Installation

When installing XtreemFS server components, you can choose from two dif-
ferent installation sources: you can download one of the pre-packaged releases
that we create for most Linux distributions or you can install directly from
the source tarball.

Note that the source tarball contains the complete distribution of XtreemFS,
which also includes client and tools. Currently, binary distributions of the
server are only available for Linux.

21



Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to
be installed on the system.

When building XtreemFS directly from the source, you need a Sun Java JDK
1.6.0 or newer, Ant 1.6.5 or newer and gmake.

Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS)
you can install the package with

$> rpm -i xtreemfs-server-1.2.x.rpm xtreemfs-backend-1.2.x.rpm

For Debian-based distributions, please use the .deb package provided and
install it with

$> dpkg -i xtreemfs-server-1.2.x.deb xtreemfs-backend-1.2.x.deb

To install the server components, the following package is required: jre ≥
1.6.0 for RPM-based releases, java6-runtime for Debian-based releases. If
you already have a different distribution of Java6 on your system, you can
alternatively install the XtreemFS server packages as follows:

$> rpm -i --nodeps xtreemfs-server-1.2.x.rpm \
xtreemfs-backend-1.2.x.rpm

on RPM-based distributions,

$> dpkg -i --ignore-depends java6-runtime \
xtreemfs-server-1.2.x.deb xtreemfs-backend-1.2.x.deb

on Debian-based distributions.

To ensure that your local Java6 installation is used, is necessary to set the
JAVA HOME environment variable to your Java6 installation directory, e.g.

$> export JAVA_HOME=/usr/java6

Both RPM and Debian-based packages will install three init.d scripts to
start up the services (xtreemfs-dir, xtreemfs-mrc, xtreemfs-osd). If
you want the services to be started automatically when booting up the sys-
tem, you can execute insserv <init.d script> (SuSE), chkconfig --add
<init.d script> (Mandriva, RedHat) or update-rc.d <init.d script>
defaults (Ubuntu, Debian).

22



Installing from Sources

Extract the tarball with the sources. Change to the top level directory and
execute

$> make server

This will build the XtreemFS server and Java-based tools. When done,
execute

$> sudo make install-server

to install the server components. Finally, you will be asked to execute a
post-installation script

$> sudo /etc/xos/xtreemfs/postinstall_setup.sh

to complete the installation.

2.4.2 Configuration

After having installed the XtreemFS server components, it is recommend-
able to configure the different services. This section describes the different
configuration options.

XtreemFS services are configured via Java properties files that can be mod-
ified with a normal text editor. Default configuration files for a Directory
Service, MRC and OSD are located in /etc/xos/xtreemfs/.

A Word about UUIDs

XtreemFS uses UUIDs (Universally Unique Identifiers) to be able to identify
services and their associated state independently from the machine they are
installed on. This implies that you cannot change the UUID of an MRC or
OSD after it has been used for the first time!

The Directory Service resolves UUIDs to service endpoints, where each ser-
vice endpoint consists of an IP address or hostname and port number. Each
endpoint is associated with a netmask that indicates the subnet in which the
mapping is valid. In theory, multiple endpoints can be assigned to a single

23



UUID if endpoints are associated with different netmasks. However, it is cur-
rently only possible to assign a single endpoint to each UUID; the netmask
must be “*”, which means that the mapping is valid in all networks. Upon
first start-up, OSDs and MRCs will auto-generate the mapping if it does not
exist, by using the first available network device with a public address.

Changing the IP address, hostname or port is possible at any time. Due to
the caching of UUIDs in all components, it can take some time until the new
UUID mapping is used by all OSDs, MRCs and clients. The TTL (time-to-
live) of a mapping defines how long an XtreemFS component is allowed to
keep entries cached. The default value is 3600 seconds (1 hour). It should
be set to shorter durations if services change their IP address frequently.

To create a globally unique UUID you can use tools like uuidgen. During
installation, the post-install script will automatically create a UUID for each
OSD and MRC if it does not have a UUID assigned.

Automatic DIR Discovery

OSDs and MRCs are capable of automatically discovering a Directory Ser-
vice. If automatic DIR discovery is switched on, the service will broadcast
requests to the local LAN and wait up to 10s for a response from a DIR. The
services will select the first DIR which responded, which can lead to non-
deterministic behavior if multiple DIR services are present. Note that the
feature works only in a local LAN environment, as broadcast messages are
not routed to other networks. Local firewalls on the computers on which the
services are running can also prevent the automatic discovery from working.

Security: The automatic discovery is a potential security risk when used in
untrusted environments as any user can start-up DIR services.

A statically configured DIR address and port can be used to disable DIR
discovery in the OSD and MRC (see Sec. 2.4.2, dir service). By default.
the DIR responds to UDP broadcasts. To disable this feature, set discover
= false in the DIR service config file.

Authentication

Administrators may choose the way of authenticating users in XtreemFS.
Authentication Providers are pluggable modules that determine how users
are authenticated. For further details, see Sec. 2.7.1.

To set the authentication provider, it is necessary to set the following prop-
erty in the MRC configuration file:

24



authentication_provider = <classname>

By default, the following class names can be used:

• org.xtreemfs.common.auth.NullAuthProvider
uses local user and group IDs

• org.xtreemfs.common.auth.SimpleX509AuthProvider
uses X.509 certificates; user and group IDs are extracted from the dis-
tinguished names of the certificates

• org.xtreemos.XtreemOSAuthProvider
uses XOSCerts

Configuring SSL Support

In order to enable certificate-based authentication in an XtreemFS installa-
tion, services need to be equipped with X.509 certificates. Certificates are
used to establish a mutual trust relationship among XtreemFS services and
between the XtreemFS client and XtreemFS services.

Note that it is not possible to mix SSL-enabled and non-SSL services in an
XtreemFS installation! If you only need authentication based on certiciates
without SSL, you can use the “grid SSL” mode. In this mode XtreemFS will
only do an SSL handshake and fall back to plain TCP for communication.
This mode is insecure (not encrypted and records are not signed) but just as
fast as the non-SSL mode. If this mode is enabled, all client tools must be
used with the oncrpcg:// scheme prefix.

Each XtreemFS service needs a certificate and a private key in order to be
run. Once they have been created and signed, the credentials may need to
be converted into the correct file format. XtreemFS services also need a trust
store that contains all trusted Certification Authority certificates.

By default, certificates and credentials for XtreemFS services are stored in

/etc/xos/xtreemfs/truststore/certs

Converting PEM files to PKCS#12 The simplest way to provide the
credentials to the services is by converting your signed certificate and private
key into a PKCS#12 file using openssl:

25



$> openssl pkcs12 -export -in ds.pem -inkey ds.key \
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key \
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key \
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each
containing the private key and certificate for the respective service. The
passwords chosen when asked must be set as a property in the corresponding
service configuration file.

Importing trusted certificates from PEM into a JKS The certificate
(or multiple certificates) from your CA (or CAs) can be imported into a Java
Keystore (JKS) using the Java keytool which comes with the Java JDK or
JRE.

Execute the following steps for each CA certificate using the same keystore
file.

$> keytool -import -alias rootca -keystore trusted.jks \
-trustcacerts -file ca-cert.pem

This will create a new Java Keystore trusted.jks with the CA certificate
in the current working directory. The password chosen when asked must be
set as a property in the service configuration files.

Note: If you get the following error

keytool error: java.lang.Exception: Input not an X.509 certificate

you should remove any text from the beginning of the certificate (until the
-----BEGIN CERTIFICATE----- line).

Sample Setup Users can easily set up their own CA (certificate authority)
and create and sign certificates using openssl for a test setup.

1. Set up your test CA.

(a) Create a directory for your CA files

26



$> mkdir ca

(b) Create a private key and certificate request for your CA.

$> openssl req -new -newkey rsa:1024 -nodes -out ca/ca.csr \
-keyout ca/ca.key

Enter something like XtreemFS-DEMO-CA as the common name
(or something else, but make sure the name is different from the
server and client name!).

(c) Create a self-signed certificate for your CA which is valid for one
year.

$> openssl x509 -trustout -signkey ca/ca.key -days 365 -req \
-in ca/ca.csr -out ca/ca.pem

(d) Create a file with the CA’s serial number

$> echo "02" > ca/ca.srl

2. Set up the certificates for the services and the XtreemFS Client.
Replace service with dir, mrc, osd and client.

(a) Create a private key for the service.
Use XtreemFS-DEMO-service as the common name for the cer-
tificate.

$> openssl req -new -newkey rsa:1024 -nodes
-out service.req
-keyout service.key

(b) Sign the certificate with your demo CA.
The certificate is valid for one year.

$> openssl x509 -CA ca/ca.pem -CAkey ca/ca.key
-CAserial ca/ca.srl -req
-in service.req
-out service.pem -days 365

(c) Export the service credentials (certificate and private key) as a
PKCS#12 file.
Use “passphrase” as export password. You can leave the export
password empty for the XtreemFS Client to avoid being asked for
the password on mount.

$> openssl pkcs12 -export -in service.pem -inkey service.key
-out service.p12 -name "service "

27



(d) Copy the PKCS#12 file to the certificates directory.

$> mkdir -p /etc/xos/xtreemfs/truststore/certs
$> cp service.p12 /etc/xos/xtreemfs/truststore/certs

3. Export your CA’s certificate to the trust store and copy it to the cer-
tificate dir.
You should answer “yes” when asked “Trust this certificate”.
Use “passphrase” as passphrase for the keystore.

$> keytool -import -alias ca -keystore trusted.jks \
-trustcacerts -file ca/ca.pem

$> cp trusted.jks /etc/xos/xtreemfs/truststore/certs

4. Configure the services. Edit the configuration file for all your services.
Set the following configuration options (see Sec. 2.4.2 for details).
ssl.enabled = true
ssl.service creds.pw = passphrase
ssl.service creds.container = pkcs12
ssl.service creds = /etc/xos/xtreemfs/truststore/certs/service.p12
ssl.trusted certs = /etc/xos/xtreemfs/truststore/certs/trusted.jks
ssl.trusted certs.pw = passphrase
ssl.trusted certs.container = jks

5. Start up the XtreemFS services (see Sec. 2.4.3).

6. Create a new volume (see Sec. 2.5.2 for details).

$> mkfs.xtreemfs --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 localhost/test

7. Mount the volume (see Sec. 2.5.3 for details).

$> mount.xtreemfs --pkcs12-file-path=\
/etc/xos/xtreemfs/truststore/certs/client.p12 localhost/test /mnt

List of Configuration Options

All configuration parameters that may be used to define the behavior of the
different services are listed in this section. Unless marked as optional, a
parameter has to occur (exactly once) in a configuration file. Parameters
marked as experimental belong to the DIR and MRC replication feature,
which is currently under development. It is not recommended to mess about
with these options if you want to use XtreemFS in production.

28



admin password optional
Services DIR, MRC, OSD
Values String
Default
Description Defines the admin password that must be sent to autho-

rize requests like volume creation, deletion or shutdown.
The same password is also used to access the HTTP sta-
tus page of the service (user name is admin).

authentication provider
Services MRC
Values Java class name
Default org.xtreemfs.common.auth.NullAuthProvider
Description Defines the Authentication Provider to use to retrieve

the user identity (user ID and group IDs). See Sec.
2.4.2 for details.

babudb.baseDir
Services DIR, MRC
Values absolute file system path to a directory
Default DIR: /var/lib/xtreemfs/dir/database

MRC: /var/lib/xtreemfs/mrc/database
Description The directory in which the Directory Service or MRC

will store their databases. This directory should never
be on the same partition as any OSD data, if both ser-
vices reside on the same machine. Otherwise, deadlocks
may occur if the partition runs out of free disk space.

babudb.cfgFile optional
Services DIR, MRC
Values a file name
Default DIR: config.db

MRC: config.db
Description Name for the database configuration file.

29



babudb.checkInterval optional
Services DIR, MRC
Values a positive integer value
Default DIR: 300

MRC: 300
Description The number of seconds between two checks of the disk

log size for automatic checkpointing. Set this value to 0
to disable automatic checkpointing.

babudb.compression optional
Services DIR, MRC
Values true or false
Default DIR: false

MRC: false
Description Flag that determines whether the indices shall be com-

pressed or not.

30



babudb.debug.level optional
Services DIR, MRC
Values 0, 1, 2, 3, 4, 5, 6, 7
Default DIR: 4

MRC: 4
Description This is the debug level for BabuDB only. The debug

level determines the amount and detail of information
written to logfiles. Any debug level includes log mes-
sages from lower debug levels. The following log levels
exist:

0 - fatal errors

1 - alert messages

2 - critical errors

3 - normal errors

4 - warnings

5 - notices

6 - info messages

7 - debug messages

babudb.localTimeRenew experimental, optional
Services DIR, MRC
Values a positive integer value
Default
Description Intervall in milliseconds for synchronizing the ONCR-

PCServer and ONCRPCClient of the BabuDB replica-
tion with the local clock.

31



babudb.logDir
Services DIR, MRC
Values absolute file system path
Default DIR: /var/lib/xtreemfs/dir/db-log

MRC: /var/lib/xtreemfs/mrc/db-log
Description The directory the MRC uses to store database logs. This

directory should never be on the same partition as any
OSD data, if both services reside on the same machine.
Otherwise, deadlocks may occur if the partition runs out
of free disk space.

babudb.maxLogfileSize optional
Services DIR, MRC
Values a positive integer value
Default DIR: 16777216

MRC: 16777216
Description If automatic checkpointing is enabled, a checkpoint is

created when the disk logfile exceedes maxLogfileSize
bytes. The value should be reasonable large to keep the
checkpointing-rate low. However, it should not be too
large as a large disk log increases the recovery time after
a crash.

32



babudb.pseudoSyncWait optional
Services DIR, MRC
Values a positive integer value
Default DIR: 200

MRC: 0
Description The BabuDB disk logger can batch multiple operations

into a single write+fsync to increase the throughput.
This does only work if there are operations executed in
parallel by the worker threads. In turn, if you work on a
single database it becomes less efficient. To circumvent
this problem, BabuDB offers a pseudo-sync mode which
is similar to the PostgreSQL write-ahead log (WAL).
If pseduoSyncWait is set to a value larger then 0, this
pseudo-sync mode is enabled. In this mode, insert op-
erations are acknowledged as soon as they have been
executed on the in-memory database index. The disk
logger will execute a batch write of up to 500 opera-
tions followed by a single sync (see syncMode) every
pseudoSyncWait ms. This mode is considerably faster
than synchronous writes but you can lose data in case
of a crash. In contrast to ASYNC mode the data loss
is limited to the operations executed in the last pseu-
doSyncWait ms.

babudb.repl.backupDir experimental, optional
Services DIR, MRC
Values a absolute file system path
Default
Description DB backup directory needed for the initial loading of a

slave BabuDB from the master BabuDB.

babudb.repl.chunkSize experimental, optional
Services DIR, MRC
Values a positive integer greater 0
Default
Description At the initial load mechanism the database files will be

split into chunks. The size of this chunks in bytes can
be defined here.

33



babudb.repl.participant experimental, optional
Services DIR, MRC
Values see description
Default
Description The addresses of the hosts running an instance of

BabuDB and participating at the replication. The lo-
cal address is also required in this list. BabuDB will
find out on its own, which of the given addresses is the
local one.
Field babudb.repl.participant.i defines the domain name
or IP address.
Field babudb.repl.participant.i.port defines the port.

babudb.repl.participant.0
babudb.repl.participant.0.port
babudb.repl.participant.1
babudb.repl.participant.1.port
...
babudb.repl.participant.n
babudb.repl.participant.n.port
for n participants.

babudb.repl.sync.n experimental, optional
Services DIR, MRC
Values a positive integer value
Default
Description The number of slaves that at least have to be syn-

chronous to the master BabuDB application. To use
asynchronous replication, this value has to be set to 0.
Otherwise it has to be less or equal to the number of
participants.

babudb.ssl.authenticationWithoutEncryption experimental, optional
Services DIR, MRC
Values true or false
Default
Description Flag that determines if authentication should be used

without encrypting the connection. For BabuDB repli-
cation only.

34



babudb.ssl.enabled experimental, optional
Services DIR, MRC
Values true or false
Default
Description Options to use a secure connection with SSL authenti-

caion and optionally encryption for the BabuDB repli-
cation.

babudb.ssl.service creds experimental, optional
Services MRC, OSD
Values path to file
Default
Description Must be specified if babudb.ssl.enabled is

true. Specifies the file containing the service
credentials (X.509 certificate and private key).
PKCS#12 and JKS format can be used, set
babudb.ssl.service creds.container accord-
ingly. This file is used during the SSL handshake to
authenticate the service.

babudb.ssl.service creds.container experimental, optional
Services MRC, OSD
Values pkcs12 or JKS
Default
Description Must be specified if babudb.ssl.enabled

is true. Specifies the file format of the
babudb.ssl.service creds file.

babudb.ssl.service creds.pw experimental, optional
Services MRC, OSD
Values String
Default
Description Must be specified if babudb.ssl.enabled is true.

Specifies the password which protects the credentials file
babudb.ssl.service creds.

35



babudb.ssl.trusted certs experimental, optional
Services MRC, OSD
Values path to file
Default
Description Must be specified if babudb.ssl.enabled is true.

Specifies the file containing the trusted root certificates
(e.g. CA certificates) used to authenticate clients.

babudb.ssl.trusted certs.container experimental, optional
Services MRC, OSD
Values pkcs12 or JKS
Default
Description Must be specified if babudb.ssl.enabled

is true. Specifies the file format of the
babudb.ssl.trusted certs file.

babudb.ssl.trusted certs.pw experimental, optional
Services MRC, OSD
Values String
Default
Description Must be specified if babudb.ssl.enabled is true.

Specifies the password which protects the trusted cer-
tificates file babudb.ssl.trusted certs.

36



babudb.sync
Services DIR, MRC
Values ASYNC, SYNC WRITE METADATA,

SYNC WRITE,
FDATASYNC or FSYNC

Default DIR: FSYNC
MRC: ASYNC

Description The sync mode influences how operations are commited
to the disk log before the operation is acknowledged to
the caller.

- ASYNC mode the writes to the disk log are
buffered in memory by the operating system. This
is the fastest mode but will lead to data loss in case
of a crash, kernel panic or power failure.

- SYNC WRITE METADATA opens the file with
O SYNC, the system will not buffer any writes.
The operation will be acknowledged when data
has been safely written to disk. This mode is
slow but offers maximum data safety. However,
BabuDB cannot influence the disk drive caches,
this depends on the OS and hard disk model.

- SYNC WRITE similar to
SYNC WRITE METADATA but opens file
with O DSYNC which means that only the data
is commit to disk. This can lead to some data
loss depending on the implementation of the
underlying file system. Linux does not implement
this mode.

- FDATASYNC is similar to SYNC WRITE but
opens the file in asynchronous mode and calls
fdatasync() after writing the data to disk.

- FSYNC is similar to SYNC WRITE METADATA
but opens the file in asynchronous mode and calls
fsync() after writing the data to disk.

For best throughput use ASYNC, for maximum data
safety use FSYNC.

37



babudb.worker.maxQueueLength optional
Services DIR, MRC
Values a positiv integer value
Default DIR: 250

MRC: 250
Description If set to a value larger than 0, this is the maximum num-

ber of requests which can be in a worker’s queue. This
value should be used if you have pseudo-synchronous
mode enabled to ensure that your queues don’t grow
until you get an out of memory exception. Can be set
to 0 if pseudo-sync mode is disabled.

babudb.worker.numThreads optional
Services DIR, MRC
Values a positiv integer value
Default DIR: 0

MRC: 0
Description The number of worker threads to be used for database

operations. As BabuDB does not use locking, each
database is handled by only one worker thread. If there
are more databases than worker threads, the databases
are distributed onto the available threads. The number
of threads should be set to a value smaller than the num-
ber of available cores to reduce overhead through context
switches. You can also set the number of worker threads
to 0. This will considerably reduce latency, but may also
decrease throughput on a multicore system with more
than one database.

capability secret
Services MRC, OSD
Values String
Default
Description Defines a shared secret between the MRC and all OSDs.

The secret is used by the MRC to sign capabilities, i.e.
security tokens for data access at OSDs. In turn, an
OSD uses the secret to verify that the capability has
been issued by the MRC.

38



capability timeout optional
Services MRC
Values seconds
Default 600
Description Defines the relative time span for which a capability is

valid after having been issued.

checksums.enabled
Services OSD
Values true, false
Default false
Description If set to true, the OSD will calculate and store check-

sums for newly created objects. Each time a check-
summed object is read, the checksum will be verified.

checksums.algorithm
Services OSD
Values Adler32, CRC32
Default Adler32
Description Must be specified if checksums.enabled is enabled.

This property defines the algorithm used to create OSD
checksums.

39



debug.level optional
Services DIR, MRC, OSD
Values 0, 1, 2, 3, 4, 5, 6, 7
Default 6
Description The debug level determines the amount and detail of

information written to logfiles. Any debug level includes
log messages from lower debug levels. The following log
levels exist:

0 - fatal errors

1 - alert messages

2 - critical errors

3 - normal errors

4 - warnings

5 - notices

6 - info messages

7 - debug messages

40



debug.categories optional
Services DIR, MRC, OSD
Values all, lifecycle, net, auth, stage, proc, db, misc
Default all
Description Debug categories determine the domains for which log

messages will be printed. By default, there are no do-
main restrictions, i.e. log messages form all domains will
be included in the log. The following categories can be
selected:

all - no restrictions on the category

lifecycle - service lifecycle-related messages, including
startup and shutdown events

net - messages pertaining to network traffic and com-
munication between services

auth - authentication and authorization-related messages

stage - messages pertaining to the flow of requests
through the different stages of a service

proc - messages about the processing of requests

db - messages that are logged in connection with
database accesses

misc - any other log messages that do not fit in one of
the previous categories

Note that it is possible to specify multiple categories by
means of a comma or space-separated list.

41



dir service.host
Services MRC, OSD
Values hostname or IP address
Default localhost
Description Specifies the hostname or IP address of the directory

service (DIR) at which the MRC or OSD should regis-
ter. The MRC also uses this Directory Service to find
OSDs. If set to .autodiscover the service will use the
automatic DIR discovery mechanism (see Sec. 2.4.2).
(Note that the initial ‘.’ is used to avoid ambiguities
with hosts called “autodiscover”.)

dir service.port
Services MRC, OSD
Values 1 .. 65535
Default 32638
Description Specifies the port on which the remote directory service

is listening. Must be identical to the listen port in
your directory service configuration.

discover optional
Services DIR
Values true, false
Default true
Description If set to true the DIR will received UDP broadcasts and

advertise itself in response to XtreemFS components us-
ing the DIR automatic discovery mechanism. If set to
false, the DIR will ignore all UDP traffic. For details see
Sec. 2.4.2.

geographic coordinates optional
Services DIR, MRC, OSD
Values String
Default
Description Specifies the geographic coordinates which are registered

with the directory service. Used e.g. by the web console.

42



hostname optional
Services MRC, OSD
Values String
Default
Description If specified, it defines the host name that is used to reg-

ister the service at the directory service. If not specified,
the host address defined in listen.address will be used
if specified. If neither hostname nor listen.address
are specified, the service itself will search for exter-
nally reachable network interfaces and advertise their
addresses.

http port
Services DIR, MRC, OSD
Values 1 .. 65535
Default 30636 (MRC), 30638 (DIR), 30640 (OSD)
Description Specifies the listen port for the HTTP service that re-

turns the status page.

listen.address optional
Services OSD
Values IP address
Default
Description If specified, it defines the interface to listen on. If not

specified, the service will listen on all interfaces (any).

listen.port
Services DIR, MRC, OSD
Values 1 .. 65535
Default DIR: 32638,

MRC: 32636,
OSD: 32640

Description The port to listen on for incoming ONC-RPC connec-
tions (TCP). The OSD uses the specified port for both
TCP and UDP. Please make sure to configure your fire-
wall to allow incoming TCP traffic (plus UDP traffic, in
case of an OSD) on the specified port.

43



local clock renewal
Services MRC, OSD
Values milliseconds
Default 50
Description Reading the system clock is a slow operation on some

systems (e.g. Linux) as it is a system call. To in-
crease performance, XtreemFS services use a local vari-
able which is only updated every local clock renewal
milliseconds.

monitoring
Services DIR
Values true, false
Default false
Description Enables the built-in monitoring tool in the directory ser-

vice. If enabled, the DIR will send alerts via emails
if services are crashed (i.e. do not send heartbeat
messages). No alerts will be sent for services which
signed-off at the DIR. To enable monitoring you also
need to configure email.receiver, email.program.
In addition, you may want to change the values for
email.sender, email.programm, service timeout s
and max warnings.

monitoring.email.programm
Services DIR
Values path
Default /usr/sbin/sendmail
Description Location of the sendmail binary to be used for sending

alert mails. See monitoring.

monitoring.email.receiver
Services DIR
Values email address
Default -
Description Email address of recipient of alert emails. See

monitoring.

44



monitoring.email.sender
Services DIR
Values email address
Default “XtreemFS DIR service ¡dir@localhost¿”
Description Email address and sender name to use for sending alert

mails. See monitoring.

monitoring.max warnings
Services DIR
Values 0..N
Default 1
Description Number of alert mails to send for a single service which

has crashed/disconnected. Each alert mail contains
a summary of all crashed/disconnected services. See
monitoring.

no atime
Services MRC
Values true, false
Default true
Description The POSIX standard defines that the atime (timestamp

of last file access) is updated each time a file is opened,
even for read. This means that there is a write to the
database and hard disk on the MRC each time a file is
read. To reduce the load, many file systems (e.g. ext3)
including XtreemFS can be configured to skip those up-
dates for performance. It is strongly suggested to disable
atime updates by setting this parameter to true.

object dir
Services OSD
Values absolute file system path to a directory
Default /var/lib/xtreemfs/osd/
Description The directory in which the OSD stores the objects. This

directory should never be on the same partition as any
DIR or MRC database, if both services reside on the
same machine. Otherwise, deadlocks may occur if the
partition runs out of free disk space!

45



osd check interval
Services MRC
Values seconds
Default 300
Description The MRC regularly asks the directory service for suit-

able OSDs to store files on (see OSD Selection Policy,
Sec. 2.7.3). This parameter defines the interval between
two updates of the list of suitable OSDs.

remote time sync
Services MRC, OSD
Values milliseconds
Default 30,000
Description MRCs and OSDs all synchronize their clocks with the di-

rectory service to ensure a loose clock synchronization of
all services. This is required for leases to work correctly.
This parameter defines the interval in milliseconds be-
tween time updates from the directory service.

report free space
Services OSD
Values true, false
Default true
Description If set to true, the OSD will report its free space to the

directory service. Otherwise, it will report zero, which
will cause the OSD not to be used by the OSD Selection
Policies (see Sec. 2.7.3).

service timeout s
Services DIR
Values 0..N seconds
Default 300
Description Time to wait for a heartbeat message before sending an

alert email. See monitoring.

46



ssl.enabled
Services DIR, MRC, OSD
Values true, false
Default false
Description If set to true, the service will use SSL to authenticate

and encrypt connections. The service will not accept
non-SSL connections if ssl.enabled is set to true.

ssl.grid ssl
Services DIR, MRC, OSD
Values true, false
Default false
Description In this mode the services and client will only use SSL

for mutual authentication with X.509 certificates (SSL
handshake). After successful authentication the commu-
nication is via plain TCP. This means that there is no
encryption and signing of records! This mode is compa-
rable to HTTP connections with Digest authentication.
It should be used when certificate based authentication
is required but performance is more important than se-
curity, which is usually true in GRID installations. If
this mode is enabled, all client tools must be used with
the oncrpcg:// scheme prefix.

ssl.service creds
Services DIR, MRC, OSD
Values path to file
Default DIR: /etc/xos/xtreemfs/truststore/certs/ds.p12,

MRC: /etc/xos/xtreemfs/truststore/certs/mrc.p12,
OSD: /etc/xos/xtreemfs/truststore/certs/osd.p12

Description Must be specified if ssl.enabled is enabled. Specifies
the file containing the service credentials (X.509 certifi-
cate and private key). PKCS#12 and JKS format can be
used, set ssl.service creds.container accordingly.
This file is used during the SSL handshake to authenti-
cate the service.

47



ssl.service creds.container
Services DIR, MRC, OSD
Values pkcs12 or JKS
Default pkcs12
Description Must be specified if ssl.enabled is enabled. Specifies

the file format of the ssl.service creds file.

ssl.service creds.pw
Services DIR, MRC, OSD
Values String
Default
Description Must be specified if ssl.enabled is enabled. Spec-

ifies the password which protects the credentials file
ssl.service creds.

ssl.trusted certs
Services DIR, MRC, OSD
Values path to file
Default /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
Description Must be specified if ssl.enabled is enabled. Specifies

the file containing the trusted root certificates (e.g. CA
certificates) used to authenticate clients.

ssl.trusted certs.container
Services DIR, MRC, OSD
Values pkcs12 or JKS
Default JKS
Description Must be specified if ssl.enabled is enabled. Specifies

the file format of the ssl.trusted certs file.

ssl.trusted certs.pw
Services DIR, MRC, OSD
Values String
Default
Description Must be specified if ssl.enabled is enabled. Specifies

the password which protects the trusted certificates file
ssl.trusted certs.

48



startup.wait for dir
Services MRC, OSD
Values 0..N seconds
Default 30
Description Time to wait for the DIR to become available during

start up of the MRC and OSD. If the DIR does not
respond within this time the MRC or OSD will abort
startup.

uuid
Services MRC, OSD
Values String, but limited to alphanumeric characters, - and .
Default
Description Must be set to a unique identifier, prefer-

ably a UUID according to RFC 4122. UUIDs
can be generated with uuidgen. Example:
eacb6bab-f444-4ebf-a06a-3f72d7465e40.

2.4.3 Execution and Monitoring

This section describes how to execute and monitor XtreemFS services.

Starting and Stopping the XtreemFS services

If you installed a pre-packaged release you can start, stop and restart the
services with the init.d scripts:

$> /etc/init.d/xtreemfs-ds start
$> /etc/init.d/xtreemfs-mrc start
$> /etc/init.d/xtreemfs-osd start

or

$> /etc/init.d/xtreemfs-ds stop
$> /etc/init.d/xtreemfs-mrc stop
$> /etc/init.d/xtreemfs-osd stop

To run init.d scripts, root permissions are required. Note that the Directory
Service must be started first, since a running Directory Service is required

49



when starting an MRC or OSD. Once a Directory Service as well as at least
one OSD and MRC are running, XtreemFS is operational.

Alternatively, you can use the xctl tool to start and stop the services. Config
files are read from ./etc/xos/xtreemfs unless another path is specified with
-c <path>.

$> bin/xctl --start-dir
$> bin/xctl --start-mrc
$> bin/xctl --start-osd

or

$> bin/xctl --stop-osd
$> bin/xctl --stop-mrc
$> bin/xctl --stop-dir

The servers will be executed under the user ID of the user who called the
xctl script.

Web-based Status Page

Each XtreemFS service can generate an HTML status page, which displays
runtime information about the service (Fig. 2.2). The HTTP server that gen-
erates the status page runs on the port defined by the configuration property
http port; default values are 30636 for MRCs, 30638 for Directory Services,
and 30640 for OSDs.

The status page of an MRC can e.g. be shown by opening

http://my-mrc-host.com:30636/

with a common web browser. If you set an admin password in the service’s
configuration, you will be asked for authentication when accessing the status
page. Use admin as username.

DIR Service Monitoring

The directory service has a built-in notification system that can send alert
emails if a service fails to send heartbeat messages for some time. The mon-
itoring can be enabled in the DIR configuration by setting monitoring =
true.

50



Figure 2.2: OSD status web page

2.4.4 Troubleshooting

Various issues may occur when attempting to set up an XtreemFS server
component. If a service fails to start, the log file often reveals useful infor-
mation. Server log files are located in /var/log/xtreemfs. Note that you
can restrict granularity and categories of log messages via the configuration
properties debug.level and debug.categories (see Sec. 2.4.2).

If an error occurs, please check if one of the following requirements is not
met:

• You have root permissions when starting the service. Running the
init.d scripts requires root permissions. However, the services them-
selves are started on behalf of a user xtreemfs.

• DIR has been started before MRC and OSD. Problems may occur if a
script starts multiple services as background processes.

• There are no firewall restrictions that keep XtreemFS services from
communicating with each other. The default ports that need to be
open are: 32636 (MRC, TCP), 32638 (DIR, TCP), and 32640 (OSD,
TCP & UDP).

51



• The MRC database version is correct. In case of an outdated database
version, the xtfs mrcdbtool commands of the old and new XtreemFS
version can dump and restore the database, respectively (see Sec. 2.6.2).

• A network interface is available on the host. It may be either bound
to an IPv4 or IPv6 address.

2.5 XtreemFS Client

The XtreemFS client is needed to access an XtreemFS installation from a
remote machine. This chapter describes how to use the XtreemFS client in
order to work with XtreemFS like a local file system.

2.5.1 Installation

There are two different installation sources for the XtreemFS Client: pre-
packaged releases and source tarballs.

Note that the source tarball contains the complete distribution of XtreemFS,
which also includes server and tools. Currently, binary distributions of the
client are only available for Linux and Windows.

Prerequisites

To install XtreemFS on Linux, please make sure that FUSE 2.6 or newer,
openSSL 0.9.8 or newer and a Linux 2.6 kernel are available on your system.
For an optimal performance, we suggest to use FUSE 2.8 with a kernel version
2.6.26 or newer.

To build the Linux XtreemFS Client from the source distribution, you also
need the openSSL headers (e.g. openssl-devel package), python ≥ 2.4, and
gcc-c++ ≥ 4.2.

Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS)
you can install the package with

$> rpm -i xtreemfs-client-1.2.x.rpm

52



For Debian-based distributions, please use the .deb package provided and
install it with

$> dpkg -i xtreemfs-client-1.2.x.deb

For Windows, please use the .msi installer that will guide you through the
installation process.

Installing from Sources

Extract the tarball with the sources. Change to the top level directory and
execute

$> make client

This will build the XtreemFS client and non-Java-based tools. Note that the
following third-party packages are required on Linux:

python >= 2.4
gcc-c++ >= 4
fuse >= 2.6
fuse-devel >= 2.6 (RPM-based distros)
libfuse-dev >= 2.6 (DEB-based distros)
libopenssl-devel >= 0.8 (RPM-based distros)
libssl-dev >= 0.9 (DEB-based distros)

When done, execute

$> sudo make install-client

to complete the installation of XtreemFS.

2.5.2 Volume Management

Like many other file systems, XtreemFS supports the concept of volumes. A
volume can be seen as a container for files and directories with its own policy
settings, e.g. for access control and replication. Before being able to access an
XtreemFS installation, at least one volume needs to be set up. This section
describes how to deal with volumes in XtreemFS.

53



Creating Volumes

Volumes can be created with the mkfs.xtreemfs command line utility. Please
see man mkfs.xtreemfs for a full list of options and usage.

When creating a volume, it is recommended to specify the access control
policy (see Sec. 2.7.2). If not specified, POSIX permissions/ACLs will be
chosen by default. Unlike most other policies, access control policies cannot
be changed afterwards.

In addition, it is recommended to set a default striping policy (see Sec. 2.7.4).
If no per-file or per-directory default striping policy overrides the volume’s
default striping policy, the volume’s policy is assigned to all newly created
files. If no volume policy is explicitly defined when creating a volume, a
RAID0 policy with a stripe size of 128kB and a width of 1 will be used as
the default policy.

A volume with a POSIX permission model, a stripe size of 256kB and a stripe
width of 1 (i.e. all stripes will reside on the same OSD) can be created as
follows:

$> mkfs.xtreemfs -a POSIX -p RAID0 -s 256 -w 1 \
my-mrc-host.com:32636/myVolume

Creating a volume may require privileged access, which depends on whether
an administrator password is required by the MRC. To pass an administrator
password, add --password <password> to the mkfs.xtreemfs command.

For a complete list of parameters, please refer to the mkfs.xtreemfs man
page.

Deleting Volumes

Volumes can be deleted with the rmfs.xtreemfs tool. Note that deleting a
volume implies that any data, i.e. all files and directories on the volume are
deleted ! Please see man rmfs.xtreemfs for a full list of options and usage.

The volume myVolume residing on the MRC my-mrc-host.com:32636 can
e.g. be deleted as follows:

$> rmfs.xtreemfs my-mrc-host.com:32636/myVolume

Volume deletion is restricted to volume owners and privileged users. Similar
to xtfs mkvol, an administrator password can be specified if required.

54



Listing all Volumes

A list of all volumes can be displayed with the lsfs.xtreemfs tool. All vol-
umes hosted by the MRC my-mrc-host.com:32636 can be listed as follows:

$> lsfs.xtreemfs my-mrc-host.com:32636

Adding the --l flag will result in more details being shown.

2.5.3 Accessing Volumes

Once a volume has been created, it needs to be mounted in order to be
accessed.

Mounting and Un-mounting

Before mounting XtreemFS volumes on a Linux machine, please ensure that
the FUSE kernel module is loaded. Please check your distribution’s manual
to see if users must be in a special group (e.g. trusted in openSuSE) to be
allowed to mount FUSE file systems.

$> su
Password:
#> modprobe fuse
#> exit

Volumes are mounted with the xtfs mount command:

$> mount.xtreemfs remote.dir.machine/myVolume /xtreemfs

remote.dir.machine describes the host with the Directory Service at which
the volume is registered; myVolume is the name of the volume to be mounted.
/xtreemfs is the directory on the local file system to which the XtreemFS
volume will be mounted. For more options, please refer to man mount.xtreemfs.

Please be aware that the Directory Service URL needs to be provided when
mounting a volume, while MRC URLs are used to create volumes.

When mounting a volume, the client will immediately go into background and
won’t display any error messages. Use the -f option to prevent the mount

55



process from going into background and get all error messages printed to the
console.

To check that a volume is mounted, use the mount command. It outputs a
list of all mounts in the system. XtreemFS volumes are listed as type fuse:

xtreemfs on /xtreemfs type fuse (rw,nosuid,nodev,user=userA)

Volumes are unmounted with the umount.xtreemfs tool:

$> umount.xtreemfs /xtreemfs

Mount Options

Access to a FUSE mount is usually restricted to the user who mounted the
volume. To allow the root user or any other user on the system to access the
mounted volume, the FUSE options -o allow root and -o allow other
can be used with xtfs mount. They are, however, mutually exclusive. In
order to use these options, the system administrator must create a FUSE
configuration file /etc/fuse.conf and add a line user allow other.

By default, the local system cache on the client machine will be used to speed
up read access to XtreemFS. In particular, using the cache as a local buffer
is necessary to support the mmap system call, which - amongst others - is
required to execute applications on Linux. On the other hand, using buffered
I/O may adversely affect throughput when writing large files, as FUSE ≤
2.7 splits up large writes into multiple individual 4k (page size) writes. In
addition, it limits the consistency model of client caches to “close-to-open”,
which is similar to the model provided by NFS. Buffered I/O can be switched
off by adding the -o direct io parameter. The parameter effects that all
read and write operations are directed to their OSDs instead of being served
from local caches.

2.5.4 Troubleshooting

Different kinds of problems may occur when trying to create, mount or access
files in a volume. If no log file was specified, the client will create a logfile
called mount.xtreemfs.log in the current working direcory. This logile is
only created in case of an error message. In case no useful error message is
printed on the console or in the logfile, it may help to enable client-side log
output. This can be done as follows:

56



$> mount.xtreemfs -f -d INFO remote.dir.machine/myVolume /xtreemfs

The following list contains the most common problems and their solutions.

Problem A volume cannot be created or mounted.
Solution Please check your firewall settings on the server side.

Are all ports accessible? The default ports are 32636
(MRC), 32638 (DIR), and 32640 (OSD).
In case the XtreemFS installation has been set up be-
hind a NAT, it is possible that services registered their
NAT-internal network interfaces at the DIR. In this case,
clients cannot properly resolve server addresses, even if
port forwarding is enabled. Please check the Address
Mappings section on the DIR status page to ensure that
externally reachable network interfaces have been regis-
tered for the your servers’ UUIDs. If this is not the case,
it is possible to explicitly specify the network interfaces
to register via the hostname property (see Sec. 2.4.2).

Problem When trying to mount a volume, ONC-RPC
exception: system error appears on the con-
sole.

Solution The most common reason are incompatible protocol ver-
sions in client and server. Please make sure that client
and server have the same release version numbers. They
can be determined as follows:

Server: check the status pages. Alternatively, execute
rpm -q xtreemfs-server on RPM-based distri-
butions, or dpkg -l | grep xtreemfs-server
on DEB-based distributions.

Client: execute rpm -q xtreemfs-client on RPM-
based distributions, or dpkg -l | grep
xtreemfs-client on DEB-based distributions.

57



Problem An error occurs when trying to access a mounted
volume.

Solution Please make sure that you have sufficient access rights
to the volume root. Superusers and volume owners can
change these rights via chmod <mode> <mountpoint>.
If you try to access a mount point to which XtreemFS
was mounted by a different user, please make sure
that the volume is mounted with xtfs mount -o
allow other ....

Problem An I/O error occurs when trying to create new
files.

Solution In general, you can check the contents of the client log
file to see the error which caused the I/O error. A com-
mon reason for this problem is that no OSD could be
assigned to the new file. Please check if suitable OSDs
are available for the volume. There are two alternative
ways to do this:

• Open the MRC status page. It can be accessed via
http://<MRC-host>:30636 in the default case.
For each volume, a list of suitable OSDs is shown
there.

• Execute getfattr -n xtreemfs.usable osds
--only-values <mountpoint>.

There may be different reasons for missing suitable
OSDs:

• One or more OSDs failed to start up. Please check
the log files and status pages of all OSDs to ensure
that they are running.

• One or more OSDs failed to register or regularly
report activity at the DIR. Please check the DIR
status page to ensure that all OSDs are registered
and active.

• There are no OSDs with a sufficient amount of free
disk space. Please check the OSD status page to
obtain information about free disk space.

58



Problem An I/O error occurs when trying to access an
existing file.

Solution Please check whether all OSDs assigned to the file are
running and reachable. This can be done as follows:

1. Get the list of all OSDs for the file: getfattr -n
xtreemfs.locations --only-values <file>.

2. Check whether the OSDs in (one of) all replicas in
the list are running and reachable, e.g. by opening
the status pages or via telnet <host> <port>.

2.6 XtreemFS Tools

To make use of most of the advanced XtreemFS features, XtreemFS offers a
variety of different tools. There are tools that support administrators with
the maintenance of an XtreemFS installation, as well as tools for controlling
features like replication and striping. An overview of the different tools with
descriptions of how to use them are provided in the following.

2.6.1 Installation

When installing the XtreemFS tool suite, you can choose from two different
installation sources: you can download one of the pre-packaged releases that
we create for most Linux distributions or you can install directly from the
source tarball.

Note that the source tarball contains the complete distribution of XtreemFS,
which also includes client and server. Currently, binary distributions of the
tools are only available for Linux.

Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to
be installed on the system.

When building XtreemFS directly from the source, you need a Sun Java JDK
1.6.0 or newer, Ant 1.6.5 or newer and gmake.

59



Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS)
you can install the package with

$> rpm -i xtreemfs-tools-1.2.x.rpm xtreemfs-backend-1.2.x.rpm

For Debian-based distributions, please use the .deb package provided and
install it with

$> dpkg -i xtreemfs-tools-1.2.x.deb xtreemfs-backend-1.2.x.deb

To install the tools, the following package is required: jre ≥ 1.6.0 for RPM-
based releases, java6-runtime for Debian-based releases. If you already
have a different distribution of Java6 on your system, you can alternatively
install the XtreemFS tools packages as follows:

$> rpm -i --nodeps xtreemfs-tools-1.2.x.rpm \
xtreemfs-backend-1.2.x.rpm

on RPM-based distributions,

$> dpkg -i --ignore-depends java6-runtime \
xtreemfs-tools-1.2.x.deb xtreemfs-backend-1.2.x.deb

on Debian-based distributions.

To ensure that your local Java6 installation is used, is necessary to set the
JAVA HOME environment variable to your Java6 installation directory, e.g.

$> export JAVA_HOME=/usr/java6

All XtreemFS tools will be installed to /usr/bin.

60



Installing from Sources

Extract the tarball with the sources. Change to the top level directory and
execute

$> make server

When done, execute

$> sudo make install-tools

to complete the installation. Note that this will also install the XtreemFS
client and servers.

2.6.2 Maintenance Tools

This section describes the tools that support administrators in maintaining
an XtreemFS installation.

MRC Database Conversion

The database format in which the MRC stores its file system metadata on
disk may change with future XtreemFS versions, even though we attempt to
keep it as stable as possible. To ensure that XtreemFS server components
may be updated without having to create and restore a backup of the entire
installation, it is possible to convert an MRC database to a newer version by
means of a version-independent XML representation.

This is done as follows:

1. Create an XML representation of the old database with the old MRC
version.

2. Update the MRC to the new version.

3. Restore the database from the XML representation.

xtfs mrcdbtool is a tool that is capable of doing this. It can create an XML
dump of an MRC database as follows:

61



$> xtfs_mrcdbtool -mrc oncrpc://my-mrc-host.com:32636 \
dump /tmp/dump.xml

A file dump.xml containing the entire database content of the MRC running
on my-mrc-host.com:32636 is written to /tmp/dump.xml. For security rea-
sons, the dump file will be created locally on the MRC host. To make sure
that sufficient write permissions are granted to create the dump file, we there-
fore recommend to specify an absolute dump file path like /tmp/dump.xml.

A database dump can be restored from a dump file as follows:

$> xtfs_mrcdbtool -mrc oncrpc://my-mrc-host.com:32636 \
restore /tmp/dump.xml

This will restore the database stored in /tmp/dump.xml at my-mrc-host.com.
Note that for safety reasons, it is only possible to restore a database from a
dump if the database of the running MRC does not have any content. To
restore an MRC database, it is thus necessary to delete all MRC database
files before starting the MRC.

Please be aware that dumping and restoring databases may both require priv-
ileged access rights if the MRC requires an administrator password. The pass-
word can be specified via --p; for further details, check the xtfs mrcdbtool
man page.

Scrubbing and Cleanup

In real-world environments, errors occur in the course of creating, modifying
or deleting files. This can cause corruptions of file data or metadata. Such
things happen e.g. if the client is suddenly terminated, or loses connection
with a server component. There are several such scenarios: if a client writes
to a file but does not report file sizes received from the OSD back to the
MRC, inconsistencies between the file size stored in the MRC and the actual
size of all objects in the OSD will occur. If a client deletes a file from the
directory tree, but cannot reach the OSD, orphaned objects will remain on
the OSD. If an OSD is terminated during an ongoing write operation, file
content will become corrupted.

In order to detect and, if possible, resolve such inconsistencies, tools for
scrubbing and OSD cleanup exist. To check the consistency of file sizes and
checksums, the following command can be executed:

62



$> xtfs_scrub -dir oncrpc://my-dir-host.com:32638 myVolume

This will scrub each file in the volume myVolume, i.e. check file size consistency
and set the correct file size on the MRC, if necessary, and check whether an
invalid checksum in the OSD indicates a corrupted file content. The -dir
argument specifies the directory service that will be used to resolve service
UUIDs. Please see man xtfs scrub for further details.

A second tool scans an OSD for orphaned objects, which can be used as
follows:

$> xtfs_cleanup -dir oncrpc://localhost:32638 \
uuid:u2i3-28isu2-iwuv29-isjd83

The given UUID identifies the OSD to clean and will be resolved by the di-
rectory service defined by the -dir option (localhost:32638 in this example).
The process will be started and can be stopped by setting the option -stop.
To watch the cleanup progress use option -i for the interactive mode. For
further information see man xtfs cleanup.

Setting the Service Status

The service’s status field is shown in the service status page as static.status.
The status can be 0 (online), 1 (marked for removal) and 2 (dead/removed).
Status 0 (online) is the regular status for all services, even if they are tem-
porarily offline. Status 2 (dead/removed) marks an OSD as permanently
failed and the scrubber will removed replicas and files from these OSDs.
Status 1 (marked for removal) is for future use.

The status can be set with the xtfs chstatus tool:

$> xtfs_chstatus -dir oncrpc://localhost:32638 \
u2i3-28isu2-iwuv29-isjd83 online

This command sets the status of the service with the UUID u2i3-28isu2-iwuv29-isjd83
to online.

2.6.3 User Tools

Besides administrator tools, a variety of tools exist that make advanced
XtreemFS features accessible to users. These tools will be described in this
section.

63



Showing XtreemFS-specific File Info

In addition to the regular file system information provided by the stat Linux
utility, XtreemFS provides the xtfs stat tool which displays XtreemFS spe-
cific information for a file or directory.

$> cd /xtreemfs
$> echo ’Hello World’ > test.txt
$> xtfs_stat test.txt

will produce output similar to the following:

filename test.txt
XtreemFS URI oncrpc://localhost/test/test.txt
XtreemFS fileID 41e9a04d-0b8b-467b-94ef-74ade02a2dc9:6
object type regular file
owner stender
group users
read-only false

XtreemFS replica list
list version 0
replica update policy
-----------------------------
replica 1 SP STRIPING_POLICY_RAID0, 128kb, 1
replica 1 OSDs [{address=127.0.0.1:32640, uuid=OSD1}]
replica 1 repl. flags 0x1
-----------------------------

The fileID is the unique identifier of the file used on the OSDs to identify the
file’s objects. The owner/group fields are shown as reported by the MRC,
you may see other names on your local system if there is no mapping (i.e.
the file owner does not exist as a user on your local machine). Finally, the
XtreemFS replica list shows the striping policy of the file, the number of
replicas and for each replica, the OSDs used to store the objects.

Changing Striping Policies

Currently, it is not possible to change the striping policy of an existing file,
as this would require rearrangements and transfers of data between OSDs.

64



However, it is possible to define individual striping policies for files that will
be created in the future. This can be done by changing the default striping
policy of the parent directory or volume.

XtreemFS provides the xtfs sp tool. The tool can be used to change the
striping policy that will be assigned to newly created files as follows:

$> xtfs_sp --set -p RAID0 -w 4 -s 256 /xtreemfs/dir

This will cause a RAID0 striping policy with 256kB stripe size and four OSDs
to be assigned to all newly created files in /xtreemfs/dir.

The tool can display the default striping policy of a volume or directory as
follows:

$> xtfs_sp --get /xtreemfs/dir

This will result in output similar to the following:

file: /xtreemfs/dir
policy: STRIPING_POLICY_RAID0
stripe-size: 4
width (kB): 256

When creating a new file, XtreemFS will first check whether a default striping
policy has been assigned to the file’s parent directory. If this is not the case,
the default striping policy for the volume will be used as the striping policy
for the new file. Changing a volume’s or directory’s default striping policy
requires superuser access rights, or ownership of the volume or directory.

Read-Only Replication

Replication is one of core features of XtreemFS. A replica can be seen as
a (not essentially complete) copy of a file’s content on a remote (set of)
OSD(s). Replication is handled among the XtreemFS OSDs, which makes it
completely transparent to client applications.

So far, XtreemFS only supports read-only replication. Read-only replication
requires files to be immutable (i.e. ’read-only’), which implies that once a file
has been replicated, it can no longer be modified. The benefit of read-only
replicas is that XtreemFS can guarantee sequential replica consistency at a

65



low cost; since files are no longer modified when replicated, no overhead is
caused to ensure replica consistency.

When replicating a file, the first step is to make the file read-only, which can
be done as follows:

$> xtfs_repl --set_readonly local-path-of-file

Once a file has been marked as read-only, replicas can be added. The tool
supports different replica creation modes. The automatic mode retrieves a list
of OSDs from the MRC and chooses the best OSD according to the current
replica selection policy. You can also select a specific OSD by specifying its
UUID on the command line.

Newly created replicas are initially empty, which means that no file content
has been copied from other non-empty replicas. Yet, they can be immediately
used by applications. If a replica does not have the requested data, it fetches
the data from a remote replica and saves it locally for future requests (on-
demand replication). Such partial replicas help to save network bandwidth
and disk usage. Alternatively, replicas can be triggered to fetch the whole
data from remote replicas in the background, regardless of client requests
(background replication).

Moreover, XtreemFS supports different transfer strategies which has a big
impact on the speed of the replication and the order in which objects are
fetched. A transfer strategy must be chosen for each replica.

A replica can e.g. created as follows:

$> xtfs_repl --add_auto --full --strategy random \
/xtreemfs/file.txt

This command creates a new replica with an automatically-selected set of
OSDs (for details, see Sec. 2.7.3, 2.6.3). The switch --full indicates that
background replication is desired; otherwise, replicas are filled on demand,
which means that they remain partial replicas until the application accesses
all the objects of the replica.

To list all replicas and OSDs of the file use:

$> xtfs_repl -l /xtreemfs/file.txt

This generates output similar to this:

66



File is read-only.
REPLICA 1:

Striping Policy: STRIPING_POLICY_RAID0
Stripe-Size: 128,00 kB
Stripe-Width: 1 (OSDs)
Replication Flags:

Complete: false
Replica Type: partial
Transfer-Strategy: random

OSDs:
[Head-OSD] UUID: osd1, URL: /127.0.0.1:32641

REPLICA 2:
Striping Policy: STRIPING_POLICY_RAID0
Stripe-Size: 128,00 kB
Stripe-Width: 1 (OSDs)
Replication Flags:

Complete: true
Replica Type: partial
Transfer-Strategy: unknown

OSDs:
[Head-OSD] UUID: osd2, URL: /127.0.0.1:32640

Besides adding replicas, replicas can also be removed. Since replicas of a file
do not have a fixed order, we use a replica’s first OSD to identify the replica
to delete. The first OSD in a replica’s list of OSDs, also referred to as head
OSD is a unique identifier for a replica, as different replicas of a file may not
share any OSDs.

To remove a replica, the UUID of the head OSD must be given as an ar-
gument. It can be determined via xtfs repl -l. To ensure that at least
one complete replica remains, i.e. a replica that stores the entire file content,
complete replicas can only be removed if there is at least one more complete
complete replica of the file.

A replica can be removed as follows:

$> xtfs_repl -r osd1 /xtreemfs/file.txt

osd1 refers to the UUID of the head OSD in the replica to remove.

67



Automatic On-Close Replication

In addition to manually adding and removing replicas, XtreemFS supports
an automatic creation of new replicas when files are closed after having been
initially written. This feature can e.g. be used to automatically replicate
volumes that only contain write-once files, such as archival data.

To configure the behavior of the on-close replication, the xtfs repl tool is
used.

The number of replicas to be created when a file is closed can be specified as
a volume-wide parameter, which can be set as follows:

$> xtfs_repl --ocr_factor_set 2 /xtreemfs

This will automatically create a second replica when the file is closed, which
implies that the file will be made read-only. Note that by setting the repli-
cation factor to 1 (default value), on-close replication will be switched off,
which means that the file won’t be replicated and will remain writable after
having been closed.

The current replication factor of a volume can be retrieved as follows:

$> xtfs_repl --ocr_factor_get /xtreemfs

Moreover, it is possible to specify whether an automatically created replica
will be synchronized in the background or on demand. By default, replicas
will be synced on demand. This can be changed as follows:

$> xtfs_repl --ocr_full_set true /xtreemfs

Depending on whether --ocr full set is true or false, background repli-
cation of newly created files is switched on or off.

To show whether replicas are automatically filled or not, execute the following
command:

$> xtfs_repl --ocr_full_get /xtreemfs

68



Changing OSD and Replica Selection Policies

When creating a new file, OSDs have to be selected on which to store the file
content. Likewise, OSDs have to be selected for a newly added replica, as
well as the order in which replicas are contacted when accessing a file. How
these selections are done can be controlled by the user.

OSD and replica selection policies can only be set for the entire volume.
Further details about the policies are described in Sec. 2.7.3.

The policies are set and modified with the xtfs repl tool. A policy that
controls the selection of a replica is set as follows:

$> xtfs_repl --rsp_set dcmap /xtreemfs

This will change the current replica selection policy to a policy based on a
data center map. The current replica selection policy is shown as follows:

$> xtfs_repl --rsp_get /xtreemfs

Note that by default, there is no replica selection policy, which means that
the client will attempt to access replicas in their natural order, i.e. the order
in which the replicas have been created.

Similar to replica selection policies, OSD selection policies are set and re-
trieved:

$> xtfs_repl --osp_set dcmap /xtreemfs

sets a data center map-based OSD selection policy, which is invoked each
time a new file or replica is created. The following predefined policies exist
(see Sec. 2.7.3 and man xtfs repl for details):

• default

• fqdn

• dcmap

• vivaldi

69



The default OSD selection policy selects a random subset of OSDs that are
responsive and have more than 2GB of free disk space, whereas the fqdn and
dcmap policies select those subsets of responsive OSDs with enough space
that are closest according to fully qualified domain names and a data center
map, accordingly. The vivaldi policy uses the vivaldi coordinates of OSDs
and clients for selecting the closest replica. Besides, custom policies can be
set by passing a list of basic policy IDs to be successively applied instead of
a predefined policy name.

The OSD selection policy can be retrieved as follows:

$> xtfs_repl --osp_get /xtreemfs

Setting and Listing Policy Attributes

OSD and replica selection policy behavior can be further specified by means
of policy attributes. For a list of predefined attributes, see man xtfs repl.
Policy attributes can be set as follows:

$> xtfs_repl --pol_attr_set domains "*.xtreemfs.org bla.com" \
/xtreemfs

A list of all policy attributes that have been set can be shown as follows:

$> xtfs_repl --pol_attrs_get /xtreemfs

2.6.4 Vivaldi

Client machines that want to use vivaldi network coordinates for replica and
OSD selection must calculate their own coordinates relative to the OSDs.
This is done by the xtfs vivaldi utility which must be started on each client
machine. Ideally, this process is started during boot with the xtreemfs-vivaldi
init.d scripts provided. The utility must be started with the directory service
address and the path to a file in which the coordinates are stored.

$> xtfs_vivaldi remote.dir.machine \
/var/lib/xtreemfs/vivaldi_coordinates

70



If started with the init.d script, the utility will get the DIR address from
/etc/xos/xtreemfs/default dir and will store the coordinates in
/var/lib/xtreemfs/vivaldi coordinates.

The coordinate file must be passed as an argument when mounting a volume:

$> mount.xtreemfs --vivaldi-coordinates-file-path /var/lib/xtreemfs/vivaldi_coordinates \
remote.dir.machine/myVolume /xtreemfs

Finally, the vivaldi replica and OSD selection policies must be set at the
MRC for the volume(s). See Sec. 2.6.3 for details.

2.7 Policies

Many facets of the behavior of XtreemFS can be configured by means of
policies. A policy defines how a certain task is performed, e.g. how the
MRC selects a set of OSDs for a new file, or how it distinguishes between an
authorized and an unauthorized user when files are accessed. Policies are a
means to customize an XtreemFS installation.

XtreemFS supports a range of predefined policies for different tasks. Al-
ternatively, administrators may define their own policies in order to adapt
XtreemFS to customer demands. This chapter contains information about
predefined policies, as well as mechanisms to implement and plug in custom
policies.

2.7.1 Authentication Policies

Any operation on a file system is executed on behalf of a user. The process
of determining the user bound to a request is generally referred to as user
authentication. To render user authentication customizable, the MRC allows
administrators to specify an authentication policy by means of an Authen-
tication Provider . Authentication Providers are modules that implement
different methods for retrieving user and group IDs from requests.

The following predefined authentication providers exist:

71



UNIX uid/gid - NullAuthProvider

The NullAuthProvider is the default Authentication Provider. It simply uses
the user ID and group IDs sent by the XtreemFS client. This means that
the client is trusted to send the correct user/group IDs.

The XtreemFS Client will send the user ID and group IDs of the process
which executed the file system operation, not of the user who mounted the
volume!

The superuser is identified by the user ID root and is allowed to do everything
on the MRC. This behavior is similar to NFS with no root squash.

Plain SSL Certificates - SimpleX509AuthProvider

XtreemFS supports two kinds of X.509 certificates which can be used by the
client. When mounted with a service/host certificate the XtreemFS client
is regarded as a trusted system component. The MRC will accept any user
ID and groups sent by the client and use them for authorization as with
the NullAuthProvider. This setup is useful for volumes which are used by
multiple users.

The second certificate type are regular user certificates. The MRC will only
accept the user name and group from the certificate and ignore the user ID
and groups sent by the client. Such a setup is useful if users are allowed to
mount XtreemFS from untrusted machines.

Both certificates are regular X.509 certificates. Service and host certificates
are identified by a Common Name (CN) starting with host/ or xtreemfs-service/,
which can easily be used in existing security infrastructures. All other cer-
tificates are assumed to be user certificates.

If a user certificate is used, XtreemFS will take the Distinguished Name (DN)
as the user ID and the Organizational Unit (OU) as the group ID.

Superusers must have xtreemfs-admin as part of their Organizational Unit
(OU).

XtreemOS Certificates - XOSAuthProvider

In contrast to plain X.509 certificates, XtreemOS embeds additional user
information as extensions in XtreemOS-User-Certificates. This authentica-
tion provider uses this information (global UID and global GIDs), but the
behavior is similar to the SimpleX509AuthProvider.

72



The superuser is identified by being member of the VOAdmin group.

2.7.2 Authorization Policies

Before executing an operation, a file system needs to check whether the user
bound to the operation is sufficiently authorized, i.e. is allowed to execute
the operation. User authorization is managed by means of access policies,
which reside on the MRC. Unlike authentication policies which are bound to
an MRC, access policies can be defined for each volume. This has to be done
when the volume is created (see man xtfs mkvol). Various access policies
can be used:

• Authorize All Policy (policy Id 1)
No authorization - everyone can do everything. This policy is useful if
performance of metadata operations matters more than security, since
no evaluation of access rights is needed.

• POSIX ACLs & Permissions (policy Id 2)
This access policy implements the traditional POSIX permissions com-
monly used on Linux, as well as POSIX ACLs, an extension that pro-
vides for access control at the granularity of single users and groups.
POSIX permissions should be used as the default, as it guarantees
maximum compatibility with other file systems.

• Volume ACLs (policy Id 3)
Volume ACLs provide an access control model similar to POSIX ACLs
& Permissions, but only allow one ACL for the whole volume. This
means that there is no recursive evaluation of access rights which yields
a higher performance at the price of a very coarse-grained access con-
trol.

2.7.3 OSD and Replica Selection Policies

When a new file is created or a replica is automatically added to a file, the
MRC must decide on a set of OSDs for storing the file content. To select
the most suitable subset among all known OSDs, OSD Selection Policies are
used.

Replica selection is a related problem. When a client opens a file with more
than one replica, the MRC uses a replica selection policy to sort the list of
replicas for the client. Initially, a client will always attempt to access the first

73



replica in the list received from the MRC. If a replica is not available, it will
automatically attempt to access the next replica from the list, and restart
with the first replica if all attempts have failed. Replica selection policies can
be used to sort the replica lists, e.g. to ensure that clients first try to access
replicas that are close to them.

Both OSD and replica selection policies share a common mechanism, in that
they consist of basic policies that can be arbitrarily combined. Input pa-
rameters of a basic policy are a set of OSDs, the list of the current replica
locations of the file, and the IP address of the client on behalf of whom the
policy was called. The output parameter is a filtered and potentially sorted
subset of OSDs. Since OSD lists returned by one basic policy can be used
as input parameters by another one, basic policies can be chained to define
more complex composite policies.

OSD and replica selection policies are assigned at volume granularity. For
further details on how to set such policies, please refer to Sec. 2.6.3.

Attributes

The behavior of basic policies can be further refined by means of policy
attributes. Policy attributes are extended attributes with a name starting
with xtreemfs.policies., such as xtreemfs.policies.minFreeCapacity.
Each time a policy attribute is set, all policies will be notified about the
change. How an attribute change affects the policy behavior depends on the
policy implementation.

Predefined Policies

Each basic policy can be assigned to one of the three different categories
called filtering, grouping and sorting. Filtering policies generate a sublist
from a list of OSDs. The sublist only contains those OSDs from the original
list that have a certain property. Grouping policies are used to select a
subgroup from a given list of OSDs. They basically work in a similar manner
as filtering policies, but unlike filtering policies, they always return a list of
a fixed size. Sorting policies generate and return a reordered list from the
input OSD list, without removing any OSDs.

The following predefined policies exist:

Filtering Policies

74



• Default OSD filter (policy ID 1000)
Removes OSDs from the list that are either dead or do not have suffi-
cient space. By default, the lower space limit for an OSD is 2GB, and
the upper response time limit is 5 minutes.

Attributes:

– free capacity bytes : the lower space limit in bytes

– offline time secs : the upper response time limit in seconds

• FQDN-based filter (policy ID 1001)
Removes OSDs from the list that do not match any of the domains in
a given set. By default, the set of domains contains ’*’, which indicates
that no domains are removed.

Attributes:

– domains : a comma or space-separated list of domain names. The
list may include leading and trailing ’*’s, which will be regarded
as wildcard characters.

Grouping Policies

• Data center map-based grouping (policy ID 2000)
Removes all OSDs from the OSD set that have been used in the file’s
replica locations list already and selects the subset of OSDs that is
closest to the client and provides enough OSDs for the new replica in
a single data center.

This policy uses a statically configured datacenter map that describes
the distance between datacenters. It works only with IPv4 addresses
at the moment. Each datacenter has a list of matching IP addresses
and networks which is used to assign clients and OSDs to datacenters.
Machines in the same datacenter have a distance of 0.

This policy requires a datacenter map configuration file in
/etc/xos/xtreemfs/datacentermap on the MRC machine which is
loaded at MRC startup. This config file must contain the following
parameters:

– datacenters=A,B,C
A comma separated list of datacenters. Datacenter names may
only contain a-z, A-Z, 0-9 and .

75



– distance.A-B=100
For each pair of datacenters, the distance must be specified. As
distances are symmetric, it is sufficient to specify A to B.

– addresses.A=192.168.1.1,192.168.2.0/24
For each datacenter a list of matching IP addresses or networks
must be specified.

– max cache size=1000
Sets the size of the address cache that is used to lookup IP-to-
datacenter matches.

A sample datacenter map could look like this:

datacenters=BERLIN,LONDON,NEW_YORK
distance.BERLIN-LONDON=10
distance.BERLIN-NEW_YORK=140
distance.LONDON-NEW_YORK=110
addresses.BERLIN=192.168.1.0/24
addresses.LONDON=192.168.2.0/24
addresses.NEW_YORK=192.168.3.0/24,192.168.100.0/25
max_cache_size=100

• FQDN-based grouping (policy ID 2001)
Removes all OSDs from the OSD set that have been used in the file’s
replica locations list already and selects the subset of OSDs that is
closest to the client and provides enough OSDs for the new replica in
a single domain.

This policy uses domain names of clients and OSDs to determine the
distance between a client and an OSD, as well as if OSDs are in the
same domain.

Sorting Policies

• Shuffling (policy ID 3000)
Shuffles the given list of OSDs.

• Data center map-based sorting (policy ID 3001)
Sorts the list of OSDs in ascending order of their distance to the client,
according to the data center map.

76



• Vivaldi network coordinates based sorting (policy ID 3003)
Sorts the list of OSDs in ascending order of their distance to the client,
according to the vivaldi coordinates of the client and OSDs. This policy
requires the clients to run the xtfs vivaldi service.

• DNS based OSD Selection (policy ID 3002)
The FQDN of the client and all OSDs is compared and the maximum
match (from the end of the FQDN) is used to sort the OSDs. The
policy sorts the list of OSDs in descending order by the number of
characters that match. This policy can be used to automatically select
OSDs which are close to the client, if the length of the match between
two DNS entries also indicate a low latency between two machines.

2.7.4 Striping Policies

XtreemFS allows the content, i.e. the objects of a file to be distributed among
several storage devices (OSDs). This has the benefit that the file can be read
or written in parallel on multiple OSDs in order to increase throughput. To
configure how files are striped, XtreemFS supports striping policies.

A striping policy is a rule that defines how the objects are distributed on
the available OSDs. Currently, XtreemFS implements only the RAID0 policy
which simply stores the objects in a round robin fashion on the OSDs. The
RAID0 policy has two parameters. The striping width defines to how many
OSDs the file is distributed. If not enough OSDs are available when the file
is created, the number of available OSDs will be used instead; if it is 0, an
I/O error is reported to the client. The stripe size defines the size of each
object.

Striping over several OSDs enhances the read and write throughput to a file.
The maximum throughput depends on the striping width. However, using
RAID0 also increases the probability of data loss. If a single OSD fails, parts
of the file are no longer accessible, which generally renders the entire file
useless. Replication can mitigate the problem but has all the restrictions
described in Sec. 2.6.3.

2.7.5 Plug-in Policies

To further customize XtreemFS, the set of existing policies can be extended
by defining plug-in policies. Such policies are Java classes that implement a
predefined policy interface. Currently, the following policy interfaces exist:

77



• org.xtreemfs.common.auth.AuthenticationProvider
interface for authentication policies

• org.xtreemfs.mrc.ac.FileAccessPolicy
interface for file access policies

• org.xtreemfs.mrc.osdselection.OSDSelectionPolicy
interface for OSD and replica selection policies

Note that there may only be one authentication provider per MRC, while file
access policies and OSD selection policies may differ for each volume. The for-
mer one is identified by means of its class name (property authentication provider,
see Sec. 2.4.2, 2.4.2), while volume-related policies are identified by ID num-
bers. It is therefore necessary to add a member field

public static final long POLICY_ID = 4711;

to all such policy implementations, where 4711 represents the individual ID
number. Administrators have to ensure that such ID numbers neither clash
with ID numbers of built-in policies (1-9), nor with ID numbers of other
plug-in policies. When creating a new volume, IDs of plug-in policies may
be used just like built-in policy IDs.

Plug-in policies have to be deployed in the directory specified by the MRC
configuration property policy dir. The property is optional; it may be
omitted if no plug-in policies are supposed to be used. An implementation
of a plug-in policy can be deployed as a Java source or class file located in a
directory that corresponds to the package of the class. Library dependencies
may be added in the form of source, class or JAR files. JAR files have to be
deployed in the top-level directory. All source files in all subdirectories are
compiled at MRC start-up time and loaded on demand.

78



Chapter 3

The OSS Library Interface and
User Guide

3.1 Overview

The Object Sharing Service (OSS) implements distributed objects for nodes
participating in an interactive multi-user grid application. OSS runs on each
client machine to enable sharing of objects residing in volatile memory. An
object in this context is a replicated volatile memory region, dynamically
allocated by an application or mapped into memory from a file.

Objects may contain scalars, references, and code. Therefore, OSS handles
concurrent read and write access to objects and maintains the consistency
of replicated objects. Persistence and security for objects stored in files are
provided by XtreemFS. Fault tolerance is provided by the grid checkpointing
mechanisms developed in WP3.3. OSS is being developed for Linux on IA32
or AMD64/Intel64 compatible processors.

3.2 Changes and New Features

This section summarizes the changes and new features between OSS releases
0.4 and 0.5.

79



3.2.1 Transaction Management

OSS’s transaction management now includes a new ultra-peer commit proto-
col. In comparison to the peer-to-peer commit protocol, ultra-peer commit
achieves better performance in wide-area networks. The peer-to-peer and
ultra-peer commit protocols have been consolidated, such that the commit
protocol can be chosen during configuration of the library. The monitor-
ing subsystem in OSS is now able to track object accesses in the peer-to-peer
commit protocol, which is important for adaptive grouping of object accesses
and for adaptive replication.

Aside from commit-related functionality, the stack unwinding mechamism
has been modified to allow restarting applications that have been compiled
with strong optimization. To improve scalability of applications that use OSS
on modern multiprocessor computers, OSS now supports multi-threading in
transactional applications.

3.2.2 Communication

The performance of several communication layers has been improved during
development of OSS 0.5. The transfer of Millipages now is much more ef-
ficient. The degree of parallelization in the networking and communication
subsystem has been enhanced. OSS can now receive messages from many
nodes concurrently, such that fragmented messages or temporary node fail-
ures do not stall the communication subsystem any more. OSS 0.5 enables
NAT compatibility for outgoing connections, which is important when shar-
ing objects over wide-area networks.

To facilitate the synchronization of distributed applications, OSS 0.5 provides
an implementation of distributed barriers.

Furthermore, OSS now supports the dynamic joining of nodes. In order to
help debug inter-node communication, we have developed a packet dissector
for OSS.

3.3 Installation of OSS

You can install OSS either using the prebuild distribution packages which
are available on the XtreemOS release media, or you can build and install
OSS from source code. We suggest using the first method mentioned, unless
you wish to configure special build-time settings for OSS.

80



3.3.1 Installing OSS Using the Distribution Packages

The XtreemOS release contains the OSS library, as well as a raytracing demo
application to demonstrate object sharing. During the XtreemOS installa-
tion procedure, simply select the checkbox Object Sharing Service release to
install the packaged version of OSS (Library and applications). If you have
XtreemOS already installed and wish to install OSS, select it in the package
management dialog, or run the following commands as root:

$> urpmi liboss0
$> urpmi oss

The first command installs the OSS library, the second command installs
some example applications.

Application development based on OSS need the following additional pack-
ages:

$> urpmi liboss0-devel
$> urpmi liboss0-static-devel

3.3.2 Building and Installing OSS from Source

By building and installing OSS from source, you have full control over the
installation process. You can configure how OSS is installed, and fine-tune
all OSS features. The OSS sources can be installed from XtreemOS source
repository:

$> urpmi oss-0.5.1-1xos2.0.src (OSS sources)

Prerequisites

If you wish to build and install OSS from the source code, you need to have
some additional development packages installed on your build system.

• gcc ≥ 4.3

• binutils ≥ 2.18

• make

• glibc-devel

81



• libglib2.0-devel ≥ 2.18

• libreadline5-devel

The following packages are useful to generate documentation:

• doxygen

• graphviz

• texlive

Doxygen generates source code documentation, whereas graphviz and texlive
enable dependency graph and PDF file output respectively.

Compilation

Unpack the OSS source code archive, change to the base directory that just
has been created. The following step allows altering the default configura-
tion of OSS (hardware architecture, features, . . . ) if desired. If this step is
omitted, OSS will be built in its default configuration. A description of the
configuration options can be found in Appendix B.

$> make menuconfig

The following command builds the OSS library:

$> make

The make system autodetects most tools used for building OSS. If you en-
counter any errors, please ensure you have a recent compiler and linker in-
stalled, and that all developer packages mentioned above are installed cor-
rectly.

If you wish to pass configuration parameters via command line or to enable
non-standard features, you can directly supply the corresponding parameters
to make. For example, run make -B ARCH=I686 to build OSS for 32-Bit x86
machines and make -B ARCH=X86 64 to build OSS for 64-Bit x86 machines
respectively.

82



Installation

The following command installs the OSS library on the system, by default in
the /usr/local hierarchy. For write access to system directories, you need
root privileges.

$> make install

You can change the default installation hierarchy by specifying prefix=<pathname>,
e.g. to install OSS below /usr, run the command

$> make install prefix=/usr

Software distributors can specify an additional prefix for the actual instal-
lation directory by defining DESTDIR=<additional-prefix> on the make
command line.

3.3.3 Testing the OSS Installation

The OSS make system includes a command to verify that OSS has been
installed correctly, and that everything needed for running a program that
uses OSS is set up correctly:

$> make verify-install

The program should output the version and build information of the OSS
library found according to the example below:

Object Sharing Service version 0.5.1 architecture I686
subversion revision 5844 (2010-03-05 14:51:38)

build 1
Object Sharing Service has been installed correctly.

Simple test of Object Sharing

The simple test application (oss simple) starts two instances of a program.
The first process creates a shared object and writes the string hello to it.
The second process waits until the object has been created, and as soon as
it reads the expected string, it overwrites it with the string world.

83



The Raytracer Application

The raytracer is based on a application developed for a course at the MIT
and has been ported to OSS with the focus on testing and demonstrating
transactional shared memory. All graphical objects and the image file are
allocated in transactional shared memory. Start the first node with

$> oss_raytracer --address <IP1>

and the subsequent nodes with

$> oss_raytracer --address <IPn> --bootstrap <IP1>

where IP1 is the IP address for the first node, and IPn is replaced by the IP
address of the respective node. To configure the tracing progress, the first
node will ask some parameters:

1. Consistency model: ’t’ for transactional consistency, ’s’ for strong con-
sistency

2. Number of Nodes

3. Number of accesses (applies to transactional consistency only): number
of accesses between transaction boundaries

4. Pattern: specify one of ’l’, ’c’, ’p’, ’x’ or ’m’. ’l’ for line by line, ’c’ for
column by column, ’p’ for x partitions, ’x’ for every Xth dot, ’m’ for
matching pages

5. Scene: 1, 2, or 3

6. Columns (e. g. 640)

7. Rows (e. g. 480)

After rendering is done, you can give new parameters and render another
scene. There are three predefined scenes in this project. Scene1 is very
simple with one sphere in the center, a few bowls around and only a few lights.
Scene2 is very complex with some arrangements of bowls and reflecting walls.
Scene3 displays the letters ”‘OSS”’ consisting of bowls. You can write own
scenes as C files analoguous to SceneDemo1.c.

84



3.4 Developing Applications using OSS

The internal interface of the OSS library is implementation-dependent and
may be extended in the future, based on insights gained during the de-
velopment of OSS-based applications. In contrast, WP3.1 has defined an
XOSAGA interface for object sharing that represents the OSS interface in a
portable way.

3.4.1 Internal Interface of the OSS Library

The interface of the OSS library is declared in the header file oss.h. The
following command generates an interface documentation in HTML and (if
latex is available) in PDF format:

$> make interface-doc

The documentation is stored in the build/doc/ subdirectory.

Let us quickly walk through the basic functionality of the OSS library. For a
more detailed and precise discussion of the internal library interface, please
see the Doxygen documentation generated directly from the source code. To
get a deeper understanding of how to design applications that access shared
objects, we suggest looking at the source code examples in the src/apps/
subdirectory.

int
oss_startup(

const char *addr,
const char *listen_port,
const char *bootstrap_addr,
const char *bootstrap_port
);

The oss startup call starts the OSS system by joining a bootstrap peer.
The addr and listen port parameters allow to bind the OSS instance to a
specific interface. If no bootstrap peer is specified (i. e. a NULL pointer is
passed), a new distributed object storage is created. A return value of zero
indicates successful startup.

void *
oss_alloc(

size_t size,

85



oss_consistency_model_t consistency_model,
oss_alloc_attributes_t *attributes
);

The oss alloc call creates a shared object of specified size, initializes it
with a consistency model and further attributes (defined by the consistency
model), and returns an identifier for the object.

void
oss_free(

void *ptr
);

The oss free call frees some memory which has previously been dynamically
allocated using oss alloc.

oss_transaction_id_t
oss_bot(

oss_transaction_priority_t priority,
oss_transaction_attributes_t *attributes
);

The oss bot call marks the begin of a transaction with given priority and
attributes. OSS guarantees that all accesses to distributed objects between
oss bot and oss eot perform atomically, consistent, isolated, and durable.
The return value references the transaction that has been started, or equals
oss undefined transaction id which indicates that the transaction failed
to start.

int
oss_eot(

oss_transaction_id_t taid
);

The oss eot call denotes the end of the supplied transaction.

int
oss_abort(

oss_transaction_id_t taid

86



);
oss_permit_abort(

oss_transaction_id_t taid
);

Both calls handle voluntarily aborting a transaction. An application that
somehow finds out that it cannot commit, or that committing will have ad-
verse effect, may call oss abort to unconditionally abort the supplied trans-
action. Depending on the transaction attributes used, the transaction will
restart or simply fail. An application may optionally call oss permit abort
to mark locations in the code where it is safe to abort a transaction. If the
transaction is already known to fail on commit, OSS can restart the trans-
action and need not delay restarting the transaction until oss eot. If the
success of the transaction is not yet determined, the call to oss permit abort
will simply appear as a void statement.

void *
oss_nameservice_get(

const char *id
);

void
oss_nameservice_set(

const char *id,
void *val
);

OSS contains a simple name service, which applications can use to store and
retrieve object IDs. The name service has a tree structure, with slashes (/)
separating directory levels. Each entry begins with a slash. An application
or OSS module can set a value for a name by calling oss nameservice set
and retrieve a value by calling oss nameservice get. A value that has not
yet been set is treated as object ID NULL.

void
oss_wait(

void *addr,
unsigned char value
);

87



The barriers implementation allows applications to wait until the character
object pointed to by addr contains a target value. The character object may
be subject to transactional or strong consistency.

3.4.2 Linking against the OSS Library

The OSS library is built as a static shared library (liboss.a) and as a
dynamic shared library (liboss.so). Simply specify the option -loss to
the compiler driver or linker, which will link against the appropriate static or
dynamic library. If you did not install the library into a well-known location
such as /usr/lib, you will need to specify the path to the library via the
option -L<path>.

3.5 Performance Measurements

Figure 3.1 shows performance measurements of the transactional memory
provided by OSS. The results do not illustrate the overall performance of
OSS rather the conflict and network related penalties for a best and worst
case scenario. Therefore, measurements have been done with all optimiza-
tions (local commits, linked transactions, consistency domains etc.) turned
off. In the worst case scenario all peers concurrently increment a common
variable stored in the transactional memory, in the best case scenario each
peer increments its own variable. The best case scenario (private variable)
solely shows the network overhead produced by the commit protocol. The
worst case additionally causes penalties due to a high conflict rate which
results in transaction aborts and restarts.

For the measurements we have used our P2P commit protocol with two
different token mechanism for transaction serialization. The token was passed
among the peers either by a dedicated coordinator or P2P based approach.
Furthermore, we have expanded the transaction duration and pause between
to successive transactions to simulate real live applications. The red and
green lines show the overall transaction thoughput by using the coordinated
and p2p based token passing mechanism. The black line shows the maximum
theoretical throughput based on the transaction time and pause, presumed
no conflicts occur.

The diagrams in the left column show the negative impact of network com-
munication, but nevertheless growing of overall transaction throughput. To
improve OSS’ performance the implemented optimizations aim at exploiting

88



locality to prevent unnecessary network communication (e. g. local commits)
and linked transactions to hide the network latency by acquiring the token
in the background while starting the next transaction. The right column
shows, that the programmer must be aware of transactional conflicts and
performance issues. So he has to optimize its program to get a low conflict
rate.

89



1 2 16 128

0,0

500,0

1000,0

1500,0

2000,0

2500,0

Transaction throughput (private variable)
(TA duration 50ms, TA pause 10ms)

Nodes

TA
/s

1 2 16 128

15,0
15,5
16,0
16,5
17,0
17,5
18,0
18,5
19,0
19,5
20,0

Transaction throughput (shared variable)
(TA duration 50ms, TA pause 10ms)

Nodes

TA
/s

1 2 16 128

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

Transaction throughput (private variable)
(TA duration 200ms, TA pause 20ms)

Nodes

TA
/s

1 2 16 128

4,2

4,4

4,6

4,8

5,0

5,2

5,4

Transaction throughput (shared variable)
(TA duration 200ms, TA pause 20ms)

Nodes

TA
/s

1 2 16 128

0,0

500,0

1000,0

1500,0

2000,0

2500,0

Transaction throughput (private variable)
(TA duration 50ms, TA pause 10ms, Latency  10ms)

Nodes

TA
/s

1 2 16 128

12,5

13,0

13,5

14,0

14,5

15,0

15,5

16,0

16,5

17,0

Transaction throughput (shared variable)
(TA duration 50ms, TA pause 10ms, Latency  10ms)

Nodes

TA
/s

1 2 16 128

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

Transaction throughput (private variable)
(TA duration 200ms, TA pause 20ms, Latency  10ms)

Nodes

TA
/s

1 2 16 128

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Transaction throughput (shared variable)
(TA duration 200ms, TA pause 20ms, Latency  10ms)

Nodes

TA
/s

(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h) 

―  Coordinated Token          ―  Distributed Token          ―  Maximum Theoretical Throughput (Local Commits) 
 

Figure 3.1: Performance measurements of conflicting and non-conflicting
variable incrementations

90



Appendix A

XtreemFS Appendix

A.1 Support

Please visit the XtreemFS website at www.xtreemfs.org for links to the user
mailing list, bug tracker and further information.

A.2 XtreemOS Integration

A.2.1 XtreemFS Security Preparations

XtreemFS can be integrated in an existing XtreemOS VO security infras-
tructure. XtreemOS uses X.509 certificates to authenticate users in a Grid
system, so the general setup is similar to a normal SSL-based configuration.

Thus, in an XtreemOS environment, certificates have to be created for the
services as a first step. This is done by issuing a Certificate Signing Request
(CSR) to the RCA server by means of the create-server-csr command.
For further details, see the Section Using the RCA in the XtreemOS User
Guide.

Signed certificates and keys generated by the RCA infrastructure are stored
locally in PEM format. Since XtreemFS services are currently not capable
of processing PEM certificates, keys and certificates have to be converted to
PKCS12 and Java Keystore format, respectively.

Each XtreemFS service needs a certificate and a private key in order to be
run. Once they have created and signed, the conversion has to take place.
Assuming that certificate/private key pairs reside in the current working

91

http://www.xtreemfs.org


directory for the Directory Service, an MRC and an OSD (ds.pem, ds.key,
mrc.pem, mrc.key, osd.pem and osd.key), the conversion can be initiated
with the following commands:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key \
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key \
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key \
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each
containing the private key and certificate for the respective service.

XtreemFS services need a trust store that contains all trusted Certification
Authority certificates. Since all certificates created via the RCA have been
signed by the XtreemOS CA, the XtreemOS CA certificate has to be included
in the trust store. To create a new trust store containing the XtreemOS CA
certificate, execute the following command:

$> keytool -import -alias xosrootca -keystore xosrootca.jks \
-trustcacerts -file \
/etc/xos/truststore/xtreemosrootcacert.pem

This will create a new Java Keystore xosrootca.jks with the XtreemOS
CA certificate in the current working directory. The password chosen when
asked will later have to be added as a property in the service configuration
files.

Once all keys and certificates have been converted, the resulting files should
be moved to /etc/xos/xtreemfs/truststore/certs as root:

# mv ds.p12 /etc/xos/xtreemfs/truststore/certs
# mv mrc.p12 /etc/xos/xtreemfs/truststore/certs
# mv osd.p12 /etc/xos/xtreemfs/truststore/certs
# mv xosrootca.jks /etc/xos/xtreemfs/truststore/certs

For setting up a secured XtreemFS infrastructure, each service provides the
following properties:

92



# specify whether SSL is required
ssl.enabled = true

# server credentials for SSL handshakes
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/\
service.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12

# trusted certificates for SSL handshakes
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/\
xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

service.p12 refers to the converted file containing the credentials of the
respective service. Make sure that all paths and passphrases (xtreemfs in
this example) are correct.

A.3 Hadoop Integration

A.3.1 Introduction

XtreemFS is a distributed filesystem that can be used instead of HDFS the
distributed filesystem made by the developers of Hadoop.

Therefore it replaces the NameNode and the Datanodes provided by HDFS
in a common Hadoop setup. A DIR is used instead of a NameNode, because
it stores the information about where the files and there metadata are located
at the OSDs and the MRC, like the NameNode does for DataNodes. These
DataNodes hold the files that have been stored at HDFS. On XtreemFS these
files are split into metadata and raw filedata to be stored seperated at a MRC
and OSDs.

The three master services JobTracker, DIR and MRC are required in a
Hadoop configuration. They can run alone or in arbitrary combinations on
the same machine. Hadoop can be used with an arbitrary number of Slaves.
It is recommended to run a TaskTracker together with an OSD on each Slave
machine to improve performance, but it is not mandatory.

93



Figure A.1: Hadoop cluster setup recommendation

A.3.2 Quick Start

This section will help you to set up a simple Hadoop configuration with all
necessary services running on the same host.

Required software:

• XtreemFS servers (v 1.2.1) including XtreemFS.jar and yidl.jar (www.XtreemFS.org)

• HadoopClient.jar (www.XtreemFS.org)

• Hadoop (v 0.20.1) (hadoop.apache.org)

• JDK 1.6+ (Oracle/SUN)

Setup:

1. Install and start XtreemFS:
Follow the instructions given by the quick start guide for XtreemFS,
available at Sec.2.2. Notice that the DIR is reachable at localhost:32638,
beause this information will be important later.

2. Download and extract Hadoop

3. Configure Hadoop to use XtreemFS instead of HDFS:

94

http://www.XtreemFS.org
http://www.XtreemFS.org
http://hadoop.apache.org
http://java.sun.com


(a) After downloading and extracting Hadoop you first have to add
XtreemFS, the HadoopClient and yidl to its classpath. To do so
edit the hadoop-env.sh that can be found in the conf directory of
Hadoop and add the paths to XtreemFS.jar, yidl.jar and Hadoop-
Client.jar separated by ’:’ to the HADOOP CLASSPATH. If you
run a Linux-based OS these jar-libraries are located at ’/usr/share/java/ ’.

(b) Now you have to specify some properties at the core-site.xml which
also has to be in the conf directory of Hadoop. If this file does
not exist you can safely create it.

<configuration>

<property>
<name>fs.xtreemfs.impl</name>
<value>org.xtreemfs.common.clients.hadoop.XtreemFSFileSystem</value>
<description>The FileSystem for xtreemfs: uris.</description>

</property>

<property>
<name>fs.default.name</name>
<value>xtreemfs://localhost:32638</value>
<description>Address for the DIR.</description>

</property>

<property>
<name>xtreemfs.volumeName</name>
<value>volumeName</value>
<description>Name of the volume to use within XtreemFS.</description>

</property>

</configuration>

i. The first property is required to register the HadoopClient of
XtreemFS at Hadoop. Now you are able to access XtreemFS
by the Hadoop binary using the fs argument.

ii. The next property makes Hadoop use the DIR instead of a
NameNode, therefore address and port of the DIR has to be
populated. In this case the DIR is located at localhost:32638.

iii. The last property specifies the name of the volume to use
within XtreemFS. Make sure, that the volume (here named
volumeName) does exist. If the volume is not available Hadoop
will not be able to use XtreemFS!

95



Hint: If you want to provide userrights to your Hadoop installation
according to the POSIX file-access-policy, you have to set the
following additional properties:

<property>
<name>xtreemfs.client.userid</name>
<value>hadoopUserID</value>
<description>UserID to be used by Hadoop while accessing XtreemFS.</description>

</property>

<property>
<name>xtreemfs.client.groupid</name>
<value>hadoopGroupID</value>
<description>GroupID to be used by Hadoop while accessing XtreemFS.</description>

</property>

4. To provide the minimum JobTracker configuration for Hadoop you have
also to add the following property to the conf/mapred-site.xml :

<configuration>

<property>
<name>mapred.job.tracker</name>
<value>localhost:9001</value>
<description>Listening address for the JobTracker.</description>

</property>

</configuration>

Which specifies the address where the JobTracker will be running at.

5. Finally you are now able to start the JobTracker by running ’bin/hadoop
jobtracker ’ from within the Hadoop root-directory and a TaskTracker
by executing ’bin/hadoop tasktracker ’.

Congratulations! You successfully finished the quick start guide of the XtreemFS-
Hadoop integration and are now able to use your Hadoop applications like
as is well known or go on with the tutorials available on hadoop.apache.org.

96

http://hadoop.apache.org


A.4 Command Line Utilities

xtfs cleanup Deletes orphaned objects on an OSD and restores orphaned
files.

lsfs.xtreemfs (was xtfs lsvol) Lists the volumes on an MRC.

mkfs.xtreemfs (was xtfs mkvol) Creates a new volume on an MRC.

mount.xtreemfs (was xtfs mount) The XtreemFS client which mounts
an XtreemFS volume locally on a machine.

xtfs mrcdbtool Dumps and restores an XML representation of the MRC
database.

xtfs repl Controls file replication in XtreemFS.

rmfs.xtreemfs (was xtfs rmvol) Deletes a volume.

xtfs sp Displays and modifies default striping policies for directories and
volumes.

xtfs scrub Examines all files in a volume for wrong file sizes and checksums
and corrects wrong file sizes in the MRC.

xtfs stat Displays XtreemFS-specific file information, such as OSD lists and
striping policies.

xtfs test Automatically sets up an XtreemFS testing environment and runs
the automatic XtreemFS test suite.

umount.xtreemfs (was xtfs umount) Un-mounts a mounted XtreemFS
volume.

xtfs vivaldi client service to calculate vivaldi coordinates.

97



98



Appendix B

OSS Appendix

B.1 Support

Please visit the OSS website at the University of Duesseldorf to contact
developers and further information on OSS. The XtreemOS bugtracker is
available at SourceForge.

B.2 OSS Configuration Options

This chapter describes all configuration options of OSS, which affect compi-
lation of OSS. The configuration dialog is accessible via

$> make menuconfig

The configuration dialog is modelled after the Linux kernel configuration
dialog. Press the enter key to select an item and press the space key to
toggle a selection. Use the cursor keys to navigate between items, to exit
from a menu or to display a help text for the selected item.

B.2.1 Debugging

Library developers can configure a number of debugging options.

99

https://sourceforge.net/apps/mantisbt/xtreemos
http://www.cs.uni-duesseldorf.de/AG/BS/english/Research/OSS/


debug level for whole build process

Selects a global level for debug output unless this value is overridden by a
per-file debug level.

debug glib

Enables debug output for glib related operations.

debug networking

Enables debug output for network related operations.

Per-file debug levels

Allows a fine granular debug level selection for specific source files.

B.2.2 Code generation

The binary code of the OSS library can be compiled for different processor
architectures.

Processor Architecture

Defines the processor architecture for which OSS is compiled. OSS supports
the following architectures:

• AMD64/Intel64 architecture (64-bit operating system provided)

• I686 architecture (32-bit or 64-bit supported)

The usage of a 32-bit OSS version in an 64-bit XtreemOS system requires
the installation of a 32-bit compatibility layer (32-bit libraries).

B.2.3 Library Interface

In addition to the base functions which the OSS library always exports, a
number of functions are tagged as optional or experimental.

100



oss mmap

Exports the command oss mmap which creates an object from the content of
a file, and the commands oss munmap and oss msync, which will unmap and
synchronize object and file in a future version of OSS.

oss sync/oss push/oss pull

Provides three additional calls for explicit synchronization of weakly consis-
tent objects. These calls have not yet been implemented in the current OSS
release.

oss nameservice get/oss nameservice set

Exports the functions of the nameservice to the API. This allows applications
to use the internal nameservice of OSS.

nameservice consistency

Selects the consistency model of nameservice entries. Some internally defined
entries are always handled according to strong consistency.

miscellaneous debug functions

Exports further debugging functions to the API (see oss.h).

unstable library interface

Exports functions for retrieving the own node id, the number of nodes, and
setting the number of nodes participating on transactional consistency to
the API (see oss.h). These functions are used for debugging purposes only.
(Without claim to be still available in future versions of OSS).

oss wait

Enables distributed barriers for strong and transactional consistency.

101



hashmap

Exports the functions for managing a hashmap of shared objects. This allows
applications to use the internal hashmap implementation of OSS.

B.2.4 Communication

The OSS library interface deliberately does not specify how nodes are inter-
connected. Internal to the OSS library, node interconnection can be imple-
mented in several ways.

Overlay Routing

Allows configuration of overlay network related options. Unless selected,
the node network is fully meshed; however, connections are established on
demand.

Superpeer Network

Enables routing of OSS messages in the overlay network [Experimental].

B.2.5 Monitoring

For performance measurements as well as for automatic reconfiguration dur-
ing runtime, the library contains a monitoring subsystem. The subsystem
allows the library developer to intersperse monitoring events in the source
code. Different handlers can be attached to monitoring events by specifying
their names in the configuration dialog. The default no-op handler is called
null. The count handler simply counts the number of events. The printf
handler prints the events seen immediately, including the source code loca-
tion and a custom pointer value. The latency handler measures the duration
of events, whereas the slist handler accumulates the pointer values of all
events seen in a singly-linked list.

monitoring

Enables monitoring of several OSS internal operations for statistics and dy-
namic reconfiguration.

102



log monitor data to file

Enables logging the monitoring data to a file. Unless selected, the monitors
print statistics to standard output.

periodic dump

Time interval in seconds of periodic monitoring data dump.

short log

Reduces verbosity of logging information output.

clock

Selects the time source for the monitoring subsystem. Use clock gettime
to measure elapsed time in micro-seconds, use rdtsc to measure CPU clock
cycles, or use gettimeofday to measure elapsed time in micro-seconds using
a POSIX-compliant call.

object mmap

Monitors object mappings.

object alloc

Monitors object allocations.

object free

Monitors object deallocations.

read fault

Monitors detected read accesses.

103



write fault

Monitors detected write accesses.

read access

Monitors read accesses evoked by a test application that has been prepared
to announce read accesses.

write access

Monitors write accesses evoked by a test application that has been prepared
to announce write accesses.

B.2.6 Memory allocator

OSS supports different memory allocators.

mspace allocation from dlmalloc

Enables the mspaces memory allocator. The mspace allocator is a general-
purpose allocator, which is very reliable and versatile.

millipage implementation

Enables the millipage memory allocator. This allocator concentrates multiple
objects allocated on different memory pages on one physical page frame. The
millipage allocator is well suited for allocations of small objects if another
allocator might induce false sharing.

simple list allocator

Enables the simple first-fit memory allocator. The simple list allocator is very
fast for allocations, but frequent deallocations may induce external fragmen-
tation.

104



replica management

Currently, replication is handled using invalidations and requests for invalid
objects. A future release of the library will include a full-featured replica
management that handles a combination of object invalidations and updates.

diff computation and transfer

Diff computation and transfer will speed up object accesses, but it is still
under development and not included in the current release.

B.2.7 Applications

build raytracer

Builds the raytracer application, shipped with OSS.

build wissenheim

Builds the wissenheim application out of OSS. This option is only intended
for debugging purposes regarding Wissenheim over OSS. Wissenheim on
XtreemOS comes with its own build system.

B.2.8 Remote installation

UDUS infrastructure specific options (not for public usage).

105



Index

Access Policy, 73
Authorize All, 73
POSIX ACLs, 73
POSIX Permissions, 73
Volume ACLs, 73

allow others option, 56
allow root option, 56
Architecture, 20
Authentication, 19
Authentication Provider, 24, 71

NullAuthProvider, 72
SimpleX509AuthProvider, 72
XOSAuthProvider, 72

Authorization, 19
Authorize All Access Policy, 73

CA
Certificate Authority, 26

Certificate, 20, 25
Certificate Authority, 26
Client, 21
Create Volume, 54
Credentials, 25

Delete Volume, 54
DIR, 21
Directory Service, 21

fileID, 64
FUSE, 21

Hadoop
Integration, 93

init.d, 49

Java KeyStore, 26
JKS, 26

Metadata, 20
Metadata and Replica Catalog, 21
Metadata Server, 21
mkfs.xtreemfs, 54
Mount, 55
mount.xtreemfs, 55
Mounting, 21
MRC, 21

NullAuthProvider, 72

Object, 20
object, 79
object sharing service, 79
Object Storage Device, 21
Object-based File System, 20
On-close Replication, 68
OSD, 21
OSD Selection Policy, 73
OSS, 79

PKCS#12, 25
Policy

Access Policy, 73
OSD Selection Policy, 73
Striping Policy, 20, 77

POSIX ACLs Access Policy, 73
POSIX Permissions Access Policy, 73

RAID0, 19, 77
raytracer application, 84
Read-only Replication, 65

106



Replication, 65, 68
on-close, 68
read-only, 65

rmfs.xtreemfs, 54

SAGA, 85
SimpleX509AuthProvider, 72
SSL, 20
Status Page, 50
Storage Server, 21
Stripe Size, 77
Striping, 77

Stripe Size, 77
Striping Policy, 20, 77
Striping Width, 77

umount.xtreemfs, 56
Unmount, 56
user allow other option, 56
UUID, 23

VFS, 21
Volume, 20, 21

Create, 54
Delete, 54
Mount, 55
Un-mount, 56

Volume ACLs Access Policy, 73

X.509, 20, 25
XOSAGA, 85
XOSAuthProvider, 72
xtfs mkvol, 54
xtfs mount, 55
xtfs rmvol, 54
xtfs sp, 65
xtfs stat, 64
xtfs umount, 56
XtreemFS stat, 64
XtreemFS striping policy tool, 65
XtreemOS

Integration, 91

XtreemOS Certificates, 72

107


	Executive Summary
	The XtreemFS User Guide
	Changes
	Quick Start
	About XtreemFS
	What is XtreemFS?
	What makes XtreemFS a distributed file system?
	What makes XtreemFS a replicated file system?


	Is XtreemFS suitable for me?
	XtreemFS is ...
	XtreemFS is not ...


	Core Features
	Distribution.
	Replication.
	Striping.
	Security.


	Architecture
	XtreemFS Components.


	XtreemFS Services
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Configuration
	A Word about UUIDs
	Automatic DIR Discovery
	Authentication
	Configuring SSL Support
	Converting PEM files to PKCS#12
	Importing trusted certificates from PEM into a JKS
	Sample Setup

	List of Configuration Options
	admin_password optional
	authentication_provider
	babudb.baseDir
	babudb.cfgFile optional
	babudb.checkInterval optional
	babudb.compression optional
	babudb.debug.level optional
	babudb.localTimeRenew experimental, optional
	babudb.logDir
	babudb.maxLogfileSize optional
	babudb.pseudoSyncWait optional
	babudb.repl.backupDir experimental, optional
	babudb.repl.chunkSize experimental, optional
	babudb.repl.participant experimental, optional
	babudb.repl.sync.n experimental, optional
	babudb.ssl.authenticationWithoutEncryption experimental, optional
	babudb.ssl.enabled experimental, optional
	babudb.ssl.service_creds experimental, optional
	babudb.ssl.service_creds.container  experimental, optional
	babudb.ssl.service_creds.pw experimental, optional
	babudb.ssl.trusted_certs experimental, optional
	babudb.ssl.trusted_certs.container experimental, optional
	babudb.ssl.trusted_certs.pw experimental, optional
	babudb.sync
	babudb.worker.maxQueueLength optional
	babudb.worker.numThreads optional
	capability_secret
	capability_timeout optional
	checksums.enabled
	checksums.algorithm
	debug.level optional
	debug.categories optional
	dir_service.host
	dir_service.port
	discover optional
	geographic_coordinates optional
	hostname optional
	http_port
	listen.address optional
	listen.port
	local_clock_renewal
	monitoring
	monitoring.email.programm
	monitoring.email.receiver
	monitoring.email.sender
	monitoring.max_warnings
	no_atime
	object_dir
	osd_check_interval
	remote_time_sync
	report_free_space
	service_timeout_s
	ssl.enabled
	ssl.grid_ssl
	ssl.service_creds
	ssl.service_creds.container
	ssl.service_creds.pw
	ssl.trusted_certs
	ssl.trusted_certs.container
	ssl.trusted_certs.pw
	startup.wait_for_dir
	uuid


	Execution and Monitoring
	Starting and Stopping the XtreemFS services
	Web-based Status Page
	DIR Service Monitoring

	Troubleshooting

	XtreemFS Client
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Volume Management
	Creating Volumes
	Deleting Volumes
	Listing all Volumes

	Accessing Volumes
	Mounting and Un-mounting
	Mount Options

	Troubleshooting

	XtreemFS Tools
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Maintenance Tools
	MRC Database Conversion
	Scrubbing and Cleanup
	Setting the Service Status

	User Tools
	Showing XtreemFS-specific File Info
	Changing Striping Policies
	Read-Only Replication
	Automatic On-Close Replication
	Changing OSD and Replica Selection Policies
	Setting and Listing Policy Attributes

	Vivaldi

	Policies
	Authentication Policies
	UNIX uid/gid - NullAuthProvider
	Plain SSL Certificates - SimpleX509AuthProvider
	XtreemOS Certificates - XOSAuthProvider

	Authorization Policies
	OSD and Replica Selection Policies
	Attributes
	Predefined Policies
	Filtering Policies
	Grouping Policies
	Sorting Policies


	Striping Policies
	Plug-in Policies


	The OSS Library Interface and User Guide
	Overview
	Changes and New Features
	Transaction Management
	Communication

	Installation of OSS
	Installing OSS Using the Distribution Packages
	Building and Installing OSS from Source
	Prerequisites
	Compilation
	Installation

	Testing the OSS Installation
	Simple test of Object Sharing
	The Raytracer Application


	Developing Applications using OSS
	Internal Interface of the OSS Library
	Linking against the OSS Library

	Performance Measurements

	XtreemFS Appendix
	Support
	XtreemOS Integration
	XtreemFS Security Preparations

	Hadoop Integration
	Introduction
	Quick Start

	Command Line Utilities

	OSS Appendix
	Support
	OSS Configuration Options
	Debugging
	debug level for whole build process
	debug glib
	debug networking
	Per-file debug levels

	Code generation
	Processor Architecture

	Library Interface
	oss_mmap
	oss_sync/oss_push/oss_pull
	oss_nameservice_get/oss_nameservice_set
	nameservice consistency
	miscellaneous debug functions
	unstable library interface
	oss_wait
	hashmap

	Communication
	Overlay Routing
	Superpeer Network

	Monitoring
	monitoring
	log monitor data to file
	periodic dump
	short log
	clock
	object_mmap
	object_alloc
	object_free
	read_fault
	write_fault
	read_access
	write_access

	Memory allocator
	mspace allocation from dlmalloc
	millipage implementation
	simple list allocator
	replica management
	diff computation and transfer

	Applications
	build raytracer
	build wissenheim

	Remote installation



