
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

First Draft Specification of Programming Interfaces
D3.1.1

Due date of deliverable: November 30th, 2006
Actual submission date: December 21st, 2006

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.1

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.1 / Last edited by Thilo Kielmann / December 21st, 2006

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)



Revision history:
Version Date Authors Institution Section affected, comments
0.1 06/10/27 Andre Merzky VUA initial draft
0.9 06/11/06 Thilo Kielmann VUA first complete draft
0.99 23/11/06 Thilo Kielmann VUA after internal review
0.991 27/11/06 Andre Merzky VUA almost final
1.0 28/11/06 Thilo Kielmann VUA final version
1.1 18/12/06 Thilo Kielmann VUA covering comments from deliverable harmonization
1.1 21/12/06 Guillaume Pierre VUA very final warp-up



Executive Summary
This document presents the first draft specification of programming interfaces for
the XtreemOS operating system and services. It first outlines the design space for
grid API’s into which the XtreemOS programming interfaces can be positioned.
Then, the requirements on XtreemOS API’s, as stated by the other work packages
of XtreemOS, are listed and discussed. From this discussion we conclude to de-
clare the upcoming OGF standard SAGA (the “Simple API for Grid Applications”)
to be the first draft of the XtreemOS API. XtreemOS-specific extensions and “na-
tive” API’s will be added as soon as possible, namely in the next API version, due
in month 18 of the project.

1



1 Introduction
The objective of work package 3.1 is to provide the API of XtreemOS, and a cor-
responding runtime system for grid applications. The goal is to allow applications
to run on any XtreemOS platform, be it a handheld device, a PC, a federation
of machines, or a virtual organization (VO) comprising systems of all these cat-
egories. As far as possible, existing Linux applications shall be able to run on
XtreemOS with little or no modifications.

To achieve this objective, various interfaces need to be coordinated. A distinc-
tion has to be made between application interfaces and management interfaces;
the latter being those necessary for XtreemOS-specific services and Linux exten-
sions.

The specification of the XtreemOS API is being performed by agreement be-
tween representatives of all project partners, representing both groups of interface
providers and interface users. This is an iterative process: a first specification,
intended as an early draft, is being agreed upon early in the project, such that im-
mediate implementation experience can be gained and strengths and weaknesses
identified. Several milestones during the project will cover revisions and improve-
ments of the API, until the final version will meet all requirements of both ap-
plications and system implementors. The above-mentioned first specification is
described in this document.

This document is structured as follows. Section 2 will first outline the design
space for grid API’s into which the XtreemOS programming interfaces can be
positioned. Section 3 lists and discusses the requirements on XtreemOS API’s,
as stated by the other work packages of XtreemOS. Section 4 presents the first
draft specification of XtreemOS programming interfaces. Section 5 concludes
and outlines the following steps of work package 3.1.

2 Grid Programming Models and API’s
In previous work [5], we have investigated programming models for grid applica-
tions and their possible incarnation in API’s. In this section, we briefly outline the
grid API design space into which the XtreemOS programming interfaces can be
positioned.

2.1 Properties of Grid API’s
To summarize out findings from [5], grid API’s have to provide several properties.
These can be divided in two categories, functional and non-functional properties.
The functional properties describe the functionality required by applications to

2



run in grid environments, while the non-functional properties determine the con-
straints on grid API functionality. As such, issues like performance, security, and
fault-tolerance influence the suitability of certain programming abstractions.

Functional properties

• Job submission, spawning, and scheduling:
Users as well as running jobs need to submit new application jobs to the
grid, usually via some job submission service.

• Access to file and data resources:
Most real-world application have to process some form of input data, be
it files, data bases, or streams. Similarly, generated output data has to be
stored on behalf of the users.

• Inter process communication:
Often, the processes of a parallel or distributed application need to commu-
nicate with each other. Several programming models for grid applications
have been developed, among which are MPI [4], shared objects [7], or re-
mote procedure calls [10].

• Application monitoring and steering:
In case of long running applications, users need to track their progress in
order to avoid costly repetition of unsuccessful jobs. For this purpose, users
need to inspect and possibly modify the status of their application while it
is running on some nodes in a grid.

Non-functional properties

• Performance:
As high-performance computing is one of the driving forces behind grids,
performance is the most prominent, non-functional property of grid opera-
tions.

• Fault tolerance:
Frequently, grid applications fail due to faulty configurations, middleware
failures, application failures, and also due to hardware failures and network
outages. Consequently, error handling becomes an integral part of grid run-
time environments and grid APIs.

• Security and trust:
A grid API needs to support mutual authentication of users and resources,
as well as access control to resources (authorization).

3



• Platform independence:
It is an important property for programming environments to keep the ap-
plication code independent from details of the grid platform, like machine
names or file system layouts for application executables and data files.

2.2 Scoping of Grid API’s

Taking into account both the diversity of the above-identified properties, and the
diversity of grid platforms (HPC machines, clusters, individual PC’s) and mid-
dleware services, it becomes obvious that there can not be a single, unifying grid
API. Instead, a palette of grid programming abstractions is needed, each suitable
for its respective problem domain.

Virtualization is the predominant purpose of all (grid) middleware. Likewise,
operating systems virtualize the resources of a single computer; and cluster operat-
ing systems like, e.g., Kerrighed [9] virtualize the resources of a cluster computer
in order to provide a single, powerful system instead of a collection of individual
nodes. XtreemOS will virtualize a wide spectrum of different systems, ranging
frommobile devices, via individual PC’s and clusters, to virtual organization com-
posed from these. Figure 1 outlines the XtreemOS software stack, ranging from
Linux-XOS for PC’s, clusters, and mobile devices, to the service layer spanning
whole virtual organizations. The task of the XtreemOS API will be to provide
unified and coordinated interfaces to all of these.

Figure 1: The XtreemOS software stack.

Each level of virtualization provides a uniform interface to a variety of het-
erogeneous, individual entities. With each virtualization layer, the use of the re-
sources becomes simpler, however at the price of loosing part of the control over

4



grid−aware
application

service and resource abstraction layer

application support tools

grid−enabled programming environments

grid−unaware application

simplified API

Figure 2: Hierarchy of grid programming abstractions.

the resources which may cause problems with non-functional aspects, like system
performance.

Figure 2 is providing a more detailed view on a stack of virtualization abstrac-
tions provided to grid applications. The bottom of the stack forms the service and
resource abstraction layer. This layer provides an API that virtualizes the different
grid middleware or XtreemOS services. The most prominent example of such a
layer is the Grid Application Toolkit (GAT) [1].

On top of this layer may sit a set of (optional) application support tools. Such
tools provide additional functionality, adding value to plain middleware services,
likely tailored to application needs. Examples for these tools can be found in
CoreGRID’s proposed mediator component toolkit [6]. These components are
supposed, for example, to provide application-level metadata or to dynamically
tune and steer running applications. Such components add another layer of vir-
tualization by providing more comprehensive functionality, on top of the plain
service and resource virtualization.

An important, original design goal of the Grid Application Toolkit [1] (GAT)
was to provide a simplified API for programmers of grid-aware applications (see
figure 2). Meanwhile, the GAT has been recognized as an attractive programming
platform because of its service and resource abstraction functionality. Many de-
velopers are currently also trying to build application support tools using the GAT,
requesting and leading to additional functionality and hence less simplicity in the
GAT interface.

Independent of the GAT, within the Open Grid Forum, we are working on a
Simple API for Grid Applications (SAGA) that will provide a standardized, sim-
plified grid API [3]. With SAGA, simplicity stems from both uniformity across
different middleware platforms, and also from the reduction to functionality that is

5



needed to run application code, purposefully excluding features needed for man-
agement or monitoring of the grid services and resources themselves.

Both GAT and SAGA interfaces aim at grid-aware (or “grid-enabled”) ap-
plications. These are applications that are explicitly using grid resources like
submitting additional jobs to other machines or accessing remote files or data
bases. A different class of applications is grid-unaware. Such applications treat
a grid as a completely virtualized execution environment. Examples of such pro-
gramming environments are special MPI versions [4] and remote object-based
systems like Ibis [13] or ProActive [12]. Part of the XtreemOS work will lead
to further grid-enabled programming abstractions that hide the platform diversity
behind functionality that slightly extends existing Linux (POSIX) API’s with grid-
enabling features. One prominent example is the support for virtual organizations
in XtreemOS.

For the design of the XtreemOS API there is a strong tension between the
application requirements (for the diverse set of applications that are more or less
grid-aware) on one side, and the operating system and service-layer on the other
side, where different services provide their shares to the overall XtreemOS func-
tionality. Coordinating the proposed service functionality and application needs
is the most important goal of the API work package.

To conclude, XtreemOS will need three kinds of API’s:

1. Application-level API’s for grid-aware applications

2. Application-level API’s for grid-unaware but XtreemOS-aware applications

3. Management API’s for the XtreemOS systems and services

In the next section, we will put these kinds of anticipated API’s in the context of
the other XtreemOS work packages.

3 Requirements on the XtreemOS API
As outlined before, the XtreemOS API is supposed to meet the requirements of
both the application users and the service and extension providers of XtreemOS.
We summarize both sets of requirements in turn.

3.1 Application requirements
Work package 4.2 (Applications, Experiments, Evaluation) has specified a number
of application-level requirements [14]. The requirements on the XtreemOS API
are summarized in Table 1.

6



API Requirements
R43 Other API Standards as basis for XtreemOS API

XtreemOS API must consider the following standards as a basis:
SAGA (especially the subsets DRMAA, GAT). Furthermore,
any other standard allowing application to access user and/or job
information is welcome.
Additionally, one application requires the following
Globus/Globus-related components: GridFTP, Apache Axis,
and the GSI public key infrastructure. Here, an equivalent
XtreemOS functionality is needed.

R44 Demand for POSIX like extension
Mandatory access control (ACL) as defined in e.g. in POSIX.1e,
IEEE 1003.1e/2c (which was withdrawn) is required by one ap-
plication. Note, all 28 calls must be provided. Furthermore, It
would prove useful if functions for management of processes on
remote machines would be part of the XtreemOS API.

R45 XtreemOS API language support
XtreemOS must support C, C++, Java, and Fortran 77. Further-
more, Ada, Python and Perl should be supported. Fortran 77
should be supported via C bindings.

R46 Degree of Interoperability
It should be possible to use XtreemOS as a backend for GT4 WS-
GRAM.

Table 1: API requirements as specified by WP 4.2

From this group, R43–R45 are shaping the overall API structure and will be
addressed by the XtreemOS API. Requirement R46, however, while striving at
integration of XtreemOS and existing grid middleware (here: Globus), can techni-
cally not be addressed at the API level; it has to be supported on the infrastructure
(service) level. During discussions at the XtreemOS Düsseldorf workshop it was
agreed that WP 3.3 will take responsibility of this requirement.

Besides those requirements that are specifically targeted at the XtreemOS API,
WP 4.2 has also stated several General Requirements. Table 2 summarizes those
general requirements that need to be taken care of on the API level.

The requirements from this group will be taken into account for the API. Sev-
eral of these requirements are marked asOptional byWP 4.2. We are anticipating,
however, to support the complete set of requirements.

Besides API specifications for these requirements, the service-providing work
packages (from sub projects 2 and 3) will have the foremost task of addressing

7



General Requirements
R1 XtreemOS supports data- intensive and compute-intensive applications
R9 XtreemOS needs to provide software licensing mechanisms
R10 XtreemOS has to provide for fast and reliable communication
R11 XtreemOS must support IPv6
R14 XtreemOS shall support multicast
R15 XtreemOS needs to provide access to various grid services
R17 XtreemOS must support the execution of interactive and batch jobs

Table 2: General requirements as specified by WP 4.2

these. API definition can only be performed at a later phase, when proper services
will be available, or at least well-enough specified to allow to design APIs.

3.2 Service-driven requirements
Besides the application-driven requirements, the technical discussions among rep-
resentatives of the technical work packages (sub projects 2 and 3) of XtreemOS
have lead to a set of additional requirements on the API, listed in Table 3. These
requirements are more related to the upcoming XtreemOS services and Linux ex-
tensions.

For this group of requirements, API definition can only be performed at a later
phase, when proper services will be available, or at least specified well-enough to
allow API design.

At the current stage of the project, however, the services and extensions to be
provided by XtreemOS are not yet sufficiently advanced to start defining API’s for
them. This perception is one of the results of the technical project meeting, held
in October 2006 in Düsseldorf. Consequently, the first version of the XtreemOS
API will be confined to meeting the requirements of the application users within
the project.

3.3 Summary
API definition requires maturity about concepts, requirements, and provided ser-
vice functionality. At the current status of the XtreemOS project, we have to
confine ourselves to specify the application-level API’s for grid-aware applica-
tions. Both application-level and management-level API’s for XtreemOS-specific
services can not be sensibly specified yet; such specifications would be doomed to
be incomplete or erratic or otherwise of little use to potential applications, due to
the early status (albeit according to the project schedule) of the XtreemOS service

8



Additional Requirements
RA1 shared memory API
RA2 resource discovery/exploration
RA3 POSIX-ACL on meta data items (it was agreed to provide that as

a separate library/package)
RA4 notification on file size and meta data changes
RA5 file versioning
RA6 Ada support is not necessary immediately; it needs further discus-

sion in later stages of the project
RA7 job description: allow to specify QoS requirements, such as band-

width, no other application runs on a resource, location (country),
latency/proximity.

RA8 support for job dependencies
RA9 application-level signalling support

Table 3: Additional requirements on the API

development. These kinds of API’s will thus be added in the next API specifica-
tion, as defined in deliverable D3.1.2, due at month 18. In the following, we will
present the application-level API’s for grid-aware applications that will define the
XtreemOS API version 1.

4 API Specification
Based on the above discussion, we define the first draft XtreemOS API. We focus
on application-level API’s for grid-aware applications, addressing the application
requirements, R1, R9–R11, R14, R15, R17, and R43–R45.

4.1 Rationale for choosing the SAGA interface
The currently most promising candidate for an Application level Grid Program-
ming Interface is the SAGAAPI [3] as specified by the Open Grid Forum (OGF [11]).
Also, the SAGAAPI has been explicitly cited as possible candidate for the XtreemOS
Grid API by several application groups (R39), together with DRMAA [2] and
GAT [1], which are both superceeded by SAGA. For this reason, the first draft
specification of an application-level XtreemOS API will be a SAGA compliant
API implementation with bindings to the XtreemOS services.

9



M
on

ito
rin

g 
M

od
el

Er
ro

r H
an

dl
in

g
Lo

ok
 &

 F
ee

l

Se
ss

io
n 

Ha
nd

lin
g

Se
cu

rit
y 

Co
nt

ex
t

At
tri

bu
te

 In
te

rfa
ce

Ba
se

 O
bj

ec
t

Ta
sk

 M
od

el

Jo
b 

M
an

ag
em

en
t

RP
C

St
re

am
s

Fi
le

 M
an

ag
em

en
t

Na
m

e 
Sp

ac
e 

M
ng

m
t.

Re
pl

ic
a 

M
an

ag
em

en
t

jo
b_
de
sc

in
te
rf
ac
e

im
pl
em
en
ts

in
he
ri
ts

cl
as
s

mo
ni
to
ra
bl
e

jo
b_
se
rv
ic
e

jo
b

ta
sk
_c
on
t.

ta
sk

co
nt
ex
t

se
ss
io
n

me
tr
ic

ex
ce
pt
io
n

as
yn
c

ca
ll
ba
ck

at
tr
ib
ut
e

ob
je
ct

er
ro
r_
ha
nd
.

jo
b_
se
lf

lo
gi
ca
l_
fi
le

ns
_d
ir
ec
to
ry

fi
le

rp
c

st
re
am

st
re
am
_s
er
v.

ns
_e
nt
ry

di
re
ct
or
y

lo
gi
ca
l_
di
r.

st
ee
ra
bl
e

Figure 3: The SAGA class and interface hierarchy

10



We consider the following document [3] to be a part of this deliverable. Due
to its size (250 pages), we refrain from directly including the SAGA specification
in this document.

T. Goodale, S. Jha, T. Kielmann, A. Merzky, J. Shalf, C. Smith. A
Simple API for Grid Applications (SAGA). Grid Forum Working
Draft GWD-R, Open Grid Forum (OGF), 2006.

4.2 SAGA scope
According to Figure 2, the scope of the SAGA API can be identified. SAGA
thus is aiming at grid-aware applications to which a simplified API is provided.
Aiming at grid-aware applications means exposing the fact that there are several,
distributed resources, while a simplified API is driven by application needs rather
than service capabilities.

In contrast, SAGA does not provide abstractions of grid-enabled programming
environments which aim at grid-unaware applications. For example, interfaces
likes the ones provided by MPI [8], Ibis [13] or ProActive [12] are outside the
scope of SAGA.

Likewise, SAGA does not (directly) provide interfaces to particular grid ser-
vices. Only the implementations of SAGA will use existing services for providing
the simplified SAGA API. Also, service and resource management interfaces are
outside the scope of SAGA.

4.3 SAGA overview
The SAGA API consists of a number of interface and class specifications. The re-
lation between these is shown in Figure 3. This figure also marks which interfaces
are dominating the SAGA look-and-feel (the non-functional part of the API), and
which classes are combined to functional API packages.

4.3.1 SAGA Look-and-Feel

Error handling Each SAGA API call has an associated list of exceptions it may
throw. These exceptions all extend the saga::exception class.

All objects in SAGA implement the error_handler, which allows a
user of the API to query for the latest error associated with a saga ob-
ject. In languages with exception facilities, such as Java, C++ and Perl,
the language binding may allow exceptions to be thrown instead. Bind-
ings for languages without exception handling capabilities MUST stick to

11



the error_handler interface described here, but MAY define additional
language native means for error reporting.

Object The SAGA object interface provides methods which are essential for all
SAGA objects. It provides a unique ID which helps maintain a list of SAGA
objects at the application level as well as allowing for inspection of objects
type and its associated session.

Session The session object provides the functionality of a session handle, which
isolates independent sets of SAGA objects from each other. Sessions also
support the management of security information (see saga::context).

Context The saga::context class provides the functionality of a security in-
formation container. A context is created, and attached to a session handle.
As such it is available to all objects instantiated in that session. Multiple
contexts can co-exist in one session.

Attributes There are various places in the SAGA API where attributes need to be
associated with objects, for instance for job descriptions and metrics. The
’Attribute’ interface provides a common interface for storing and retrieving
attributes.

Monitoring The ability to query Grid entities about state is requested in several
SAGA use cases. Also, the SAGA task model introduces numerous new use
cases for state monitoring.

This package definition approaches the problem space of monitoring to
unify the various usage patterns, and to transparently incorporate SAGA
task monitoring. The paradigm is realised by introducing monitorable SAGA
objects, which expose metrics to the application, which represent values to
be monitored.

A closely related topic is Computational Steering, which is (for our pur-
poses) not seen independently from Monitoring: in the SAGA approach,
the steering mechanisms extend the monitoring mechanisms by the ability
to push values back to the monitored entity, i.e. to introduce writable met-
rics.

Tasks Operations performed in highly heterogenous distributed environments may
take a long time to complete, and it is thus desirable to have the ability to
perform operations in an asynchronous manner. The SAGA task model pro-
vides this ability to all other SAGA classes.

12



4.3.2 SAGA Functionality

Jobs This packages has been designed for submitting jobs to a grid resource, ei-
ther in batch mode, or in an interactive mode. It also describes how to con-
trol these submitted jobs (e.g. to cancel(), suspend(), or signal()
a running job), and how to retrieve status information for both running and
completed jobs.
This API is also intended to incorporate the design of the DRMAA API [2]
from where much of the SAGA jobs specification was taken, with many of
the differences arising from an attempt to make the job API consistent with
the overall SAGA look and feel.

Name Spaces Several SAGA packages share the notion of name spaces and op-
erations on these namespaces. In order to increase consistency in the API,
those packages share the same API paradigms. The SAGA name spaces al-
low to operate on arbitrary hierarchical name spaces, such as used in physi-
cal, virtual and logical file systems, and in information systems.
The API is inspired by the POSIX standard, which defines tools and calls
to handle the name space of physical files (directories). The methods listed
for the interfaces have POSIX like syntax and semantics.

Files The ability to access the contents of files regardless of their location is cen-
tral to many of the SAGA use cases. It is useful to note that interactions
with files as opaque entities (i.e., as entries in file name spaces) are covered
by the name space package. The classes of the Files package supplement
the namespace package with operations for the reading and writing of the
contents of files. For all methods, the descriptions and notes of the equiv-
alent methods in the name space package apply if available, unless noted
here otherwise.
The described classes are syntacically and semantically POSIX oriented.
Large numbers of simple POSIX-like remote data access operations are,
however, prone to latency related performance problems. To allow for effi-
cient implementations, the presented API borrows ideas from GridFTP and
other specifications which are widely used for remote data access. These
extentions should be seen as just that: optimizations. Implementations of
this package MUST implement the POSIX-like read(), write() and
seek() methods, and MAY implement the additional optimized methods.

Logical Files This section of the SAGAAPI describes the interaction with replica
systems. Numerous SAGA use cases required replica management func-
tionality in the API – however, only a small number of operations have

13



been requested. The methods in these interfaces are hence limited to the
creation and maintainance of logical files, replicas, and to search on logical
file meta data.

Streams A number of use cases involved launching of remotely located compo-
nents in order to create distributed applications. These use cases require
simple, remote socket connections to be established between these compo-
nents and their control interfaces.

The target of the stream API is to establish the simplest possible authenti-
cated socket connection with hooks to support authorization and encryption
schemes. The stream API is not performance-oriented, focused on TCP
socket connections, and does not attempt to create a new IPC programming
paradigm.

GridRPC GridRPC is one of the few high level APIs that have been specified
by the GGF [10]. Thus including the GridRPC specification in the SAGA
API benefits both SAGA and the GridRPC effort: SAGA becomes more
complete and provides a better coverage of its use cases with a single look-
and-feel, whilst GridRPC gets embedded into a set of other tools of similar
scope, which opens it to a potentially wider user community, and ensures
its further development.

4.4 Summary
We have chosen the upcoming OGF standard SAGA as the first draft API for
XtreemOS, as it is the best match to the requirements from the other work pack-
ages in the project. Those requirements which are not covered by the current
SAGA specification will be provided by additional API packages in the same
framework (SAGA is extensible), and will, where sensible and possible, pushed
into the OGF SAGA specification work. XtreemOS-specific extensions will, where
needed, be added in the next version of the XtreemOS API.

5 Conclusion
In this document, we have presented the first draft specification of programming
interfaces for the XtreemOS operating system and services. We have outlined
the design space for grid API’s into which the XtreemOS programming interfaces
can be positioned. We have found that, for the design of the XtreemOS API,
there is a strong tension between the application requirements (for the diverse set
of applications that are more or less grid-aware) on one side, and the operating

14



system and service-layer on the other side, where different services provide their
shares to the overall XtreemOS functionality. Coordinating the proposed service
functionality and the application needs is the most important goal of the API work
package.

We have identified three kinds of API’s needed by XtreemOS: (1) application-
level API’s for grid-aware applications, (2) application-level API’s for grid-unaware
but XtreemOS-aware applications, and (3) management API’s for the XtreemOS
systems and services.

API definition requires maturity about concepts, requirements, and provided
service functionality. At the current status of the XtreemOS project, we have to
confine ourselves to specify the group of application-level API’s for grid-aware
applications. Both application-level and management-level API’s for XtreemOS-
specific services can not be sensibly specified yet; such specifications would be
doomed to be incomplete or erratic or otherwise of little use to potential appli-
cations, due to the early status (albeit according to the project schedule) of the
XtreemOS service development. These kinds of API’s will thus be added in the
next API specification, as defined in deliverable D3.1.2, due at month 18.

According to the requirements on XtreemOS API’s, as stated by the other
work packages of XtreemOS, we have concluded to declare the upcoming OGF
standard SAGA (the “Simple API for Grid Applications”) to be the first draft of the
XtreemOS API. XtreemOS-specific extensions and “native” API’s will be added
as soon as possible, namely in the next API version, due in month 18 of the project.

In the period until month 18, the anticipated functionality extensions of the
XtreemOS operating system and its services will have matured to a status at which
API’s can be defined with good confidence. In the same period, the first imple-
mentation of the SAGA API to XtreemOS will be available.

References

[1] Gabrielle Allen, Kelly Davis, TomGoodale, Andrei Hutanu, Hartmut Kaiser,
Thilo Kielmann, Andre Merzky, Rob van Nieuwpoort, Alexander Reinefeld,
Florian Schintke, Thorsten Schütt, Ed Seidel, and Brygg Ullmer. The Grid
Application Toolkit: Towards Generic and Easy Application Programming
Interfaces for the Grid. Proceedings of the IEEE, 93(3):534–550, 2004.

[2] R. Brobst, Waiman Chan, F. Ferstl, J. Gardiner, J. P. Robarts, A. Haas,
B. Nitzberg, H. Rajic, and J. Tollefsrud. Distributed Resource Management
Application API Specification 1.0. Grid Forum Document GFD.22, Global
Grid Forum, September 2002.

15



[3] T. Goodale, S. Jha, T. Kielmann, A. Merzky, J. Shalf, and C. Smith. A
Simple API for Grid Applications (SAGA). Grid Forum Working Draft,
Open Grid Forum, 2006. http://forge.ggf.org/sf/projects/
saga-core-wg.

[4] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Imple-
mentation of the Message Passing Interface. Journal of Parallel and Dis-
tributed Computing, 2003.

[5] Thilo Kielmann. Programming Models for Grid Applications and Systems:
Requirements and Approaches. In 2006 IEEE John Vincent Atanasoff Inter-
national Symposium on Modern Computing (JVA 2006), pages 27–32, Sofia,
Bulgaria, 2006.

[6] Thilo Kielmann, Gosia Wrzesinska, Natalia Currle-Linde, and Michael
Resch. Redesigning the SEGL Problem Solving Environment: A Case Study
of Using Mediator Components. In Integrated Research in Grid Computing.
Springer Verlag, 2006.

[7] Jason Maassen, Thilo Kielmann, and Henri E. Bal. Parallel Application
Experience with Replicated Method Invocation. Concurrency and Compu-
tation: Practice and Experience, 13(8–9):681–712, 2001.

[8] Message Passing Interface Forum. MPI: A Message Passing Interface Stan-
dard. International Journal of Supercomputing Applications, 8(3/4), 1994.

[9] Christine Morin, Pascal Gallard, Renaud Lottiaux, and Geoffroy Vallée. To-
wards an Efficient Single System Image Cluster Operating System. Future
Generation Computer Systems, 20(2), 2004.

[10] Hidemoto Nakada, Satoshi Matsuoka, Keith Seymour, Jack Dongarra, Craig
Lee, and Henri Casanova. A GridRPC Model and API for End-User Appli-
cations. Grid Forum Document, GFD.52, 2005. Global Grid Forum.

[11] Open Grid Forum (OGF). http://www.ogf.org/.

[12] ProActive. http://www.inria.fr/oasis/ProActive.

[13] Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesinska, Rutger Hof-
man, Ceriel Jacobs, Thilo Kielmann, and Henri E. Bal. Ibis: a Flexible
and Efficient Java-based Grid Programming Environment. Concurrency and
Computation: Practice and Experience, 17(7–8):1079–1107, 2005.

[14] XtreemOS project consortium. Requirements capture and use case scenarios.
Deliverable D.4.2.1, 2006.

16

http://forge.ggf.org/sf/projects/saga-core-wg
http://forge.ggf.org/sf/projects/saga-core-wg
http://www.ogf.org/

