
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Second Draft Specification of Programming Interfaces
D3.1.2

Due date of deliverable: November 30th, 2007
Actual submission date: January 10th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.1

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.0 / Last edited by Thilo Kielmann / January 10th, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 22/10/07 Ana Oprescu, Thilo Kielmann VUA initial draft
0.2 30/10/07 Guillaume Pierre VUA minor update vs. WP3.2
0.99 03/01/08 Ana Oprescu, Thilo Kielmann VUA complete version
1.0 10/01/08 Thilo Kielmann VUA final version, after WP leader review

Reviewers:
All work package leaders from SP2 and SP3

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T3.1.1 Specification of XtreemOS API extensions to the set of
POSIX specifications

VUA∗, all partners except CDC

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable.
∗Task leader

Executive Summary
This document presents the second draft specification of the API for XtreemOS.
In the earlier deliverable D3.1.1 [9], we have proposed the upcoming, OGF-
standardized SAGA API [3] as the first draft API. In this report, we present refine-
ments to SAGA, especially for facilitating XtreemOS-specific functionality. Be-
sides improvements made on the SAGA specification itself (thus XtreemOS con-
tributing to the upcoming OGF standard), we present how the following XtreemOS
functionalility can be accessed via the API: application management (including
checkpoint/recovery), the XtreemFS file system, the XtreemOS VO management,
as well as access to the LinuxSSI cluster operating system.

1

Contents
Executive Summary 1

1 Introduction 4

2 XtreemOS application requirements revisited 6
2.1 Updated requirements on XtreemOS interfaces 7
2.2 Implementation of these requirements 8

3 Extensions included in the SAGA-CORE specification 9

4 VO Management 12

5 Application Execution Management 14
5.1 General Terminology and Scoping 14
5.2 Job Submission . 15

5.2.1 Terminology and Data Structures 15
5.2.2 The API Mapping . 16

5.3 Job Management . 17
5.3.1 Terminology and Data Structures 17
5.3.2 The API Mapping . 17

5.4 Job Checkpointing and Migration 19
5.4.1 The API Mapping . 20

5.5 Job Monitoring and Steering . 20
5.5.1 Terminology and Data Structures 21
5.5.2 The API Mapping . 21

5.6 Resource Management . 22
5.6.1 The API Mapping . 23

5.7 The XOSAGA Resource Management Package 24
5.7.1 Class xosaga::job 24
5.7.2 Class xosaga::job_self 25
5.7.3 Class xosaga::resource_description 25
5.7.4 Class xosaga::resource 27
5.7.5 Class xosaga::reservation 28
5.7.6 Class xosaga::resource_service 31
5.7.7 Class xosaga::application_description . . . 37
5.7.8 Class xosaga::job_service 43

6 XtreemFS 47

7 XtreemOS functionality not covered by this API specification 48

2

8 Summary 50

Bibliography 50

3

1 Introduction
The specification of the XtreemOS API is being performed by agreement be-
tween representatives of all project partners, representing both groups of interface
providers and interface users. This is an iterative process: a first specification,
intended as an early draft, has been agreed upon early in the project, such that im-
mediate implementation experience can be gained and strengths and weaknesses
can be identified. The first API specification has been documented in deliverable
D3.1.1 [9]. Several milestones during the project will cover revisions and im-
provements of the API, until the final version will meet all requirements of both
applications and system implementors.

In general, the XtreemOS API has to serve three classes of applications:

1. Existing Linux applications, using POSIX-standardized interfaces.

2. Existing grid applications, using OGF-standardized interfaces.

3. New applications, using functionality uniquely provided by XtreemOS.

In D3.1.1, we have selected the emerging OGF standard Simple API for Grid
Applications (SAGA) as the first draft API for XtreemOS. SAGA had been se-
lected because it combines OGF-standardized API’s (namely JSDL [1], BES [2],
GridFTP [5], GridRPC [7], DRMAA [8]) with POSIX-like interfaces wherever
possible (e.g., for files and streams). Also, SAGA has been cited as a possible
candidate API for XtreemOS by the project-internal application groups in deliv-
erable D4.2.1 [11].

Part of the XtreemOS API design process is to actively contribute to the stan-
dardization efforts, most importantly within OGF for the SAGA specification.
These active contributions not only give XtreemOS a better visibility, but also (and
most importantly) make sure that XtreemOS stays in sync with ongoing standard-
izations, and can contribute its own technical findings to the ongoing standardiza-
tion process.

Figure 1 illustrates the interaction between the SAGA-related standardization
and the XtreemOS API specification. Initially (in D3.1.1), XtreemOS has adopted
the SAGA draft recommendation, documented in OGF’s draft GWD-R.90 [3]1, as
its first own API specification. Since then, XtreemOS has contributed to finaliz-
ing the SAGA-CORE specification, with imminent publication as a draft recom-
mendation, in OGF’s document GFD.90 [4]. The publication of GFD.90 marks
a crossroads at which the SAGA-CORE specification itself becomes fixed, and
XtreemOS-related modifications or additions require the definition of separate
API documents.

1The draft [3] unfortunately refers to itself as GWD-R.72, which is wrong.

4

SAGA

GWD−R.90

SAGA−CORE

GFD.90

SAGA

extensions

XtreemOS

API 1.0

XOSAGA

API 2.0 XOSAGA

future

a
d

o
p

t

develop

develop develop

co
nt

ri
bu

te

co
nt

ri
bu

te

develop

fall 2006 fall 2007 future

Figure 1: Co-development of XtreemOS API and SAGA standard.

This document covers the second draft API specification for XtreemOS. Its
main focus is providing API extensions (w.r.t. to SAGA, the first draft API spec-
ification) that provide access to XtreemOS-specific functionality, as far as it is
available at this stage of the project. For this purpose, we define an API name
space called XOSAGA (XtreemOS extensions to SAGA) that mirrors the SAGA
API name space. XOSAGA contains only those packages, classes, and inter-
faces that require XtreemOS-specific extensions to SAGA. Together, SAGA and
XOSAGA form the XtreemOS API, as of this second draft version. By this de-
sign, applications require only minimal changes for being ported from “standard
SAGA” to XOSAGA: applications simply have to create objects from classes from
the XOSAGA name space, instead of classes with identical names, but from the
SAGA namespace.

Within OGF, the SAGA-related standardization efforts are focusing on the
development of extension packages to the SAGA-CORE. Obviously, this is the
mechanism for XtreemOS to contribute by proposing XOSAGA extensions for
such packages.

The bulk of this document consists of an analysis of functionality either speci-
fied or implemented so far by the XtreemOS work packages from sub projects SP2
and SP3. Goal of this analysis is to find out to which extent the existing SAGA
API is sufficient to provide application access to XtreemOS-specific functionality,
and where API extensions (part of XOSAGA) become necessary.

Our analysis is based on the assumption of having an engine-based SAGA im-
plementation, as also provided by the companion deliverable D3.1.3 [15]. Figure 2
shows the architecture of such an implementation. The SAGA (and XOSAGA)
API consists of several packages (like Jobs, Files, RPC). The engine implements

5

these API packages by using so-called adaptors, dynamically-loaded interfaces
to middleware backends. The engine itself forms a rather thin layer, mostly in
charge of dispatching incoming API calls to the right adaptor, for a given mid-
dleware intallation. The main result of our functionality analysis is to decide
which XtreemOS-specific functionality can be made available by implementing
XtreemOS-specific adaptors for the SAGA engine, and which functionality re-
quires actual API extensions, within the XOSAGA name space.

Application

Middleware
API

API

SAGA

RPC

SAGA Adaptors

L
o

c
a

l
R

e
m

o
te

Middleware

SAGA API Packages (managed by ’Engine’)

libc

(globus)

GridFTP

FilesFiles
(local)

Files
(XtreemOS)

XtreemOS

FilesJobs

Figure 2: Architecture of an engine-based SAGA implementation.

The remainder of this document is organized as follows. First, we discuss
the updated application requirements in Section 2. Section 3 discusses the exten-
sions that XtreemOS has already contributed to the SAGA-CORE specification.
Then, we analyze XtreemOS-specific functionality regarding VO management
(Section 4), application execution management (Section 5), and the XtreemFS
file system (Section 6). We complete our analysis by detailing which XtreemOS
functionality is not yet ready for designing a specific API (Section 7). Finally,
Section 8 summarizes our findings.

2 XtreemOS application requirements revisited
In their deliverable D4.2.1 [11], work package 4.2 had already described their
initial requirements to other work packages, among which is the XtreemOS API.
In deliverable D3.1.1 [9], we have already outlined how, and to which extent, these

6

requirements can be addressed by the XtreemOS API.

2.1 Updated requirements on XtreemOS interfaces

Deliverable D4.2.3 [13] presents a revised set of requirements. We discuss the
applicability of the API-related requirements from D4.2.3 here. In particular, the
following API-related requirements are expressed:

R45 Other API Standards as basis for XtreemOS API (revised, was R43)
“XtreemOS API must consider the following standard as a basis: SAGA
(especially the subsets DRMAA, GAT). Furthermore, any other standard
allowing applications to access user and/or job information is welcome.
WP3.1 must ensure that applications can adapt to XtreemOS in a way that
complex start and stop procedures can be specified that are used to start/stop
the various parts of the overall application. To this end, WP3.1 must ensure
that the interfaces are sufficient enough and compatible with WP3.3.

Additionally, one application requires the following functionalities that are
actually provided by Globus/Globus-related components: GridFTP, Apache
Axis, and the GSI public key infrastructure. Here, an equivalent XtreemOS
functionality is needed.”

R46 Demand for POSIX compliance (revised, was R44)
“XtreemOS must provide access to the distributed resources in the Grid
from any node using the standard Posix interface. Mandatory access con-
trol (ACL) as defined e.g. in POSIX .1e, IEEE 1003.1e/2c (which was with-
drawn). It is yet to be clarified which calls have to be provided. Further-
more, it would prove useful if functions for management of processes on
remote machines would be part of the XtreemOS API.”

R47 XtreemOS API language support (revised, was R45)
“XtreemOS must support several different programming languages. The
mandatory languages and their priorities are C (high priority), C++ (high
priority), Java (high priority) and Fortran 77 (low priority). Fortran 77 can
be supported via C bindings. The optional languages are Python (medium
priority), Perl (medium priority) and Ada (low priority).”

R48 Degree of Interoperability (was R46)
“It should be possible to use XtreemOS as a backend for GT4 WS-GRAM.”

7

2.2 Implementation of these requirements

R45 SAGA indeed is the basis of the XtreemOS API. Providing application-level
interfaces to the functionality from WP3.3 is part of this document (see
Section 5).

Providing special interfaces as mentioned in the second text paragraph of
R45 is debatable. GridFTP is a way to access files, and as such is its func-
tionality covered by SAGA. Apache Axis is an implementation of Web ser-
vices, containers for providing access to functionality in general. Appli-
cations should not rely on technologies by which needed functionality is
provided. The XtreemOS API is providing the functionality itself, accord-
ing to OGF-based standards, and independent of the underlying technol-
ogy providing this functionality. Besides, providing a GridFTP interface to
XtreemFS, or a Web service interface to XtreemOS’ application execution
management, would require support from the work packages realizing the
underlying functionality, and could not be properly addressed on the API
level alone.

Public key infrastructures are an authentication mechanism, something to
be dealt with by WP3.5. Providing interfaces to the respective VO manage-
ment functionality is part of this document, addressed in Section 4.

R46 Being based on SAGA, the XtreemOS API is providing POSIX syntax and
semantics wherever possible. Access Control Lists (ACL) functionality
based on the withdrawn proposal IEEE 1003.1e/2c is not practically use-
ful (without the respective functionality being available).

However, providing access control functionality is a prominent extension
made to the original SAGA draft [3]. In the new, final, SAGA specifica-
tion [4] we have added the SAGA Permission Model, covering access control
based on a POSIX-inspired permission model.

Application execution management, rather than process management, is
subject to this document (see Section 5).

R47 In the companion deliverable D3.1.3 [15] we have released an implemen-
tation of the first draft version XtreemOS API (according to deliverable
D3.1.1 [9]). This implementation is written in C++, thus providing the API
for the C++ and C languages. Implementing the XtreemOS API in Java is
subject to ongoing work. Currently, there are no immediate plans to provide
the API in other languages. This can, however, be achieved in later project
stages via wrapper interfaces to the C++ implementation.

8

R48 As already outlined in D3.1.1 [9], this requirement can technically not be
addressed on the API level. It has to be supported by the infrastucture level,
namely by WP3.3.

3 Extensions included in the SAGA-CORE specifi-
cation

We consider the following document [4] to be part of this deliverable. Due to its
size (about 300 pages), we refrain from directly including the SAGA specification
in this document.

Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pas-
cal Kleijer, Andre Merzky, John Shalf, and Christopher Smith. A
Simple API for Grid Applications (SAGA). Grid Forum Document
GFD.90, Open Grid Forum (OGF), 2007, available from:
http://forge.ogf.org/short/saga-core-wg/saga-core-v1

The changes from the previous SAGA specification draft, as used for the first
XtreemOS API [9], can be summarized as follows:

• Introduce a buffer class for uniform management of I/O buffers.

• Introduce a URL class for uniform parsing and handling of URLs and names.

• Radical overhaul of the permission model: ACLs are gone, and POSIX-like
permissions are introduced on all first class SAGA objects.

• Added preconditions and postconditions for all method calls.

• Added permissions for all method calls.

• Several SAGA interfaces now implement the task interface if they are used
by classes which implement the task interface themselves.

• Several SAGA interfaces now implement the permission interface if they
are used by classes which implement permission task interface themselves.

• Copy semantics for SAGA objects (shallow versus deep copy) has been
clarified.

• The lifetime of the default SAGA session has been clarified.

• The SAGA class diagram has been updated, see Figure 3.

9

E
rr

o
r

H
a
n

d
li
n

g
M

o
n

it
o

ri
n

g
 M

o
d

e
l

I/
O

T
a
s
k
 M

o
d

e
l

L
o

o
k
 &

 F
e
e
l

A
tt

ri
b

u
te

 I
n

te
rf

a
c
e

S
e
c
u

ri
ty

J
o

b
 M

a
n

a
g

e
m

e
n

t
R

P
C

S
tr

e
a
m

s

F
il
e
 M

a
n

a
g

e
m

e
n

t
N

a
m

e
 S

p
a
c
e
 M

n
g

m
t.

R
e
p

li
c
a
 M

a
n

a
g

e
m

e
n

t
F

u
n

c
ti

o
n

a
l
P

a
c
k

a
g

e
s

B
a
s
e
 O

b
je

c
t

i
n
t
e
r
f
a
c
e

i
m
p
l
e
m
e
n
t
s

i
n
h
e
r
i
t
s

c
l
a
s
s

a
s
y
n
c

e
x
c
e
p
t
i
o
n

m
e
t
r
i
c

t
a
s
k
_
c
o
n
t
.

t
a
s
k

s
t
e
e
r
a
b
l
e

m
o
n
i
t
o
r
a
b
l
e

c
a
l
l
b
a
c
k

c
o
n
t
e
x
t

s
e
s
s
i
o
n

a
t
t
r
i
b
u
t
e

o
b
j
e
c
t

i
o
v
e
c

b
u
f
f
e
r

p
a
r
a
m
e
t
e
r

j
o
b
_
s
e
r
v
i
c
e

j
o
b

j
o
b
_
s
e
l
f

l
o
g
i
c
a
l
_
f
i
l
e

n
s
_
d
i
r
e
c
t
o
r
y

f
i
l
e

r
p
c

s
t
r
e
a
m

s
t
r
e
a
m
_
s
e
r
v
.

n
s
_
e
n
t
r
y

d
i
r
e
c
t
o
r
y

l
o
g
i
c
a
l
_
d
i
r
.

j
o
b
_
d
e
s
c

p
e
r
m
i
s
s
i
o
n
s

e
r
r
o
r
_
h
a
n
d
.

Figure 3: The revised SAGA class and interface hierarchy, according to [4].

10

• The usage of URLs has been clarified.

• Byte ordering issues have been clarified.

• Relation of SAGA exceptions and middleware exceptions have been clari-
fied.

• Fixed order/precedence of SAGA exceptions.

• Allow for nested exceptions in bindings (for implementations with late bind-
ing).

• Clarify usage of object types.

• Change saga::context to be more extensible and backend specific, while
simplifying its attributes and initialization (set_defaults()).

• Clarify the formatting of user IDs for saga::context instances.

• Attributes cannot implicitly converted between vector and scalar attributes
anymore – that was confusing.

• Simplified the signature of find().

• Changed the task interface: return values for async ops are essentially cre-
ated at the point where they are used.

• Updated/fixed all state diagrams according to the new task model.

• get_object() has been re-introduced on the task.

• Clarified that async object construction is a matter for the language bind-
ings.

• Added verbose description for all enum types.

• Allow bindings to inherit the task container from native containers.

• Added support for the JSDL SPMD extension to the job description.

• Removed some unusable job description attributes.

• Clarified consistency semantics of saga::logical_file instances.

• Clarify why no raw JSDL is supported.

• Clarify semantics of find() calls.

11

• Removed (unused) attribute interface from file.

• Unified semantics over the various packages:

– open on object construction

– exception semantics

– close() semantics

– state management

– bitwise ORing of flags

• Several examples have been clarified.

• Countless spelling, grammar fixes and formatting fixes.

4 VO Management
In XtreemOS, VO management is based on XtreemOS-specific certificates, that
are issued and administered by VO management services, and are used and inter-
preted both by other XtreemOS-specific services as well as the different flavours
of the XtreemOS operating system, the latter via kernel modules that authenticate
and authorize users via these XtreemOS certificates [17].

In the SAGA API [4], the saga::context class provides the functionality
of a security information container. A saga::context object can be attached
to a saga::session handle, and as such be available to all SAGA objects
instatiated in that session. Multiple contexts can co-exist in one session, and it is
up to the implementation to choose the correct context for a specific method call.

A context has a set of attributes which can be set/get via the SAGA attributes
interface (that is implemented by the saga::context class). Exactly which
attributes a context actually evaluates, depends on its type. A SAGA implemen-
tation can implement multiple types of contexts. The implementation must doc-
ument which context types it supports, and which values to the Type attribute
are used to identify these context types. Also, the implementation must document
which default values it supports for the various context types, and which attributes
need to be or can be set by the application.

We therefore specify that any implementation of the XtreemOS API, accord-
ing to this document, must support2 saga::context objects, that are repre-
senting XtreemOS certificates, and are identified by the value xtreemos for the
Type attribute.

2possibly among other types

12

For such xtreemos contexts, the implementation must provide useful default
values for the following attributes. The application can get and set these attributes,
too:

// name: CertRepository
// desc: location of the trusted certificates
// mode: ReadWrite
// type: string

// name: UserCert
// desc: location of a user certificate to use
// mode: ReadWrite
// type: string

// name: UserKey
// desc: location of the private key for a user
// mode: ReadWrite
// type: string

In addition, the implementation must provide the following (read only) at-
tributes for xtreemos contexts, providing the relevant information from XtreemOS
certificates [17]:

// name: GlobalPrimaryVOName
// desc: the primary VO that a user is associated with
// mode: ReadOnly
// type: string

// name: GlobalPrimaryRoleName
// desc: the primary role that a user is associated with
// mode: ReadOnly
// type: string

// name: GlobalPrimaryGroupName
// desc: the primary group that a user is associated with
// mode: ReadOnly
// type: string

// name: GlobalSecondaryGroupNames
// desc: the list of secondary groups that a user
// is associated with
// mode: ReadOnly
// type: array<string>

13

5 Application Execution Management
Application execution management (AEM) is a set of functionalities that are cen-
tral to XtreemOS. The precise functionality for application execution management
is still evolving [14, 18], so a final API can not be defined as of the current state
of the project (month 18). Because we consider AEM as central and important
to XtreemOS, we nevertheless provide an API to this set of functionalities, being
aware that some details may only be filled in at later stages, and that future API
versions might deviate from what is described in this document.

The following subsets of the XtreemOS basic AEM functionality are identified
in deliverable D3.3.2 [14] (Table 1). In the following, we analyze how these
subsets can be mapped to (accessed using) the XtreemOS API, version 1 (SAGA),
or which extensions to SAGA become necessary.

Job Submission: mapped to saga::job; detailed analysis in Section 5.2.

Job Management: mapped to saga::job, saga::metric, and saga::session; de-
tailed analysis in Section 5.3.

Job Checkpointing and Migration: mapped to saga::job and an extension in
an XOSAGA class; detailed analysis in Section 5.4.

Job Monitoring: mapped to saga::job, and to SAGA’s monitoring model; de-
tailed analysis in Section 5.5.

Resource Management: not available in SAGA. We propose a new package in
XOSAGA, detailed design in Section 5.6.

5.1 General Terminology and Scoping
Within different work packages of XtreemOS, terminology differs. SP2 tends to
describe applications from a system-level view while SP3 tends to describe pro-
cesses and jobs from an application-level view. SAGA (and the XtreemOS API)
naturally has an application-centric view. Here, we put the respective terminology
next to each other. More specific terms are defined per functionality subset, as
needed.

XtreemOS Basic API: client-side Application Execution Management (AEM)
API, according to deliverable D3.3.2 [14] and the ongoing work in [18].

application: composed of application units running on different grid nodes (see
D2.1.1 [16] and D2.2.1 [12]). This is a system-level definition.

14

application unit: a collection of processes under the control of one operating
system instance, i.e. a grid node (e.g. Linux-SSI or Linux-XOS) (see D2.1.1
[16] and D2.2.1 [12]). This is a system-level definition.

process: part of a job consuming resources (see D3.3.1 [10]). This is an application-
level definition.

job: one or more Linux processes which collaborate to achieve a certain goal or
objective (see D3.3.1). This is an application-level definition.

job context: defined via grid user and virtual organization.

job unit: same as process.

The XtreemOS API (XOSAGA) is, much like SAGA, intended to serve appli-
cation programmers. As such, it is the foremost goal to provide a simple interface
that abstracts from the underlying infrastructure while exposing the application-
relevant aspects. As such, our API must deal with application execution man-
agement in a simple and application-centric way, avoiding the use of redundant
terminology. While it is evident to use system-level and application-level termi-
nology where appropriate for the different XtreemOS operating-system flavours
and services, the application-level API has to confine itself to what is relevant
to the applications themselves. As such, we omit the explicit handling of pro-
cesses in XOSAGA, as processes are merely implementing running applications,
referred to as jobs.

In the following, we analyse the functionality subsets for AEM in XtreemOS.
For each subset, we identify which functionality can be mapped to existing con-
cepts (classes and interfaces) within SAGA. For missing functionality, we propose
extensions to SAGA. We collect all these extensions in a Resource Management
package for XOSAGA, presented in section 5.7.

5.2 Job Submission
The job submission functionality offered by the XtreemOS Basic API (see D3.3.2
[14]) can be expressed by the SAGA API as shown in Table 1. Therefore, only
implementation efforts (i.e., coding XtreemOS adaptors for SAGA) are required.

5.2.1 Terminology and Data Structures

jobDefinition, used by the XtreemOS Basic API (see D3.3.1 [10]) as input pa-
rameter for Create_job, including:

• job description,

15

• resource requirements,

• resource hints,

• scheduling hints,

• job dependencies.

job_description is the respective class in the job management package from the
SAGA API, including:

• executable,

• arguments,

• environment variables,

• standard input/output/error.

5.2.2 The API Mapping

The XtreemOS Basic API (according to [10] and [14]) is providing the following
calls for job submission. We describe how they are mapped to SAGA methods,
summarized in Table 1:

Create_job: creates a job according to user credentials; mapped to
saga::job_service.create_job.

Run_job: starts an existing job; mapped to saga::job.run

createProcess: creates a process for a job in a resource, similarly to a Linux fork.
We omit mapping the createProcess system call to the SAGA/XOSAGA
API as it cannot be called by a job itself. It is called by a process that is part
of the job, hence XtreemOS job execution management services will regis-
ter the newly created process as part of the job. In the SAGA API context,
process creation is specific to the saga::job_description and is taken care
of by the implementation (e.g., an adaptor for XtreemOS services).

XtreemOS SAGA
Create_job saga::job_service.create_job
Run_job saga::job.run (inherited from saga::task)
createProcess not applicable

Table 1: Job Submission

16

The job dependencies field of jobDefinition (see Section 5.2.1) raises the
open issue of workflows. As stated in D3.3.1 [10] (Section 3.1.1), XtreemOS
will not provide a workflow management system, though it will sustain manag-
ing job dependencies. Currently, SAGA does not support any workflow definition
language, but provides methods for jobs spawning other jobs, for testing and wait-
ing for completion of other jobs, as well as for monitoring state changes of jobs.
The XtreemOS feature for providing job dependencies might be mimicked by the
SAGA API using the saga::task_container class. If later decided to add a work-
flow definition and management mechanism to XtreemOS, the SAGA API can be
extended to express this functionality, likely as another XOSAGA package.

Aside: Assuming a job has been created outside the SAGA API (i.e., using the
XtreemOS command line API), it can still be handled by the SAGA API using the
get_job method from the saga::job_service class.

5.3 Job Management
The job management functionality offered by the XtreemOS Basic API (see D3.3.2
[14]) can be expressed by the SAGA API as shown in Table 2. Therefore, only
implementation efforts (i.e., coding XtreemOS adaptors for SAGA) are required.

5.3.1 Terminology and Data Structures

Events, as defined by XtreemOS AEM (see D3.3.1 [10]) can be exchanged among
processes. Within the application-level API, thus on job level, events can be
handled using SAGA’s monitoring model [4], namely the saga::steerable
interface.

5.3.2 The API Mapping

The XtreemOS Basic API (according to [10] and [14]) is providing the following
calls for job management. We describe how they are mapped to SAGA methods,
summarized in Table 2:

jobControl(jobID,controlOperation,...): perform scheduling control operations
on a previously created job; the control operations are:

• CHG_UID: changes user credentials for the job identified by jobID.
In the SAGA API, credentials are expressed as contexts (compare also
Section 4). A change of user credentials can be expressed by removing
a context and adding another one (saga::session.remove_context and
saga::session.add_context).

17

• CANCELJOB: cancels the execution of the job identified by jobID;
mapped to saga::job.cancel.

• ENDJOB: ends the execution of the job identified by jobID; has the
same mapping as jobControl(CANCELJOB). According to the cur-
rent AEM API from WP3.3, this call will be substituted by exitJob.

• SUSPENDJOB: suspends the execution of job identified by jobID;
mapped to saga::job.suspend.

• RESUMEJOB: resume the execution of job identified by jobID; map-
ped to saga::job.resume.

• WAITFORJOB: blocks the calling job until the job identified by jobID
has completed; mapped to saga::job.wait.

updateJobRequirements(jobID, reqOperation, requirementList, ...): modifies
job requirements for the job identified by jobID; it has the following possi-
ble reqOperation values:

• REQMORERESOURCES: request more resources, specified by re-
quirementList.

• RELEASERESOURCES: release resources specified by requirement-
List.

• MIGRATIONHINTS: provide hints about resource characteristics that
could improve the job execution if available.

Ongoing work from WP3.3 [18] suggests splitting this method in two parts:
one to deal with managing resources for the job identified by jobID, the
other to provide hints for its migration/checkpointing. Final results are to
appear in the advanced AEM release. They will be covered in the following
XtreemOS API release.

sendEvent(jobID, ...): sends a specified event to the job specified by jobID;
mapped to saga::metric.fire.

waitForEvent: this call blocks the calling process until it receives the specified
event. Explicit waiting for an event can not be directly expressed in SAGA
as all events are handled via callbacks that are associated with a metric.
If necessary, an application will have to synchronize with its own callback
function. We will reconsider adding an explicit method to wait for an event
to the XOSAGA API in future API versions, if this will turn out to be nec-
essary, based on application experience feedback.

18

addEventCallback(event, processID, callbackFunction, ...): adds a callback to
the process associated to a specified event; mapped to
saga::metric.add_callback.

exitJob: this call will finalize the execution of all processes belonging to the job
that owns the calling process. It will be used inside the (adaptor) imple-
mentation only, as this is a process-level call. The application itself might
either terminate (for successful termination) or call saga::job.cancel on
saga::job_self, in case of a detected, fatal error.

attachProcess: this system call converts a UNIX process to a XtreemOS stand-
alone job or job unit (see D3.3.1 [10], Section 3.1.4). This functionality
is only needed for implementation purposes and can not be meaningfully
provided on the application-level API.

XtreemOS SAGA
jobControl

CHG_UID saga::session.remove_context
saga::session.add_context

CANCELJOB saga::job.cancel
ENDJOB saga::job.cancel
SUSPENDJOB saga::job.suspend
RESUMEJOB saga::job.resume
WAITFORJOB saga::job.wait

updateJobRequirements (subject to change; will be
REQMORERESOURCES covered in the next
RELEASERESOURCES XtreemOS API release)
MIGRATIONHINTS

sendEvent saga::metric.fire
waitForEvent (implicit within callbacks)
addEventCallback saga::metric.add_callback
exitJob not applicable
attachProcess not applicable

Table 2: Job Management

5.4 Job Checkpointing and Migration
Both checkpointing and migration can be expressed in the SAGA API. The XtreemOS
AEM method restartJob, however, has no counterpart in SAGA. We therefore

19

propose an extended job class in XOSAGA.

5.4.1 The API Mapping

The XtreemOS Basic API (according to [10] and [14]) is providing the following
calls for job checkpointing and migration. We describe how they are mapped to
SAGA and XOSAGA methods, summarized in Table 3:

migrateJob: migrates an existing job from a set of resources to a new one speci-
fied by a set of resource requirements; mapped to saga::job.migrate.

checkpointJob: checkpoint a job; mapped to saga::job.checkpoint. Deliverable
D2.1.1 [16] makes a proposal to extend the saga::job_description class
with checkpointing information to be used by the saga::job_service. We
merge that proposal with our present XOSAGA proposal as presented in
Section 5.7.

restartJob(jobID, ...): restarts a job context by creating a new job which will
maintain its old jobID and re-scheduling it; though the saga::job.resume
method would seem a straightforward mapping for restartJob, there is a
subtle difference between their semantics. The restartJob method is sup-
posed to re-create the job and re-schedule it, while maintaining its “old”
context, i.e. jobID and user credentials. In contrast, the saga::job.resume
method simply resumes the job’s execution from the point where it was
saga::job.suspend-ed. Therefore, we propose a XtreemOS-customized ex-
tension of the saga::job class, namely xosaga::job, adding a restart method.

XtreemOS SAGA
migrateJob saga::job.migrate
checkpointJob saga::job.checkpoint
restartJob xosaga::job.restart

Table 3: Job Checkpointing and Migration

5.5 Job Monitoring and Steering

Both functionalities can be expressed in the SAGA API, therefore only implemen-
tation efforts (i.e. coding XtreemOS adaptors for SAGA) are required.

20

5.5.1 Terminology and Data Structures

Attributes: though not clearly defined, this term is used in the sense of both
static and dynamic information, related to a job (see D3.3.1 [10]). This
term will be mapped to metrics in SAGA terminology [4]. However, both
terms, attributes and metrics, are mentioned in subsection 3.2.7 of D3.3.1.
The exact semantics of these terms in XtreemOS terminology needs further
clarification. Modifications to the job monitoring and steering API might
become necessary in future API releases, accordingly.

5.5.2 The API Mapping

The XtreemOS Basic API (according to [10] and [14]) is providing the following
calls for job monitoring and steering. We describe how they are mapped to SAGA
methods, summarized in Table 4:

getJobIDs(jobFilter, ...): returns the jobIDs matching the jobFilter parameter,
which can have one the following values:

• SELF - jobID of the calling process,

• USER - jobIDs of all the jobs of the user,

• VO - jobIDs of all the jobs running in the VO,

• INSTATE - all the jobIDs in a certain state.

This method is mapped to saga::job_service.list.

getJobInfo(jobIDList, flags, infoLevel): returns the available information for each
job in the provided list. For static information on jobs identified by jo-
bIDList, this call can be mapped to saga::job.get_job_description. For
dynamic information, we make use of the saga::metric’s of the jobs identi-
fied by jobIDList.

addAtribute(jobID, attributeName, ...): mentioned in [14], changed to addJo-
bAttribute in the current AEM API (see WP3.3 Wiki [18]); adds the at-
tribute identified by attributeName to the job information of the job re-
ferred to by jobID. Mapped to saga::steerable.add_metric. See also 5.5.1
for a discussion on the semantics of attribute’s.

addCallback(jobID, callbackFunction, metric, value, callbackEvent): mentio-
ned in [14], changed to addJobCallback in the current AEM API (see
WP3.3 Wiki [18]); defines a callback function callbackFunction associated
to a metric metric already existent in the jobID job information. callback-
Event specifies when the job should be notified:

21

• CHANGE,

• EQUALTO,

• GREATERTHAN,

• LESSTHAN

with respect to a specified value. Mapped to
saga::monitorable.add_callback. See also 5.5.1 for a discussion on the
semantics of metric.

monitoringControl: mentioned in [14], changed to jobMonitoringControl in
current AEM API (see WP3.3 Wiki [18]); starts, stops or changes level of
monitoring. Mapped to saga::job.add/remove_callback. According to the
current status of the AEM API (see WP3.3 Wiki [18]), the monitoringCon-
trol method needs clear defined semantics for CHANGELEVEL functional-
ity. The application-level API definition might change in future releases,
accordingly.

XtreemOS SAGA
getJobIds saga::job_service.list
getJobInfo saga::job.get_job_description

saga::metric.get_value
addAttribute saga::steerable.add_metric
addCallback saga::monitorable.add_callback

saga::metric.add_callback
monitoringControl

START saga::job.add_callback
STOP saga::job.remove_callback
CHANGELEVEL (subject to change; will be cov-

ered in future XtreemOS API re-
leases)

Table 4: Job Monitoring and Steering

5.6 Resource Management
XtreemOS proposes resource management functionalities in D3.3.2 [14]. Specif-
ically, finding/matching compute resources according to a resource description,
and reserving such resources is provided, independent of the execution of a given
application.

22

No such functionality is available in SAGA. On purpose, SAGA restricts itself
to job submission and execution, abstracting from resource management, for the
sake of application simplicity. In SAGA, resource requirements are expressed
inside saga::job_description objects, along with the details of the application,
like the program binary, etc. Resource management and brokering issues are dealt
with inside the implementation of a saga::job_service object.

Because resource management is an important functionality of XtreemOS, and
because there are important use cases that separate resource matching and reser-
vation from job submission, we are providing a resource management package
within the XOSAGA API. Its main features are:

• Introduce classes for resources and reservations.

• Split SAGA’s job_description in a resource_description and an
application_description.

• Add a resource_service for matching and reserving resources.

• Extend the job_service by methods to submit jobs either to a set of re-
sources or to a given reservation.

Details will be presented in Section 5.7. The XOSAGA resource management
package may, in future releases, also be extended to provide resource monitoring
functionalities, as the client-side AEM API is currently looking into this as well
(see XtreemOS wiki:WP3.3 [18]). Whether and to which extent resource moni-
toring should be included in an application-level API, however, has to be decided
later in the project.

5.6.1 The API Mapping

The XtreemOS Basic API (according to [10] and [14]) is providing the following
calls for resource management. We describe how they are mapped to XOSAGA
methods, summarized in Table 5:

XtreemOS XOSAGA
resMatching xosaga::resource_service.discover
setReservation xosaga::resource_service.reserve
rmReservation xosaga::resource_service.cancel

Table 5: Resource Management

23

5.7 The XOSAGA Resource Management Package
Both resource management (Section 5.6) and the feature for restarting a job (Sec-
tion 5.4) require extensions to the existing SAGA API, for which we are providing
the XOSAGA resource management extension package to SAGA. It consists of
eight classes, partially extending existing SAGA classes, partially implementing
existing SAGA interfaces. The relationships between the new XOSAGA classes
and the “old” SAGA classes and interfaces is shown in Figure 4. We specify the
XOSAGA classes in the following.

XOSAGA Resource Management

SAGA Job Management

SAGA Look−and−Feel

attribute

monitorableasync

steerableobject

permissionsjob_servicejob

job_desc

job job_service

job_self app_desc

resource

res_descreservation

res_service

job_self

Figure 4: The relations between the XOSAGA resource management package and
the existing SAGA classes and interfaces.

5.7.1 Class xosaga::job

The job class inherits from saga::job and adds a method for restart.

class xosaga::job : extends saga::job
{

// no CONSTRUCTOR

DESTRUCTOR (in xosaga::job obj);
//Purpose: destroy the object

restart(void);
//Purpose: Restart the job from the beginning; possibly
// on a differen resource, however, maintaining
// its job id and user credentials.

24

//Inputs: -
//InOuts: -
//Outputs: -
//PreCond: -
//PostCond: the job is in ’Running’ state.
//Perms: Exec (job can be controlled).
//Throws: NotImplemented
// PermissionDenied
// AuthorizationFailed
// Timeout
// NoSuccess

}

5.7.2 Class xosaga::job_self

The job_self class inherits from xosaga::job. This replicates the setup in
the SAGA job management package. This way, a job can also restart itself.

class xosaga::job_self : extends xosaga::job
implements saga::steerable

// from job saga::async
// from job saga::attributes
// from job saga::task
// from job saga::object
// from job saga::monitorable
// from job saga::permissions
// from job saga::error_handler

{
// no CONSTRUCTOR

DESTRUCTOR (in xosaga::job_self obj);
//Purpose: destroy the object

}

5.7.3 Class xosaga::resource_description

The resource_description class is collecting those attributes from SAGA’s
job_description class that are related to selecting suitable resources.

class xosaga::resource_description
: implements saga::object
implements saga::attributes

{

25

CONSTRUCTOR (out resource_description obj);
//Purpose: create the object
//Inputs: -
//Outputs: obj: the newly created object
//PreCond: -
//Postcond: -
//Perms: -
//Throws: NotImplemented
// NoSuccess

DESTRUCTOR (in resource_description obj);
//Purpose: destroy the object

//Attributes:
// name: TotalCPUCount
// desc: total number of cpus to be provided
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, DRMAA
//
// name: TotalPhysicalMemory
// desc: Estimated amount of memory to be provided
// mode: ReadWrite, optional
// type: Float
// value: -
// notes: - unit is in MegaByte
// - memory usage of the job is aggregated
// across all processes of the job
// - semantics as defined by JSDL
// - available in JSDL
//
// name: CPUArchitecture
// desc: compatible processor for job submission
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - allowed values as specified in JSDL
// - semantics as defined by JSDL
// - available in JSDL
//
// name: OperatingSystemType

26

// desc: compatible operating system for job submission
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - allowed values as specified in JSDL
// - semantics as defined by JSDL
// - available in JSDL
//
// name: CandidateHosts
// desc: list of host names which are to be considered
// by the resource manager as candidate targets
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - semantics as defined by JSDL
// - available in JSDL
//
// name: Queue
// desc: name of a queue to place the job into
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - While SAGA itself does not define the
// semantics of a "queue", many backend systems
// can make use of this attribute.
// - not supported by JSDL

}

5.7.4 Class xosaga::resource

The resource class is a container for the information identifying a compute
resource. Currently, it has only a single method for retrieving its resource descrip-
tion. Future XOSAGA versions may add more methods to this class.

class xosaga::resource
: implements saga::object
implements saga::async
implements saga::attributes
implements saga::permissions
implements saga::monitorable

{
//no CONSTRUCTOR

27

DESTRUCTOR (in xosaga::resource obj);
//Purpose: destroy the object

get_resource_description (out xosaga::resource_description rd);
// Purpose: Retrieve the resource_description which was used to
// discover this resource instance.
// Inputs: -
// InOuts: -
// Outputs: rd: a resource_description object
// PreCond: -
// PostCond: - rd is deep copied (no state is shared
// after method invocation)
// Perms: Query
// Throws: NotImplemented
// DoesNotExist
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - There are cases when the resource_description
// is not available. This may include cases when
// the resource is one of many identified via a
// resource description, and a description for
// the individual resource can not be contructed.
// In this case, a ’DoesNotExist’ exception is
// thrown, with a descriptive error message.

}

5.7.5 Class xosaga::reservation

The reservation class is a container for the information identifying a reser-
vation. Like jobs, reservations have different states, shown in Figure 5. When
constructed (by a resource service), a reservation can either be in state New, or in
state Running. New denotes that the start time of the reservation has not yet been
reached. Running denotes that the resource(s) reserved by the reservation are cur-
rently accessible, this means time at the resource(s) is within the interval start time
and expiration time. Once time has reached the expiration time, the reservation’s
state changes to Done. The state Canceled can be reached from the state Running
either by invoking the cancel method on the reservation object, or by external
cancelation, for example by the remote resource itself, or by a resource broker
service.

28

New Running

CanceledDone

Final State

intern

construction

cancel()

construction

intern

intern

Initial State

Figure 5: The XOSAGA reservation state model.

enum state
{

New = 1, // same as in saga::task::state
Running = 2, // same as in saga::task::state
Done = 3, // same as in saga::task::state
Canceled = 4, // same as in saga::task::state

}

class xosaga::reservation : implements saga::object
{

// no CONSTRUCTOR

DESTRUCTOR (in xosaga::reservation obj);
//Purpose: destroy the object

//Attributes
// name: CreationTime
// desc: time stamp of the reservation creation in
// the resource manager
// mode: Read, optional
// type: Int
// value: -

29

// notes: - format: number of seconds since epoch
//
// name: Starttime
// desc: time stamp indicating when
// the reservation starts
// mode: Read
// type: Int
// value: -
// notes: - format: number of seconds since epoch
//
// name: ExpirationTime
// desc: time stamp indicating when
// the reservation ends
// mode: Read
// type: Int
// value: -
// notes: - format: number of seconds since epoch

get_state (out state state);
//Purpose: Get the state of the task.
//Inputs: -
//InOuts: -
//Outputs: state: state of the reservation.
//PreCond: -
//PostCond: -
//Perms: -
//Throws: NotImplemented
// Timeout
// NoSuccess
//Notes: - a ’Timeout’ or ’NoSuccess’ exception indicates
// that the backend was not able to retrieve the
// reservation state.

get_resources (out array<resource> reserved);
// Purpose: Get the reserved resources.
// Inputs: -
// InOuts: -
// Outputs: reserved: an array of resources
// PreCond: -
// PostCond: -
// Perms: -
// Throws: NotImplemented

}

30

5.7.6 Class xosaga::resource_service

The class resource_service is modeled after SAGA’s job service. Its con-
structor has parameters describing a possible back-end resource broker. Further,
it has methods for discovering resources according to a resource description, for
reserving resources, either from resource id’s, or directly from a resource descrip-
tion. Reservations can explicitly be canceled. The list method lists all active
reservations of the resource service. For completeness, get_reservation and
get_resource map id’s to their respective container objects.

class resource_service : implements saga::object
implements saga::async

{
CONSTRUCTOR (in session e,

in string rm = "",
out resource_service obj);

// Purpose: create the object
// Inputs: s: session to associate with
// the object
// rm: contact url for resource
// manager
// InOuts: -
// Outputs: obj: the newly created object
// PreCond: -
// PostCond: -
// Perms: -
// Throws: NotImplemented
// IncorrectURL
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - ’rm’ defaults to an empty string - in that
// case, the implementation must perform a
// resource discovery, or fall back to a fixed
// value, or find a valid rm contact in any
// other way. If that is not possible, a
// ’BadParameter’ exception MUST be thrown, and
// MUST indicate that a rm contact string is
// needed. The expected behaviour MUST be
// documented (i.e. if a default is available).
// - if the rm identified by the rm URL cannot be
// contacted (i.e. does not exist), a

31

// ’BadParameter’ exception is thrown.

DESTRUCTOR (in resource_service obj);
// Purpose: destroy the object
// Inputs: obj: the object to destroy
// InOuts: -
// Outputs: -
// PreCond: -
// PostCond: - reservations created by this resource_service
// instance are not affected by the destruction,
// and are in particular not canceled.
// Perms: -
// Throws: -

discover (in resource_description rd,
out array<string> resource_ids);

// Purpose: discover resources matching the resource
// description
// Inputs: rd: description of resource to be
// discovered
// InOuts: -
// Outputs: resource_ids: an array of resource identifiers
// PreCond: -
// PostCond: - rd is deep copied (no state is shared
// after method invocation)
// Perms: -
// Throws: NotImplemented
// BadParameter
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess

reserve (in resource_description rd,
in int start_time,
in int expiration_time,
out reservation reserved);

// Purpose: reserve the resources matching the resource
// description
// Inputs: rd: description of resource to be
// reserved
// start_time: requested start of reservation,

32

// in number of seconds since epoch
// expiration_time: requested expiration of reservation,
// in number of seconds since epoch
// InOuts: -
// Outputs: reserved: a resource object representing
// the reserved resource
// PreCond: -
// PostCond: - rd is deep copied (no state is shared
// after method invocation)
// Perms: -
// Throws: NotImplemented
// BadParameter
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - if the resource description contains values
// which are outside of the allowed range, or
// cannot be parsed, or are otherwise invalid
// and not usable for creating a resource instance,
// a ’BadParameter’ exception is thrown, which MUST
// indicate which attribute(s) caused this
// exception, and why.
// - if the reservation fails because no matching
// resources are available in the requested time
// interval, a ’NoSuccess’ exception MUST be thrown,
// which MUST indicate the failure.
// - An implementation MAY use default values for start
// time and expiration time (like ‘‘as soon as
// possible,’’ and ‘‘15 minutes duration’’) and MAY
// deviate from the requested time interval. An
// implementation MUST document such behavior.

reserve (in array<string> resource_ids,
in int start_time,
in int expiration_time,
out reservation reserved);

// Purpose: reserve the resources identified by their resource
// ids
// Inputs: resource_ids: array of resource ids
// start_time: requested start of reservation,
// in number of seconds since epoch

33

// expiration_time: requested expiration of reservation,
// in number of seconds since epoch
// InOuts: -
// Outputs: reserved: a resource object representing
// the reserved resource
// PreCond: -
// PostCond: - rd is deep copied (no state is shared
// after method invocation)
// Perms: -
// Throws: NotImplemented
// BadParameter
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - if any of the resource ids are invalid,
// a ’BadParameter’ exception is thrown, which MUST
// indicate which id(s) caused this exception.
// - if the reservation fails because some identified
// resources are unavailable in the requested time
// interval, a ’NoSuccess’ exception MUST be thrown,
// which MUST indicate the failure. In this case,
// no resource will be reserved at all.
// - An implementation MAY use default values for start
// time and expiration time (like ‘‘as soon as
// possible,’’ and ‘‘15 minutes duration’’) and MAY
// deviate from the requested time interval. An
// implementation MUST document such behavior.

cancel (in reservation res,
in float timeout);

// Purpose: cancel the reservation
// Inputs: res: the reservation
// timeout: time for freeing resources
// InOuts: -
// Outputs: -
// PreCond: - reservation is in state ’New’ or ’Running’.
// PostCond: - reservation is in ’Canceled’ state.
// Perms: -
// Throws: NotImplemented
// IncorrectState
// Timeout

34

// NoSuccess
// Notes: - for resource deallocation semantics, see
// Section 2 of the SAGA specification.
// - if cancel() fails to cancel the reservation
// immediately, and tries to continue to cancel
// the reservation in the background, the reservation
// state remains ’Running’ until the cancel operation
// succeeded. The state then changes to
// ’Canceled’.
// - if the reservation is in the ’Done’ state, the call
// has no effect, and, in particular, does NOT change
// the state to ’Canceled’.
// This is to avoid race conditions.
// - a ’NoSuccess’ exception indicates
// that the backend was not able to initiate the
// cancelation for the reservation.
// - for timeout semantics, see Section 2 of the SAGA
// specification.

list (out array<string> reservation_ids);
// Purpose: Get a list of reservations that are currently known
// by the resource manager.
// Inputs: -
// InOuts: -
// Outputs: reservation_ids: an array of
// reservation identifiers
// PreCond: -
// PostCond: -
// Perms: Query on reservations identified by the returned ids
// Throws: NotImplemented
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - which reservations are viewable by the calling user
// context, and how long a resource manager keeps
// reservation information, are both implementation
// dependent.
// - a returned reservation_id may translate into a
// reservation (via get_reservation()), which is not
// controllable by the requesting application (e.g.
// it could cause an ’AuthorizationFailed’ exception).

35

get_reservation (in string reservation_id,
out reservation res);

// Purpose: Given a reservation identifier, this method returns
// a reservation object representing this reservation.
// Inputs: reservation_id: reservation identifier as returned
// by the resource manager
// InOuts: -
// Outputs: reservation: a reservation object representing
// the reservation identified by
// reservation_id
// PreCond: - reservation identified by reservation_id is
// managed by the resource_service.
// PostCond: -
// Perms: Query on the reservation.
// Throws: NotImplemented
// BadParameter
// DoesNotExist
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - in general, only a resource_service representing
// the resource manager which made the reservation
// may be able to handle the reservation_id, and to
// identify the reservation -- however, other
// resource_services may succeed as well.
// - if the resource manager can handle the
// reservation_id, but the referenced reservation
// is not alive, a ’DoesNotExist’ exception is thrown.
// - if the resource manager cannot parse the
// reservation_id at all, a ’BadParameter’ exception
// is thrown.

get_resource (in string resource_id,
out resource res);

// Purpose: Given a resource identifier, this method returns
// a resource object representing this resource.
// Inputs: resource_id: resource identifier as returned
// by the resource manager
// InOuts: -
// Outputs: resource: a resource object representing

36

// the resource identified by
// resource_id
// PreCond: - resource identified by resource_id is
// managed by the resource_service.
// PostCond: -
// Perms: Query on the resource.
// Throws: NotImplemented
// BadParameter
// DoesNotExist
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - in general, only a resource_service representing
// the resource manager which discovered the resource
// may be able to handle the resource_id, and to
// identify the resource -- however, other
// resource_services may succeed as well.
// - if the resource manager can handle the
// resource_id, but the referenced resource
// is not alive, a ’DoesNotExist’ exception is thrown.
// - if the resource manager cannot parse the
// resource_id at all, a ’BadParameter’ exception
// is thrown.

}

5.7.7 Class xosaga::application_description

The application_description class is collecting those attributes from
SAGA’s job_description class that are related to the application itself, aug-
mented by the attributes for checkpointing from D2.1.1 [16].

class xosaga::application_description
: implements saga::object
implements saga::attributes

{
CONSTRUCTOR (out application_description obj);
//Purpose: create the object
//Inputs: -
//Outputs: obj: the newly created object
//PreCond: -
//Postcond: -

37

//Perms: -
//Throws: NotImplemented
// NoSuccess

DESTRUCTOR (in application_description obj);
//Purpose: destroy the object

//Attributes:
// name: Executable
// desc: command to execute.
// type: String
// mode: ReadWrite
// value: ’’
// notes: - this is the only required attribute.
// - can be a full pathname, or a pathname
// relative to the ’WorkingDirectory’ as
// evaluated on the execution host.
// - semantics as defined in JSDL
// - available in JSDL, DRMAA
//
// name: Arguments
// desc: positional parameters for the command.
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
//
// name: SPMDVariation
// desc: SPMD job type and startup mechanism
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - as defined in the SPMD extension of JSDL
// notes: - semantics as defined in JSDL
// - available in JSDL, SPMD extension
// - the SPMD JSDL extension defines the value
// to be an URI. For simplicity, SAGA allows
// the following strings, which map into the
// respective URIs: MPI, GridMPI, IntelMPI,
// LAM-MPI, MPICH1, MPICH2, MPICH-GM, MPICH-MX,
// MVAPICH, MVAPICH2, OpenMP, POE, PVM, None
// - the value ’Empy’ (default) indicates that

38

// the application is not a SPMD application.
// - as JSDL, SAGA allows other arbitrary values.
// The implementation must clearly document
// which values are supported.
//
// name: NumberOfProcesses
// desc: total number of processes to be started
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, SPMD extension
//
// name: ProcessesPerHost
// desc: number of processes to be started per host
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, SPMD extension
//
// name: ThreadsPerProcess
// desc: number of threads to start per process
// mode: ReadWrite, optional
// type: Int
// value: ’1’
// notes: - semantics as defined in JSDL
// - available in JSDL, SPMD extension
//
// name: Environment
// desc: set of environment variables for the job
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - exported into the job environment
// - format: ’key=value’
// - semantics as specified by JSDL
// - available in JSDL, DRMAA
//
// name: WorkingDirectory
// desc: working directory for the job
// mode: ReadWrite, optional
// type: String

39

// value: ’.’
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
//
// name: Interactive
// desc: run the job in interactive mode
// mode: ReadWrite, optional
// type: Bool
// value: ’False’
// notes: - this implies that stdio streams will stay
// connected to the submitter after job
// submission, and during job execution.
// - if an implementation cannot handle
// interactive jobs, and this attribute is
// present, and ’True’, the job creation MUST
// throw an ’IncorrectParameter’ error with a
// descriptive error message.
// - not supported by JSDL, DRMAA
//
// name: Input
// desc: pathname of the standard input file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
// - will not be used if ’Interactive’ is ’True’
//
// name: Output
// desc: pathname of the standard output file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL
// - available in JSDL, DRMAA
// - will not be used if ’Interactive’ is ’True’
//
// name: Error
// desc: pathname of the standard error file
// mode: ReadWrite, optional
// type: String
// value: -
// notes: - semantics as specified by JSDL

40

// - available in JSDL, DRMAA
// - will not be used if ’Interactive’ is ’True’
//
// name: FileTransfer
// desc: a list of file transfer directives
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - translates into jsdl:DataStaging
// - used to specify pre- and post-staging
// - semantics as specified in JSDL
// - staging is part of the ’Running’ state
// - syntax similar to LSF (see earlier notes)
// - available in JSDL, DRMAA
//
// name: Cleanup
// desc: defines if output files get removed after the
// job finishes
// mode: ReadWrite, optional
// type: String
// value: ’Default’
// notes: - can have the Values ’True’, ’False’, and
// ’Default’
// - On ’False’, output files MUST be kept
// after job the finishes
// - On ’True’, output files MUST be deleted
// after job the finishes
// - On ’Default’, the behaviour is defined by
// the implementation or the backend.
// - translates into ’DeleteOnTermination’ elements
// in JSDL
//
// name: JobStartTime
// desc: time at which a job should be scheduled
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - Could be viewed as a desired job start
// time, but that is up to the resource
// manager.
// - format: number of seconds since epoch
// - available in DRMAA
// - not supported by JSDL

41

//
// name: TotalCPUTime
// desc: estimate total number of CPU seconds which
// the job will require
// mode: ReadWrite, optional
// type: Int
// value: -
// notes: - intended to provide hints to the scheduler.
// - available in JSDL, DRMAA
// - semantics as defined in JSDL
//
// name: JobContact
// desc: set of endpoints describing where to report
// job state transitions.
// mode: ReadWrite, optional
// type: Vector String
// value: -
// notes: - format: URI (e.g. fax:+123456789,
// sms:+123456789, mailto:joe@doe.net).
// - available in DRMAA
// - not supported by JSDL
//
// name: CheckpointPeriodicity
// desc: how frequently should the job be checkpointed,
// in seconds
// type: Int
// mode: ReadWrite, optional
// notes: - a value of 0 means no periodic checkpointing
// - default value is implementation dependant
// - proposed by D2.1.1
//
// name: NumberOfKeptCheckpoints
// desc: how many checkpoints should be kept for this job
// type: Int
// mode: ReadWrite, optional
// value: ’1’
// notes: - proposed by D2.1.1
//
// name: FinalStorage
// desc: set of pathnames to use to store the checkpoint
// type: Vector string
// mode: ReadWrite, optional
// value: -

42

// notes: - if no path if given, a default path will be
// selected by the System Checkpointer,
// presumably on the local node
// - proposed by D2.1.1
//
// name: CheckpointPolicy
// desc: how the checkpoint is produced
// type: Vector string
// mode: ReadWrite, optionnal
// value: -
// notes: - if no policy is given, a default policy
// will be chosen
// - If more than one policy is given, the
// first policy available for the checkpoint
// service will be used
// - possible CheckpointPolicies include
// Safe: the checkpoint file is completly
// written before the checkpoint call
// returns
// LocalFirst: the checkpoint file is written
// locally before end of system checkpoint
// and moved to its final destination later
// MemoryFirst: the checkpoint is saved in
// memory at the end of the system
// checkpoint and moved to its final
// destination later
// - proposed by D2.1.1

}

5.7.8 Class xosaga::job_service

The class job_service is extending SAGA’s job service. It adds three methods
for creating jobs using an application_description, in combination with
a resource_description, or with a reservation_id, or with an array
of resource_id’s.

class job_service : extends saga::job_service
{

CONSTRUCTOR (in session s,
in url rm = "",
out job_service obj)

// Purpose: create the object
// Inputs: s: session to associate with

43

// the object
// rm: contact url for resource
// manager
// InOuts: -
// Outputs: obj: the newly created object
// PreCond: -
// PostCond: -
// Perms: -
// Throws: NotImplemented
// IncorrectURL
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - ’rm’ defaults to an empty string - in that
// case, the implementation must perform a
// resource discovery, or fall back to a fixed
// value, or find a valid rm contact in any
// other way. If that is not possible, a
// ’BadParameter’ exception MUST be thrown, and
// MUST indicate that a rm contact string is
// needed. The expected behaviour MUST be
// documented (i.e. if a default is available).
// - if the rm identified by the rm URL cannot be
// contacted (i.e. does not exist), a
// ’BadParameter’ exception is thrown.

DESTRUCTOR (in job_service obj)
// Purpose: destroy the object
// Inputs: obj: the object to destroy
// InOuts: -
// Outputs: -
// PreCond: -
// PostCond: - jobs created by this job_service instance
// are not affected by the destruction, and are
// in particular not canceled.
// Perms: -
// Throws: -
// Notes: -

create_job (in application_description ad,
in resource_description rd,

44

out job job);
// Purpose: create a job instance
// Inputs: ad: description of application
// to be submitted
// rd: description of resource
// required for the job
// InOuts: -
// Outputs: job: a job object representing
// the submitted job instance
// PreCond: - ad has an ’Executable’ attribute.
// PostCond: - job is in ’New’ state
// - ad and rd are deep copied (no state is shared
// after method invocation)
// - ’Owner’ of the job is the id of the context
// used for creating the job.
// Perms: -
// Throws: NotImplemented
// BadParameter
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - calling run() on the job will submit it to
// the resource, and advance its state.
// - if the application description does not have a
// valid ’Executable’ attribute, a ’BadParameter’
// exception is thrown.
// - if the application or resource descriptions contain
// values that are outside of the allowed range, or
// cannot be parsed, or are otherwise invalid and not
// usable for creating a job instance, a
// ’BadParameter’ exception is thrown, which MUST
// indicate which attribute(s) caused this
// exception, and why.

create_job (in application_description ad,
in array<string> resource_ids,
out job job);

// Purpose: create a job instance
// Inputs: ad: description of application
// to be submitted
// resource_ids: identifications for the resources

45

// provided to the job
// InOuts: -
// Outputs: job: a job object representing
// the submitted job instance
// PreCond: - ad has an ’Executable’ attribute.
// PostCond: - job is in ’New’ state
// - ad is deep copied (no state is shared
// after method invocation)
// - ’Owner’ of the job is the id of the context
// used for creating the job.
// Perms: -
// Throws: NotImplemented
// BadParameter
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - calling run() on the job will submit it to
// the resource, and advance its state.
// - if the application description does not have a
// valid ’Executable’ attribute, a ’BadParameter’
// exception is thrown.
// - if the application description contains
// values that are outside of the allowed range, or
// cannot be parsed, or are otherwise invalid and not
// usable for creating a job instance, a
// ’BadParameter’ exception is thrown, which MUST
// indicate which attribute(s) caused this
// exception, and why.
// - if one or more resource_ids are invalid, a
// ’BadParameter’ exception is thrown, which MUST
// indicate which resource_id(s) caused this
// exception, and why.

create_job (in application_description ad,
in string reservation_id,
out job job);

// Purpose: create a job instance
// Inputs: ad: description of application
// to be submitted
// resource_ids: identification for a reservation
// holding resources provided to

46

// the job
// InOuts: -
// Outputs: job: a job object representing
// the submitted job instance
// PreCond: - ad has an ’Executable’ attribute.
// PostCond: - job is in ’New’ state
// - ad is deep copied (no state is shared
// after method invocation)
// - ’Owner’ of the job is the id of the context
// used for creating the job.
// Perms: -
// Throws: NotImplemented
// BadParameter
// PermissionDenied
// AuthorizationFailed
// AuthenticationFailed
// Timeout
// NoSuccess
// Notes: - calling run() on the job will submit it to
// the resource, and advance its state.
// - if the application description does not have a
// valid ’Executable’ attribute, a ’BadParameter’
// exception is thrown.
// - if the application description contains
// values that are outside of the allowed range, or
// cannot be parsed, or are otherwise invalid and not
// usable for creating a job instance, a
// ’BadParameter’ exception is thrown, which MUST
// indicate which attribute(s) caused this
// exception, and why.
// - if the reservation_id is invalid, a
// ’BadParameter’ exception is thrown.

}

6 XtreemFS
From the application’s point of view, the XtreemFS file system is providing two
kinds of functionality:

1. Provide access to remote files via a local, proxy file system (using FUSE
and Linux VFS). XtreemFS file systems are organized in volumes that are
identified based on URLs.

47

Using the (client local) XtreemFS access layer, a XtreemFS volume can be
mounted into the client machine’s local file system. After mounting has
succeeded, files can be accessed via the POSIX file API to local files.

This setup is suited very well for integration in the SAGA-based API used
by XtreemOS. What actually needs to be exposed to the application is ac-
cess to files identified by their URL, as already covered by SAGA’s File
Management package; no API extension is needed. The XtreemFS access
layer, however, exposes the local file system mounting to the application, re-
quiring a small but additional management overhead that should be avoided.
We therefore suggest to provide access to XtreemFS volumes via a special
XtreemFS adaptor for the SAGA engine that performs automounting func-
tionality, thus hiding the management of local volume mount points.

2. Provide access to replicated volumes, via the client-local access layer to the
XtreemFS Metadata and Replica Catalog (MRC), the Directory Service,
and the Replica Management Service (RMS).

As of the current state of the project (month 18), volume replication is not
yet available in the current prototype implementation. As such, a detailed
analysis on providing application-level access can not yet be performed.
However, SAGA’s Replica Management package provides an interface to
replicated files and directories. We thus expect that API extensions for vol-
ume replication will not become necessary. Details will be provided likely
with the third XtreemOS API specification.

7 XtreemOS functionality not covered by this API
specification

The main purpose of this (second draft) API specification is to provide access to
XtreemOS-specific functionality for applications. This concerns all work pack-
ages from SP2 and SP3, as far as these work packages provide relevant function-
ality and as far as their work progress allows to provide an API at this project
stage. In this section, we list all work packages from SP2 and SP3 and their pro-
vided functionality. Doing so, we explain which functionality can not be covered
by an API right now.

WP2.1 provides node-level VO support in Linux-XOS. Covered.

WP2.2 provides single system image for clusters (LinuxSSI-XOS), most impor-
tantly checkpoint/restart functionality. Covered.

48

WP2.3 • Mobile IPv6 to XtreemOS-MD. This does not provide any functional-
ity that could be covered by an API.

• VO support in Linux-XOS for mobile devices. Covered (along with
WP2.1).

WP3.1 provides the API to XtreemOS (this work).

WP3.2 • Distributed Server, Virtual Nodes, and Application Bootstrapping:
These components will be used for setting up application processes on
XtreemOS nodes in a way that will ensure both failure resilience and
certain communication topologies (like tori or rings). At the current
state of the project (month 18), these components exist only as a first
prototype version. A sensible API can thus only be designed in a later
phase of the project, likely for the third API specification.

• Resource Selection and Application Directory Service:
These components are used via the job submission mechanism from
WP3.3. (Covered.)

• Publish-Subscribe:
As of month 18, the publish-subscribe system exists only in simula-
tions of its fundamental mechanisms. As such, it is too early to pro-
vide an API for this functionality. In the third API specification, we
will provide a publish-subscribe API, likely via the Message-Bus ex-
tension package to the SAGA API [6].

WP3.3 Provides services for application execution management. Covered.

WP3.4 • XtreemFS file system. Covered.

• Object Sharing Service (OSS), this will provide support for object
sharing services, exposing shared-memory access to the objects. While
the basic functionality is becoming available as a first prototype, the
functionality regarding object consistency (transactions, locking, etc.)
will only become available in a later project phase. It is thus not yet
possible (or at least sensible) to devise an API for the OSS. For the
third API specification, an API will be devised, likely as an extension
package to the XOSAGA API framework.

WP3.5 provides VO support. Covered.

WP3.6 provides mobile-client access to XtreemOS services (application execu-
tion management, XtreemFS, VO-centric user management), as well as a

49

lightweight SAGA implementation. This functionality is actually provid-
ing/implementing the XtreemOS API rather than separate functionality that
would require additional API coverage.

8 Summary
In this document, we have presented the second draft specification of program-
ming interfaces for XtreemOS, adding access to XtreemOS-specific functionali-
ties w.r.t. the first draft programming interface (SAGA).

We have analyzed the updated application requirements and the functional-
ity provided (or planned for) by the work packages from sub projects SP2 and
SP3. The conclusions from our analysis are that most XtreemOS functionality
can be accessed via the SAGA interface, requiring “only” implementation efforts
for respective adaptors. One exception is VO management which requires the def-
inition of an XtreemOS-specific type of saga::context objects, specified in
this document.

The application execution management (AEM) of XtreemOS can not be ac-
cessed via the existing SAGA interface, as it exposes resources and resource reser-
vation to the applications, concepts that are hidden on purpose by SAGA, for the
goal of API simplicity. To provide access to AEM functionality, we have pre-
sented the XOSAGA API name space that mirrors SAGA and tightly integrates
with it, providing suitable extensions. In the case of AEM, we have proposed
a resource management package for XOSAGA that integrates SAGA’s job man-
agement package with XtreemOS AEM. It is anticipated that XOSAGA extension
packages that have proven useful will be contributed as SAGA extension packages
to the standardization process within the Open Grid Forum (OGF).

The programming interface presented in this document is still considered a
draft of the XtreemOS API. This is due to the state of the technical developments
at the current phase of the project. Some technical details of the covered function-
ality is still subject to change. Other functionalities are not yet ready for design-
ing an API. Furthermore, practical experience with the produced prototypes of the
XtreemOS operating system, its services, and the API may indicate the need for
updates and changes in the coming API releases.

References
[1] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. Mc-

Gough, D. Pulsipher, and A. Savva. Job Submission Description Language
(JSDL) Specification v1.0. Grid Forum Document GFD.56, Open Grid

50

Forum (OGF), 2005. http://www.ogf.org/sf/documents/GFD.
56.pdf.

[2] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pick-
les, D. Pulsipher, C. Smith, and M. Theimer. OGSA Basic Execution Service
Version 1.0. Grid Forum Document GFD.108, Open Grid Forum (OGF),
2007. http://www.ogf.org/sf/documents/GFD.108.pdf.

[3] T. Goodale, S. Jha, T. Kielmann, A. Merzky, J. Shalf, and C. Smith. A
Simple API for Grid Applications (SAGA). Grid Forum Working Draft,
Open Grid Forum, 2006. Version 1.0 RC.1 http://forge.ogf.org/
sf/projects/saga-core-wg.

[4] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Klei-
jer, Andre Merzky, John Shalf, and Christopher Smith. A Simple API for
Grid Applications (SAGA). Grid Forum Document GFD.90, Open Grid
Forum (OGF), 2007. Version 1.0 http://forge.ogf.org/short/
saga-core-wg/saga-core-v1.

[5] I. Mandrichenko, W. Allcock, and T.Perelmutov. GridFTP v2 Protocol De-
scription. Grid Forum Document GFD.47, Open Grid Forum (OGF), 2005.
http://www.ogf.org/sf/documents/GFD.47.pdf.

[6] Andre Merzky. SAGA API Extension: Message Bus API. Open Grid Forum
(OGF), SAGA CORE working group, 2008. Working draft at http://
forge.ogf.org/sf/projects/saga-core-wg.

[7] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova.
A GridRPC Model and API for End-User Applications. Grid Forum Docu-
ment GFD.52, Open Grid Forum (OGF), 2005. http://www.ogf.org/
sf/documents/GFD.52.pdf.

[8] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardner, A. Haas, B. Nitzberg,
D. Templeton, J. Tollefsrud, and P. Tröger. Distributed Resource Man-
agement Application API Specification 1.0. Grid Forum Document GFD-
R.022, Open Grid Forum (OGF), 2007. http://www.ogf.org/sf/
documents/GFD.22.pdf.

[9] First Draft Specification of Programming Interfaces. Deliverable D3.1.1,
XtreemOS Consortium, 2006.

[10] Requirements and specification of xtreemos services for job execution man-
agement. Deliverable D3.3.1, XtreemOS Consortium, 2006.

51

http://www.ogf.org/sf/documents/GFD.56.pdf
http://www.ogf.org/sf/documents/GFD.56.pdf
http://www.ogf.org/sf/documents/GFD.108.pdf
http://forge.ogf.org/sf/projects/saga-core-wg
http://forge.ogf.org/sf/projects/saga-core-wg
http://forge.ogf.org/short/saga-core-wg/saga-core-v1
http://forge.ogf.org/short/saga-core-wg/saga-core-v1
http://www.ogf.org/sf/documents/GFD.47.pdf
http://forge.ogf.org/sf/projects/saga-core-wg
http://forge.ogf.org/sf/projects/saga-core-wg
http://www.ogf.org/sf/documents/GFD.52.pdf
http://www.ogf.org/sf/documents/GFD.52.pdf
http://www.ogf.org/sf/documents/GFD.22.pdf
http://www.ogf.org/sf/documents/GFD.22.pdf

[11] Requirements Capture and Use Case Scenarios. Deliverable D4.2.1,
XtreemOS Consortium, 2006.

[12] Specification of Federation Resource Management Mechanisms. Deliver-
able D2.2.1, XtreemOS Consortium, 2006.

[13] Application References, Requirements, Use Cases and Experiments. Deliv-
erable D4.2.3, XtreemOS Consortium, 2007.

[14] Design of the Architecture for Application Execution Management in
XtreemOS. Deliverable D3.3.2, XtreemOS Consortium, 2007.

[15] First Prototype of XtreemOS Runtime Engine. Deliverable D3.1.3,
XtreemOS Consortium, 2007.

[16] Linux XOS Specification. Deliverable D2.1.1, XtreemOS Consortium,
2007.

[17] Second Specification of Security Services. Deliverable D3.5.4, XtreemOS
Consortium, 2007.

[18] WP 3.3 Internal Documents. http://xtreemos.wiki.irisa.fr/tiki-
index.php?page=WP3.3, 2007.

52

	Executive Summary
	Introduction
	XtreemOS application requirements revisited
	Updated requirements on XtreemOS interfaces
	Implementation of these requirements

	Extensions included in the SAGA-CORE specification
	VO Management
	Application Execution Management
	General Terminology and Scoping
	Job Submission
	Terminology and Data Structures
	The API Mapping

	Job Management
	Terminology and Data Structures
	The API Mapping

	Job Checkpointing and Migration
	The API Mapping

	Job Monitoring and Steering
	Terminology and Data Structures
	The API Mapping

	Resource Management
	The API Mapping

	The XOSAGA Resource Management Package
	Class xosaga::job
	Class xosaga::job_self
	Class xosaga::resource_description
	Class xosaga::resource
	Class xosaga::reservation
	Class xosaga::resource_service
	Class xosaga::application_description
	Class xosaga::job_service

	XtreemFS
	XtreemOS functionality not covered by this API specification
	Summary
	Bibliography

