
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

First Prototype of XtreemOS Runtime Engine
D3.1.3

Due date of deliverable: November 30th, 2007
Actual submission date: December 17th, 2007

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.2

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.0 / Last edited by Thilo Kielmann / December 17, 2007

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.9 30/10/07 Andre Merzky and Thilo Kiel-
mann

VUA initial draft

0.99 05/11/07 Mathijs den Burger VUA ready for review
1.0 17/12/07 Thilo Kielmann VUA final version, based on reviewer comments

Reviewers:
Josep M. Perez Cancer (UPC), Matthias Hess (NEC)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.1.2 A runtime engine for dynamic call dispatching VUA∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable.
∗Task leader

Executive Summary
This document presents the first prototype implementation of a runtime engine for
XtreemOS API as specified in deliverable D3.1.1 [6]. We outline the design of the
implementation, explain how to install and deploy it, and refer to a programmer’s
manual.

1

1 Introduction
For the successful adoption of the XtreemOS grid operating system, it is extremely
important to provide a well-accepted API to its potential application programs.
To accomplish this goal, we are following an iterative approach to specifying and
implementing this API. In our previous deliverable, D3.1.1. [6], we have pre-
sented the Simple API for Grid Applications (SAGA) [2] as the first draft API for
XtreemOS.

In this deliverable, we provide a first prototype implementation of the SAGA
API, written in the C++ programming language. In a companion deliverable,
D3.1.2 [7], we provide the second draft API for XtreemOS, focusing on SAGA
extensions to accomodate specific XtreemOS features. Those extensions will be
provided in future implementation releases.

In this document, we outline the underlying design principles of our SAGA
C++ implementation, and provide information for its download, installation, and
use.

2 The XtreemOS API, first draft specification
In our previous deliverable D3.1.1 [6], we have motivated the use of the SAGA
API [2] specification as the first draft XtreemOS API. That deliverable also con-
tains a brief overview of the SAGA API, its structure and its scope. Since the pub-
lication of D3.1.1, the SAGA API specification evolved significantly, but mostly
in terms of consistency and look & feel rather than in terms of scope and func-
tionality. Notably, several changes proposed by XtreemOS partners have been
incorporated, amongst them a different mechanism for asynchronous method in-
vocation, and the inclusion of the JSDL SPMD extension [5], both essential to the
XtreemOS environment.

In general, the observations made in D3.1.1 still hold: the SAGA API covers
the scope of XtreemOS very well, with only very few notable exceptions such
as checkpoint and recovery, and ACLs according to the withdrawn POSIX draft
IEEE 1003.1e/2c. Also, our implementation of the SAGA API in C++ (described
in this document) shows that (a) the API can sensibly be implemented, and (b)
provides the promised simplified access to grid resources.

3 A runtime engine for the first draft XtreemOS API
In its general architecture, our SAGA implementation follows the lessons we have
learned with the SAGA predecessor GAT [1]: a small dynamic engine provides

2

dynamic call switching of SAGA API calls to middleware bindings (adaptors)
which are dynamically loaded on demand, and bound at runtime (late binding).
The relation between these components are illustrated in Figure 1. Unlike the
GAT, SAGA provides an extensible API framework, consisting of a look & feel
part, and an extensible set of functional packages. Implementations need to take
special care of this extensibility. We explain our approach to an extensible imple-
mentation in the engine description below.

Application

Middleware
API

API

SAGA

RPC

SAGA Adaptors

L
o

c
a

l
R

e
m

o
te

Middleware

SAGA API Packages (managed by ’Engine’)

libc

(globus)

GridFTP

FilesFiles
(local)

Files
(XtreemOS)

XtreemOS

FilesJobs

Figure 1: Architecture: A lightweight engine dispatches SAGA calls to dynamically loaded
middleware adaptors.

The SAGA C++ Engine
One of the technically challenging requirements of the SAGA Core API specifica-
tion is that SAGA object copy operations are shallow copies by default, so copies
do not perform a deep copy of object state. These semantics are performant in re-
mote environments as they avoid remote operations (state query and duplication)
in most cases.

A second challenge is that the lifetime of a SAGA object is not only defined
by its scope in the program, but depends (a) on the lifetime of objects depending
on that instance, (b) pending asynchronous operations for that instance, and (c)
shallow copies of that instance.

To address these challenges, our SAGA implementation uses a technique called
the PIMPL mechanism (private implementation), shown in Figure 2. Using this

3

technique, we were able to simplify the internal state management of SAGA ob-
jects and to resolve the lifetime dependencies between SAGA objects, SAGA ses-
sions, and adaptors [4]. At the same time, the engine provides the complete SAGA
task model, e.g. implements all SAGA operations asynchronously, even if that is
not explicitly supported by the backend services. Both the central call routing and
the central management of asynchronous operations, allow for smart runtime opti-
mizations of the remote method invocations [3], which are, for example, exploited
for bulk optimizations.

Facade instance

Implementation

Adaptor selector

CPI instance

Constructor

Select adaptor

Create CPI instance

Constructor

API objects Implementation objects Adaptor objects

Instance creation

CPI function call

Activate adaptor

API objects Implementation objects Adaptor objects

Facade instance Implementation Adaptor selector CPI instance

API function call

impl function call

Select adaptor

Call routing

Routed call
Middleware
invocation

Figure 2: The PIMPL mechanism hides the implementastion from the end user. Shown are
object creation (top) and invocation of a SAGA function call (bottom).

Using the PIMPL mechanism, the SAGA object does not maintain any state
itself, but is merely a facade maintaining a private, shared pointer to the implemen-
tation of the (stateful) SAGA object, and all method invocations are simply for-
warded to that implementation instance. On copies, a new facade instance is cre-

4

ated which maintains another shared copy to the same implementation instance,
using, by definition, shallow copy semantics, as the stateful implementation is not
copied at all. Also, depending objects and task instances (which represent asyn-
chronous operations) maintain additional shared pointers to the implementation
instance and are thus extending the lifetime of that instance: only when all shared
pointer copies are finally freed (i.e. when all depending objects are deleted and all
asynchronous operations are completed) is the stateful implementation deleted.

Task N
(saga::task)

Task 2
(saga::task)

Facade object
(saga::file)

Implementation object
(saga::impl::file)

CPI instance
(default_adaptor::file)

Task 1
(saga::task)

Creation

Strong reference

Weak reference

API objects Implementation objects Adaptor objects

Figure 3: Shared pointers to the implementation object instance define the lifetime of the SAGA
objects.

As can be seen in Figure 3, we also use the shared pointer abstraction for the
internal lifetime management of the adaptor instances: multiple of those instances
can co-exist and provide the implementation (i.e., middleware binding) of the
SAGA object implementations.

Summarizing our experiences with implementing the SAGA API, we have
learned the following lessons:

• As almost all grid operations are to a remote service, communication la-
tency and middleware invocation overhead dominate local invocation costs.
This allows API implementations to apply elaborate (and traditionally ex-
pensive) optimizations, and clean and simple (and also traditionally expen-
sive) implementation approaches: a couple of elements in the call stack sim-
ply do not matter (as they cost at most micro- or maybe milliseconds), com-
pared to remote communication latency and middleware invocation over-
head that may sum up to tens of seconds.

• It is possible and advisable to provide an extensible implementation for an
extensible API. This lesson seems self-evident, but needs to be followed in

5

multiple dimensions: implementation, maintenance, support, documenta-
tion, tutorials, optimizations, etc.

• Software complexity does not disappear by introducing new layers – com-
plexity just gets moved to a different layer. In our case, the complexity
of interfacing to grid middleware is moved out of the application code (as
intended) and into the SAGA adaptors. As such, we consider our imple-
mentation approach to be highly successful.

The SAGA C++ Adaptors
Along with the SAGA engine, which is providing the SAGA API itself, we have
started to implement the appropriate middleware bindings, i.e. SAGA adaptors.
Firstly, local adaptors have been provided which interface to the local operating
system (in the case of XtreemOS: Linux) and provide the SAGA functionality on
the local host machine, as well as LinuxSSI clusters. Besides, the local adaptor set
is also important for (a) development and debugging purposes, and (b) as reference
for other, non-local adaptors.

Further, the SAGA implementation includes experimental adaptors to the Globus
(GT4) GridFTP service for file access and file management, and to the Globus
(GT4) GRAM service for job submission and management. Obviously, the next
step is to interface directly with the Xtreemos services, and thus to provide XtreemOS
adaptors. This is subject to future deliverables.

4 Installation and deployment of the runtime engine
Our C++ SAGA implementation is an open source project, a collaboration with
other parties interested in developing the SAGA API. It is recommended to down-
load the latest stable release, available from the SAGA website. For historical
reasons, the SAGA website is located at:

http://saga.cct.lsu.edu

The development source tree, with the most recent snapshot (not always guaran-
teed to be free of problems), can be found in the public subversion repository:

svn co https://svn.cct.lsu.edu/repos/saga/trunk

The SAGA source distribution contains

• a quick introduction (./README)

6

• compile instructions (./INSTALL)

• compile environment for Unix/gmake, Unix/Eclipse, Windows/Visual Stu-
dio, and MaxOS-X/XCode (./projects/)

• several examples and tutorial material (./examples/)

• source code of the C++ engine

• a complete set of local adaptors

• Globus job (GRAM) and file (GridFTP) adaptors.

SAGA depends on the free Boost C++ libraries, version 1.33.1 or higher. They
can usually be found in the package repository of your Linux distribution. Alter-
natively, they can be downloaded from http://www.boost.org.

Below, the Linux/make installation guidelines (relevant for XtreemOS) are
quoted from the INSTALL file of the source distribution.

Quick Start - UNIX/Linux

Build & Install SAGA

- Configure SAGA: configure
Run configure in the top directory of the source
distribution. You can pass a lot of options to configure.
At least, you should use option --prefix to specify where
to install the library. For example:

./configure --prefix=<DESTDIR>

To see other options of configure run: ./configure --help

For example, you can pass --without-<PACKAGE> to exclude a
specific package from the build process.

- Build SAGA: make
NOTE: If you don’t have a Globus installation, make will
fail building the Globus Adaptor set. We don’t have a
configure switch to exclude the Globus adaptors from the
build process yet. Don’t bother about it! ’make install’
will still install all required parts of SAGA.

7

- Install SAGA: make install
This will create (in case it doesn’t exist) a directory
(--prefix=) containing:

lib/ -> shared libraries and adaptors
include/saga/ -> header files
share/saga -> configuration (.ini) files

Build & Install the Globus Adaptor Set

- Set GLOBUS_LOCATION and GLOBUS_FLAVOUR variables according
to your system settings:

export GLOBUS_LOCATION=/usr/local/globus (default)
export GLOBUS_FLAVOUR=gcc32dbgpthr (default)

- cd adaptors/globus4-preWS/

- Build the adaptors: make (please ignore compiler warning ;-)

- Install the adaptors make installs

Configure SAGA Environment

To help SAGA to find its configuration files, you should set
the SAGA_LOCATION variable to <DESTDIR>:

export SAGA_LOCATION=<DESTDIR>

If you have installed SAGA to a non default location on you
system you may also want to add the SAGA libraries to the
dynamic loader’s include path:

- On Linux and most other Unix systems:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SAGA_LOCATION/lib

- On MacOS X:

8

export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:\
$SAGA_LOCATION/lib

If you want SAGA to produce more verbose output and
debugging statements, you can set the SAGA_VERBOSE variable
to a non-zero value:

export SAGA_VERBOSE=1

A Simple 5 Minutes SAGA Example

Here’s a small program reading the content of a file using
SAGA’s package_file I/O methods:

//
//
#include <string>
#include <saga.hpp>

int main(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << "\nUsage: " << argv[0]

<< " [URL] \n"
<< std::endl;

}
else
{
saga::size_t readbytes = 0;
char inbuff[64];

try
{
saga::file f (argv[1], saga::file::Read);

while (readbytes = f.read (saga::buffer (inbuff)))
{
std::cout << std::string(inbuff,readbytes)

9

<< std::flush;
}

}
catch (saga::exception const &e)
{
std::cout << "Couldn’t read the file: "

<< e.what()
<< std::endl;

}
}
return 0;

}
//
///

Copy the source to a file "saga_file_read.cpp" and compile it
using the following command:

g++ saga_file_read.cpp -o saga_file_read \
-I$SAGA_LOCATION/include \
-I$BOOST_LOCATION/include -L$SAGA_LOCATION/lib/ \
-lsaga_engine -lsaga_package_namespace \
-lsaga_package_file

The resulting binary should be able to read and print out the
contents of arbitrary local files on your system - for
example:

./saga_file_read any://localhost/.bashrc

should print out the content of your .bashrc file.

NOTE: If you try to substitute localhost with a hostname that
doesn’t point to your local machine, the execution will
fail if you haven’t built the Globus GridFTP adaptors.
Otherwise it should work on Globus resources as long as
you have a valid Grid Proxy Credential.

Have fun!

The SAGA development team.

10

5 API documentation
API documentation is available in three different formats. Firstly, the OGF SAGA
API standard document [2] is, naturally, a comprehensive documentation source
for the SAGA API. Secondly, a number of tutorials are included in the released
code package. And finally, a detailed API documentation is generated by doxy-
gen. It is available from

http://saga.cct.lsu.edu/apidoc/

6 Summary and Future Work
In this report, we have presented the first prototype of the XtreemOS runtime en-
gine, implementing the SAGA API, according to our previous deliverable D3.1.1.
We have outlined the underlying design principles of our implementation, and
have provided information for download, installation, and use.

In a companion deliverable, D3.1.2, we are presenting the second draft API for
XtreemOS, focusing on SAGA extensions for exposing XtreemOS-specific func-
tionality. This functionality will be implemented in later releases. Other directions
of future work are language bindings to the SAGA API. The current implemen-
tation defines an ad-hoc language binding to C++, which still has to undergo the
standardization process within OGF. Other required language bindings (like Java,
C, Fortran) need to be developed later, as well.

References
[1] Gabrielle Allen, Kelly Davis, Tom Goodale, Andrei Hutanu, Hartmut Kaiser,

Thilo Kielmann, Andre Merzky, Rob van Nieuwpoort, Alexander Reinefeld,
Florian Schintke, Thorsten Schütt, Ed Seidel, and Brygg Ullmer. The Grid
Application Toolkit: Towards Generic and Easy Application Programming
Interfaces for the Grid. Proceedings of the IEEE, 93(3):534–550, 2005.

[2] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer,
Andre Merzky, John Shalf, and Christopher Smith. A Simple API for Grid

11

Applications (SAGA). Grid Forum Document GFD.90, 2007. Open Grid
Forum (OGF).

[3] Stephan Hirmer, Hartmut Kaiser, Andre Merzky, Andrei Hutanu, and
Gabrielle Allen. Generic Support for Bulk Operations in Grid Applications.
In MCG ’06: Proceedings of the 4th International Workshop on Middleware
for Grid Computing, page 9, New York, NY, USA, November 2006. ACM
Press.

[4] Hartmut Kaiser, Andre Merzky, Stephan Hirmer, and Gabrielle Allen. The
SAGA C++ Reference Implementation – Lessons Learnt from Juggling with
Seemingly Contradictory Goals. In Workshop on Library-Centric Software
Design LCSD’06, at Object-Oriented Programming, Systems, Languages
and Applications conference (OOPSLA’06), Portland, Oregon, USA, Octo-
ber 2006.

[5] Andreas Savva (Ed.). JSDL SPMD Application Extension, Version 1.0. Grid
Forum Document GFD.115, 2007. Open Grid Forum (OGF).

[6] First Draft Specification of Programming Interfaces. Deliverable D3.1.1,
XtreemOS consortium, 2006.

[7] Second Draft Specification of Programming Interfaces. Deliverable D3.1.2,
XtreemOS consortium, 2007.

12

