XtreemQS /f* BUHE

Information Society

Enabling Linux <
for the Grid \A/ Technologies

Project no. IST-033576

XtreemQOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Third Draft Specification of Programming Interfaces
D3.1.5

Due date of deliverable: November 30", 2008
Actual submission date: January 5, 2009

Start date of project: June 1% 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.1

Responsible institution: VUA

Editor & and editor’s address: Thilo Kielmann
Vrije Universiteit

Dept. of Computer Science

De Boelelaan 1083

1081HV Amsterdam

The Netherlands

Version 1.0.1 / Last edited by Mathijs den Burger / January 5%, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level
PU | Public v
PP | Restricted to other programme participants (including the Commission Services)
RE | Restricted to a group specified by the consortium (including the Commission Services)
CO | Confidential, only for members of the consortium (including the Commission Services)

Revision history:

Version Date Authors Institution Section affected, comments
0.1 04/11/08 Ana Oprescu, Thilo Kielmann VUA initial draft
1.0 19/12/08 | Thilo Kielmann VUA complete draft for internal review
1.0.1 05/01/09 | Mathijs den Burger VUA processed comments of internal reviewers
Reviewers:

Michael Schéttner (UDUS), Eugenio Cesario (CNR)

Tasks related to this deliverable:

Task No. | Task description Partners involved®
T3.1.1 Specification of XtreemOS API extensions to the set of | VUA®, all partners except CDC
POSIX specifications

°This task list may not be equivalent to the list of partners contributing as authors to the deliverable
*Task leader

Executive Summary

This document presents the third draft specification of the API for XtreemOS. In
the earlier deliverable D3.1.2 [17], we have proposed an extended SAGA API,
called XOSAGA, as the second draft API. In this report, we present additions
to XOSAGA, covering the so-far missing XtreemOS-specific functionality. In
particular, we provide API’s for the following XtreemOS functionalities: trans-
parently distributed services (i.e., Distributed Servers), a scalable, transactional,
distributed key-value store (i.e., Scalaris) and a transparent and consistent data
sharing service (i.e., Object Sharing Service).

Contents

[Executive Summary|

(L__Introduction|

2~ XtreemOS application requirements revisited|

B Distributed [XOSAGA

[3.2 Specification| L
[3.3 Specification details|.o

4 XtreemkS and XOSAGA

[5OSS, Scalaris, and XOSAGA]

1 Shar fers|o
[5.1.1 Specification| L oL

[5.1.2 Specification details| 0L

B2 Sharedevents
[5.2.1 Specification| L 0L

[5.2.2 Specificationdetails|

[3.3 Shared properties|
[5.3.1 Specification|o

[5.3.2 Specification details|o 000

6 Virtual Nodes and XOSAGA!

ummaryj

Bibliography

1 Introduction

The specification of the XtreemOS API is being performed by agreement be-
tween representatives of all project partners, representing both groups of interface
providers and interface users. This is an iterative process: a first specification,
intended as an early draft, has been agreed upon early in the project, such that im-
mediate implementation experience can be gained and strengths and weaknesses
can be identified. The first API specification has been documented in deliverable
D3.1.1 [13]]. The second API specification has been documented in deliverable
D3.1.2 [17]. This document describes the third API specification draft, the first
one to cover all XtreemOS-specific functionality. Future milestones during the
project will cover revisions and improvements of this API, until the final version
will meet all requirements of both applications and system implementors.
In general, the XtreemOS API has to serve three classes of applications:

1. Existing Linux applications, using POSIX-standardized interfaces.
2. Existing grid applications, using OGF-standardized interfaces.
3. New applications, using functionality uniquely provided by XtreemOS.

In D3.1.1, we have selected the emerging OGF standard Simple API for Grid
Applications (SAGA) as the first draft API for XtreemOS. SAGA had been se-
lected because it combines OGF-standardized API’s (namely JSDL [2], BES [3],
GridFTP [7], GridRPC [9], DRMAA [10]) with POSIX-like interfaces wherever
possible (e.g., for files and streams). Also, SAGA has been cited as a possible can-
didate API for XtreemOS by the project-internal application groups in deliverable
D4.2.1 [14].

Part of the XtreemOS API design process is to actively contribute to the stan-
dardization efforts, most importantly within OGF for the SAGA specification.
These active contributions not only give XtreemOS a better visibility, but also (and
most importantly) make sure that XtreemOS stays in sync with ongoing standard-
izations, and can contribute its own technical findings to the ongoing standardiza-
tion process.

Figure[I]illustrates the interaction between the SAGA-related standardization
and the XtreemOS API specification. Initially (in D3.1.1), XtreemOS has adopted
the SAGA draft recommendation, documented in OGF’s draft GWD-R.90 [4] as
its first own API specification. Since then, XtreemOS has contributed to final-
ize the SAGA-CORE specification, with imminent publication as a draft recom-
mendation, in OGF’s document GFD.90 [5]. The publication of GFD.90 marks
a crossroads at which the SAGA-CORE specification itself becomes fixed, and

'The draft [4] unfortunately refers to itself as GWD-R.72, which is wrong.

3

XtreemOS-related modifications or additions require the definition of separate

API documents.

SAGA develop |SAGA-CORE | develop SAGA
GWD-R.90 GFD.90 g extensions
= g
8- *\Q\)
3 $
O
XtreemOS . XOSAGA future
' XOSAGA
API 1.0 develop API 2.0, 3.0 develop OSAG
fall 2006 2007, 2008 future

Figure 1: Co-development of XtreemOS API and SAGA standard.

This document covers the third draft API specification for XtreemOS. Its main
focus is providing API extensions (w.r.t. to XOSAGA, the second draft API spec-
ification) that provide the so-far missing access to XtreemOS-specific function-
ality. For XtreemOS-specific extentions to SAGA, in D3.1.2 we defined an API
name space called XOSAGA (XtreemOS extensions to SAGA) that mirrors the
SAGA API name space. XOSAGA contains only those packages, classes, and
interfaces that require XtreemOS-specific extensions to SAGA. Together, SAGA
and XOSAGA form the XtreemOS API. By this design, applications require only
minimal changes for being ported from “standard SAGA” to XOSAGA: applica-
tions simply have to create objects from classes from the XOSAGA name space,
instead of classes with identical names, but from the SAGA namespace.

Within OGF, the SAGA-related standardization efforts are focusing on the
development of extension packages to the SAGA-CORE. Obviously, this is the
mechanism for XtreemOS to contribute by proposing XOSAGA extensions for
such packages.

The bulk of this document consists of an analysis of functionality either speci-
fied or implemented so far by the XtreemOS work packages from sub projects SP2
and SP3, as identified in D3.1.2 as to be defined in this report. This report covers
only the additions to XOSAGA as it had been defined in D3.1.2. The complete
XtreemOS API thus consists of SAGA, the XOSAGA extensions from D3.1.2,
and the XOSAGA extensions describe in this document.

The remainder of this document is organized as follows. First, we discuss

4

the updated application requirements in Section[2] Then, we analyze XtreemOS-
specific functionality identified as missing in D3.1.2, namely regarding transpar-
ently distributed services (Section[3)), the XtreemFS file system (Section {)), trans-
parent data sharing services (Section [5) and transparent service replication (Sec-
tion [6). Finally, Section 7] summarizes our findings.

2 XtreemOS application requirements revisited

The ulterior requirements to other work packages described by WP4.2 in deliv-
erable D4.2.5 [16]]. In that document, there are no further requirements to be ad-
dressed by the XtreemOS API, compared to the previous requirements document
D4.2.3 [[15)]. In consequence, this document is focusing on providing the so-far
missing, XtreemOS-related functionality. Other modifications have not been re-
quired.

3 Distributed servers and XOSAGA

Distributed servers are developed by WP3.2, and described in D3.2.2 (First Pro-
totype Version of Ad Hoc Distributed Servers) [20]. A distributed server is an ab-
straction of a group of server processes, perceived by its clients as a single entity
with a single stable IP address. These server processes together provide scalable,
high-performance client-to-server communication without any client-awareness
of the system.

The key technology employed in distributed servers is versatile anycast [12],
which uses the Linux implementation [8] of the Mobile IPv6 protocol [6]. Since
the system also provides mid-connection handoffs, server TCP sockets rely on
TCP connection passing (TCPCP) technology [1].

3.1 Distributed server sockets to SAGA Streams

In XOSAGA, distributed server sockets are accessible via streams in SAGA. The
saga.stream package provides a simple interface for TCP/IP socket connec-
tions. Integrating the functionality of distributed servers with XOSAGA requires
two additions to SAGA:

1. A new scheme 'tcpcp’ for the endpoint URLSs of distributed server sockets

2. An extension of the SAGA API to allow a server socket to perform mid-
connection handoffs

The syntax of a URL of a distributed server socket is as follows:

tcpep:// host : port
host is the stable server address of a distributed server.
port is the port number of the distributed server socket.

The extension of server sockets is provided in the xosaga . st ream package,
which inherits all classes of the saga . st ream package. The new stream_service
object can be constructed with a saga::url that has a "tcpcp’ scheme. Its
serve () method will return a new stream object that implements two addi-
tional handoff () methods. These methods can be used by a server application
to handoff its connection to another server within the group. A client-side appli-
cation can just use a saga: : stream object to communicate with a distributed
server application.

3.2 Specification

package xosaga.stream {

enum state

{

// as in saga.stream

}

enum activity

{

// as in saga.stream

}

class stream_service : extends saga::stream_service

{
serve (in float timeout = -1.0,
out stream s);

}

class stream : extends saga::stream

{
// more management methods
handoff (in bool nonblock);

handoff (in saga::url url,
in bool nonblock);

3.3 Specification details

Class stream service

As described in the SAGA core document, the stream_service object estab-
lishes a listening/server object that waits for client connections. It can only be
used as a factory for client sockets. It does not do any read/write I/O, but provides
access to xosaga::stream objects.

- serve
Purpose:
Format:

Inputs:
InOuts:
Outputs:
PreCond:

PostCond:

Perms:

Throws:

Notes:

wait for incoming client connections

serve (in float timeout,

out stream s);
timeout: number of seconds to wait for a client
S: new ’Connected’ stream object

— the returned client is in ’'Open’ state.

— the session of the returned client is that of
the stream service.

— Exec.

- Exec for the connecting remote party.

NotImplemented

IncorrectState

PermissionDenied

AuthorizationFailed

AuthenticationFailed

NoSuccess

Timeout

All the notes of saga::stream_service.serve () apply

Class stream

This is the object that encapsulates all functionalities of client streams. It includes
the handoff management methods.

— handoff
Purpose:
Format:
Inputs:

InOuts:
Outputs:
PreCond:

handoff this connection to a different server.

handoff (in bool nonblock);

nonblock: whether this handoff is blocking until
completion.

stream is ’'New’ or ’'Open’ state

7

PostCond: stream is in ’Closed’ state

Perms: -
Throws: IncorrectState
NoSuccess
Notes: -
- handoff
Purpose: handoff this connection to a different server.
Format: handoff (in saga::url url,
in bool nonblock) ;
Inputs: url: the acceptor server
nonblock: whether this handoff is blocking until
completion.
InOuts: -
Outputs: -
PreCond: stream is ’'New’ or ’'Open’ state
PostCond: stream is in ’Closed’ state
Perms: -
Throws: IncorrectState
NoSuccess
Notes: -

4 XtreemFS and XOSAGA

An XOSAGA application can access the XtreemFS file system via the existing
saga.namespace and saga.file packages. Referring to files and directories
on a certain XtreemFS volume is done via URLs with the scheme ’xtreemfs’.
The syntax of these URLSs is as follows:

xtreemfs:// volume @ host [:port] path

volume is the name of the XtreemFS volume.
host is the host name of the MRC that manages the volume.
port is the port number the MRC listens to.

path is the path of the file or directory on the volume.

All URL parts are mandatory, except for port. If no port number is specified,
a default port number is used. The default port number can be specified in the
configuration file of the XtreemFS adaptor. An example XtreemFS URL is:

xtreemfs://vold2@host.example.com:32636/dir/file.txt

This URL refers to the file */dir/file.txt’ on an XtreemFS volume named ’vol42’,
which is managed by an MRC that runs on "host.example.com’ and listens to port
32636.

5 OSS, Scalaris, and XOSAGA

XOSAGA provides a new package xosaga.sharing. This package provides
three types of objects that can be shared between the processes of a distributed
SAGA application: shared buffers, shared properties and shared events.

Shared buffers expose the functionality of the Object Sharing Service (OSS)
at the SAGA level. OSS provides a transparent and consistent data sharing ser-
vice, as described in D3.4.3 (Design report for advanced XtreemF'S and OSS fea-
tures) [18]]. Currently, it features memory-mapped files and transactional memory
for volatile memory objects. In XOSAGA, such memory regions are made avail-
able as special SAGA buffers.

Shared properties and shared events allow an XOSAGA application to use the
Scalaris system [11] developed in WP3.2. Scalaris provides a publish-subscribe
ring on top of a scalable, transactional, distributed key-value store. In XOSAGA,
the publish-subscribe rings are expressed as shared events, while the key-value
stores are available as shared properties.

5.1 Shared buffers

A shared buffer is a special SAGA buffer that can be shared between multiple
application processes. Each shared buffer lives in a domain with a certain con-
sistency model. All shared buffers in the same domain are synchronized with
each other using the consistency model of the domain. Each buffer has a unique
identifier by which different application processes can identify the same shared
buffer.

5.1.1 Specification

package xosaga.sharing {

class shared_buffer_service

{

CONSTRUCTOR (in saga::url bootstrap_info,
out shared_buffer_service obj);
DESTRUCTOR (in shared_buffer_ service obj);

9

create_transactional_domain

(in string name,

out transactional_ consistency_domain
create_weak_domain (in string name,
out weak_consistency_domain d);

class consistency_domain

{

get_name (out string name) ;
create_buffer (in int size,
out shared_buffer buf);
memory_map (in saga::file file,
in int offset,
in int length,
out shared_buffer buf);
get_buffer (in shared buffer_id id,
out shared_buffer buf) ;
free_buffer (in shared_buffer_id id);

class transactional_consistency_domain
extends consistency_domain

begin (out transaction_id tid);
commit (in transaction_id tid);
abort (in transaction_id tid);
permit_abort (in transaction_id tid);

class weak_consistency_domain extends

{

consistency_domain

sync

()

extends
// from buffer
// from buffer

class shared_buffer saga: :buffer
saga: :object

saga::error_handler

10

DESTRUCTOR ()i

get_id (out shared_buffer_id id);
set_size 0

set_data)i

close 07

class shared_buffer_id

{

CONSTRUCTOR (in string s,
out shared_buffer_id id);

DESTRUCTOR (in shared_buffer_id id) ;

to_string (out string s);

class transaction_id

{
// no public methods, immutable object

5.1.2 Specification details
(ﬂassxosaga::shared_buffer_service

The xosaga: :shared_buffer_service class offers consistency domain man-
agement functionalities for shared buffers. Domains can be created with a specific
consistency model to be enforced upon the shared buffers of each domain. At this
point, the API includes transactional and weak consistency models.

— CONSTRUCTOR
Purpose: create an service to manage shared buffers with
various forms of consistency.
Format: CONSTRUCTOR (in saga::url bootstrap_info,
out shared_buffer_service obj);
Inputs: bootstrap_info: the bootstrap information for the
service.

Example URL: ’oss://host.com:12345',
which connects to another 0SS node

11

at host.com, port 12345

InOuts: -
Outputs: shared_buffer_service: the newly created service
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState
IncorrectURL
Notes: — An implementation may only allow a single instance
of a shared buffer service. In that case, all
subsequently created instances MUST throw
an ’IncorrectState’ exception.
DESTRUCTOR
Purpose: destroys the manager of shared buffers
Format: DESTRUCTOR (in shared_buffer_service obj);
Inputs: shared_buffer_service: the service to destroy
InOuts: -
Outputs: -
PreCond: -

PostCond: consistency domains and buffers created by
this service are not affected.

Perms: -

Throws: -

Notes: -

create_transactional_domain

Purpose: create a domain for buffers with transactional
consistency
Format: create_transactional_ domain

(in string name,
out transactional_consistency_domain d);
Inputs: name: the name of the transactional consistency
domain. It uniquely identifies this domain
on all nodes that participate in the same
shared buffer service.
InOuts: -
Outputs: d: the transactional consistency domain
with the given name.
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

create_weak_domain
Purpose: create a domain for buffers with weak consistency
Format : create_weak_domain (in string name,

out weak_consistency_domain d);

12

Inputs: name: the name of the weak consistency
domain. It uniquely identifies
this domain on all nodes
that participate in the same
shared buffer service.

InOuts: -

Outputs: d: the weak consistency domain
with the given name.

PreCond: -

PostCond: -

Perms: -

Throws: -

Notes: -

Class xosaga: : consistency_domain

The xosaga::consistency_domain class offers generic management oper-
ations on a consistency domain, independent of its consistency model. It also
provides the API for obtaining the handle to a shared buffer and releasing it.

- get_name

Purpose: returns the name of this consistency domain
Format: get_name (out string name) ;
Inputs: -

InOuts: -

Outputs: name: the name of this consistency domain
PreCond: -

PostCond: -

Perms: -

Throws: -

Notes: -

- create_buffer
Purpose: create a new shared buffer in this
consistency domain. All buffers
in the same consistency domain
(i.e. with the same name) are kept
consistent with each other.

Format: create_buffer (in int size,
out shared_buffer buf) ;

Inputs: size: the size of the new buffer in bytes

InOuts: -

Outputs: buf: the created buffer

PreCond: -

PostCond: -

13

Perms: -

Throws: BadParameter

Notes: - if size < 0, a ’'BadParameter’ exception
MUST be thrown

memory_map
Purpose: map a file into a new shared buffer
in this consistency domain. All buffers
in the same consistency domain
(i.e. with the same name)
are kept consistent with each other.

Format: memory_map (in saga::file file,
in int offset,
in int length,
out shared_buffer buf) ;

Inputs: file: the file to map into memory

offset: the offset in the file where
the mapping starts

length: the amount of bytes to map,
starting from offset

InOuts: -
Outputs: buf: a new shared buffer containing
the memory-mapped file
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter
NoSuccess
Notes: — if the given file cannot be read from
or written to, a ’'BadParameter’ exception
MAY be thrown
- if offset < 0, length < 0, or
offset + length > file.get_size(),
a ’'BadParameter’ exception MUST be thrown
get_buffer
Purpose: get a shared buffer that is already created

in this consistency domain
(possibly on another node)
Format: get_buffer (in shared_buffer_id id,

out shared_buffer buf);
Inputs: id: the identifier of a shared buffer
InOuts: -
Outputs: Dbuf: the existing shared buffer
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

14

Notes: - if no buffer with the given identifier
exists in this consistency domain,
a ’"DoesNotExist’ exception MUST be thrown.

- free_buffer (in shared_buffer_id id);

Purpose: globally remove a buffer from this
consistency domain, and release its memory.
If the buffer contains a memory-mapped file,
its content is synchronized to disk first.

Format: free_buffer (in shared_buffer_id id);

Inputs: id: the identifier of a shared buffer

InOuts: -

Outputs: -

PreCond: -

PostCond: -

Perms: -

Throws: DoesNotExist

Notes: - 1f no buffer with the given identifier
exists in this consistency domain,
a ’"DoesNotExist’ exception MUST be thrown.

Class xosaga: :transactional_consistency_domain

The xosaga: :transactional_consistency_domain class provides specific
operations for the transactional consistency model.

- begin
Purpose: begin a transaction on all shared buffers
in this domain
Format: begin (out transaction_id tid);
Inputs: -
InOuts: -
Outputs: tid: the identifier of this transaction
PreCond: -
PostCond: -
Perms: -
Throws: NoSuccess
Notes: -

- commit
Purpose: end a transaction
Format: commit (in transaction_id tid);
Inputs: tid: the identifier of this transaction
InOuts: -
Outputs: -
PreCond: -

15

PostCond: -

Perms: -
Throws: DoesNotExist
NoSuccess
Notes: - if the given transaction id is not known,
a ’'DoesNotExist’ exception MUST be thrown
- abort
Purpose: unconditionally abort a transaction
Format : abort (in transaction_id tid);
Inputs: tid: the identifier of this transaction
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist
NoSuccess
Notes: - if the given transaction_id is not known,

a ’"DoesNotExist’ exception MUST be thrown

- permit_abort

Purpose: permit aborting a transaction during
the duration of this method call
Format: permit_abort (in transaction_id tid);
Inputs: tid: the identifier of this transaction
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist
NoSuccess
Notes: - if the given transaction_id is not known,

a ’'DoesNotExist’ exception MUST be thrown

Class xosaga: :weak_consistency_ domain

The xosaga: :weak_consistency_domain class provides specific operations
for the weak consistency model.

- sync
Purpose: synchronize all shared buffers
in this consistency domain
Format: sync ();
Inputs: -

16

InOuts:
Outputs:
PreCond:
PostCond:
Perms:
Throws:
Notes:

NoSuccess

Class xosaga: : shared_buffer

The xosaga: : shared_buffer provides access to a shared buffer.

— DESTRUCTOR
Purpose:
Format:
Inputs:
InOuts:
Outputs:
PreCond:
PostCond:

Perms:
Throws:
Notes:

- get_id
Purpose:
Format:
Inputs:
InOuts:
Outputs:
PreCond:
PostCond:
Perms:
Throws:
Notes:

- set_size

Notes:

- set_data
Notes:

destroys this shared buffer
DESTRUCTOR (in shared_buffer obj);
shared_buffer: the shared buffer to destroy

the local memory used by this shared buffer
is not released. Releasing the memory can
only be done globally, using
consistency_domain.free_buffer().

return the identifier of this shared buffer
get_id (out shared_buffer_id id);

id: the identifier of this shared buffer

this method MUST always throw
"NotImplementedException’

this method MUST always throw
"NotImplementedException’

17

- close
PostCond: - other nodes can still access
the contents of this shared buffer

Class xosaga: : shared_buffer_ id

The xosaga: :shared_buffer_id uniquely identifies a shared buffer in a con-
sistency domain.

— CONSTRUCTOR
Purpose: create a shared buffer id
Format: CONSTRUCTOR (in string s,
out shared_buffer_id id);
Inputs: S: a string description of the identifier
InOuts: -
Outputs: id: the new identifier
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter
Notes: — if the string description does not

describe a valid shared buffer identifier,
a ’'BadParameter’ exception MUST be thrown.

— DESTRUCTOR
Purpose: destroys this shared buffer id
Format: DESTRUCTOR (in shared_buffer_id obj);
Inputs: shared_buffer_id: the shared buffer id to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: -
Notes: -

- to_string (out string s);
Purpose: return a string description of this identifier
Format: to_string (out string s);
Inputs: -
InOuts: -
Outputs: s: a string description of this identifier
PreCond: -
PostCond: -
Perms: -

18

Throws: -
Notes: -

Class xosaga: :transaction_id

This class contains no public methods, since it is an immutable object.

5.2 Shared events

The shared_events object in the xosaga.sharing package provides access
to a publish-subscribe system. It was designed to provide access to the publish-
subscribe functionality of the Scalaris system, but the interface is generic enough
to support other publish-subscribe systems too.

An XOSAGA application process can publish events under a certain topic.
Both events and topics are string values. Processes can also subscribe to certain
topics, after which they will receive the events that are published under these
topics. New events are processed in callback functions that are provided when
subscribing to a topic.

5.2.1 Specification

package xosaga.sharing {

interface callback

{

cb (in shared_events se,
in string topic,
in string content) ;

class shared_events

{
CONSTRUCTOR (in saga::url bootstrap_info,
out shared_events obj);

DESTRUCTOR (in shared_events obj);

publish (in string topic,

in string content) ;
subscribe (in string topic,

in callback cb);
unsubscribe (in string topic);

19

5.2.2 Specification details

Interface callback

This interface specifies a method that handles incoming events. This method has
to be provided when subscribing to a certain topic.

- ¢cb
Purpose:

Format:

Inputs:

InOuts:
Outputs:
PreCond:
PostCond:
Perms:
Throws:
Notes:

provide a callback method to handle events for which
this callback was registered by a subscribe method.
publish (in shared_events se,

in string topic,
in string content) ;
se: the ring of shared events
topic: the updated topic
content: the content published under ’topic’.

Class shared_events

This class provides the methods to publish events under certain topics, and sub-
scribe to events.

— CONSTRUCTOR

Purpose: create a service that manages shared events

within a publish-subscribe ring.

Format: CONSTRUCTOR (in saga::url bootstrap_info,

out shared_events obj);

Inputs: bootstrap_info: the bootstrap information for the
service. Example URL:
"pubsub://host.com:12345’, which
connects to a publish-subscribe
ring at host.com, port 12345

InOuts: -

Outputs: shared_events: the newly created service

20

PreCond: -

PostCond: -
Perms: -
Throws: IncorrectState
IncorrectURL
NoSuccess
Notes: - An implementation may only allow a single
instance of a shared events service. In that
case, all subsequently created instances MUST
throw an ’"IncorrectState’ exception.
DESTRUCTOR
Purpose: close an service that manages shared events
within a publish-subscribe ring.
Format: DESTRUCTOR (in shared_events obj);
Inputs: obj: the service to close
InOuts: -
Outputs: -
PreCond: -

PostCond: no more events will be received from this service.
Perms: -

Throws: -
Notes: -
publish
Purpose: publish a topic (update) within a pub-sub ring.
Format: publish (in string topic,
in string content) ;

Inputs: topic: the topic to be updated

content: the content to be published under

this topic.

InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

NoSuccess
Notes: -
subscribe
Purpose: subscribe to receive updates about a topic within

a pub-sub ring.
Format: subscribe (in string topic,

in callback cb);

Inputs: topic: the topic of interest

cb: the callback to process updates for this

topic.

InOuts: -

21

Outputs:

PreCond: -
PostCond: -
Perms: -
Throws: BadParameter
NoSuccess
Notes: -
- unsubscribe
Purpose: stop receiving updates about a topic within a
pub-sub ring.
Format: unsubscribe (in string topic);
Inputs: topic: the topic that is not interesting anymore.
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter
NoSuccess
NotImplemented
Notes: -

5.3 Shared properties

The shared_properties objectinthe xosaga.sharing package provides ac-
cess to a distributed key-value storage. It was design to provide access to the
transactional distributed key-value storage of Scalaris.

A shared_properties objectisidentified by a URL. When multiple XOSAGA
application processes use a shared properties object with the same URL, they can
see each others modifications.

5.3.1 Specification

package xosaga.sharing

{

class shared_properties

{

CONSTRUCTOR (in saga::url bootstrap_info,

out shared_properties obj);

DESTRUCTOR (in shared_properties obj);

put

(in string key,
in string value);

22

get

remove

(in string key,
out string wvalue);

(in string kevy) ;

5.3.2 Specification details

Class shared_properties

This class offers methods for shared management of properties.

— CONSTRUCTOR

Purpose:

create an service to manage shared properties
within a key-value store.

Format: CONSTRUCTOR (in saga::url bootstrap_info,
out shared_properties obj);
Inputs: bootstrap_info: the bootstrap information for the
service.
Example URL: ’transstore://host.com:12345',
which connects to a key-value store
at host.com, port 12345
InOuts: -
Outputs: shared_property: the newly created service
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState
IncorrectURL
Notes: — An implementation may only allow a single instance
of a shared properties service. In that case, all
subsequently created instances MUST throw
an ’IncorrectState’ exception.
— DESTRUCTOR
Purpose: close an service that manages shared properties
within a key-value store.
Format: DESTRUCTOR (in shared_properties obj);
Inputs: obj: the service to close
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -

23

Throws: -

Notes: -
put
Purpose: store a (new) value for this key.
Format: put (in string key,
in string value);
Inputs: key: the key to store the value for
value: the value to store.
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter
NoSuccess
Notes: - An implementation may throw a BadParameter
exception if the value is a reserved string
(e.g. THISKEYHASBEENDELETED) .
get
Purpose: lookup the value store under this key.
Format: get (in string key,
out string wvalue);
Inputs: key: the key to lookup
InOuts: -
Outputs: wvalue: the value store under this key.
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter
DoesNotExist
NoSuccess
Notes: — 1f there is no such key in the store
a 'DoesNotExist’ exception is thrown. An
implementation may throw a ’"DoesNotExist’
exception if the returned value is a
reserved string.
remove
Purpose: delete this key and the value stored under it
Format: remove (in string key);
Inputs: key: the key to delete.
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: BadParameter

24

NoSuccess
NotImplemented
Notes: — An implementation may store a special string
as the value of a deleted key
(e.g. THISKEYHASBEENDELETED) .

6 Virtual Nodes and XOSAGA

The goal of virtual nodes is to make service replication management transparent to
the application, as described in D3.2.5 (Design and Specification of a Virtual Node
System) [19]. By design, a service that also uses SAGA should therefore not be
concerned with its own replication at all. One the other hand, some services may
benefit from having some high-level control of their replication (e.g. selecting
the consistency model to be maintained). Such controls are offered by the virtual
nodes system. How much of this functionality to expose in an XOSAGA API is
the subject of future work, to be performed by WP3.2. Based on their findings,
a future XOSAGA release may add such functionality. Based on the state of the
work at the time of writing, no such functionality has been identified so far.

7 Summary

In this document, we have presented the third draft specification of programming
interfaces for XtreemOS, adding the so-far missing access to parts of XtreemOS-
specific functionality. In particular, API’s for transparently distributed services
(from WP3.2), a naming scheme for XtreemFS volumes (from WP3.4), and an
integrated API package for transparent data sharing services (from WP3.2 and
WP3.4) have been presented. For transparent service replication (WP3.2), no
direct API can be considered useful at the time of writing this document.

Upcoming implementations of the API will cover the functionality described
in this document. Future API revisions will be based on practical experience with
this API draft, and will possibly revise and improve the API as defined here.

References

[1] Werner Almesberger. TCP connection passing. In Ottawa Linux Symposium,
July 2004.

[2] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. Mc-
Gough, D. Pulsipher, and A. Savva. Job Submission Description Language

25

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(JSDL) Specification v1.0. Grid Forum Document GFD.56, Open Grid
Forum (OGF), 2005. http://www.ogf.org/sf/documents/GFD.
56.pdf.

I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pick-
les, D. Pulsipher, C. Smith, and M. Theimer. OGS A Basic Execution Service
Version 1.0. Grid Forum Document GFD.108, Open Grid Forum (OGF),
2007. http://www.ogf.org/sf/documents/GFD.108.pdf.

T. Goodale, S. Jha, T. Kielmann, A. Merzky, J. Shalf, and C. Smith. A
Simple API for Grid Applications (SAGA). Grid Forum Working Draft,
Open Grid Forum, 2006. Version 1.0 RC.1 http://forge.ogf.org/
sf/projects/saga—-core-wg.

Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Klei-
jer, Andre Merzky, John Shalf, and Christopher Smith. A Simple API for
Grid Applications (SAGA). Grid Forum Document GFD.90, Open Grid
Forum (OGF), 2007. Version 1.0 http://forge.ogf.org/short/
saga—core—-wg/saga—core—vil.

D. Johnson, C. Perkins, and J. Arkko. Mobility Support in [Pv6. RFC 3775,
June 2004.

I. Mandrichenko, W. Allcock, and T.Perelmutov. GridFTP v2 Protocol De-
scription. Grid Forum Document GFD.47, Open Grid Forum (OGF), 2005.
http://www.ogf.org/sf/documents/GFD.47.pdfl

MIPL: mobile ipv6 for linux. Available on the WWW, July 2006. http:
//www.mobile-ipv6.org/l

H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova.
A GridRPC Model and API for End-User Applications. Grid Forum Docu-
ment GFD.52, Open Grid Forum (OGF), 2005. http://www.ogf.org/
sf/documents/GFD.52.pdf.

H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardner, A. Haas, B. Nitzberg,
D. Templeton, J. Tollefsrud, and P. Troger. Distributed Resource Man-
agement Application API Specification 1.0. Grid Forum Document GFD-
R.022, Open Grid Forum (OGF), 2007. http://www.ogf.org/sf/
documents/GFD.22.pdfl

T. Schiitt, F. Schintke, and A. Reinefeld. Scalaris: Reliable Transactional
P2P Key/Value Store - Web 2.0 Hosting with Erlang and Java. In Proceed-
ings of the 7th ACM SIGPLAN Erlang Workshop, Victoria, BC, Canada,
September 2008.

26

http://www.ogf.org/sf/documents/GFD.56.pdf
http://www.ogf.org/sf/documents/GFD.56.pdf
http://www.ogf.org/sf/documents/GFD.108.pdf
http://forge.ogf.org/sf/projects/saga-core-wg
http://forge.ogf.org/sf/projects/saga-core-wg
http://forge.ogf.org/short/saga-core-wg/saga-core-v1
http://forge.ogf.org/short/saga-core-wg/saga-core-v1
http://www.ogf.org/sf/documents/GFD.47.pdf
http://www.mobile-ipv6.org/
http://www.mobile-ipv6.org/
http://www.ogf.org/sf/documents/GFD.52.pdf
http://www.ogf.org/sf/documents/GFD.52.pdf
http://www.ogf.org/sf/documents/GFD.22.pdf
http://www.ogf.org/sf/documents/GFD.22.pdf

[12] Willem van Duijn. A versatile anycast framework for distributed servers.
Master’s thesis, Vrije Universiteit, Amsterdam, The Netherlands, February
2008. http://www.globule.org/publi/VAFDS_master2008.
html.

[13] First Draft Specification of Programming Interfaces. Deliverable D3.1.1,
XtreemOS Consortium, 2006.

[14] Requirements Capture and Use Case Scenarios. Deliverable D4.2.1,
XtreemOS Consortium, 2006.

[15] Application References, Requirements, Use Cases and Experiments. Deliv-
erable D4.2.3, XtreemOS Consortium, 2007.

[16] Evaluation Report and Revision of Application Requirements. Deliverable
D4.2.3, XtreemOS Consortium, 2007.

[17] Second Draft Specification of Programming Interfaces. Deliverable D3.1.2,
XtreemOS Consortium, 2007.

[18] Design report for advanced XtreemFS and OSS features. Deliverable D3.4.3,
XtreemOS Consortium, 2008.

[19] XtreemOS Consortium. Design and Specification of a Virtual Node System.
Deliverable D3.2.5, December 2007.

[20] XtreemOS Consortium. Design of the architecture for application execution
management in XtreemOS. Deliverable D3.3.2, May 2007.

27

http://www.globule.org/publi/VAFDS_master2008.html
http://www.globule.org/publi/VAFDS_master2008.html

	Executive Summary
	Introduction
	XtreemOS application requirements revisited
	Distributed servers and XOSAGA
	Distributed server sockets to SAGA Streams
	Specification
	Specification details

	XtreemFS and XOSAGA
	OSS, Scalaris, and XOSAGA
	Shared buffers
	Specification
	Specification details

	Shared events
	Specification
	Specification details

	Shared properties
	Specification
	Specification details

	Virtual Nodes and XOSAGA
	Summary
	Bibliography

