
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Second Prototype of XtreemOS Runtime Engine
D3.1.6

Due date of deliverable: November 30th, 2008
Actual submission date: December 8th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.2

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.0.3 / Last edited by Mathijs den Burger / January 5th, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 28/10/08 Mathijs den Burger VUA initial draft
1.0 01/12/08 Thilo Kielmann VUA complete version

1.0.1 05/12/08 Mathijs den Burger VUA incorporated internal review comments
1.0.2 08/12/08 Thilo Kielmann VUA final version
1.0.3 05/01/09 Mathijs den Burger VUA updated URL to the software after SVN repository re-

organization

Reviewers:
Björn Kolbeck (ZIB), Enric Tejedor (BSC)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T3.1.2 A runtime engine for dynamic call dispatching VUA∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
This document presents the second prototype implementations of a runtime engine
for the XtreemOS API as specified in deliverable D3.1.2 [8]. The first prototype
implementation, D3.1.3 [6], implemented the SAGA API, according to D3.1.1 [5]
in the C++ programming language. The second implementation described here is
adding the following functionality:

• a separate implementation in the Java programming language

• support for the XtreemFS file system and XtreemOS certificates, for both
the C++ and Java implementations

In this report, we outline the general design of both implementations, de-
scribe their installation and configuration process, explain their integration with
the XtreemFS filesystem and XtreemOS certificates and give a code example.

1

1 Introduction
For the successful adoption of the XtreemOS grid operating system, it is ex-
tremely important to provide a well-accepted API to its potential application pro-
grams. To accomplish this goal, we are following an iterative approach to spec-
ifying and implementing this API. In our previous deliverable, D3.1.1 [5], we
have presented the Simple API for Grid Applications (SAGA) [2] as the first draft
API for XtreemOS. Deliverable D3.1.2 [8] added XtreemOS-specific extension to
SAGA, named XOSAGA. This specification is the basis for the implementations
presented by this report.

In this deliverable, we provide two prototype implementations of the XOSAGA
API, written in the C++ and Java programming languages. Both implementations
cover those parts of the XtreemOS-specific functionality described in D3.1.2 for
which stable implementations have been available so far. In particular, the current
implementations both support:

• the XtreemFS file system

• XtreemOS certificates

The XOSAGA package for Application Execution Management is not covered
by the currently existing implementations. It will be an essential part of the third
prototype implementation (D3.1.9, due month 42). This future implementation
will also cover the third draft API for XtreemOS, focusing on SAGA extensions
to accomodate specific XtreemOS features missing in D3.1.2. These currently
missing extensions are described in a companion deliverable, D3.1.5 [9]. The
functionality available with this second prototype implementation is summarized
in Table 1.

In this document, we outline the general design of both XOSAGA implemen-
tations, describe their integration with the XtreemFS filesystem and XtreemOS
certificates, and provide information for downloading, installing and using the
software. For providing a self-contained report, we include some description of
the C++ implementation that was also part of D3.1.3. We augment it by the re-
spective information about the new, Java-based implementation.

2 General Architecture
In its general architecture, our SAGA implementations follow the lessons we have
learned with the SAGA predecessor GAT [1]: a small dynamic engine provides
dynamic call switching of SAGA API calls to middleware bindings (adaptors)

2

SAGA package C++ Java
Physical Files local local

XtreemFS XtreemFS
Globus GT4 GridFTP Globus GT2 & GT4.0 WS GridFTP

SSH, FTP, SFTP
Replicated Files Globus GT4 RLS generic (via physical files)
Job submission local local

Globus GT4 GRAM2 Globus GT2 & GT4.0WS GRAM
GridSAM GridSAM
Condor gLite, Sun Grid Engine

LocalQ, Zorilla
Streams TCP sockets

RPC XMLRPC XMLRPC

Table 1: SAGA functionality provided by the current prototype implementation

which are dynamically loaded on demand, and bound at runtime (late binding).
The relation between these components are illustrated in Figure 1.

Application

Middleware
API

API

SAGA

RPC

SAGA Adaptors

L
o

c
a

l
R

e
m

o
te

Middleware

SAGA API Packages (managed by ’Engine’)

libc

(globus)

GridFTP

FilesFiles
(local)

Files
(XtreemOS)

XtreemOS

FilesJobs

Figure 1: General architecture: a lightweight engine dispatches SAGA calls to dynamically
loaded middleware adaptors.

Unlike the GAT, SAGA provides an extensible API framework, consisting of
a look-and-feel part, and an extensible set of functional packages. The look-and-
feel consists of the following parts:

3

Base object which provides all SAGA objects with a unique identifier, and asso-
ciates session and shallow-copy semantics.

Session object that isolates independent sets of SAGA objects from each other.

Context object that contains security information for Grid middleware. A ses-
sion can contain multiple contexts. XtreemOS certificates are managed with
an XtreemOS context object.

URL object to uniformly name remote jobs, files, services etc.

I/O buffer providing unified access to data in memory, either managed by the
application or by the SAGA engine.

Error handling using exceptions.

Monitoring of certain SAGA objects using callback functions.

Task model which allows both synchronous and asynchrous execution of meth-
ods and object creation.

Permission model lets an application allow or deny certain operations on SAGA
objects.

Orthogonal to the look-and-feel are the functional packages, providing the
actual functionality of the grid. Currently, the set of standardized functional pack-
ages consists of:

Job Management to run and control jobs.

Name Spaces to manipulate entries in an abstract hierarchical name space.

File Management to access files.

Replica Management to manage replicated files.

Streams for network communication.

Remote Procedure Calls for inter-process communication.

The complete specification of the language-independent SAGA API can be
found in [2].

4

Facade instance

Implementation

Adaptor selector

CPI instance

Constructor

Select adaptor

Create CPI instance

Constructor

API objects Implementation objects Adaptor objects

Instance creation

CPI function call

Activate adaptor

API objects Implementation objects Adaptor objects

Facade instance Implementation Adaptor selector CPI instance

API function call

impl function call

Select adaptor

Call routing

Routed call
Middleware
invocation

Figure 2: The PIMPL mechanism hides the implementation from the end user. Shown are object
creation (top) and invocation of a SAGA function call (bottom).

3 The SAGA C++ Engine

One of the technically challenging requirements of the SAGA Core API specifica-
tion is that SAGA object copy operations are shallow copies by default, so copies
do not perform a deep copy of object state. These semantics are performant in
remote environments as they avoid remote operations (state query and duplica-
tion) in most cases. A second challenge is that the lifetime of a SAGA object is
not only defined by its scope in the program, but depends (a) on the lifetime of
objects depending on that instance, (b) pending asynchronous operations for that
instance, and (c) shallow copies of that instance.

To address these challenges, our SAGA implementation uses a technique called
the PIMPL mechanism (private implementation), shown in Figure 2. Using this

5

technique, we were able to simplify the internal state management of SAGA ob-
jects and to resolve the lifetime dependencies between SAGA objects, SAGA ses-
sions, and adaptors [4]. At the same time, the engine provides the complete SAGA
task model, e.g. implements all SAGA operations asynchronously, even if that is
not explicitly supported by the backend services. Both the central call routing and
the central management of asynchronous operations, allow for smart runtime opti-
mizations of the remote method invocations [3], which are, for example, exploited
for bulk optimizations.

Using the PIMPL mechanism, the SAGA object does not maintain any state
itself, but is merely a facade maintaining a private, shared pointer to the implemen-
tation of the (stateful) SAGA object, and all method invocations are simply for-
warded to that implementation instance. On copies, a new facade instance is cre-
ated which maintains another shared copy to the same implementation instance,
using, by definition, shallow copy semantics, as the stateful implementation is not
copied at all. Also, depending objects and task instances (which represent asyn-
chronous operations) maintain additional shared pointers to the implementation
instance and are thus extending the lifetime of that instance: only when all shared
pointer copies are finally freed (i.e. when all depending objects are deleted and all
asynchronous operations are completed) is the stateful implementation deleted.

Task N
(saga::task)

Task 2
(saga::task)

Facade object
(saga::file)

Implementation object
(saga::impl::file)

CPI instance
(default_adaptor::file)

Task 1
(saga::task)

Creation

Strong reference

Weak reference

API objects Implementation objects Adaptor objects

Figure 3: Shared pointers to the implementation object instance define the lifetime of the SAGA
objects.

As can be seen in Figure 3, we also use the shared pointer abstraction for the
internal lifetime management of the adaptor instances: multiple of those instances
can co-exist and provide the implementation (i.e., middleware binding) of the
SAGA object implementations.

6

The SAGA C++ Adaptors
Along with the SAGA C++ engine, which is providing the SAGA API itself, sev-
eral middleware bindings (i.e. SAGA adaptors) have been implemented. Firstly,
local adaptors have been provided which interface to the local operating system
(in the case of XtreemOS: Linux) and provide the SAGA functionality on the lo-
cal host machine, as well as LinuxSSI clusters. Besides, the local adaptor set is
also important for (a) development and debugging purposes, and (b) as reference
for other, non-local adaptors.

In addition to the local adaptors, the SAGA C++ implementation includes
adaptors to access the following services:

• XtreemFS for file access and file management

• Globus (GT4) GRAM2 service for job submission and management

• Globus (GT4) GridFTP service for file access and file management

• Globus (GT4) RLS service for replica management

• GridSAM for job submission and management

• Condor for job submission and management

• XMLRPC for remote procedure calls

Interfaces to other XtreemOS services are currently being designed and im-
plemented.

3.1 Installation and deployment
In the XtreemOS distribution, SAGA is available as several rpm packages:

libsaga-devel contains everything to develop SAGA applications.

libsaga contains all libraries to run SAGA applications.

saga contains some example SAGA programs and environment settings.

xosaga contains XtreemOS-specific additions to SAGA.

Installing SAGA can be done using urpmi:

$> urpmi xosaga

7

You will be given a choice between the ’libsaga’ and the ’libsaga-devel’
package. Choose the ’libsaga’ package if you only want to run XOSAGA ap-
plications (e.g. on an XtreemOS node). Choose the ’libsaga-devel’ package
if you also want to develop XOSAGA applications on your machine.

The development source tree of the C++ implementation of XOSAGA can be
found in the Subversion repository of XtreemOS located in INRIA, France:

svn co

svn+ssh://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga/trunk/c++

XOSAGA includes the latest SAGA release, which can also be downloaded
separately from the SAGA website. For historical reasons, the SAGA website is
located at:

http://saga.cct.lsu.edu

The C++ implementation of SAGA depends on the free Boost C++ libraries,
version 1.33.1 or higher. They can usually be found in the package repository of
your Linux distribution. Alternatively, they can be downloaded from the Boost
website: http://www.boost.org.

3.2 API documentation

API documentation of the C++ implementation is available in three different for-
mats. Firstly, the OGF SAGA API standard document [2] is, naturally, a compre-
hensive documentation source for the SAGA API. Secondly, a number of tutorials
are included in the released code package. And finally, a detailed API documen-
tation is generated by doxygen. It is available from:

http://saga.cct.lsu.edu/cpp/apidoc/

4 The SAGA Java Engine

The SAGA Java engine implements release 1.0 of the Java SAGA language bind-
ing. Like its C++ counterpart, the engine takes care of dynamically selecting and
loading SAGA adaptors, contains base classes for adaptors, and default imple-
mentations for SAGA’s attributes, tasks, monitorable, buffer, session, and context.

8

4.1 Java language binding of SAGA
The Java language binding define the precise syntax and semantics of the SAGA
functionality in the Java language. The language binding can be seen as a con-
tract between applications and SAGA implementors: both parties can safely as-
sume that exactly the classes and interfaces described in the language binding will
be either provided or requested for. SAGA’s language binding for Java is pro-
vided in the form of directly usable files that contain a set of interfaces. A SAGA
implementation has to provide classes that implement these interfaces. For al-
lowing applications to create SAGA objects, the interfaces are accompanied by
factory classes. The factory objects for each SAGA package are created by a meta
SagaFactory class. This setup requires a bootstrap meachanism to locate the
implementation of the SagaFactory class. A user is therefore obliged to set the
system property saga.factory to the class name of an implementation-specific
SagaFactory object. In our SAGA Java engine, this property must be set to:

saga.factory=org.ogf.saga.impl.bootstrap.MetaFactory

The Java language binding of SAGA can downloaded from Sourceforge:

http://sourceforge.net/projects/saga/

The language binding is also available online in the form of Javadoc:

http://saga.cct.lsu.edu/java/apidoc/

4.2 Configuration
The scripts that are included in the SAGA Java engine use the environment vari-
able JAVA_SAGA_LOCATION, which should point to the root directory of the
SAGA Java installation. The engine recognizes a number of system properties,
which are either provided to the engine by means of a saga.properties file, or
by means of the -D option of Java. The saga.properties file is searched for in
the classpath and in the current directory. If both are present, values specified in
the file in the current directory override values specified in the file in the classpath.
Values specified on the command line override both.

The property saga.adaptor.path tells the engine where to find the adap-
tors. Its default value is JAVA_SAGA_LOCATION/lib/adaptors. This property
is interpreted as a path, which may either be specified in the "unix" way (with ’/’
and ’:’), or in the system-dependent way.

All properties with names ending in .path are subjected to the following

9

replacements: all occurrences of the string SAGA_LOCATION are replaced with
the value of the JAVA_SAGA_LOCATION environment variable, all occurrences of
’/’ are replaced with the system-dependent separator character, and all occurences
of ’:’ are replaced with the system-dependent path separator character. This allows
for a system-independent way of specifying paths in a saga.properties file.

4.3 The SAGA Java Adaptors
During startup, the engine examines which adaptors are available, and loads these.
When a SAGA object is created, a corresponding set of adaptors is instantiated.
An invocation of a method on a SAGA object is dynamically dispatched to one or
more of adaptors, until one succeeds or all adaptors fail.

The adaptors implement one or more specific Service Provider Interfaces (SPI),
which correspond to particular interfaces of the SAGA language binding for Java.
Some adaptors only implement one SPI (e.g. the Gridsam adaptor, which only
implements the SPI for SAGA’s job package). Other adaptors implement multiple
SPIs, as the are able to provide more functionality. An important adaptor of the
latter catagory is the one built on top of the JavaGAT. This adaptor implements
almost all SPIs and acts as a swiss army knife.

Currently, all adaptors in the SAGA Java implementation together provide the
following functionality:

• File access and file management using XtreemFS, SSH, FTP, SFTP, GridFTP,
Global GT4.0, and local files.

• Job submission and control using SSH, Globus (GT2 and GT4.0 WS), Grid-
SAM, gLite, Sun Grid Engine, LocalQ, Zorilla, and local jobs.

• Generic replica management of logical files.

• Streams on top of sockets.

• Remote procedure calls using XMLRPC.

All adaptors that ship with the SAGA Java engine are located in the subdirec-
tory lib/adaptors. Each adaptor has its own subdirectory, named
<adaptorname>Adaptor, in which a jar-file <adaptorname>Adaptor.jar

exists, and which also contains all supporting jar-files. The manifest of
<adaptorname>Adaptor.jar specifies which adaptors actually are implemented
by this jar-file. For instance, the manifest of XtreemFsAdaptor.jar specifies:

FileSpi-class: org.ogf.saga.adaptors.xtreemfs.FileAdaptor

10

which indicates that it contains a class

org.ogf.saga.adaptors.xtreemfs.FileAdaptor

that implements the FileService Service Provicer Interface. By default, the
SAGA engine tries all adaptors that it can find on the list specified by the property
saga.adaptor.path. It is, however, possible to select a specific adaptor, or to
not select a specific adaptor by specifying certain properties in a saga.properties
file or on the command line. Some examples are:

StreamService.adaptor.name=socket,javagat will load both the socket
and the JavaGAT adaptor for the StreamService SPI, but no others. Also,
the adaptors will be tried in the specified order.

StreamService.adaptor.name=!socket will load all StreamService adap-
tors, except for the socket adaptor.

4.4 Installation and documentation
The development source tree of the XOSAGA Java implementation can be found
in the Subversion repository of XtreemOS located in INRIA, France:

svn co

svn+ssh://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga/trunk/java

This tree includes the latest SAGA Java release, which can also be downloaded
separately from Sourceforge:

http://sourceforge.net/projects/saga/

The release contains a short user guide that describes the steps required to
compile and run a Java SAGA application. The complete specification of the
Java-to-SAGA language binding is the subject of ongoing work.

5 The XtreemFS adaptor
Both the C++ and Java implementation of SAGA contain a file adaptor to access
the XtreemFS file system. XtreemFS provides access to remote data on volumes,
where physical location, internal distribution, and replication are hidden from a
user. A volume can be mounted to the local filesystem via FUSE. As a result, a
user has to to execute a reasonably complicated mount command for every volume

11

it wants to access. The mount command includes the address and port of the
Metadata and Replica Catalog (MRC) that manages the volume, some special
FUSE or XtreemFS-specific options and a local mount point. Users also have to
take care of unmounting mounted volumes when they are not used anymore.

The XtreemFS file adaptor saves a SAGA application from all this explicit
mounting and unmounting by acting as an automounter: whenever a user ac-
cesses a file or directory on a certain XtreemFS volume, the adaptor automatically
ensures that the volume is mounted at some local directory. The adaptor remem-
bers which volume is mounted where, and ensures that a volume is only mounted
once. All volumes that are accessed in a certain SAGA session are automati-
cally unmounted when that session is destroyed. As a result, accessing files on
XtreemFS volumes in a SAGA application is very easy.

A SAGA application can refer to a file on an XtreemFS volume using a special
URL. An example of such a URL is:

xtreemfs://vol42@host.example.com:32636/dir/file.txt

This example URL points to a file ’/dir/file.txt’ on an XtreemFS volume ’vol42’
that is managed by an MRC located at ’host.example.com’ and listens to port
32636. When no explicit port number is specified, a default port number is used.

The XtreemFS adaptor also understands local files, using relative and absolute
URLs. A relative URL looks like dir/file.txt, and points a file relative to
the base directory of the object the URL is given to (e.g. a directory object). An
absolute URL looks like file://localhost/tmp/file.txt, which points to
a file ’/tmp/file.txt’ on the local filesystem. The XtreemFS adaptor can therefore
directly copy and move files between the local file system and remote XtreemFS
volumes.

The XtreemFS file adaptor can be configured by editing key-value pairs in
the xtreemfs_file_adaptor.ini file (in the C++ implementation) or editing
some properties in the xosaga.properties file (in the Java implementation).
A user can specify, among others, the directory to create mount points in, the
default port number to use in XtreemFS URLs and the commands for mounting
and unmounting volumes.

12

5.1 Code Examples

In this section we will develop a simple XOSAGA application that mimics the
’cp’ command. We can then use this program to easily copy files to and from
XtreemFS volumes. The program reads the source and destination file from the
command line arguments, creates a SAGA file object and uses the copy() function
to perform the copying. We will first show the C++ versioon of the program, and
then the Java version.

5.1.1 C++ code example

The source code of the C++ example program looks like this:

#include <saga.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {
if (argc != 3) {

cout << "usage: " << argv[0] << " src dst" << endl;
return 1;

}

saga::url src(argv[1]);
saga::url dst(argv[2]);

try {
saga::filesystem::file f(src, saga::filesystem::Read);

cout << "Copying " << src << " to " << dst << endl;
f.copy(dst);

} catch (saga::exception const & e) {
cout << "SAGA exception: " << e.get_message() << endl;

}
}

We save the program in a file called ’copyfile.cpp’, and then create the follow-
ing Makefile:

SAGA_SRC = $(wildcard *.cpp)
SAGA_OBJ = $(SAGA_SRC:%.cpp=%.o)
SAGA_BIN = $(SAGA_SRC:%.cpp=%)

include /usr/share/saga/make/saga.application.mk

13

Finally, we compile our program:

$> make
compiling copyfile.o
binlinking copyfile

$>

We can now use our copyfile program to copy files around. Assume we
have a simple XtreemFS installation, with a directory service, MRC, and OSD
process all running locally. We will create a volume ’vol42’, and copy a file to it
using our example program. First, we create the volume:

$> mkvol http://localhost/vol42

We then create a file, and copy it to the volume:

$> echo ’hello world!’ > hello.txt
$> ./copyfile hello.txt xtreemfs://vol42@localhost/hello.txt

We can check whether the file was copied succesfully by mounting the XtreemFS
volume manually:

$> mkdir /tmp/vol42
$> xtfs_mount -o volume_url=http://localhost:32636/vol42 \
-o direct_io -o logfile=/dev/null /tmp/vol42
$> ls /tmp/vol42
hello.txt*
$> cat /tmp/vol42/hello.txt
hello world!
$> xtfs_umount /tmp/vol42
$> rmdir /tmp/vol42

14

5.1.2 Java Code Example

The Java code of the example program looks like this:

import org.ogf.saga.error.*;
import org.ogf.saga.file.*;
import org.ogf.saga.namespace.*;
import org.ogf.saga.url.*;

public class CopyFile {

public static void main(String argv[]) {
if (argv.length != 2) {

System.out.println("usage: java FileCopy src dst");
System.exit(1);

}

try {
URL src = URLFactory.createURL(argv[0]);
URL dst = URLFactory.createURL(argv[1]);

File f = FileFactory.createFile(src);
f.copy(dst);

} catch (SagaException e) {
System.out.println("SAGA exception: " + e);

}
}

}

We save the program in a file called ’CopyFile.cpp’. Assume that the environ-
ment variable JAVA_SAGA_LOCATION already points to the installation directory
of the SAGA Java engine. We can then compile our program like this:

$> javac -cp $JAVA_SAGA_LOCATION/lib/saga-api-1.1rc1.jar \
CopyFile.java

$>

We can now use our CopyFile program similarly to its C++ counterpart. For
example, we can copy the file hello.txt to the XtreemFS volume ’vol42’ again
(which were both already created in the C++ example in the previous section).

$> $JAVA_SAGA_LOCATION/bin/run-saga-app CopyFile \
hello.txt xtreemfs://vol42@localhost/hello.txt

15

6 XtreemOS certificates

The grid level credentials of an XtreemOS user consist of XOS certificates [7]. An
XtreemOS user obtains such a certificate by contacting the Credential Distribution
Authority. The XOS certificate is then made accessible in SAGA via a context
object with the type ’xtreemos’. The UserCert property of this context object
should point to the file containing the XOS certificate the user.

Every time a SAGA application accesses a file on an XtreemFS volume, the
XtreemFS adaptor first checks whether the current session contains a context
with the type ’xtreemos’. If such a context is found, the file pointed to by the
UserCert property is then automatically added to the command that automat-
ically mounts a remote XtreemFS volume locally. Furthermore, the scheme of
the URL to contact the MRC of that volume at will then change from ’http’ to
’https’ to enable SSL.

7 Summary and Future Work

In this report, we have presented the second prototype of the XtreemOS runtime
engine, implementing the XOSAGA API, according to our previous deliverable
D3.1.2 (except for the Application Execution Management package). We have
outlined the underlying design principles of our implementations in C++ and Java,
and have provided information for download, installation, and use. Both imple-
mentations support the XtreemFS file system as well as XtreemOS certificates.

In a companion deliverable, D3.1.5, we are presenting the third draft API for
XtreemOS, focusing on SAGA extensions for exposing XtreemOS-specific func-
tionality that had not yet been covered by D3.1.3. This functionality will be imple-
mented in the next implementation release, along with the Application Execution
Management package.

References

[1] Gabrielle Allen, Kelly Davis, Tom Goodale, Andrei Hutanu, Hartmut Kaiser,
Thilo Kielmann, Andre Merzky, Rob van Nieuwpoort, Alexander Reinefeld,
Florian Schintke, Thorsten Schütt, Ed Seidel, and Brygg Ullmer. The Grid
Application Toolkit: Towards Generic and Easy Application Programming
Interfaces for the Grid. Proceedings of the IEEE, 93(3):534–550, 2005.

[2] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer,
Andre Merzky, John Shalf, and Christopher Smith. A Simple API for Grid

16

Applications (SAGA). Grid Forum Document GFD.90, January 2008. Open
Grid Forum (OGF).

[3] Stephan Hirmer, Hartmut Kaiser, Andre Merzky, Andrei Hutanu, and
Gabrielle Allen. Generic Support for Bulk Operations in Grid Applications.
In MCG ’06: Proceedings of the 4th International Workshop on Middleware
for Grid Computing, page 9, New York, NY, USA, November 2006. ACM
Press.

[4] Hartmut Kaiser, Andre Merzky, Stephan Hirmer, and Gabrielle Allen. The
SAGA C++ Reference Implementation – Lessons Learnt from Juggling with
Seemingly Contradictory Goals. In Workshop on Library-Centric Software
Design LCSD’06, at Object-Oriented Programming, Systems, Languages
and Applications conference (OOPSLA’06), Portland, Oregon, USA, Octo-
ber 2006.

[5] XtreemOS Consortium. First Draft Specification of Programming Interfaces.
Deliverable D3.1.1, 2006.

[6] XtreemOS Consortium. First Prototype of XtreemOS Runtime Engine. De-
liverable D3.1.3, November 2007.

[7] XtreemOS Consortium. First Specification of Security Services. Deliverable
D3.5.3, May 2007.

[8] XtreemOS Consortium. Second Draft Specification of Programming Inter-
faces. Deliverable D3.1.2, November 2007.

[9] XtreemOS Consortium. Third draft specification of programming interfaces.
Deliverable D3.1.5, November 2008.

17

	Introduction
	General Architecture
	The SAGA C++ Engine
	Installation and deployment
	API documentation

	The SAGA Java Engine
	Java language binding of SAGA
	Configuration
	The SAGA Java Adaptors
	Installation and documentation

	The XtreemFS adaptor
	Code Examples
	C++ code example
	Java Code Example

	XtreemOS certificates
	Summary and Future Work

