
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Revised System Architecture
D3.1.7

Due date of deliverable: November 30th, 2008
Actual submission date: January 12th, 2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.3

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.0.3 / Last edited by Mathijs den Burger / January 12th, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 22/09/08 Mathijs den Burger VUA initial draft
0.2 5/11/08 Guillaume Pierre VUA WP3.2 contribution
0.3 6/11/08 Luis Pablo Prieto TID WP2.3 and WP3.6 contribution
0.4 12/11/08 Christine Morin INRIA WP2.2 contribution with the help of other WP2.2 par-

ticipants
0.5 13/11/08 An Qin ICT WP2.1 contribution on local VO managment
0.6 08/11/08 Oscar David Sanchez INRIA Update on communication and configuration sections
1.0 12/12/08 Thilo Kielmann VUA Complete version, containing all contributions.

1.0.1 05/01/09 Mathijs den Burger VUA Processed comments of internal reviewers
1.0.2 09/01/09 John MehnertSpahn & Michael

Schoettner
UDUS Update of WP3.3 checkpointing part

1.0.3 12/01/09 Mathijs den Burger VUA Processed comments of internal reviewers

Reviewers:
Yvon Jégou (INRIA), Christine Morin (INRIA), and Arnaud Laprévote (EDGE-IT)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.1.3 XtreemOS system architecture INRIA, STFC, BSC, VUA∗, XLAB, ZIB, TID

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
This document describes the overall system architecture for the software packages
developed by the XtreemOS project, as they have been developed by the current
stage of the project (Month 30). We are presenting the individual packages of
XtreemOS, their layering in the overall software system, as well as the individual
components of each package. Based here upon, we are describing the interactions
of the software packages with each other, for the purpose of jointly providing ca-
pabilities to users, applications, or to other XtreemOS software packages. Most of
these capabilities have been implemented by now. The remaining ones are planned
to be added during the remaining project life time. The Sections 2 and 3 covering
these aspects are revised and updated versions, based on deliverable D3.1.4 [1],
the First Version of System Architecture.

New in this document, compared to D3.1.4, are the sections on the communi-
cation layer, Section 4, and configurations, Section 5. We conclude this document
by summarizing our findings and outlining aspects for consideration with respect
to the overall XtreemOS system architecture.

1

Glossary
Capabilities Higher-level functionality achieved by the combination and in-

teraction of different services.

Component Generic name for a piece of software that makes up XtreemOS.
Focuses on the software-engineering aspect rather than the func-
tionality the software provides.

Functionality Specific actions or activities that can be performed.

Layer Set of components that provide functionality at approximately
the same level of abstraction from the underlying hardware.

Module Part of a component.

Package Set of components provided by the same Work Package.

Service Set of components providing a certain functionality. Focuses
on the functionality that is provided rather than the underlying
software.

System A combination of components and hardware forming a unitary
whole. Historically, the term is mostly used to describe either
rather low-level software close to the actual hardware, or the
high-level concept of the ’whole system’ including all software
and hardware it consists of.

2

Contents
Executive Summary 1

Glossary 2

1 Introduction 3

2 XtreemOS software packages 5
2.1 Extensions to Linux for VO Support and checkpointing (WP2.1) . 6
2.2 LinuxSSI (WP2.2) . 7
2.3 Embedded Linux (WP2.3) . 8
2.4 XtreemOS API (WP3.1) . 9
2.5 Infrastructure for Highly-available and Scalable Services (WP3.2) 9
2.6 Application Execution Management (WP3.3) 11
2.7 Data Management (WP3.4) . 12
2.8 VO and Security Management (WP3.5) 13
2.9 Services for Mobile Devices (WP3.6) 15

3 Capabilities 16
3.1 Resource Discovery . 18
3.2 Reservation Management . 18
3.3 Job Submission . 20
3.4 Checkpointing . 22
3.5 Event Management . 24
3.6 Monitoring . 25
3.7 Dynamic Resource Allocation 26
3.8 Fault-Tolerant Execution . 27
3.9 Data Management . 28
3.10 File Replication . 29
3.11 VO Lifecycle Management . 29
3.12 VO Entity Management . 31
3.13 Policy Management . 32
3.14 VO Accounting and Audit Trail Management 34

4 Communication layer 35
4.1 Distributed XtreemOS Infrastructure (DIXI) 35

4.1.1 Motivation . 35
4.1.2 Description . 36
4.1.3 Usage of DIXI . 37

4.2 HTTP/JSON . 38
4.2.1 Motivation . 38

1

4.2.2 Description . 38
4.2.3 Usage of HTTP/JSON 38

5 Configurations 39
5.1 Core services . 39
5.2 Resource services . 40
5.3 Client services . 40

6 Summary 41

2

1 Introduction
The major research challenge in grids is scalability. Large numbers of machines
(e.g., 10.000’s) populating virtual organizations are becoming unmanageable, re-
quiring decentralized (P2P) management solutions. The numbers of users is get-
ting equally large, with similar implications on user authentication and authoriza-
tion management. Another important trend is the increasing diversity of plat-
forms, ranging from high-end clusters, via stand-alone PC’s, to less powerful,
mobile devices. While integrated (operating system) support for these heteroge-
neous platforms is highly desirable, their different requirements and capabilities
keep asking for tailor-made configurations.

To address these challenges, the XtreemOS project is building a Linux-based
operating system to support virtual organizations (VOs) in next-generation grids.
Unlike the traditional, middleware-based approaches, it is a prominent goal to
provide seamless support for VOs, on all software layers involved, ranging from
the operating system of a node, via the VO-global services, up to direct application
support. In terms of the Open Grid Service Architecture (OGSA) [2], as shown
in Figure 1, XtreemOS is providing support on all layers involved in a virtual
organization:

• On the fabric layer, XtreemOS provides VO-support by Linux kernel mod-
ules.

• On the connectivity layer, XtreemOS provides VO membership support for
(compute and file) resources, application programs, and users.

• On the resource layer, XtreemOS provides application execution manage-
ment.

• On the collective layer, XtreemOS provides the XtreemFS file system, and
VO management services.

• On the Application layer, finally, XtreemOS provides runtime support via
its XOSAGA API, integrating the Simple API for Grid Applications (SAGA) [3]
with native POSIX interfaces and XtreemOS-specific extensions.

Not only does XtreemOS cover the whole spectrum of OGSA layers. XtreemOS
also integrates operating systems for the various computer architectures used in
VOs:

• For stand-alone PCs (single CPU, or SMP, or multi-core), XtreemOS pro-
vides its Linux-XOS flavour with full VO support.

3

Collective Layer

Resource Layer

Application Layer

Connectivity Layer

Fabric Layer

Figure 1: The layered Grid middleware architecture, diagram simplified from [2].

• For clusters of Linux machines, the LinuxSSI flavour combines VO support
with a single system image (SSI) functionality.

• For mobile devices, finally, XtreemOS provides the XtreemOS-MD flavour
with VO support and specially-tailored, lightweight services for application
execution, common data access, and user management.

This document describes the overall system architecture for the software pack-
ages developed by the XtreemOS project, as they are planned and are already par-
tially developed at the current phase of the project (Month 30). This document is
intended to serve the following purposes:

1. Provide an overview of the XtreemOS software packages and their compo-
nents,

2. Summarize the functionality of XtreemOS components:

(a) functionality provided to other components,

(b) functionality required from other components,

3. Analyze the interactions (and flows of information) between components,
for jointly providing capabilities to users, applications, or to other XtreemOS
software packages.

4. Describe the communication layer among services and components

5. Describe the different XtreemOS configurations

This document has four main sections. Section 2 presents the individual pack-
ages of XtreemOS, their layering in the overall software system, as well as the

4

individual components of each package. Section 3 describes the interactions of
the software packages with each other, for the purpose of jointly providing capa-
bilities to users, applications, or to other XtreemOS software packages. Section 4
describes the communication layer; Section 5 the XtreemOS configurations. We
conclude this document with Section 6 by summarizing our findings and outlining
aspects for consideration with respect to the XtreemOS system architecture.

2 XtreemOS software packages
The XtreemOS project is producing various software components, ranging from
Linux kernel modules to application-support libraries. The overall layering of
these components, grouped to software packages, is shown in Fig. 2. It shows
all layers in the infrastructure on a very high level of abstraction. Each layer
abstracts further from the underlying physical structure of a Grid, and consists of
one or more software packages.

Figure 2: Layering of the XtreemOS software packages.

The development within XtreemOS is organized in work packages; each work
package is responsible for one of these software packages. A software package
provides one or more services of XtreemOS. Each service implements its func-
tionality by interacting with other services in the same layer, and the layer below.
Here, services can be either “classical” services within the XtreemOS-G layer, or
Linux extensions (kernel modules etc.) within the XtreemOS-F layer.

5

This document describes the overall architecture for all software packages de-
veloped by XtreemOS. As such, it also describes software that is still under de-
velopment or planned for later stages of the project. In the following, we outline
the individual services being produced by the work packages from SP2 and SP3.

2.1 Extensions to Linux for VO Support and checkpointing
(WP2.1)

This work package provides two main components of XtreemOS 1:

Node-level VO support in Linux-XOS: This component provides the mapping
from VO user identities to local user identities and the enforcement of VO-
level policies on the local node. It performs authorization functions, by
checking the validity of XtreemOS certificates (XOS-Cert) on user’s login.
It provides a dynamic mapping between grid identities and local identities,
allowing grid users and processes to be linked to their local counterparts.
This component was implemented based on existing Linux mechanisms in-
cluding NSS, PAM and the kernel key retention service, which implies that
applications could process VO-level information via standard Linux APIs
(e.g. libc).

Checkpointing in Linux-XOS: Checkpointing in Linux-XOS provides the abil-
ity to save the state of a process group for a single node, and to restart
it later on. Linux-XOS’ implementation of checkpoint/restart mechanisms
leverages BLCR (Berkeley Lab Checkpoint/Restart) [6], and adapts its uses
to an application running on a grid. BLCR (version 0.6.1 for kernel 2.6.22
and version 0.7.3 for kernel 2.6.25) has been modified towards integrating
the executable and the applications libraries into the snapshot. An applica-
tion restart can be executed on other grid nodes, too without depending on
its environment Furthermore, BLCR has been extended to support coordi-
nated checkpointing of a distributed application. The checkpoint sequence
has been modified to allow synchronization of multiple job-units before a
checkpoint is taken. The restart sequence has been adapted appropriately.

1 The current state of the work is documented in D2.1.2 [4] Design and implementation in Linux
of basic user and resource management mechanisms spanning multiple administrative domains
with respect to VO support and in D2.1.3 [5] Design and implementation of basic application unit
checkpoint/restart mechanisms in Linux with respect to checkpointing in the F-layer of XtreemOS.

6

2.2 LinuxSSI (WP2.2)
This work package provides two main components of XtreemOS 2:

Single System Image for cluster: LinuxSSI LinuxSSI gives the illusion that a
Linux cluster is a single Linux node. Based on Kerrighed Single System
Image (SSI) technology [14], LinuxSSI is improved in stability and features
such as global customizable scheduler, checkpoint/restart of process trees,
reconfiguration mechanisms, and distributed file system.

VO support in LinuxSSI: LinuxSSI-XOS This component provides the XtreemOS-
F layer for cluster. LinuxSSI-XOS provides the necessary adaptations to the
LinuxSSI operating system for clusters, in order to work with virtual orga-
nizations and VO users, by using Linux standard mechanisms like PAM
and NSSwitch, in a similar fashion as in Linux-XOS node-level VO sup-
port (see Section 2.1). LinuxSSI-XOS provides a complete transparency of
the cluster for XtreemOS-G layer so that a LinuxSSI-XOS cluster can be
considered as a Linux-XOS powerful node.

LinuxSSI comprises of the following services:

Distributed file system: Most of available network file systems for clusters are
built on the historical model compute nodes vs storage nodes. Available
hard drives on compute nodes are only used for the system and temporary
files, wasting both a lot of space and throughput, predominant criteria in
the current High Performance Computing context. Keeping that in mind
we have designed a new kernel Distributed File system, named kDFS, to
efficiently exploit storage resources within a cluster. The first prototype,
pluggable under the VFS, has been implemented upon kDDM mechanisms,
a kernel DSM-like manager which allows consistent data sharing cluster-
wide [10]. Thanks to kDDM sets, kDFS provides a cooperative cache for
both data and meta-data.

Customizable scheduler: LinuxSSI scheduler [11] is a component which is in
charge of placing processes to different cluster nodes. Besides that, it also
serves as an interface for submitting jobs to LinuxSSI-XOS from upper lay-
ers (especially the Application Execution Management (AEM) layer). In

2The current state of the work is documented in D2.2.2 [7] Design and implementation of
scalable SSI mechanisms in LinuxSSI, D2.2.3 [8] Design and implementation of basic check-
point/restart mechanisms in LinuxSSI, D2.2.4 [9] Design and implementation of basic reconfigu-
ration mechanisms in LinuxSSI, D2.2.5 [10] Design and implementation of high performance disk
input-out operations in a cluster, D2.2.6 [11] Design and implementation of a basic customizable
scheduler, D2.2.7 [12] Prototype of the basic version of LinuxSSI, and D2.2.8 [13] Design and
implementation of first advanced version of LinuxSSI

7

the first implementation phase of the XtreemOS project, we were dealing
with load balancing schedulers. These schedulers take care of migrating
processes from one cluster node to another and thus transferring load from
overloaded nodes to less busy ones. We designed a special framework,
which we named “Pluggable Probes and Scheduling Policies Framework”
(PlugProPol). By using this framework, the upper layers are able to load
user-implemented resource measurement probes and scheduling policies
(i.e., implementations of scheduling algorithms) and enable them without
having to restart the whole cluster.

Checkpointing: Checkpointing in LinuxSSI provides the ability to transparently
save the state of a process group of a SSI-application running in a cluster,
and to restart it later on. The customized checkpointing implementation
is used to support the SSI-internal process migration facility. The check-
pointer runs in kernel mode and uses a coordinated checkpointing approach
to save the cluster-wide state of a distributed application [8].

Reconfiguration mechanisms: LinuxSSI is implemented by a set of kernel level
services distributed on the cluster nodes. The cluster administrator may
want to upgrade hardware of one cluster node without stopping the whole
cluster and especially without stopping application execution. Reconfig-
uration mechanisms are needed in LinuxSSI in order to provide node ad-
dition(s) and node removal(s) operations [9]. It is also highly desirable to
handle node failure and network disconnection to avoid a crash of the whole
cluster. XtreemOS consortium cannot take in charge the full implementa-
tion of reconfiguration mechanisms as it requires call-backs to be imple-
mented in all LinuxSSI system services, some of them being designed and
implemented by key developers outside XtreemOS consortium but involved
in the Kerrighed open source community.

2.3 Embedded Linux (WP2.3)
As of this writing, the envisioned components belonging to this software package
are 3:

Terminal Mobility: This component provides XtreemOS-MD nodes with termi-
nal mobility features, through an implementation of Mobile IPv6, in order
to be able to change access points in a transparent way, without interrupting
the communications of the mobile node with the Grid.

3 The current state of the work with respect to the F-layer of XtreemOS-MD is documented
in D2.3.4 [15] Linux-XOS for MD/PDA and D2.3.5 [16] Requirements and specifications for ad-
vanced VO support in mobile devices.

8

VO support in Linux-XOS for Mobile Devices: This component provides adap-
tations to the Linux operating system for mobile devices, in order for mobile
users to login and be authenticated with virtual organizations, enabling them
to use XtreemOS services like AEM or XtreemFS. These adaptations share
the same features and make use of the same Linux standard mechanisms
used in the VO support of the standard flavor (see Section 2.1), plus addi-
tional mechanisms for credential storage needed in mobile architectures.

2.4 XtreemOS API (WP3.1)
The (envisioned) components belonging to this software package are 4:

API engine in C++: This engine acts as a runtime library that is to be linked to
a user application. The engine is providing the XtreemOS API, and imple-
menting its functions on top of different XtreemOS flavors. The engine is
using dynamically loaded libraries, so-called adaptors, to dispatch function-
ality to different service providers. One set of adaptors is interfacing to the
local capabilities of the node the application is running on (local adaptors),
another set of adaptors is interfacing to XtreemOS’ services.

API engine in Java: This engine works like its C++ counterpart, except that it is
written purely in Java, also with Java adaptors in JAR files.

API for other languages: In a later stage, the existing engines in C++ and Java
will be used to provide the XtreemOS API to other programming languages
via wrapper interfaces.

2.5 Infrastructure for Highly-available and Scalable Services
(WP3.2)

This software package comprises of the following (envisioned) components 5:

4 The state of the work with respect to the XtreemOS API is documented in D3.1.5 [17] Third
Draft Specification of Programming Interfaces and D3.1.6 [18] Second Prototype of XtreemOS
Runtime Engine.

5An introductory description about WP3.2 goals is provided in D3.2.1 [19] (Design of an
Infrastructure for Highly Available and Scalable Grid Services) while individual services are
extensively described in, respectively, D3.2.2 [20] (First Prototype Version of Ad Hoc Dis-
tributed Servers), D3.2.3 [21] (Simulation-based evaluation of a scalable publish/subscribe sys-
tem), D3.2.4 [22] (Design and Specification of a Prototype Service/Resource Discovery System),
and D3.2.5 [23] (Design and Specification of a Virtual Node System).

9

Distributed Server: A distributed server is an abstraction that allows to present
a collection of server processes to its clients as a single entity. The IPv6 ad-
dress of a distributed server remains stable, even in the case of nodes joining
or leaving the application. This technology is exploited in the project both
as a support for highly available services (e.g., the job manager or the VO
manager) and by those applications willing to make their internal distribu-
tion transparent to their clients.

Virtual Nodes: A server object designed to be invoked remotely can request to
be organized as a virtual node. A virtual node is a fault-tolerant group of
server object replicas where each member can take over the task of the
others in case of failure. Several types of virtual nodes may be provided,
based on active replication, or passive replication. This technology is being
integrated with distributed servers to provide a single platform to support
fault-tolerant, highly available services and applications whose distribution
is transparent to the clients.

Publish-Subscribe: A common form of communication between a large number
of nodes taking part in a given application is publish-subscribe. We provide
a fully decentralized pub/sub communication system that applications can
use for their own purpose. The current implementation is based on a topic-
based publish-subscribe. Later in the project we will evaluate if hierarchical
topics or more content-based approaches are also needed.

Resource Selection Service: The Resource Selection Service (RSS) takes care
of performing a preliminary selection of nodes to allocate to an applica-
tion, according to range queries upon static attributes. It exploits a fully
decentralized approach, based on an overlay network which is built and
maintained through epidemic protocols. This allows to scale up to hundred
thousands, if not millions, of nodes and to be extremely resilient to churn
and catastrophic failures.

Application Directory Service: The Application Directory Service (ADS) han-
dles the second level of resource discovery, answering queries expressed
as predicates over the dynamic attributes of the resources. ADS creates
an application-specific “directory service” using the NodeIDs received by
the RSS, related to the resources involved in the application execution. To
provide scalability and reliability, DHT techniques and their extensions to
dynamic and complex queries are used.

The RSS and ADS together form the Scalable Resource Discovery System (SRDS).

10

2.6 Application Execution Management (WP3.3)
The (envisioned) components belonging to this software package are 6:

Job Manager: Global information on the jobs running (or submitted) is kept by
this distributed service (most nodes in the grid have an instance, and each
instance handles some of the current jobs). Among its main functionality,
the job manager is in charge of being the contact point to interact with a job,
answer information about a job, schedule jobs, decide when a migration is
needed, etc.

CRJobMng: This distributed service extends the Job Manager realising job check-
pointing and job restart in order to realise job migration and suspension and
to provide job fault tolerance. For the latter the CRJobMng Manager de-
cides when to checkpoint and to restart a job. During checkpointing and
restart the CRJobMng uses the Execution Manager and the CRExecMng
Manager to coordinate all affected job units.

Execution Manager: This service is responsible of managing the job units run-
ning on the node it is located. Each node that runs part of a job also runs
this service. A job unit represents (internally to AEM) all the processes of
a job running in one resource, and a running job running consist of one of
more job units. The Execution Manager performs the action requested by
the Job Manager, e.g. launching processes within a job, monitoring the job
unit (information that will be aggregated by the job manager) etc.

CRExecMng: This service realises the job-unit checkpointer responsible of sav-
ing and rebuilding a single job-unit. The grid-inherent hard- and software-
heterogeneity requires the CRExecMng service to transparently access dif-
ferent kind of underlying kernel checkpointers. This is achieved by the com-
mon kernel checkpointer API. Furthermore, for efficiency reasons, it adapts
the checkpointing strategy according to the monitored job-unit behaviour.

Resource Manager: Each resource in the grid has a resource manager service
that mainly takes care of two tasks. On the one hand, it is responsible for
exporting information about the resource (for instance for monitoring is-
sues). And, on the other hand, to negotiate with the Reservation Manager to

6 The state of the work with respect to the XtreemOS services regarding Application Execution
Management is documented in D3.3.1 [24] Requirements and specification of XtreemOS services
for application execution management. The internal architecture of these services is documented
in D3.3.2 [25] Design of the architecture for application execution management in XtreemOS,
D3.3.3 [26] Basic services for application submission, control and checkpointing, and D3.3.4 [27]
Basic services for resource selection, allocation and monitoring.

11

manage reservations, and the Job Manager to negotiate with the scheduler,
etc.

Reservation Manager: This service is responsible of managing advanced global
reservations. Reservations are created by the Job Manager or directly by
users and are bounded to one or more jobs. The goal of resource reser-
vations is to provide a negotiated quality of service to running applications.
The Reservation Manager interacts with applications (for instance workflow
managers), with the Job Manager (in traditional job submission), and with
the Resource Manager (to perform local reservations).

Job Directory: In order to locate a job controller (part of the Job Manager) in
the system, we need a distributed service that stores the location of the Job
manager containing this object. With this information we can get all the
information about the job by directly contacting the right instance of the job
controller.

XATI: Interface used to communicate with services in the Application Execu-
tion management. We have a Java and C version that can either be used
by applications directly, or via XOSAGA (which will in turn use XATI to
communicate with the AEM services).

2.7 Data Management (WP3.4)
The following (envisioned) components belong to this software package 7:

Metadata and Replica Catalog: File system metadata is managed by the Meta-
data and Replica Catalog (MRC). The MRC provides an interface for file
system operations related to metadata, such as creating, renaming or re-
trieving information about files, on which it also enforces access control.
To provide resilience, it supports replication of metadata. The MRC will
also offer partitioning of metadata among different servers to increase per-
formance and scalability. A querying interface will allow for an advanced
attribute-based retrieval of files.

Object Storage Device: Object Storage Devices (OSDs) are responsible for stor-
ing file content. File content is internally handled in the form of objects,
where an object represents a certain range of bytes of a file. With the aim
of increasing read/write performance, OSDs support striping by spreading

7 The state of the work with respect to Data Management is documented in D3.4.1 [28] The
XtreemOS File System - Requirements and Reference Architecture and D3.4.4 [29] XtreemFS and
OSS - Second Prototype.

12

multiple objects of a single file across several OSDs. OSDs will also support
replication of files with automatic fail-over, for the purpose of improving
fault tolerance and availability, as well as reducing access latency. The latter
can be achieved by placing file replicas close to their users. Replica place-
ment will later be automated by the Replica Management Service (RMS).

Directory Service: This registry is internal to XtreemFS components. It is used
by an MRC to discover OSD’s.

Client/Access Layer: The Access Layer provides the interface between user pro-
cesses and the file system infrastructure. Its main task is to handle access
to files and directories on behalf of user processes. A POSIX-compliant in-
terface based on the FUSE framework enables arbitrary applications to use
the file system without a prior modification or recompilation of their source
code. As the client-side part of the file system, the Access Layer inter-
acts with the aforementioned file system services by translating calls from
the POSIX API into corresponding interactions with OSDs and MRCs. In
addition to the POSIX interface, the access layer will provide tools for cre-
ating and deleting XtreemFS volumes, checking file integrity, querying and
changing the file striping policies, and other grid-specific features.

Object Sharing Service: The Object Sharing Service (OSS) provides sharing of
volatile memory objects (raw memory regions or programming language
objects) and memory-mapped files. One of the major goals is to imple-
ment transactional consistency (combining speculative transactions and op-
timistic synchronization) to simplify distributed programming. But the mod-
ular and layered design is open for other consistency models. Fault toler-
ance is provided by replication of shared data and checkpointing (using the
XOS grid checkpointer).

2.8 VO and Security Management (WP3.5)
The (envisioned) components belonging to this software package are 8:

Credential Distribution Authority: In XtreemOS, grid level credentials take the
form of XOS Certificates, as defined in D3.5.3, First Specification of Secu-
rity Services. An XtreemOS user runs a command-line CDA client program
to contact the CDA service via a secure and authenticated channel - if the

8 The state of the work with respect to VO and Security Management is documented in
D3.5.3 [30] First Specification of Security Services, D3.5.4 [31] Second Specification of Security
Services, D3.5.5 [32] Security Services Prototype month 18, and D3.5.6 [33] Report on Formal
Analysis of Security Properties.

13

user is a member of a specified VO, the CDA service generates an XOS
Certificate, signs and returns it to the user. With the corresponding private
key, the user can then use this certificate to authenticate himself to remote
entities in subsequent operations, such as submitting a job via the AEM
or accessing files through the XtreemFS. XOS certificate is finally passed
down to each resource node and consumed by node-level VO support com-
ponents (this part of codes is produced by WP2.1)

Resource Certification Authority: The Resource Certification Authority (RCA)
issues certificates that authenticate resource nodes in an XtreemOS system.

Accounting Service: The Accounting Service aims to record the information
about resource usage and by whom the resources are used within a VO.
It is currently being designed in WP3.5. It supports both push (informa-
tion being pushed to the service) and pull (information being pulled by the
service) models. It ensures accountability of actual resource consumption
about (groups of) individuals by relying on the (real-time) events provided
by the AEM services and the AEM communication infrastructure to realize
accounting capability.

VO Policy Service: The VO Policy Service (VOPS) is a stand-alone security ser-
vice that provides a Policy Administration Point (PAP), Policy Information
Point (PIP), and Policy Decision Point (PDP) to other XtreemOS services.
VOPS is designed to support coordinated access control to VO resources,
including computation and storage resources, by offering a VO level policy
decision point. Together with node level policy decision points, it forms a
hierarchical access control framework that can be tuned to achieve various
degrees of control to resource usage within a VO. It is being used by AEM
to facilitate VO policy governed resource selection and job scheduling. It
can also be used together with the accounting service to enforce constrains
(e.g. quota and usage pattern) to certain types of resource consumption in a
real-time manner.

VO Lifecycle Management: The Virtual Organization Lifecycle Management (VO-
Life) is a web-based tool for accessing various VO-related services in XtreemOS.
Currently, VOLife only supports the manipulation of XVOMS database and
the generation of XOS Certificates for users. Integration with runtime se-
curity services such as VOPS and RCA is still under development. VOLife
consists of two parts: the backend and the frontend. The backend is a light
Java wrapper around current security libraries. The frontend is a web appli-
cation to be deployed into Tomcat. The backend provides a command-line
utility which has almost the same functionality as the web frontend; its main

14

purpose is to test the integrity of data. The recommended way to use VOLife
is via the web frontend.

2.9 Services for Mobile Devices (WP3.6)
As of this writing, the components belonging to this XtreemOS-MD layer are 9:

Execution Management Client: This component provides client access to XtreemOS
Application Execution Management (AEM), allowing mobile users to launch,
manage and monitor jobs running in XtreemOS Grid. It consists mainly of
a C implementation of the XATI interface to the AEM, able to run in ARM
architectures.

XtreemFS Client: This component enables mobile users to access the XtreemFS
filesystem through an implementation of the XtreemFS FUSE client for
mobile devices architectures, with additional caching mechanisms for en-
hanced performance in mobile computing environments. This allows mo-
bile users to mount XtreemFS volumes, and access grid files through a
POSIX-compatible interface.

Credential Obtention Framework: This framework allows mobile users to ob-
tain credentials for authentication, in a flexible and modular way. In XtreemOS,
this component accesses the Credential Distribution Authority (see Section
2.8), either directly or through a proxy server. By using these certificates
and the VO support components for Linux-MD, users are able to access the
other XtreemOS services securely.

XtreemOS-MD API Engine: This component provides a subset of the XtreemOS
XOSAGA API, that covers the needs of a XtreemOS client configuration
(access to grid resources). This enables user applications to access and man-
age grid files and security contexts. Initially, only the C++ engine and the
XtreemOS adaptors are available in mobile devices.

XtreemOS-MD Application Integration Kit: This component allows XtreemOS-
unaware applications to use the XtreemOS certificates scheme, and allows
for easier integration of end-user (e.g. graphical) applications with the
XtreemOS system.

9 The current state of the work with respect to the G-layer of XtreemOS-MD is documented in
D3.6.2 [34] Design of basic services for mobile devices and D3.6.3 [35] XtreemOS-G for MD/PDA.

15

3 Capabilities
The different services developed by XtreemOS can interact in different ways to
achieve certain higher-level functionality. We call such higher-level functionality
a capability of XtreemOS: it is something XtreemOS as a whole is able to provide
to the outside world. XtreemOS has the following capabilities:

Resource discovery: users can search for XtreemOS resources with certain char-
acteristics.

Reservation management: users can exclusively reserve a set of XtreemOS re-
sources for further use.

Job submission: users can submit a job to XtreemOS, which will then be exe-
cuted on the required or reserved resources.

Checkpointing: jobs can be checkpointed automatically by XtreemOS according
to a policy specified by the user, or manually triggered by the user.

Event management: users can send events to their jobs, similar to POSIX sig-
nals.

Monitoring: users can monitor various aspects of their jobs and the resources
they run on.

Dynamic resource allocation: users can modify the resources used by their run-
ning jobs.

Fault-tolerant execution: vital XtreemOS services and user jobs can be repli-
cated transparently to ensure high availability with minimum additional pro-
gramming overhead.

Data management: users can have a global view of the distributed file system
(XtreemFS).

File replication: XtreemFS implements transparent access to replicated files and
co-operates with other services to support pro-active replica creation.

VO lifecycle management: VO creators can manage the lifecycle of VOs.

VO entity management: VO admins can manage the identity and attributes for
users in a VO. Together with resource admins, VO admins can also manage
VO resources.

16

VO accounting and audit trail management: VO admins can receive, register,
and certify audit and accounting information of resource usage. VO admin-
istrators distributes such information to users.

Policy management: VO admins can manage VO policies to control the access
to and the usage of VO resources.

We structure this section along different capabilities, and show the interac-
tions between different services for each capability individually. Each capability
is described by a diagram showing the interaction of the services involved. The
diagram is accompanied by a brief description of the interaction.

Each box in these capability diagrams corresponds to a service in one of the
work packages, as described in Section 2. The text in a box consists of the work
package number, followed by the name of the service. An arrow between boxes
describes the flow of information between services. Each arrow is annotated with
a very short description of the information, which is always a noun. The direction
of the arrow indicates the direction in which the information is transferred. When
services communicate by request-and-reply, an arrow indicates the direction and
contents of the reply.

Boxes can consist of multiple layers stacked on top of each other. These lay-
ers describe software layers, that are linked together and used as one piece of
software. Layering is only be included in a diagram if it is relevant for the capa-
bility the diagram describes. For complex or more general software layering, a
separate diagram is used.

A capability diagram may include grey areas that visually group services that
are in the same scope. Each scope indicates the locality of services. We have
identified four scopes:

User Scope contains all services that are local to a user of XtreemOS. The main
example is client APIs.

Admin Scope contains all services that are local to an administrator of a virtual
organization (VO) [2].

Core Scope contains those services that are operating independent of their phys-
ical location, typically in charge of a whole VO.

Node Scope contains all services that are running on an XtreemOS node (being a
single machine running Linux-XOS, or a cluster running LinuxSSI-XOS).

Grouping services into these scopes gives the diagrams a more intuitive layout
and improves readability.

17

Figure 3: Resource Discovery

3.1 Resource Discovery
Users of XtreemOS can search for XtreemOS nodes with certain characteristics,
as depicted in Figure 3. First, the user retrieves its credentials from the Cre-
dential Distribution Authority (CDA). Together with its credentials, the user then
specifies resource requirements in the XOSAGA API, which are translated by an
Application Directory Service (ADS) adaptor to a resource query. The ADS uses
the Resource Selection Service (RSS) to perform a preliminary selection of nodes,
which is further refined by the ADS. Finally, a description of the resources found
is returned to the user.

Note that, although nodes must authenticate themselves to join the Resource
Selection Service, this should not imply that nodes found in this service are neces-
sarily trusted. One should therefore check credentials of such nodes before using
them to run jobs.

3.2 Reservation Management
XtreemOS users can reserve a set of XtreemOS nodes for future usage. Figure 4
presents the reservation of a set of nodes. Initially, the user knows what resources
will be used to make the reservation. These resources can either be already know
by the user (i.e. a well known large cluster) or could have been discovered pre-

18

Figure 4: Reservation management

viously as described in Section 3.1. To be able to make a reservation, the user
first needs to get credentials from the CDA. With these credentials and the de-
scription of the reservation it contacts the Reservation Manager via the XOSAGA
and XATI interfaces. The Reservation Manager gets in contact with the Resource
Managers of the nodes to reserve, and asks them for a local reservation. Once
these reservations are made, information is kept in the Accounting Service and
the reservation ID is returned to the user. From this point on, the user can refer to
this reservation with this ID.

19

Figure 5: Job submission using an existing reservation

3.3 Job Submission
Users of XtreemOS can submit jobs in two ways. The first way is to first reserve a
number of resources, and then submit a job that uses this reservation. The second
way is to incorporate the job’s resource requirements into the job description, and
let XtreemOS handle the reservation and scheduling itself.

Figure 5 shows the submission of a job that uses a previously made reserva-
tion. To be able to submit a job, a XtreemOS user should first obtain credentials
from the CDA. With these credentials, it can submit a job using XOSAGA, which
uses XATI internally to access the Job Manager. The Job Manager obtains the
reservation from the Reservation Manager using the reservation ID in the job de-
scription. The different job units the job consist of are then submitted by the
Job Manager to the Exec Manager of each reserved node, which starts it on all

20

Figure 6: Job submission without an existing reservation

nodes. The executables, libraries and other input files needed by each job unit are
obtained from XtreemFS by the Exec Manager of each node. Finally, the infor-
mation about the job is stored in the Job Directory for future reference. Similarly,
the resource usage of the job is stored in the Accounting Service.

Note that the information stored in the Job Directory is minimal, as most of
the relevant information is kept in the Job Manager. The Job Directory contains
the job ID, the contact point within the Job Manager to get the information of the
job, and some security information.

Figure 6 shows the submission of a job for which no resources have been
reserved yet. In this case, XtreemOS will first select and reserve the required
resources, and then schedule the job on those resources. The resulting diagram is
a merger of Figures 4 and 5.

21

Figure 7: Manually checkpointing a running job

3.4 Checkpointing

Similar to job submission, there are two different scenario for initiating a check-
point: manually or automatic. Manual checkpointing is initiated by the user, au-
tomatic checkpointing by the Job Checkpointer.

To create a manual checkpoint of a job (depicted in Figure 7), the user first
needs to get its credentials from the CDA. It then contacts the Job Checkpointer
with its credentials and the job ID to request a checkpoint. The Job Checkpointer
contacts all nodes where a job unit is running and instructs the local Job Unit
Checkpointer to start a checkpoint of this job unit. In turn, each Job Unit Check-
pointer will requests a low-level checkpointer, assigned to a job unit, to checkpoint
all processes within the job unit. All stored information (checkpoint files and ad-
ditional checkpoint information) is kept in XtreemFS.

22

Figure 8: Automatic checkpointing of a running job

In the automatic checkpoint scenario (shown in Figure 8), it is the Job Check-
pointer that decides that the job needs to be checkpointed. This can be due to a
periodic checkpoint to guarantee some degree of fault tolerance, due to a migra-
tion decision etc. Compared to manual checkpointing, the only difference with
automatic checkpointing is that the Job Manager triggers the action instead of the
user; the resulting interaction of services is the same.

Restarting a job from a checkpoint is handled by the Job Checkpointer. It very
much resembles job submission, but includes the checkpoint information and files
stored in the checkpointing process.

By combining checkpointing and restarting, a job can be migrated from one
set of resources to another. First the job on the old set of resources will be check-
pointed, and then restarted on the new set of resources.

23

Figure 9: Event management

3.5 Event Management

XtreemOS users can send events to jobs. These events are extended versions of
POSIX signals. In the general scenario (see Figure 9), the user gets the needed
credentials from the CDA and then requests the Job Manager to send an event to
the job identified by a job ID. The Job Manager contacts the Exec Managers in the
nodes where the job has running processes and requests them to send an event to
these processes. The default case is that all processes in the job receive the event,
but mechanisms to decide which ones actually receive them will also be available.

In addition to events sent by the user, events can also be sent by the Job Man-
ager. This resembles the way a Linux kernel can send signals to processes.

24

Figure 10: Monitoring

3.6 Monitoring

XtreemOS offers a much more detailed monitoring system than current approaches.
Not only jobs, but also reservations and resources can be monitored. Figure 10
presents the components that play a role in monitoring. Once the user has ob-
tained the right credentials it can ask the Job Manager to monitor some events.
The Job Manager will request the information from the Reservation Manager, the
Resource Manager and the Exec Manager. The monitored information can travel
to the user in two ways. The first one is a ’pull’ mechanism where the application
requests certain information and waits for the reply. The second one is a ’push’
mechanism where the Job Manager provokes a callback when a given event is
measured or it reaches a certain value.

25

Figure 11: Dynamic resource allocation

3.7 Dynamic Resource Allocation
XtreemOS allows applications to change the number of resources they are using.
For this reason, the system allows dynamic resource allocation. Figure 11 presents
the services involved when a job requests more resources. The interaction of ser-
vices is nearly the same as with job submission without having previously reserved
resources (Figure 6). The only difference is that the job is already running, which
means that instead of creating it, resources have to be requested via ADS, the
reservation has to be modified by the Reservation Manager, and processes have to
executed by the local Exec Managers.

26

Figure 12: Fault-tolerant execution of vital XtreemOS services and jobs

3.8 Fault-Tolerant Execution

Some XtreemOS services are vital; if they are unavailable, a serious number of
capabilities is lost. Examples of such services are the Job Manager and the VO
Policy Service. Certain user applications could also desire high-availability. For
this reason, XtreemOS provides transparent fault-tolerant execution of services.

As sketched in Section 2.5, fault-tolerant replication of a service or applica-
tion is achieved by organizing it into a virtual node. Transparent access to a virtual
node will be achieved using distributed servers. In case of a server failure, repli-
cas within a virtual node can take over each other’s tasks to provide continuous
execution. Organizing virtual nodes as distributed servers ensures that they can be
reached at a single stable IPv6 address, which makes the fault-tolerance transpar-
ent to clients.

Both XtreemOS services and user services can be made fault-tolerant by link-
ing their code to special libraries, as shown in Figure 12. When running multiple
copies of the same code on different machines, these libraries take care of all nec-
essary communication between the copies to create a group of virtual nodes and
distributed servers.

27

Figure 13: Data management and file replication

3.9 Data Management

Data management in XtreemOS is implemented by XtreemFS which is composed
of several components in all scopes (see Figure 13). The file system is composed
of the Access Layer, the Metadata and Replica Catalogs (MRC), the Replica Man-
agement Service (RMS) and the Object Storage Devices (OSD). The Access Layer
implements a POSIX compatible API and translates all file system calls into cor-
responding invocations of XtreemFS services. Users can manually mount remote
volumes via FUSE. In XOSAGA, volumes are referred to via URLs and auto-
matically mounted by the runtime engine. Users can also use the Access Layer
directly for more finegrained control and advanced features. The Directory Ser-
vice is used as a registry for storage servers and volumes. Notification of file
changes are disseminated using the Pub/Sub service.

28

3.10 File Replication
XtreemFS implements transparent file replication while maintaining POSIX com-
patibility (i.e. same semantics as a local file system). Figure 13 shows the Meta-
data and Replica catalogs that keep a list of replica locations for every file. Such
information can be used by external services like the Job Manager to start jobs
close to the storage location of the job’s data. The creation and removal of replicas
can be done manually by the user. In addition, the Replica Management Service is
pro-actively creating and deleting replicas as needed. The Job Manager can send
hints on future jobs to the RMS to allow for automatic replica creation before a
job is executed. The replica consistency coordination is done transparently among
the OSDs.

3.11 VO Lifecycle Management
In XtreemOS, the lifecycle of a virtual organization consists of three stages: cre-
ation, evolution, and dissolution. The management of this lifecycle involves a
number of actors: a VO creator, VO members, VO administrators, resource ad-
ministrators, and a VO manager.

The VO creator is the person who creates the VO. The VO members are users
(consuming resources) and resources (providing resources) in the VO. The VO ad-
ministrators perform administrative tasks, including adding VO members to and
removing members from the VO, maintaining policies and attributes of the VO,
and running services for the VO. The resource administrator, one per resource, is
responsible for setting up policies for the resource, running services and register-
ing the resource to a VO. The VO manager is a person or an organization respon-
sible for the authenticity of the information, such as the identity and attributes of
VO members and accounting information and audit trails of users, disseminated
from the VO management services, such as CDA and accounting.

These actors are logical groupings by their responsibilities. In practice, one
person or software service can take up the responsibilities of one or more actors.
For example, a person can simultaneously become a VO creator, a VO member,
a VO administrator, and a VO manager. In the very extreme case, a person can
have the responsibilities of all these roles. The person (or a service) who creates a
VO can become a VO member, a VO administrator, a VO manager, and a resource
administrator, given that he also provides resources to the VO.

To set up a VO, a VO creator needs to specify the following information:

1. the public and private key pair of the VO manager (compulsory)

2. VO attributes (compulsory), for example, roles, groups, capabilities and/or
other attributes that the VO supports

29

Figure 14: VO lifecycle management

3. a set of VO policies (optional)

4. a set of VO members (optional)

The information of (2 - 4) are maintained in the VO Management (VOM)
database(s), whose structure is set up and are administrated by the VO adminis-
trators.

During the evolution phase, the VO administrators maintain the sets of VO
policies, users, and resources in the corresponding databases. Also, the VO ad-
ministrators are responsible for running the VO management services.

Upon the dissolution of the VO, all the relevant entries of the VO are deleted
from the database(s) and the VO configuration is removed from the resources
involved by the resource administrator.

30

Figure 15: VO user management

3.12 VO Entity Management
There are two types of entities in a VO: users and resources. VO administrators
are in charge of managing both of them as illustrated in Figure 15 and 16.

When a user registers with a VO, his identity and attributes (such as role,
group, capabilities, and VO membership) are stored in the VO Management (VOM)
database by the VO administrator. Based on the information in the database, the
CDA service issues short-lived X.509 certificates (signed by the VO manager) to
users. A user can associate with multiple attributes (e.g. roles and groups) in a
VO. He can also simultaneously register with multiple VOs.

A resource admin can register a resource with multiple VOs. Upon receiving
the description from a resource admin, the VO admin creates corresponding en-
tries for the resource in the VOM database. The VO admin sends the configuration
of this VO to the resource so that it can be configured as part of the VO.

By performing the VO configuration as instructed, the resource admin is com-
mitted to:

1. configure the resource as part of the VO, which implies that it will have the
means to check the authenticity of the credentials from this VO by installing
the trusted domain certificate.

2. make sure that appropriate local policies have been set up for this VO.

31

Figure 16: VO resource management

3. provide genuine resource usage data to the VO accounting service.

The removal of a resource from a VO involves a VO admin removing the
resource entries from the VOM database and a resource admin removing the VO
configuration from the node.

3.13 Policy Management
VO admins are in charge of managing global policies of a VO (Figure 17). These
policies, used by the VOPS service and stored in a VO policy database, describe
a VO-level access and usage control based on the description (characteristics)
of users, resources, and/or requests (e.g. job description and resource require-
ments). VO admins can adapt the policies dynamically to balance the load on VO
resources. The VO policy decisions are certified by the VO manager and such
decisions can be verified by a resource.

In XtreemOS, nodes can also have node level policy management mechanisms
to enforce local policies, which are independent from VO policies. VO policies

32

Figure 17: VO policy management

are set and managed by VO admins through the VOPS service whereas node poli-
cies are set and managed by resource admins via node level policy mechanisms.
Checking whether a job conforms to local policies implies that a job is already
compliant to VO policies. Hence, from a policy management point of view, a job
running on a node means that it satisfies both VO and node policies.

When a resource is being added to a VO, be it during the setup or evolution of
the VO, the resource can set up local policies in accordance to the VO attributes.
However, each resource can come with a default set of generic local policies (such
as users’ file quota) which are agnostic to the VO attributes.

33

Figure 18: VO audit trail and accounting management

3.14 VO Accounting and Audit Trail Management
The VO accounting service receives audit and accounting information from job
and resource management services. Such information is registered in an account-
ing database and is certified by the VO manager. The database is managed by the
VO admin who disseminates the certified information to users (Figure 18).

34

4 Communication layer
The communication layer used by the XtreemOS components and services is split
in two parts. First, the DIXI framework is used for flexible communication among
XtreemOS nodes and services. Second, JSON/HTTP is used by XtreemFS to
enable communication with clients within and also outside XtreemOS nodes.

4.1 Distributed XtreemOS Infrastructure (DIXI)
XtreemOS features a framework for developing, hosting and exploiting services
that compose essential components of the XtreemOS system. We named this
framework as DIstributed XtreemOS Infrastructure (DIXI). This framework pro-
vides more than just communication for the services, so it is an important part
of XtreemOS. We have introduced and described the DIXI framework along with
its basic architecture in [27]. In this section we summarize the motivation for the
framework’s development, summarize its features, and report on the current usage
of the framework

4.1.1 Motivation

In the early designing stages of the AEM [24] a need arose for a framework that
would

• provide a staging environment for the AEM services,

• simplify the development of a distributed system, composed of services,

• provide a communication layer between services running on the same node,

• provide communication between the nodes.

When designing DIXI, we kept the following guidelines in mind:

• The services should be as light-weight as possible.

• The target system would be highly distributed.

• The system should provide such a level of abstraction that the programmer
would not have to implement communication-related logic. The framework
would take care of the communication.

• The services would be written in Java.

• Peer services could use ready-made Java interfaces for issuing service calls.

35

• The client code could be written either in Java or in C.

• The communication layer would be interchangeable with any protocol re-
quired by the developers.

We decided for an approach that instantiates a staged event-driven architecture
(SEDA) [36]. The outcome is a flexible framework that does not depend on exter-
nal middleware instances. Instead, it uses ordinary TCP/IP for its communication
with an option to use SSL for encryption.

4.1.2 Description

DIXI comprises a daemon for staging and hosting services, the XATI client inter-
face, and some development tools.

Staging and hosting services. The purpose of the framework is to provide the
place to run the services and their cooperation and communication. The architec-
ture of the framework consists of the following elements:

Services represent the functionality implemented by the users.

Event Machine is a root object, which is used to load stages, and connects queues.
Event Machine is responsible for executing the service calls upon request.

Message Bus Stage is an object that provides communication capabilities be-
tween various stages within the same instance of DIXI. It receives ser-
vice messages from services, and, based on the service header information,
passes them to the recipient service’s event handler.

Communication Stage passes the service messages to other instances of DIXI on
the same node or to those on other nodes using a standard network transport
protocol (TCP/IP, SSL).

The services are thus decoupled from the rest of the DIXI layers. The com-
munication between services takes the form of asynchronous Java calls. A service
instantiates an interface of the recipient server, obtains the service’s access point,
and calls the method just like a regular Java class method. These calls, however,
cause the framework to form and send a service message, and do not wait for the
message’s response, blocking the code execution. To obtain the return value of the
call, the calling service registers a callback method. The Event Machine ensures
the proper calling context is preserved when the callback is invoked, and calls the
callback method when it receives the call’s response.

36

XATI client interface. When a developer designs a service, the interfaces of the
service become the API exposed to the client programs. To use the distributed ser-
vices, clients need to import a library that represents a small version of the DIXI
daemon. The service calls are conveniently available as static methods which, un-
like the intra-service calls, block the execution until a client receives the response
from the service.

Development tools. The most important part of the service development in-
volves designing and writing the service implementations. These implementa-
tions by themselves cannot take part in a distributed system of services, because
we need, for each service, the following items:

Service call entry point which exposes the services’ API to other services, im-
plements the translation from a service call into a service message, serial-
ization of the parameters, and representation of the call-back methods.

Event handlers which translate the service messages into the method calls.

XATI client handlers that encapsulate both sending and receiving the service
messages from the client programs and back from the services.

The Java implementation of the service already contains all the necessary in-
formation needed to automatically generate these items. DIXI thus enables that
the developer uses proper @Decoration tags, marking up the methods that are to
be exposed to other services and clients. The enclosed code processor then cre-
ates the enumerated items as well as others such as console command that let the
user call the services directly from the command shell, as well as client support
for other programming languages.

4.1.3 Usage of DIXI

In the first release of XtreemOS, DIXI hosts the majority of the AEM services:
Job Manager, Job Directory, Resource Manager, Resource Monitor, and Execution
Manager. We also included a wrapper class for the ADS/RSS services, making
them available for the Job Directory and Resource Manager services.

The fact that the services do not have to worry about network communica-
tion makes the distinction between a core service and a node service a matter of
deployment rather than a matter of the service’s implementation. This is due to
the fact that the transport layers and utility services will take care of a message
originating from a node-level service to be sent to the core-level service, even if
they are on different nodes. As a result, a seamless integration was possible with
VOPS and RCA (with the RCA client service on each node).

37

4.2 HTTP/JSON
XtreemFS components communicate using JSON over the HTTP protocol.

4.2.1 Motivation

The main advantages of HTTP and JSON can be summarized as follows:

• Both HTTP and JSON are ASCII-based, which makes them human-readable
and therefore easy to debug.

• HTTP is usually not blocked by firewalls; thus, a client can access an
XtreemFS installation from any Internet-connected node.

• JSON is standardized and has a fairly simple notation. Compared to XML-
based formats like SOAP or XML-RPC, it is easier to read and can be parsed
more efficiently.

4.2.2 Description

JSON stands for JavaScript Object Notation and is a lightweight computer data in-
terchange format. It is a text-based, human-readable format for representing sim-
ple data structures and associative arrays (called objects). Although it is based on
a subset of the JavaScript Programming, JSON is a text format that is completely
language independent. These properties make JSON an ideal data-interchange
language.

JSON is built on two structures:

• A collection of name/value pairs. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array,
vector, list, or sequence.

These are universal data structures. Virtually all modern programming lan-
guages support them in one form or another. It makes sense that a data format that
is interchangable with programming languages also be based on these structures.

4.2.3 Usage of HTTP/JSON

HTTP is used as the communication protocol between XtreemFS components,
and JSON is used to encode message content. We run HTTP/JSON between the
following components: client and MRC, client and OSD, client and Directory
Service, OSD and OSD, OSD and Directory Service, and MRC and Directory
Service.

38

5 Configurations
We have identified three main types of node configurations in XtreemOS: core
nodes, resource nodes, and client nodes. These three configurations correspond to
three scopes in the capability diagrams in Section 3: core scope, node scope, and
user scope, respectively.

Core nodes provide the services that allow other nodes to participate in an XtreemOS
system. They form the infrastructure.

Resource nodes provide computation and/or storage resources to the XtreemOS
system. We distinguish two types of resource nodes: single PCs and clusters
of PCs.

Client nodes only access an XtreemOS system, and do not necessarily belong to
it. Single PCs and mobile devices can act as clients.

However, this is just a logical (and functional) division, and nothing precludes
a certain machine from acting as, e.g., both a client node and a resource node.
However, it is not advisable to allow access on core nodes to users other than
system administrators.

The different purpose of each configuration also determines which services
should be present on it. In the following, we will describe which services be-
long to which configuration. Each of these services has already been described
individually in Section 2.

5.1 Core services
The core services together provide the infrastructure of an XtreemOS system.

Core VOM services handle Virtual Organization management (i.e. certificate is-
suing and signing authorities for the users and the resources). They also
provide the means to edit VO-level policies and making policy decisions.
The core VOM services are the XVOMS database, the VOLife management
application, the CDA service, the RCA service, and the VOPS service.

Core AEM services oversee the job submission process, select the nodes for the
jobs, schedule their execution, and book-keep the jobs submitted so far.
The core AEM services are the Job Directory, Job Manager and Resource
Manager.

Core XtreemFS services keep control of metadata as well as storage devices
committed to the system. Core XtreemFS services are the Metadata Replica
Catalog (MRC) and XtreemFS Directory Service.

39

5.2 Resource services
The resource services run on nodes that provide compute power and/or storage
space to an XtreemOS system.

Resource VOM services are the VO-support PAM module that enables mapping
of Grid accounts to local accounts and hence provides users with access to
Grid nodes. The RCA Client service also extends the functionality to the
resource nodes, helping the admins with an easier resource registration, and
provides the RCA Server with a way to check the node’s machine certifi-
cates.

Resource Discovery services support distributed information management. They
set up essential overlay networks within the platform and provide highly
scalable management and location of resources. These services include
ADS and RSS, which together form the Scalable Resource Discovery Sys-
tem (SRDS).

Resource AEM services include the Execution Manager and the Resource Man-
ager, which together handle job execution on a resource.

Resource XtreemFS services are called Object Storage Devices (OSDs), which
store arbitrary objects of files.

5.3 Client services
Client service allow PCs and mobile devices to access an XtreemOS system.

Client VOM services are the CDA client (to get user XOS-Certificates) and ssh-
xos (to login to an XtreemOS system with an XOS-certificate and access
the home XtreemFS volumes).

Client AEM services are XATI (the API to the AEM services) and xconsole_dixi,
a command-line interface for retrieving available resources and submitting
jobs.

Client XtreemFS services consist of a FUSE user-level driver that runs as a non-
priviledged process. FUSE itself is a kernel/user-level hybrid that connects
the user-level driver to Linux’ Virtual File System (VFS) layer where file
system drivers usually live. A user can thus mount remote XtreemFS vol-
umes locally.

40

6 Summary

This document describes the overall system architecture of XtreemOS, at the cur-
rent stage of the project (Month 30). In combination with the overall layering
of the XtreemOS software packages, as shown in Figure 2, we have followed
a bottom-up approach by first describing the individual software packages (Sec-
tion 2), followed by descriptions of the capabilities provided by the software pack-
ages together (Section 3), outlining the interactions and information exchanged
between the components within the packages. This material has been revised
and updated since the first system architecture report, D3.1.4. Two sections (4
and 5) have been added since D3.1.4, describing the communication layer among
XtreemOS components and services, and the different node configurations, re-
spectively.

As such, this document provides a comprehensive description of all software
packages being produced by the XtreemOS project. It reflects the recently per-
formed activities on package integration and software bundling that have lead to
the first public release of XtreemOS.

The current status of the overall system architecture for XtreemOS is consid-
ered to be stable and complete. It is actually being used for building the current
and upcoming releases of the XtreemOS operating system. As some of the de-
scribed functionality is (according to the work plan) left for the remainder of the
project, possibly new insights will only be gained later on, possibly leading to
unforeseen dependencies or other issues. In case of such issues, another revised,
final version of this system architecture description will be produced towards the
completion of the project.

References

[1] XtreemOS Consortium. First Version of System Architecture. Deliverable
D3.1.4, November 2007.

[2] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. International J. Supercomputer
Applications, 15(3), 2001.

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Klei-
jer, Andre Merzky, John Shalf, and Christopher Smith. A Simple API for
Grid Applications (SAGA). Grid Forum Document GFD.90, 2007. Open
Grid Forum (OGF).

41

[4] XtreemOS Consortium. Design and implementation in Linux of basic user
and resource management mechanisms spanning multiple administrative do-
mains. Deliverable D2.1.2, November 2007.

[5] XtreemOS Consortium. Design and implementation of basic application
unit checkpoint/restart mechanisms in Linux. Deliverable D2.1.3, November
2007.

[6] Paul H. Hargrove and Jason C. Duell. Berkeley lab checkpoint/restart (blcr)
for linux clusters. In In Proceedings of SciDAC 2006, June 2006.

[7] XtreemOS Consortium. Design and implementation of scalable SSI mecha-
nisms in LinuxSSI. Deliverable D2.2.2, November 2007.

[8] XtreemOS Consortium. Design and implementation of basic check-
point/restart mechanisms in LinuxSSI. Deliverable D2.2.3, November 2007.

[9] XtreemOS Consortium. Design and implementation of basic reconfiguration
mechanisms in LinuxSSI. Deliverable D2.2.4, November 2007.

[10] XtreemOS Consortium. Design and implementation of high performance
disk input-out operations in a cluster. Deliverable D2.2.5, November 2007.

[11] XtreemOS Consortium. Design and implementation of a basic customizable
scheduler. Deliverable D2.2.6, November 2007.

[12] XtreemOS Consortium. Prototype of the basic version of LinuxSSI. Deliv-
erable D2.2.7, November 2007.

[13] XtreemOS Consortium. Design and implementation of first advanced ver-
sion of LinuxSSI. Deliverable D2.2.8, November 2008.

[14] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard, David
Margery, Jean-Yves Berthou, and Isaac Scherson. Kerrighed and data par-
allelism: Cluster computing on single system image operating systems. In
Proc. of Cluster 2004. IEEE, September 2004.

[15] XtreemOS Consortium. Linux-XOS for MD/PDA. Deliverable D2.3.4, June
2008.

[16] XtreemOS Consortium. Requirements and Specifications for Advanced VO
Support in Mobile Devices. Deliverable D2.3.5, December 2008.

[17] XtreemOS Consortium. Third Draft Specification of Programming Inter-
faces. Deliverable D3.1.5, November 2008.

42

[18] XtreemOS Consortium. Second Prototype of XtreemOS Runtime Engine.
Deliverable D3.1.6, November 2008.

[19] XtreemOS Consortium. Design of an Infrastructure for Highly Available
and Scalable Grid Services. Deliverable D3.2.1, December 2006.

[20] XtreemOS Consortium. First Prototype Version of Ad Hoc Distributed
Servers. Deliverable D3.2.2, December 2007.

[21] XtreemOS Consortium. Simulation-based evaluation of a scalable pub-
lish/subscribe system. Deliverable D3.2.3, December 2007.

[22] XtreemOS Consortium. Design and Specification of a Prototype Ser-
vice/Resource Discovery System. Deliverable D3.2.4, December 2007.

[23] XtreemOS Consortium. Design and Specification of a Virtual Node System.
Deliverable D3.2.5, December 2007.

[24] XtreemOS Consortium. Requirements and specification of XtreemOS ser-
vices for application execution management. Deliverable D3.3.1, November
2006.

[25] XtreemOS Consortium. Design of the architecture for application execution
management in XtreemOS. Deliverable D3.3.2, May 2007.

[26] XtreemOS Consortium. Basic services for application submission, control
and checkpointing. Deliverable D3.3.3, November 2007.

[27] XtreemOS Consortium. Basic service for resource selection, allocation and
monitoring. Deliverable D3.3.4, November 2007.

[28] XtreemOS Consortium. The XtreemOS File System - Requirements and
Reference Architecture. Deliverable D3.4.1, November 2006.

[29] XtreemOS Consortium. XtreemFS and OSS - Second Prototype. Deliverable
D3.4.4, November 2008.

[30] XtreemOS Consortium. First Specification of Security Services. Deliverable
D3.5.3, May 2007.

[31] XtreemOS Consortium. Second Specification of Security Services. Deliver-
able D3.5.4, December 2007.

[32] XtreemOS Consortium. Security Services Prototype month 18. Deliverable
D3.5.5, December 2007.

43

[33] XtreemOS Consortium. Report on Formal Analysis of Security Properties.
Deliverable D3.5.6, December 2007.

[34] XtreemOS Consortium. Design of Basic Services for Mobile Devices. De-
liverable D3.6.2, June 2008.

[35] XtreemOS Consortium. XtreemOS-G for MD/PDA. Deliverable D3.6.3,
December 2008.

[36] Matt Welsh. SEDA: an architecture for highly concurrent server applica-
tions. http://www.eecs.harvard.edu/m̃dw/proj/seda.

44

	Executive Summary
	Glossary
	Introduction
	XtreemOS software packages
	Extensions to Linux for VO Support and checkpointing (WP2.1)
	LinuxSSI (WP2.2)
	Embedded Linux (WP2.3)
	XtreemOS API (WP3.1)
	Infrastructure for Highly-available and Scalable Services (WP3.2)
	Application Execution Management (WP3.3)
	Data Management (WP3.4)
	VO and Security Management (WP3.5)
	Services for Mobile Devices (WP3.6)

	Capabilities
	Resource Discovery
	Reservation Management
	Job Submission
	Checkpointing
	Event Management
	Monitoring
	Dynamic Resource Allocation
	Fault-Tolerant Execution
	Data Management
	File Replication
	VO Lifecycle Management
	VO Entity Management
	Policy Management
	VO Accounting and Audit Trail Management

	Communication layer
	Distributed XtreemOS Infrastructure (DIXI)
	Motivation
	Description
	Usage of DIXI

	HTTP/JSON
	Motivation
	Description
	Usage of HTTP/JSON

	Configurations
	Core services
	Resource services
	Client services

	Summary

