
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Second set of engine extensions covering XtreemOS
functionality from D3.1.5

D3.1.9
Due date of deliverable: November 30th, 2009
Actual submission date: December 4th, 2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.2

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.0 / Last edited by Thilo Kielmann / December 4, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.99 23/11/09 Mathijs den Burger, Thilo Kiel-
mann

VUA complete draft version

1.0 004/12/09 Mathijs den Burger, Thilo Kiel-
mann

VUA final version, after internal reviewing

Reviewers:
Thorsten Schütt (ZIB), Marjan Sterk (XLAB)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.1.2 A runtime engine for dynamic call dispatching VUA∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
This report describes the status of the implementations of the XOSAGA API en-
gine extensions, according to the API extensions specified in deliverable D3.1.5 [10].
The implementations are available for the Java and Python engines of XOSAGA.
Implementations within the C++ engine will be ready for the final XOSAGA API
engine implementation, due with deliverable D3.1.11 [13]. Unfortunately, the
XOSAGA stream package (the interface to WP3.2’s Distributed Servers) turned
out not to be implementable due to a severe granularity mismatch for connection
hand-off operations. It has been replaced by a new ds package, specified in the
appendix to this deliverable. Its implementation will also come with D3.1.11 [13].

1

Contents
1 Introduction 3

2 XOSAGA Sharing Package 3
2.1 Scalaris and XOSAGA . 4

2.1.1 Java implementation . 4
2.1.2 Python implementation 7

3 XOSAGA Distributed Servers Package 7

4 XtreemFS URL Scheme 8

5 Summary and Ongoing Work 8

A Revised API Specification for Distributed Servers 10
A.1 Specification Details . 11
A.2 Example . 19

2

1 Introduction

This report describes the status of the implementations of the XOSAGA API en-
gine extensions, according to the API extensions specified in deliverable D3.1.5 [10].
It follows previous reports on the design of the XOSAGA API family (D3.1.1 [4]
and D3.1.2 [7]), and their implementations (D3.1.3 [5], D3.1.6 [9], and D3.1.8 [12]).
As such, this report focuses on the API extensions from D3.1.5, rather than de-
scribing the complete XOSAGA API family. The final deliverables D3.1.10 and
D3.1.11 will provide such comprehensive descriptions of the XOSAGA API and
its implementations.

The implementations of the API extensions from D3.1.5 that have been built
so far, and that are described in this report, are built into the Java engine for
XOSAGA, following the majority of XtreemOS services that provide Java inter-
faces as their major language support. As our Python implementation of XOSAGA
is layered on top of the Java engine, support also has been implemented for
Python. Implementations within the C++ engine will be ready for the final XOSAGA
API engine implementation, due with deliverable D3.1.11.

Unfortunately, the XOSAGA stream package (the interface to the distributed
servers from WP3.2) turned out not to be implementable due to a severe granular-
ity mismatch for connection hand-off operations. As such, it has been replaced by
a new ds package, as specified in the appendix to this deliverable. Its implemen-
tation, along with the C++ implementation of the sharing package, will come
with D3.1.11.

2 XOSAGA Sharing Package

The following table summarizes the classes and interfaces of the XOSAGA sharing
package, the respective XtreemOS backend services providing the underlying
functionality, the programming languages in which these will be supported, and
by which deliverable. Please note that it is not possible to support the OSS-related
classes in either Java or Python, as these rely on memory-mapped regions that are
only supported in C/C++.

3

class/interface backend C++ Java Python
shared_buffer_service OSS D3.1.11 n/a n/a
consistency_domain OSS D3.1.11 n/a n/a
transactional_consistency_domain OSS D3.1.11 n/a n/a
weak_consistency_domain OSS D3.1.11 n/a n/a
shared_buffer OSS D3.1.11 n/a n/a
shared_buffer_id OSS D3.1.11 n/a n/a
callback Scalaris D3.1.11 D3.1.9 D3.1.9
shared_events Scalaris D3.1.11 D3.1.9 D3.1.9
shared_properties Scalaris D3.1.11 D3.1.9 D3.1.9

2.1 Scalaris and XOSAGA
Scalaris is a publish-subscribe ring on top of a scalable, transactional, distributed
key-value store. The XOSAGA sharing package exposes the public-subscribe
ring as SharedEvents objects, and the key-value store as SharedProperties
objects.

SharedEvents allow XOSAGA applications to publish events under certain
topics. Both events and topics are strings. Applications can subscribe to certain
topics for which they want notifications, and also unsubscribe from them.

SharedProperties provide a distributed key-value storage. Applications
can put, get and remove the key-value pairs.

Both SharedEvents and SharedProperties expect a bootstrap URL that
specifies the location of the Scalaris server. For example, the bootstrap URL
would be ’boot@localhost’ when the Scalaris bootstrap server is running lo-
cally.

We have created two implementations of the XOSAGA API to Scalaris defined
in D3.1.5 [10]: one for Java, and one for Python. The C++ implementation is un-
der development, due with D3.1.11, exploiting the experiences gathered with the
Java implementation. Since Scalaris itself only provides a Java API, the XOSAGA
C++ implementation will have to interface to the Java implementation via JNI.

2.1.1 Java implementation

The development source tree of the XOSAGA Java implementation can be found
in the XtreemOS Subversion repository:

svn://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga/java/trunk/

The API to Scalaris is part of the XOSAGA sharing package located in the
subdirectory ’src/eu/xtreemos/xosaga/sharing’.

4

The source code of Java XOSAGA can be compiled using Ant. Simply type
’ant’ in the root directory of the development tree to compile all code into several
JAR files. All JAR files (included all dependencies) will then be placed in a new
subdirectory ’lib’. Javadoc of the XOSAGA API can be created by executing
’ant javadoc’ in the root directory of the development tree. This will create
a subdirectory ’javadoc’ that contains all documentation in browsable HTML
files.

The SAGA user guide explains how to develop and run a SAGA application. It
can be found in the subdirectory ’doc’. In short, you must add all JAR files in the
’lib’ subdirectory to your Java classpath. In addition, the environment variable
’saga.location’ must contain the installation directory of Java XOSAGA (i.e.
the directory that contains the lib subdirectory with all the JAR files). For conve-
nience, the script ’bin/run-saga-app’ performs these steps automatically, and
requires only a single environment variable JAVA_SAGA_LOCATION to indicate
the installation directory of Java XOSAGA.

XtreemOS already contains a compiled version of Java XOSAGA in the pack-
age xosaga-java, which can be installed via URPMI:

urpmi xosaga-java

All Java XOSAGA files will be installed in /usr/share/xosaga-java. The
script /usr/bin/run-saga-app will use this location automatically.

The implementation of the XOSAGA sharing package is built on top of the
Java API provided by Scalaris. The API allows only a single connection to a
Scalaris node. The ’Scalaris’ object provided by the API is therefore wrapped
into a singleton, so multiple instances of the SharedProperties and Shared-
Events XOSAGA objects automatically reuse the single connection. Similarly,
all SharedEvents objects internally share a lightweight HTTP server to receive
updated values for subscribed topics. A user only has to provide a callback method
that is invoked for each received update.

The following code example demonstrates the basic usage of the Shared-
Events object. The example connects to a local Scalaris node, subscribes to the
topic "mytopic", publishes a string in the topic and waits until it has received one
new value for the subscribed topic.

import org.ogf.saga.error.SagaException;
import org.ogf.saga.url.URL;
import org.ogf.saga.url.URLFactory;
import eu.xtreemos.xosaga.sharing.Callback;
import eu.xtreemos.xosaga.sharing.SharedEvents;
import eu.xtreemos.xosaga.sharing.SharingFactory;

5

public class SharedEventsExample implements Callback {

public static void main(String[] args) {
new SharedEventsExample().run();

}

public void run() {
try {

URL u = URLFactory.createURL("boot@localhost");
SharedEvents se = SharingFactory.createSharedEvents(u);

String topic = "mytopic";
System.out.println("Subscribing to " + topic);
se.subscribe(topic, this);

System.out.println("Publishing new value in " + topic);
se.publish(topic, "Hello world!");

// wait until new value has been received
synchronized(this) {

try {
wait();

} catch (InterruptedException ignored) {
// ignore

}
}

System.out.println("Unsubscribing from " + topic);
se.unsubscribe(t);

} catch (SagaException e) {
System.out.println("Exception: " + e.getMessage());

}
}

public void cb(SharedEvents se, String topic, String value) {
System.out.println("Received notification in ’" + topic

+ "’: ’" + value + "’");
synchronized(this) {

notifyAll();
}

}

}

6

2.1.2 Python implementation

The development source tree of the XOSAGA Python implementation can be
found in the XtreemOS Subversion repository:

svn://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga/python/trunk/

The source code of the sharing package described in deliverable D3.1.5 [10]
is located in the file ’xosaga/sharing.py’. Browsable API documentation gen-
erated by Epydoc is available in the subdirectory ’apidoc/html/’.

The implementation is a thin layer on top of the Java implementation of the
sharing package. Similar to the other Python XOSAGA classes, Python calls
are forwarded to delegate Java objects that perform the actual work.

The implementation requires Jython as the Python interpreter. The script
’bin/jysaga’ can be used to start Jython plus Java XOSAGA with the right
properties and classpath. Similar to the ’run-saga-app’ script in Java XOSAGA,
the jysaga script uses the environment variable ’JAVA_SAGA_LOCATION’ to lo-
cate the Java XOSAGA installation directory.

3 XOSAGA Distributed Servers Package
The distributed servers, as implemented by WP3.2, provide a TCP stream inter-
face to their clients. They achieve high availability and fault tolerance through
forming a redundant group of server machines that can hand-over client connec-
tions to each other, without the clients noticing.

Distributed Servers provide location transparent networked services [3]. Clients
connect to a single distributed server address for a service and may be moved
transparently among multiple locations. Mobile IPv6 (MIPv6) route optimiza-
tion [2] does the heavy lifting: all IPv6 connections from a client are atomi-
cally changed directly to each location, avoiding triangular routing. The dis-
tributed server address is simply an IPv6 [1] address. In the terminology of
Distributed servers, a client first connects to a contact node. A client may then
be transparently handed off —the server endpoint of all of the client’s connec-
tions are transferred—to different servers for load-balancing or for client-specific
processing. Distributed servers are described in Deliverables D3.2.2, D3.2.6 and
D3.2.11 [6, 8, 11].

Deliverable D3.1.5 has described an XOSAGA stream package for Distributed
Servers that had been designed in collaboration with WP3.2. This API package
extends the SAGA stream package, by providing a stream class with an addi-
tional method handover.

7

In the course of the implementation work of the XOSAGA packages from
D3.1.5, it has turned out, unfortunately, that an implementation of the XOSAGA
stream is infeasible. This is due to the fact that that the distributed server imple-
mentation is working on the granularity of clients rather than individual streams.
As a consequence, it had to be decided to not implement the XOSAGA stream
package.

While this situation is causing a delay for the delivery of an XOSAGA API
to the Distributed Servers, it also proves the strength of the overall API design
process chosen for XtreemOS. The carefully packaged API design allows us to
address the current issue without impacting any other part of the overall API.
To resolve the issue, we have designed a new XOSAGA package for distributed
servers in collaboration with WP3.2, called the ds package. This new API pack-
age is documented in the Appendix to this document. It will be implemented
along with D3.1.11.

4 XtreemFS URL Scheme

D3.1.5 also specifies a proper URL scheme for addressing XtreemFS file system
volumes, as e.g. xtreemfs://users@xtreemfs.cs.vu.nl/home. (This was
an omission in earlier XOSAGA specifications that covered XtreemFS.) All ex-
isting XOSAGA implementations (for C++, Java, and Python) now use this URL
scheme. No separate implementations are necessary.

5 Summary and Ongoing Work

This report describes the status of the implementations of the XOSAGA API en-
gine extensions, according to the API extensions specified in deliverable D3.1.5.
The implementations built so far, and described in this report, are built into the
Java engine for XOSAGA, following the majority of XtreemOS services that pro-
vide Java interfaces as their major language support. As our Python implemen-
tation of XOSAGA is layered on top of the Java engine, support also has been
implemented for Python. Implementations within the C++ engine will be ready
for the final XOSAGA API engine implementation, due with deliverable D3.1.11.

Unfortunately, the XOSAGA stream package turned out not to be imple-
mentable. As such, it has been replaced by a new ds package, as specified in the
appendix to this deliverable. Its implementation, along with the C++ implemen-
tation of the sharing package will come with D3.1.11.

8

References
[1] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6). RFC 2460,

December 1998.

[2] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC 3775,
June 2004.

[3] Michał Szymaniak, Guillaume Pierre, Mariana Simons-Nikolova, and
Maarten van Steen. Enabling service adaptability with versatile any-
cast. Concurrency and Computation: Practice and Experience,
19(13):1837–1863, September 2007. http://www.globule.org/
publi/ESAVA_ccpe2007.html.

[4] XtreemOS Consortium. First Draft Specification of Programming Interfaces.
Deliverable D3.1.1, November 2006.

[5] XtreemOS Consortium. First Prototype of XtreemOS Runtime Engine. De-
liverable D3.1.3, November 2007.

[6] XtreemOS Consortium. First Prototype Version of Ad Hoc Distributed
Servers. Deliverable D3.2.2, November 2007.

[7] XtreemOS Consortium. Second Draft Specification of Programming Inter-
faces. Deliverable D3.1.2, November 2007.

[8] XtreemOS Consortium. Reproducible evaluation of distributed servers. De-
liverable D3.2.6, December 2008.

[9] XtreemOS Consortium. Second Prototype of XtreemOS Runtime Engine.
Deliverable D3.1.6, November 2008.

[10] XtreemOS Consortium. Third draft specification of programming interfaces.
Deliverable D3.1.5, November 2008.

[11] XtreemOS Consortium. Extended version of the distributed servers platform.
Deliverable D3.2.11, December 2009.

[12] XtreemOS Consortium. Third Prototype of XtreemOS Runtime Engine. De-
liverable D3.1.8, May 2009.

[13] XtreemOS Consortium. Final XOSAGA API engine implementation. De-
liverable D3.1.11, March 2010.

9

http://www.globule.org/publi/ESAVA_ccpe2007.html
http://www.globule.org/publi/ESAVA_ccpe2007.html

Appendix

A Revised API Specification for Distributed Servers
package xosaga.ds
{

class ds_service
{

CONSTRUCTOR (in saga::session s,
in string name,
in handoff_policy policy = NULL,
out ds_service obj);

DESTRUCTOR (in ds_service obj);

serve (in float timeout = -1.0,
out saga::stream stream);

get_client (in saga::stream stream,
out ds_client client);

get_all_clients (out array<ds_client> clients);

get_all_streams (out array<saga::stream> streams);

get_all_targets (out array<saga::url> targets);

handoff (in ds_client client,
in float timeout = -1.0,
out saga::url target);

handoff_to (in saga::url target,
in ds_client client,
in float timeout = -1.0);

receive_handoff (in float timeout = -1.0
out ds_client client);

close (in bool binding_reset = True);
}

class ds_client
{

CONSTRUCTOR (out ds_client client);

DESTRUCTOR (in ds_client obj);

10

get_url (out saga::url obj_url);

get_streams (out array<saga::stream> streams);

set_message (in saga::buffer msg = NULL);

get_message (out saga::buffer msg);
}

interface handoff_policy
{

get_target (in ds_client client,
in array<saga::url> options,
out saga::url target)

}

class round_robin_handoff_policy: implements handoff_policy
{

// no additional methods
}

}

A.1 Specification Details
Class ds_service

The ds_service accepts new incoming connections as SAGA streams, allows to
hand off all streams connected with the same client to another Distributed Servers
node, and accepts such a handoff operation.

- CONSTRUCTOR
Purpose: create a service to access a running Distributed

Servers daemon
Format: CONSTRUCTOR (in saga::session s,

in string name,
in handoff_policy policy,
out ds_service obj);

Inputs: s: session to be used for object creation
name: a name recognized by the local Distributed Server

daemon that maps to a local address
policy: the handoff policy to use

InOuts: -
Outputs: obj: the newly created service
PreCond: -
PostCond: obj can now serve incoming client connections.

11

Perms: -
Throws: IncorrectState

IncorrectURL
NotImplemented
BadParameter
NoSuccess

Notes: - if there is no local Distributed Servers daemon running, a
’NoSuccess’ exception MUST be thrown.

- if the local daemon does not know the given name, a
’DoesNotExist’ exception MUST be thrown.

- the local daemon MAY only allow one instance of a ds_service
per name per machine. In that case, all subsequently created
instances with a name that has already been used MUST throw an
’AlreadyExists’ exception.

- the handoff policy can be NULL; in that case, the
handoff() method without a target URL parameter
will always throw an ’IncorrectState’ exception.

- DESTRUCTOR
Purpose: destructor of the ds_service object
Format: DESTRUCTOR (in ds_service obj)
Inputs: obj: the ds_service object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the service is closed
Perms: -
Throws: -
Notes: - if the service was not closed before, the

destructor performs a close() on the instance,
and all notes to close() apply.

- serve
Purpose: Wait for an incoming client connection
Format: serve (in float timeout,

out saga::stream stream);
Inputs: timeout: number of seconds to wait
InOuts: -
Outputs: stream: new connected stream object
PreCond: -
PostCond: - all postconditions of saga::stream_service.serve()

apply.
- the session of the returned stream is that of the

ds_service object.
- the associated ds_client object also contains the

new stream.
Perms: - all permissions of saga::stream_service.serve() apply
Throws: NotImplemented

BadParameter

12

PermissionDenied
AuthorizationFailed
AuthenticationFailed
IncorrectState
Timeout
NoSuccess

Notes: - all notes from saga::stream_service.serve() apply.

- get_client
Purpose: returns the client associated with a stream
Format: get_client (in saga::stream stream,

out ds_client client);
Inputs: stream: a connected stream
InOuts: -
Outputs: client: the ds_client object associated with

the given stream
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

BadParameterException
IncorrectState
NotImplemented

Notes: - if no client is associated with the given stream, a
’DoesNotExist’ exception MUST be thrown.

- if the given stream is not connected, a
’BadParameter’ exception MUST be thrown.

- get_all_clients
Purpose: returns all clients currently handled by this

ds_service object.
Format: get_all_clients (out array<ds_client> clients);
Inputs: -
InOuts: -
Outputs: clients: all clients currently handled by

this ds_service object.
PreCond: -
PostCond: -
Perms: -
Throws: IncorrectState

NotImplemented
Notes: -

- get_all_streams
Purpose: returns all streams of all clients.
Format: get_all_streams (out array<saga::stream> streams);
Inputs: -
InOuts: -
Outputs: streams: all streams of all clients

13

PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented
Notes: - the array is a shallow copy; streams served later

are not reflected in the array.

- get_all_targets
Purpose: get the URLs of all the handoff targets.
Format: get_all_targets (out array<saga::url> targets);
Inputs: -
InOuts: -
Outputs: targets: all possible handoff targets.
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
IncorrectState
NoSuccess

Notes: - the number of possible handoff targets CAN be zero.

- handoff
Purpose: hand off all streams of a client to another node

determined by the handoff policy of this ds_service.
Format: handoff (in ds_client client,

in float timeout,
out saga::url target);

Inputs: client: the client to hand off
timeout: number of seconds to wait

InOuts: -
Outputs: target: the URL of the node selected for the

handoff
PreCond: - if an application-specific ’message’ object has

been set via ds_client.set_message(), it will be
passed to the other server along with the handoff.

PostCond: - the client object does not contain any streams anymore.
Perms: -
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
BadParameter
DoesNotExist
Timeout
IncorrectState
NoSuccess

14

Notes: - the handoff target is determined by calling the
get_target() method of the handoff policy of this
ds_service

- any exception thrown by the handoff policy MUST
be forwarded

- if the given client is not handled by this
ds_service, a ’DoesNotExist’ exception MUST be
thrown.

- if no handoff policy was given in the CONSTRUCTOR,
an ’IncorrectState’ exception MUST be thrown.

- after a successful handoff, all subsequent method
calls on the client MUST throw an ’IncorrectState’
exception (except for the DESTRUCTOR and close()).

- which streams are contained in the given client object
is irrelevant; ALL streams from this client known
by the local daemon are handed off.

- handoff
Purpose: hand off all streams of a client to a specific node
Format: handoff (in saga::url target,

in ds_client client,
in float timeout);

Inputs: target: the target server to which the client
has to be handed off

client: the client that is to be handed off
timeout: number of seconds to wait

InOuts: -
Outputs: -
PreCond: - if an application-specific ’message’ object has

been set via ds_client.set_message(), it will be
passed to the target server along with the handoff.

PostCond: - the client object does not contain any streams anymore.
Perms: -
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
BadParameter
DoesNotExist
Timeout
IncorrectState
NoSuccess

Notes: - if the target does not exist, a ’DoesNotExist’
exception MUST be thrown

- if the given client is not handled anymore by this
ds_service, a ’DoesNotExist’ exception MUST be
thrown.

- after a successful handoff, all subsequent method
calls on the client MUST throw an ’IncorrectState’

15

exception (except for the DESTRUCTOR and close()).
- which streams are contained in the given client object

is irrelevant; ALL streams from this client known
by the local daemon are handed off.

- receive_handoff
Purpose: receive all streams of a client that are handed off

by another node.
Format: receive_handoff (in float timeout,

out ds_client client);
Inputs: timeout: number of second to wait
InOuts: -
Outputs: client: the client object that has been

handed off
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout
NoSuccess

Notes: - if the contact node could not be contacted,
an ’IncorrectState’ exception MUST be thrown.

- the returned client MUST contain the
application-specific ’message’ object that was
set by the node that handed off the client.

- close
Purpose: Closes all streams of all clients handled by the local

daemon and cleans up the daemons state.
Format: close (in bool binding_reset);
Inputs: binding_reset: whether to clear all bindings of all clients

handled by the current node or not
InOuts: -
Outputs: -
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

PermissionDenied
AuthorizationFailed
AuthenticationFailed
Timeout

Notes: - all subsequent method calls on this object MUST
throw an ’IncorrectState’ exception, except for the
CONSTRUCTOR, DESTRUCTOR and close().

16

- if binding_reset is true, all clients will connect
to the contact node when they start a new connection.

Class ds_client

A ds_client object contains all streams that are connected with a particular
client. It can also contain an application-specific message (a SAGA buffer) that
is passed to the target of a handoff operation, or has been received from another
node during a handoff operation.

There are two ways to retrieve a ds_client object:

1. via ds_service.get_client(), using one of its associated streams re-
turned by ds_service.serve()

2. via ds_service.receive_handoff()

In the second case, the ds_client may contain a message that was set by the
node that handed off the client.

A ds_client object is a shallow copy of a part of the state of the local Dis-
tributed Servers daemon. In particular, the object will not contain any new streams
that arrived after it was constructed. Hence, a ds_client object simply acts
as the identifier of a remote node. Each call to ds_service.get_client()
may return a new object with independant state. The message contained in a
ds_client is also local to that particular instance.

- DESTRUCTOR
Purpose: destroys the object
Format: DESTRUCTOR (in ds_client obj);
Inputs: obj: the object to destroy
InOuts: -
Outputs: -
PreCond: -
PostCond: - the client is closed
Perms: -
Throws: -
Notes: - if the client was not closed before, the

destructor performs a close() on the instance,
and all notes to close() apply.

- get_url
Purpose: returns the url that identifies the client
Format: get_url (out saga::url obj_url);
Inputs: -
InOuts: -
Outputs: obj_url: url of the client

17

PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
NoSuccess

Notes: - the URL MUST consist of the scheme ’ipv6://’
followed by the IPv6 address of the client.

- get_streams
Purpose: returns all streams connected with this client
Format: get_streams(out array<saga::stream> streams);
Inputs: -
InOuts: -
Outputs: streams: list of streams connected with this client
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
NoSuccess
PermissionDenied

Notes: - the returned array is a shallow copy; any subsequent
streams connected with this client that are served
later will not be included in the array.

- set_message
Purpose: sets application specific data that will be sent

along with a handoff
Format: set_message (in saga::buffer msg);
Inputs: msg: buffer containing application-specific

data, or NULL.
InOuts: -
Outputs:
PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
Notes: - any message set previously will be overwritten

- using NULL as a message effectively removes it

- get_message
Purpose: returns the application-specific data of this client
Format: get_message (out saga::buffer msg);
Inputs: -
InOuts: -
Outputs: msg: the application-data associated with

this client

18

PreCond: -
PostCond: -
Perms: -
Throws: NotImplemented

IncorrectState
Notes: - the data can have been set by another node that

handed off this client.
- if no data has been set, NULL MUST be returned.

Interface handoff_policy

A handoff_policy chooses one target Snode from a set of possible targets. An
implementation of such a policy must be provided to a ds_service object, which
will use it for all handoff operations. Handoff policies can be very application-
specific.
- get_target

Purpose: returns the URL of the Snode a client should be
handed off to.

Format: get_target (in ds_client client,
in array<url> options,
out saga::url target)

Inputs: client: the client object to select a target for
options: the possible targets to select

InOuts: -
Outputs: target: the selected target
PreCond: -
PostCond: -
Perms: -
Throws: DoesNotExist

NoSuccess
Notes: - if there are no possible targets, a ’DoesNotExist’

exception MUST be thrown.

A.2 Example
The following Java code example demonstrates the basic usage of the XOSAGA
API for Distributed Servers. The methods in the example may sometimes deviate
slightly from the specification, which indicates the use of default values (e.g. the
’timeout’ parameter in ds_service.serve()).

The example consists of three classes:
PickFirstHandoffPolicy, HandoffDonator, and HandoffReceiver.

The class PickFirstHandoffPolicy implements a very simple handoff
policy: always return the first option.

19

class PickFirstHandoffPolicy implements HandoffPolicy {

public URL getTarget(DsClient client, List<URL> options)
throws DoesNotExistException {

if (!options.isEmpty()) {
return options.get(0);

} else {
throw DoesNotExistException("No possible targets");

}
}

}

The class HandoffDonator continuously listens to incoming streams. After each
stream is used in some application-specific code, the client of the stream (i.e. its
source) is handed off to another Distributed Servers node using the pick-first hand-
off policy. The handoff is accompanied by a SAGA Buffer object that contains
information about the reason for the handoff operation.

class HandoffDonator {

public static void main(String args[]) {
DsService ds = null;

try {
Session def = SessionFactory.createSession(true);
HandoffPolicy p = new PickFirstHandoffPolicy();
ds = new DsService(def, "default", p);

while (true) {
Stream s = ds.serve();

// <application-specific actions>

DsClient client = ds.getClient(s);
Buffer msg = createHandoffMessage();
client.setMessage(msg);

try {
URL target = ds.handoff(client);
System.out.println("Client " + client

+ " handed off to " + target);
} catch (SagaException e) {

System.out.println("Handoff failed: "
+ e.getMessage());

s.close();
}

20

}
} catch (Exception e){

System.out.println(e.getMessage());
} finally {

if (ds != null) ds.close();
}

}

}

The class HandoffReceiver waits until some other Distributed Servers node
performs a handoff operation. It will then extract the handoff message and per-
form some application-specific actions. Since it will never hand off clients itself,
no handoff policy is provided to the DsService object.

class HandoffReceiver {

public static void main(String args[]) {
DsService ds = null;

try {
Session def = SessionFactory.createSession(true);
ds = new DsService(def, "default", null);

DsClient client = ds.receiveHandoff();
Buffer msg = client.getMessage();

// <application-specific actions>

} catch (Exception e) {
System.out.println(e.getMessage());

} finally {
if (ds != null) ds.close();

}
}

}

21

	Introduction
	XOSAGA Sharing Package
	Scalaris and XOSAGA
	Java implementation
	Python implementation

	XOSAGA Distributed Servers Package
	XtreemFS URL Scheme
	Summary and Ongoing Work
	Revised API Specification for Distributed Servers
	Specification Details
	Example

