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Executive summary
Distributed Servers provide an abstraction that allows a group of server pro-

cesses to appear as a single entity to its clients. This deliverable presents the
current status of the development of Distributed Servers. It describes the current
re-implementation for the XtreemOS 2.0 linux kernel version 2.6.27.

Since the last report, we have re-implemented Distributed Servers as a set of
initialization scripts, a separate kernel module for saving and restoring sockets,
and a local demon that communicates with the application. The kernel module is
based on an open source TCPCP module developed at NEC. We have updated the
module for the 2.6.27 kernel and added additional functionality. This module is
maintained separately and can be used independently of Distributed Servers for
(including IPv4) socket passing. The new version of the kernel module will be
released as a separate open source project after Distributed Servers is included in
XtreemOS.

The Distributed Servers package also contains a new, local, system-level de-
mon. Requests for local actions related to a handoff are given to the local demon
for security checks and processing. By creating a new demon process, it is not
necessary to modify the existing Mobile IPv6 implementation for Linux. There-
fore, we do not need to maintain any changes to the Linux networking stack and
can immediately leverage any speed or stability improvements made therein. This
approach has led to a much stabler implementation of Distributed Servers.

Finally, we expect Distributed Servers to be integrated into the minor release
XtreemOS 2.1. After completing packaging, further work on the performance and
security aspects will continue.
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1 Introduction
The goal of the Distributed Servers package is to help provide the abstraction of a
large, scalable server that can handle any number of clients. This package in work
package 3.2 concentrates on the network component of the abstraction. A set of
nodes providing the scalable server abstraction can handoff clients to each other
without the need for client assistance. The client only must support the Mobile
IPv6 protocol as described in previous deliverables [7].

This deliverable describes the progress made in the last year (since [9]). We
completed porting Distributed Servers to run on the Linux kernel 2.6.27 on which
XtreemOS 2.0 is based. Our new version has several advantages. First, it does not
require modifying the Mobile IPv6 implementation in Linux, resulting in much
simpler maintenance and better stability. Second, we introduced a system-level
demon that handles the privileged aspects of Distributed Servers, providing a
secure channel for applications to request actions such as handoffs. Third, we
improved the TCPCP kernel module to efficiently drain connections for faster
and smaller handoffs [1]. Finally, we also provided an internal API to the Dis-
tributed Servers implementation in XOSAGA so that application developers can
use a standard API [11]. This is one of the final steps to integrating Virtual Nodes
and Distributed Servers as described in [8].

This deliverable is organized as follows. Section 2 describes the current design
of Distributed Servers after porting to the XtreemOS 2.0 linux kernel. Section 4
discusses the current status of the implementation and areas for future develop-
ment. Finally, Section 6 concludes.

2 Design
The Distributed Servers package provides location transparent networked ser-
vices [4]. Clients connect to a single distributed server address for a service
and may be moved transparently among multiple locations. Mobile IPv6 (MIPv6)
route optimization [3] does the heavy lifting: all IPv6 connections from a client
are atomically changed directly to each location, avoiding triangular routing. The
distributed server address is simply an IPv6 [2] address. In the terminology of
Distributed Servers, a client first connects to a contact node. A client may then
be transparently handed off —the server endpoint of all of the client’s connections
are transferred—to different servers for load-balancing or for client-specific pro-
cessing. The ability to transparently migrate client connections depends on the
implementation of Mobile IPv6, which typically supports client mobility. How-
ever, Distributed Servers can provide server mobility, inverting the functionality.
As mentioned in previous deliverables [7, 9], the Distributed Servers functionality
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depends on all parties—clients and servers—possessing and using IPv6 addresses
with support for Mobile IPv6.

The Distributed Servers system was originally built on Linux kernel 2.6.8 (re-
leased 2004). In the last year, we have further redesigned Distributed Servers for
the 2.6.27 Linux kernel used by XtreemOS 2.0. This kernel has relatively stable
support for Mobile IPv6 along with support for new hardware likely to be found
in computational grids. An important design goal of the new Distributed Servers
package was to leave the MIPv6 implementation in Linux untouched. Our expe-
rience modifying earlier versions of the MIPv6 implementation led us to believe
that maintenance would be considerably easier if we did not modify the increas-
ingly complex IPv6 implementation.

In order to not touch MIPv6, we created a system that spoofs mobility events
to persuade the stock MIPv6 implementation to perform route optimization on
client handoff. A system-level demon, called dsco, injects spoofed packets and
drops other packets as necessary to spoof new client connections or break old
ones. Our redesign encompasses three major areas: 1) developing initialization
scripts to bring the system up, 2) porting the TCPCP kernel module used for con-
nection passing (handling kernel level socket state), and 3) a system-level demon
to perform privileged actions required by handoffs. We describe these compo-
nents in more detail in the rest of the section and give a detailed description of a
handoff in the following Section 3.

2.1 Overview and Startup
At a high level, the current design of Distributed Servers is very similar to previous
versions. The standard MIPv6 implementation in Linux is handled by a user-level
demon, called mip6d, that manages mobility events. All three roles in MIPv6 are
handled by different configurations of the same mip6d demon: the Mobile Host
(MH) changes network addresses generating mobility events; the Home Agent
(HA) manages the MH home address in the home network for connectivity of new
connections; and the Correspondent Node (CN) represents the other endpoint of
connections with the MH during mobility events [3].

Our design uses the mip6d in a controlled environment to simulate mobil-
ity of the server end of a connection to clients. The relationship between the
MIPv6 and Distributed Servers terminology is straightforward. The Home Agent
is an unmodified component of MIPv6 and serves precisely the same role in Dis-
tributed Servers. The Distributed Servers contact node accepts new connections
from clients and is registered with the HA. Other server nodes accept client hand-
offs from the contact node and other server nodes. Both the contact node and set
of server nodes are configured as Mobile Hosts in the MIPv6 terminology. Clients
that contact these nodes are configured as Correspondent Nodes.
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Figure 1: Overview of Distributed Servers design architecture. All MIPv6 control
packets from server nodes are routed through IPv6 tunnels to a spoofed Home
Agent on the Contact Node. The route optimization packets (HoTi,HoT) are then
routed to the real Home Agent, which in turn routes them to the client node.

Figure 1 gives an overview of the new design architecture of the system. The
system is composed of several parts: 1) the unmodified mip6d demon, 2) the ds
startup script used to modify static network routes, 3) the TCPCP kernel module
used to enable connection passing between nodes, 4) the dsco demon that manages
application requests and dynamic network routes, and 5) the Gecko framework
that uses the dsco demon to provide applications with a simple API for client mi-
gration [5]. The interaction of these systems is shown in Figure 2, which provides
a single node-level view of the system.

We describe the architecture from the top down. The contact node runs an
extra mip6d in Home Agent mode on a dummy subnet to allow server nodes to
register with an HA. Startup scripts configure the network settings of each server
node to route connections to this spoofed Home Agent on the contact node instead
of the real network HA. These connections are automatically made by the mip6d
on the server nodes configured as Mobile Hosts. The contact node is configured
specially so that its mip6d demon connects to the real Home Agent for the dis-
tributed server address. Hence, the unmodified Home Agent for the distributed
server address sees only one connection from a Mobile Host responsible for the
server address—the contact node.

In our design, all MIPv6 control messages from server nodes to the HA are
routed through the contact node because the contact node hosts the spoofed HA.
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Figure 2: Node view of current Distributed Servers architecture. The server appli-
cation manages the Distributed Servers framework using the Gecko library, which
in turn communicates with the dsco demon for privileged actions and to perform
TCPCP actions (above the horizontal line is unprivileged space). The dsco demon
can inject or drop MIPv6 control packets and change the IPv6 routing if the con-
tact node changes. Note the mip6d demon is unmodified, and client IPv6 traffic is
handled as normal by the kernel.

XtreemOS–Integrated Project 6/14



D3.2.6 IST-033576

However, client IPv6 traffic still routes directly to the client after route optimiza-
tion. The purpose of the dsco demon at the contact node is to specially route the
MIPv6 control messages to the real Home Agent to which the contact node is con-
nected normally. The dsco demon caches routes for the control messages so that
replies (from clients) can be correctly routed to the proper server node. Access to
the packets before local processing is achieved using the Netfilter Queue interface
in Linux [6]. Further discussion of the dsco demon appears in a later subsection.
The combination of mip6d and dsco demons handles all client handoffs provided
by the Distributed Servers service.

If the contact node fails or needs to be rotated for any reason, a new con-
tact node can takeover for a failed contact node using the ds script provided in
the package. The script starts the spoofed Home Agent, reconfigures the local
network settings to accept packets from server nodes, and informs the local dsco
demon to begin performing actions as the contact node. The ds script must also
be used on all server nodes to reconfigure the network settings to route MIPv6
control packets to the new contact node. We envision that some of these actions
will eventually be moved into the dsco demon itself so that reconfiguration can be
handled with the same API as client handoffs.

The initial configuration of Distributed Servers is determined by a configura-
tion file for the dsco demon. Since the demon performs privileged actions, con-
figuration of Distributed Servers requires privileges. Applications can query the
configuration through requests to the dsco demon. Changes to non-privileged set-
tings can also be performed through requests to the dsco demon.

2.2 TCPCP kernel module
In addition to the high level routing of MIPv6 control messages, Distributed
Servers needs to migrate the open connection to the client from either the contact
node or a server node to another node in the system. The TCP connection passing
system (TCPCP) provides migration of open sockets by serializing the network
stack state in the kernel, which can then be transferred to a different node [1]. The
TCPCP package is composed of a user-level library that invokes functions in an
additional kernel module through extensions to the getsockopt system call.

The TCPCP package works in a straightforward manner. Sockets are first
frozen; that is, they will not accept new data for sending. Next, the kernel socket
state is copied into a user-level buffer, which can then be transferred to another
node. Finally, at the new node the socket state is transferred back into the kernel
network stack to create a new copy of the socket, and the new socket is activated
to accept incoming and outgoing data.

Our completed migration consists of 1) migrating the implementation from
Linux kernel 2.6.15 to the XtreemOS 2.0 Linux kernel 2.6.27, 2) adding an extra
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API function to drain a socket before handoff, and 3) modifying the Distributed
Servers API to use the new API provided by TCPCP. We intend to release our
newer version of TCPCP back to the open source community after integrating
Distributed Servers into XtreemOS.

The port is partially a reimplementation as the Linux kernel network stack has
changed significantly with increasing IPv6 support. Some bugs in the TCPCP im-
plementation were fixed, and extra functionality was added to support Distributed
Servers. For example, we fixed a bug that would send the wrong timestamp for
the activated socket, eventually causing local end of the connection to slow start
the socket. We also added a function tcpcp_flush to the TCPCP library (and
kernel module) that waits until a given timeout or until the kernel send buffers of
a frozen socket are empty. This approach results in much less kernel socket state
transferred to the user level and subsequently over the network. As shown in [4],
smaller send buffers result in faster handoff times. Currently, the implementation
polls inside the kernel using a very short timeout to wait for the buffers to empty.
We believe this is an acceptable approach because the overall timeouts are already
very short so that the time spent polling is also very short.

2.3 dsco Demon

This subsection describes the dsco demon that is an important part of the Dis-
tributed Servers package. The demon both routes MIPv6 control packets and
handles requests from applications using Distributed Servers. It is composed of
two major parts: a packet filter to handle control packets and a process request
handler to handle application requests. The packet filter uses Netfilter queueing
mechanism to route, drop, and inject packets [6]. For example, 1) the contact node
must reroute HoTi packets from a server node performing route optimization (as
described in [4]) to the real Home Agent to which it is connected; 2) the contact
node must drop bogus Home Agent rejection messages sent by the mip6d demons
configured for the Mobile Host (as opposed to the spoofed Home Agent mip6d);
and 3) server nodes must inject a new, spoofed connection request from a client
received in a handoff to force the mip6d demon to begin route optimization for
the client. The actions are presented in detail in the context of a client handoff in
the next section.

The packet filter is the primary reason that the dsco demon requires privileged
execution. The demon must be allowed access to raw packets before they are
routed or delivered. The Netfilter queueing mechanism provides this access, but
requires special privileges because access to raw packets is necessarily limited.
To prevent users from seeing all packets (including those destined to other users),
access to the raw streams is obviously restricted.

XtreemOS–Integrated Project 8/14
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// Delete Binding Update with specified client, dropping
// client from local binding cache used for route
// optimization.
bool deleteBU(const struct in6_addr *client_addr);

// Get current Binding Update sequence number.
int getBUSeqNo(const struct in6_addr *client_addr);

// Set current contact node address.
bool setContactAddr(const struct in6_addr *contact_addr);

// Inject packets to begin route optimization for the
// specified client address.
bool startRO(const struct in6_addr *client_addr,

int BUSeqNo);

// Add all nodes to provided container. Returns true
// on error.
bool getAllNodes(std::vector<const DSNode*>& container);

// Return anycast address for this distributed server.
// Returns true on error.
bool getAnycastAddr(struct in6_addr *anycast_addr);

// Returns iterator pointing to local node (self) in
// Vector containing all nodes.
std::vector<const DSNode *>::const_iterator

findLocalNode(std::vector<const DSNode*>& container);

Figure 3: Description of the current API provided to access the dsco demon. Func-
tions send requests to and receive replies from the demon over a local UNIX
socket.
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The process request handler listens on a UNIX socket for local process re-
quests. These requests perform the privileged actions of the API of the dsco de-
mon. For example, the Gecko framework can, on behalf of an application, request
that a client is started or dropped, the contact node is changed, or to request Dis-
tributed Servers configuration information such as the distributed server address.
Although not all privileged actions are currently performed by the dsco demon (for
example, calls to the tcpcp module are not), we intend to centralize all privileged
actions required by Distributed Servers in the dsco demon to allow non-privileged
(that is, non-root accounts in Linux) processes to use Distributed Servers. The
use of UNIX sockets allows us to eventually move invocations of TCPCP, which
require root privileges similar to access to raw packets, to the dsco demon, pass-
ing open sockets created by TCPCP to applications. The current dsco demon API
used by the Gecko library [5] and applications is shown in Figure 3.

Currently, support for multiple dsco demons per machine is not present. We
believe that to host multiple Distributed Servers applications on the same node, we
can further specialize the packet filtering mechanism by specific distributed server
address to allow multiple dsco demons per node. However, further development
is required to determine whether multiple mip6d demons (configured as mobile
hosts) can execute simultaneously on the node, or whether a single mip6d can
support multiple distributed server addresses.

3 Handoff Example

This section provides a detailed example of a simple client handoff to help the
reader better understand our new design. We consider the following scenario: A
client, which we call Client, connects first to the contact node called ContactN-
ode. After due consideration, ContactNode decides to handoff the client to the
distributed server called ServerNode. The following steps occur in order:

1. Client connects to ContactNode by sending a TCP SYN packet to the dis-
tributed server address. The SYN packet is picked up by the home agent
(HA) located in the address’s corresponding network and forwarded to Con-
tactNode through an IPv6 tunnel (setup by mip6d) between the HA and
ContactNode. Replies from ContactNode to Client are sent back through
the tunnel with the HA and are then forwarded by the HA to Client.

2. ContactNode chooses ServerNode to handoff all connections to Client. Con-
tactNode calls the Gecko library, which freezes all connections to the Client
using the TCPCP module. Then, again using TCPCP, the state of all frozen
connections is extracted from the kernel and passed to ServerNode by the
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functions in the Gecko library. At the ServerNode, the Gecko library re-
ceives these sockets and uses TCPCP to create new versions of the sockets
in the kernel of ServerNode.

3. ServerNode then requests the dsco demon to initiate MIPv6 route optimiza-
tion for the client to redirect the client from ContactNode. The MIPv6
route optimization procedure requires sending two packets to Client from
ServerNode: the CoTi, which is sent directly, and the HoTi, which is sent
through the HA. The HoTi is routed to ContactNode by virtue of the IP6
tunnels set up at the server nodes connecting them with the spoofed home
agent on ContactNode. The dsco demon at ContactNode then routes the
HoTi to the real HA, which forwards it to Client per the MIPv6 standard
protocol. The reverse path is used for the HoT response to the HoTi that
Client sends to ServerNode. After receiving both the HoT and CoT (which
is sent directly from Client to ServerNode using the unique IPv6 address of
ServerNode), the two nodes exchange a Binding Update and Binding Ack
to commit the new route. These messages travel directly between the Client
and ServerNode using their unique IPv6 addresses. At the end of this final
exchange, all traffic to the distributed server address sent by Client will be
routed by the IPv6 stack to ServerNode, effecting the handoff. The TCPCP
module then handles realigning the sequence numbers and timestamps of
the connections moved during the handoff.

4. Finally, ServerNode acknowledges the handoff to ContactNode, and the
Gecko library signals to the application that the handoff is complete.

4 Current status

Distributed Servers are implemented and running on the Linux 2.6.27 kernel, but
have not yet been integrated with XtreemOS 2.0. However, it is scheduled for
release with the next minor revision, XtreemOS 2.1. The current implementation
is stable and performs handoffs of clients on an active IPv6 network. We intend
to release the migrated and improved TCPCP module separately back to the open
source community after Distributed Servers is integrated with XtreemOS.

Work remains to be done. We intend to centralize the privileged actions re-
quired in Distributed Servers to the dsco demon so that unprivileged applications
can perform client handoffs. We also will explore further optimizations, support
for multiple Distributed Servers on a node, and make additional performance eval-
uations for Deliverable 4.2.6 [10]. Finally, we are also working with work package
WP3.1 on the Distributed Servers implementation of XOSAGA so that applica-
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LAN handoff Host-local handoff
Old 18.4 ms 9.4 ms

New 620 ms 13.4 ms

Figure 4: Handoff latency of connection as seen by the client. Time given is
between arrival of last packet from the server donating the handoff and the first
packet from the server receiving. The Old values are from [4] (ignoring RTT for
Route Optimization), while New values were obtained using the design described
in this document.

tion developers and other XtreemOS services such as Virtual Nodes [8] can use a
standard API to manage Distributed Servers [11].

5 Evaluation

We evaluated Distributed Servers on a testbed of four machines connected by a
100 Mb/s ethernet switch. The machines were identical with a single 1.5 GHz
AMD Athlon CPU and 500 MB of memory. One machine was configured as
the client. Two were configured as distributed servers (one contact node and one
server node). The remaining one acted as the network’s home agent. Note that
there is only one home agent for both servers, but the servers are configured to be
in a different (foreign, in MIPv6) network from the home agent. We evaluated the
new implementation of Distributed Servers for latency and throughput and have
included measurements from the previous implemenation for comparison. For a
more complete evaluation of the previous version, please see [4].

5.1 Handoff Latency

We first evaluate the handoff latency seen by the client to determine the minimum
observed disruption to service. By providing a lower bound, application devel-
opers can determine whether such disruptions are manageable for their particular
cases. The times for the old and new systems are provided in Figure 4. For the
new design, we use tcpdump to determine the time of the last and first packets
arriving from the donor and receiver of the handoff, respectively.

For comparison with the old system, we used the minimum times of the old
system given when the socket is first drained of data (that is, all data buffered
in the kernel is sent to the client) before performing the handoff. Our additional
method tcpcp_flush provides this functionality in the new implementation instead
of the fixed wait time used in the previous implementation.
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Total Length Avg. Throughput
Donate 264 ms 3.8 conn. / sec

Receive 384 ms 2.6 conn. / sec

Figure 5: Handoff CPU time and estimated throughput as seen by the server in
an application. The time given is the CPU time spent in both the system and
user levels, not real-time. Donate and receive times are time spent by Accept and
Handoff functions, respectively, in the Gecko library.

Finally, the local handoff times are also presented in Fig. 4 when a host hands-
off the connection to itself, which does not require route optimization with the
client or communication with another server node. These numbers thus provide
the network-independent overhead and are quite similar to the previous design of
Distributed Servers.

5.2 Handoff Throughput
In addition to the client perceived handoff latency, we measured the cost of Dis-
tributed Servers at the server side of the connection. To answer how many con-
nections could the server handoff per second, we measured the CPU time spent at
both user and kernel level on either receiving or donating a handoff. The results
given in Figure 5 show that our current design is fairly expensive. Note that the
latency for donating or receiving is not given and may be longer depending on
network latencies. Fig. 5 provides the times spent on our rather dated 1.5 GHz
AMD Athlon CPU and can be expected to be lower on modern processors. Hand-
off throughput is estimated between 3-4 clients per second, and we believe this
will also improve as we optimize the new implementation.

6 Conclusion
The Distributed Servers platform is ready for inclusion in XtreemOS. The new
architecture for Linux 2.6 does not modify the standard Linux Mobile IPv6 im-
plementation. Instead, it uses a collection of scripts, a kernel module, and a
system-level demon to provide the Distributed Servers abstraction to applications.
Applications use the Gecko framework [5], which communicates in turn with the
system-level dsco demon. This demon then injects or drops packets to manipu-
late the Mobile IPv6 implementation to implement Distributed Servers behavior.
Deliverable [10] will describe the performance of the current implementation. Fi-
nally, after inclusion in the XtreemOS release, we will contribute the new version
of the TCPCP kernel module for socket passing back to the open source com-
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munity. Work on Distributed Servers remains to improve the performance and
enhance the security of the package.
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