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Executive summary
This deliverable presents the state of the design and evaluation of the XtreemOS
software component “Publish/Subscribe System”,it also includes an overview of
new features for overlay maintenance and the results of a massive node failures
experiment.

This system is a key component of the highly available and scalable infras-
tructure as described in deliverable D3.2.7 under the responsibility of WP 3.2.

Scalaris is made up of four layers which together implement the “Publish/Sub-
scribe System”. At the bottom is a distributed hash table (DHT) which provides a
simple put and get interface to a dictionary like data-structure which is distributed
over all participating nodes. The DHT provides scalability and fault-tolerance.

The second layer implements so called symmetric replication which guaran-
tees the availability of data even when nodes fail or are unavailable. Symmetric
replication divides all nodes into r equivalence classes, and distributes the replica
so that the nodes storing the replicas of an item belong to different equivalence
classes.

On top of the replication layer, we implemented a transaction data access layer,
which performs all read and write operations. The transactions allow us to consis-
tently update all replicas belonging to one item and to update several items in one
atomic operation at the same time. The transaction framework employs Paxos.

The final layer is the “Publish/Subscribe System”, which uses the layers below
for managing subscribers and topics. In comparison to the results of the last year’s
deliverable, the subscribe performance has improved by 260% and the publish
performance by 365%.
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1 Introduction
One important goal of Workpackage 3.2 of the XtreemOS project is to provide
a highly scalable publish/subscribe service (pub/sub). This service will be used
by XtreemOS services to notify other services and users about important, possi-
bly time-critical, events within the XtreemOS operating system. A typical event
could be an unexpected termination of a job, an update in the file system, or the
availability of new resources and services. XtreemOS therefore needs to be capa-
ble of supporting services that have high numbers and frequencies of transactional
requests and notifications. Hence, the herewith described pub/sub system is at the
core of many services in XtreemOS.

We will give a short overview of our “Publish/Subscribe System” called Scalaris
in Sec. 2. In Sec. 3 we will explain the overlay maintenance, this is fundamental
to build a robustness service. In Sec. 4, we run several tests with different num-
bers of nodes to evaluate the system’s scalability. We will show that the Pub/Sub
system tolerant of node failures and scales linearly with the number of nodes.
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2 System Description
Our Scalaris system, described below, provides a comprehensive solution for
self managing, scalable data management and pub/sub functionality. We expect
Scalaris and similar systems to become an important core service of future Cloud
Computing environments.

As a common key aspect, all these services have to deal with concurrent data
updates. Typical examples are checking the availability of products and their
prices, purchasing items and putting them into virtual shopping carts, subscribing
to topics, and updating the state in multi-player online games. Clearly, many of
these data operations have to be atomic, consistent, isolated and durable (so-called
ACID properties). Traditional centralized database systems are ill-suited for this
task, sooner or later they become a bottleneck for business workflow. Rather, a
scalable, transactional data store like Scalaris is what is needed.

2.1 Scalaris

Application Layer

Transaction Layer implements ACID

crash 
recovery
model Scalaris: Key/Value Store (= simple database) strong data consistency

P2P Layercrash stop
model

Transaction Layer 

implements 
- scalability
- eventual consistency

improves availability
at the cost of consistency

implements ACID

Replication Layer

unreliable, distributed nodes

Figure 1: Scalaris system architecture.

We set out to build a distributed key/value store capable of serving thousands
or even millions of concurrent data accesses per second. Providing strong data
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consistency in the face of node crashes and hefty concurrent read and write ac-
cesses was one of our major goals.

With our Scalaris system, we do not attempt to replace current database man-
agement systems with their general, full-fledged SQL interfaces. Instead our tar-
get is to support transactional Web 2.0 services like those needed for Internet
shopping, banking, or multi-player online games. Our system consists of three
layers:

• At the bottom, an enhanced structured overlay network with logarithmic
routing performance provides the basis for storing and retrieving keys and
their corresponding values. In contrast to many other overlays, our imple-
mentation stores the keys in lexicographical order. Lexicographical order-
ing instead of random hashing enables control of data placement that is
necessary for low latency access in multi-datacenter environments.

• The middle layer implements data replication. It ensures the availability of
data even under harsh conditions such as frequent node crashes and physical
network failures.

• The top layer provides support for strong data consistency in the face of
concurrent data operations. It uses a fast consensus protocol with low com-
munication overhead that has been optimally embedded into the structured
overlay.

As illustrated in Fig. 1, these three layers provide a distributed key/value store
as a scalable and highly available service which is an important building block for
Web 2.0 applications. One of the applications, we are running on Scalaris is the
pub/sub service for XtreemOS. The following sections describe the layers in more
detail.

2.2 P2P Overlay
At the bottom layer, we use the structured overlay protocol Chord# [9, 10] for
storing and retrieving key-value pairs in nodes (peers) that are arranged in a vir-
tual ring. In each of the N nodes, Chord# maintains a routing table with O(log N)
entries (fingers). In contrast to Chord [11], Chord# stores the keys in lexicograph-
ical order, thereby allowing range queries. To ensure logarithmic routing perfor-
mance, the fingers in the routing table are computed in such a way that successive
fingers in the routing table cross an exponentially increasing number of nodes in
the ring.
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Chord# uses the following algorithm for computing the fingers in the routing
table (the infix operator x . y retrieves y from the routing table of a node x):

finger i =

{
successor : i = 0
finger i−1 . finger i−1 : i "= 0

Thus, to calculate the ith finger, a node asks the remote node listed in its (i−
1)th finger to which node his (i − 1)th finger refers to. In general, the fingers in
level i are set to the fingers’ neighbors in the next lower level i− 1. At the lowest
level, the fingers point to the direct successors. The resulting structure is similar to
a skip list, but the fingers are computed deterministically without any probabilistic
component.

Compared to Chord, Chord# does the routing in the node space rather than
the key space. This finger placement has two advantages over that of Chord: First,
it works with any type of keys as long as a total order over the keys is defined, and
second, finger updates are cheaper, because they require just one hop instead of a
full search (as in Chord). A proof of Chord#’s logarithmic routing performance
can be found in [9].

2.3 Self-Management
For many Web 2.0 services, the total cost-of-ownership is dominated by the costs
needed for personnel to maintain and optimize the service. Scalaris greatly re-
duces the operation cost with its built-in self-management properties:

• Self healing: Scalaris continuously monitors the hosts it is running on.
When it detects a node crash, it immediately repairs the overlay network
and the database. Management tasks such as adding or removing hosts re-
quire minimal human intervention.

• Self optimizing: Scalaris monitors the nodes’ workload and autonomously
moves items to distribute the load evenly over the system to improve the
response time of the system. When deploying Scalaris over multiple data-
centers, these algorithms are used to place frequently accessed items nearby
the users.

• Self tuning: Scalaris includes several timers to trigger internal management
tasks, e.q. routing table maintenance. These intervals are tuned by taking
into account environmental parameters like churn. Scalaris decreases the
effort for system management in a stable environment like a datacenter, and
increases it in an unstable environment like the internet. Therefore it also
reduces human intervention.
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This protection scheme helps in high stress situations but it also constantly
monitors the system and proactively repairs and tunes the system before larger
interruptions can occur. In traditional database systems these operations require
human interference which is error prone and costly. With Scalaris the same num-
ber of system administrators can operate much larger installations than with legacy
databases.

2.4 Implementation
Because of asynchronous communication and unreliable networks, distributed al-
gorithms are difficult to implement and the resulting code is error-prone. Using
imperative programming languages and message passing libraries easily intro-
duces deadlocks or lifelocks.

In the literature [4], the actor model [5] became a popular paradigm for de-
scribing and reasoning about distributed algorithms. Chord# and the transaction
algorithms in Scalaris were also developed according to this model. The basic
primitives in this model are actors and messages. Every actor has a state, can send
messages, act upon messages and spawn new actors.

These primitives can be easily mapped to Erlang processes and messages. The
close relationship between the theoretical model and the programming language
allows a smooth transition from the theoretical model to prototypes and eventually
to a complete system.

Since the last delivery we did a complete code review. That means we for-
malized the design pattern for all actors using a component driven approach. All
actors have uniform efficient API and standard behavior.

As illustrated in Fig. 2, Scalaris uses six main components. The overlay main-
tenance uses our version of T-MAN and needs cyclon and the dead node cache.
The transaction manager offers an interface for the “Publish/Subscribe System”
and the failure detector informs the components of node failure. Our Erlang im-
plementation of Scalaris comprises many components. It has a total of 16,000
lines of code: 12,000 for the P2P layer with replication and basic system infras-
tructure, and 2,700 lines for the transaction layer.
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Figure 2: Scalaris components architecture.

3 Overlay maintenance
Scalaris at first used Chord’s original ring overlay maintenance. These capabil-
ities are insufficient for our scenario. There are some situations where Chord’s
ring overlay maintenance is not able to fix the ring and does not guarantee even-
tual consistency. These are correlated node failures, partitioning, repartitioning
and loopy rings. Also the required time for fixing inconsistencies of Chord’s over-
lay maintenance is too long. Therefore we switched to T-MAN [6] + Cyclon [8].
Gossip-based ring maintenance protocols like T-MAN guarantee eventual consis-
tency. As long as the underlying peer sampling algorithm continues to provide
random nodes from the complete overlay, the ring will always be eventually fixed.
For our experiments in Sec. 3.2, we used Cyclon as a peer sampling algorithm.
It is reasonably robust in face of churn. Only when the Cyclon network becomes
disconnected, the ring structure can break.

3.1 Gossip-based Ring Maintenance
T-MAN is a protocol for constructing overlay topologies with the help of ranking
functions. The goal topology is derived in a decentralized manner by using local
knowledge only. The algorithm needs several rounds until it converges to the goal
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topology. Each node keeps a list of peers, the view, which are closest according
to a given distance metric. Nodes regularly update their views by exchanging and
merging them with other peers.

We adapted T-MAN for continuous ring maintenance:

• For data consistency, it is important to detect dead (crashed) nodes as soon
as possible. To accelerate the detection, each node in the local view is
watched by a failure detector. In case of a failure, the node is removed
from the view.

• Dead nodes are stored in a dead-node-cache (DNC). This is a FIFO queue
with a fixed size of 10 elements in our case. The nodes in the DNC are
periodically contacted to detect re-appearing nodes, e.g. after the repair of
a network partitioning.

• T-MAN [3] initializes the local view with a set of random nodes. The shuf-
fling continues until the view does not change anymore. When the view
becomes stable, the view is re-initialized with random nodes and the proce-
dure starts from the beginning. With this scheme, it can take up to O(log N)
shuffle rounds until defects in the overlay are repaired.
In contrast to the original T-MAN, we never reset the local view and we
include in each shuffle operation some random nodes.

• T-MAN uses a ranking function based on the distance in the key space,
d(a, b) = min(N−|a−b|, |a−b|), for building rings. Our view, in contrast,
builds on predecessor and successor lists, as Fig. 3 shows. With a view size
k we include the k/2 closest predecessors and successors in the view. This
ensures that the nodes are always evenly balanced between predecessors
and successors, even with unevenly distributed nodes. This improves the
reliability under churn and with correlated failures.

3.2 Overlay maintenance Evaluation
We implemented the described algorithm with a ring-based overlay. For the exper-
iment we simulated 400 nodes on two servers. 300 nodes were hosted on the first
server ("left partition") and 100 nodes were hosted on the second server ("right
partition"). The partitioning was simulated by removing the network connection
between the two servers. We used the following system parameters:

Cyclon Interval 4.9s
T-MAN Interval 10s
Failure Detector Timeout 3s
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modified T-MAN: viewA = [B, P, C, O]

Figure 3: Succ/pred list with original resp. modified T-MAN.

We simulated the scenario where each server owns a disjoint segment of the
ring. When partitioning the network, a contiguous segment of 1/4 resp. 3/4 nodes
disappears.

Fig. 4 shows, for the left and the right partition, the size and the healthiness of
the ring over the observation time (600s). ‘Healthiness’ is defined as follows: The
nodes’ positions in the succ/pred list of node n are based on a distance metric in
the node space using knowledge (d̃(x, y)). Node n assumes that the first node in its
succ/pred list (succ and pred) has a distance of 1 in the node space (d̃(n, succ) = 1
and d̃(n, pred) = 1). For the healthiness metric, we sum up over all nodes in all
views the differences between d̃(x, y) and the distance based on global knowledge
(d(x, y)). Additionally, we weight the errors according to their relative position in
the list. It is more important for the direct successor to be correct than for the last
node in the list. Finally, we normalize the healthiness to the interval [0, 1).

At t = 0s, the system was started and 400 nodes joined the system, with the
nodes’ startup being staggered over the first 10s. Increasing the ring size from 1 to
400 within 10s causes a large amount of churn and T-MAN is not able to keep the
succ/pred list correct. After ≈ 140 seconds, T-MAN has fixed the ring structure.
In this period, T-MAN performed ≈ 14 shuffle rounds.

At t = 200s, we disconnected the two servers. From here on the views of
the left and the right partition differ because they observe different networks. In
the left partition, the ring size drops to 300 nodes, because the right partition
disappeared and vice versa. At the same time, the error jumps up, because the
pred/succ list of the nodes at the datacenters’ borders point to dead nodes. After
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Figure 4: Network partitioning and repair with modified T-MAN (0s: startup,
200s: network partitioning, 400s: network repair)

≈ 110s (or 11 shuffle rounds) the error drops to 0 and the system consists of two
independent rings.

At t = 400s, we re-connected the links between the two servers and the nodes
in the DNC are detected to have become alive again. Cyclon injects nodes from
the other partition and T-MAN starts to repair the ring. As can be seen, the ring
size goes up to 400 nodes and the ring becomes fixed after ≈ 100s (10 shuffle
rounds).

Note that this repair procedure is possible in Chord. When all nodes in an
arbitrary node’s successor list are dead, the ring will be broken and cannot be
fixed by Chord.
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4 Performance Measurements

Scalaris has a built-in benchmarking facility – the bench_server. The module
provides functions for executing benchmarks on all nodes, on which Scalaris is
currently running.

All benchmarks were run on an Intel Cluster at ZIB. Each node has 2 Dual-
CPU Xeon 5150s (2 Cores per CPU) running at 2.66GHz and 8GB memory. The
nodes are connected via GigE. All tests were performed on this GigE network.
Revision 397 of Scalaris [7] and Erlang R13B01 were used. For the measurements
we simulated two scenarios: a) publish and b) subscribe:

Publish The publish operation is one transaction which reads the list of a topic’s
subscribers.

Subscribe The subscribe operation is one transaction which reads the old list of
a topic’s subscribers topic, changes the list and writes it back.

Each item is stored in four replicas.
All benchmarks involved the following five steps:

1. Start stop watch

2. Start n Scalaris nodes in each VM

3. Each threads executes the operation to test i times

4. Wait for all threads to finish

5. Stop stop watch

4.1 Field Trial of Scalaris

It is possible to start several configurations of scalaris on a cluster. We have to
decide the number of ErlangVM per cluster node, the number of Scalaris nodes
per cluster node and the number of clients. To figure out the best setup, we iterate
over thes parameters. Therefore we set benchmarks with 1, 2 and 4 ErlangVMs
per cluster node, with 4, 16 and 32 scalaris nodes per cluster node. These param-
eters where verified on 1, 2, 5, 10 and 15 cluster nodes. The load was generate
either by 1, 2, 5, 10, 50, 100 or 200 clients per cluster node.
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4.1.1 Cluster nodes: 1

The top 5 results for publish by using one cluster node and the corresponding
configuration:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
1 4 200 20000.0 25299.3 3224.9
1 4 10 20000.0 20883.2 3883.3
1 4 5 20000.0 20432.4 3448.8
1 4 50 20000.0 17544.6 3615.2
1 4 100 20000.0 17236.8 3483.4

The same for subscribe:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
1 4 10 20000.0 20883.2 3883.3
1 4 50 20000.0 17544.6 3615.2
1 4 100 20000.0 17236.8 3483.4
1 4 5 20000.0 20432.4 3448.8
1 4 200 20000.0 25299.3 3224.9

4.1.2 Cluster nodes: 2

Results for publish by using two cluster nodes:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
1 16 50 20000.0 17655.4 1235.3
4 16 50 20000.0 17473.6 2273.9
4 16 100 20000.0 17388.6 1373.1
4 16 200 20000.0 17298.0 1413.0
4 32 100 20000.0 15951.6 1169.4

The same for subscribe:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
4 32 50 20000.0 15027.1 2630.9
4 4 200 20000.0 13010.1 2578.4
4 4 50 20000.0 13460.7 2454.0
2 32 100 20000.0 15857.0 2441.7
2 4 100 20000.0 14485.8 2427.1
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4.1.3 Cluster nodes: 5

Results for publish by using five cluster nodes:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
1 16 50 20000.0 37540.1 5694.4
4 4 200 20000.0 36784.1 4170.8
1 4 50 20000.0 35146.5 3147.4
4 4 50 20000.0 35094.5 4221.8
4 4 100 20000.0 34876.4 3457.0

The same for subscribe:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
1 16 50 20000.0 37540.1 5694.4
4 16 200 20000.0 30758.5 5482.2
1 16 200 20000.0 33347.0 5476.5
4 32 200 20000.0 29135.8 5433.3
1 32 50 20000.0 26854.2 5125.0

4.1.4 Cluster nodes: 10

And the results for publish by using ten cluster nodes:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
1 4 50 20000.0 61835.0 5099.3
4 4 200 20000.0 59736.4 7166.4
4 4 100 20000.0 56085.3 6746.0
1 4 100 20000.0 53712.3 6188.4
1 16 100 20000.0 53431.7 10167.9

The same for subscribe:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
1 16 100 20000.0 53431.7 10167.9
1 32 100 20000.0 49276.9 9468.1
1 16 50 20000.0 47917.7 9309.1
1 32 50 20000.0 42279.1 9242.2
1 32 10 20000.0 39571.5 9198.3
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4.1.5 Cluster nodes: 15

Results for publish by using 15 cluster nodes:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
4 16 200 20000.0 73011.8 12497.1
1 16 50 20000.0 72062.1 13541.1
1 16 200 20000.0 72046.3 12954.0
1 32 100 20000.0 69961.3 13788.0
4 32 200 20000.0 69875.5 12255.2

The same for subscribe:

VMs/ Nodes/ Clients/ Iterations/ Publish/s Subscribe/s
Server Server Server Server
1 32 100 20000.0 69961.3 13788.0
1 16 50 20000.0 72062.1 13541.1
1 16 100 20000.0 63446.3 13024.5
1 16 200 20000.0 72046.3 12954.0
1 32 50 20000.0 64536.2 12765.9

4.2 Summary of Results
Based on these results some rules were agreed upon for setting up Scalaris. At
first, one ErlangVM is adequate for one machine. That was expected because
version R13B01 handles SMP-systems much better than previous Erlang releases.

Secondly, the best performance was achieved by deploying 4 Scalaris nodes
per CPU-core. Having more than one Scalaris node per core unsures that the
process scheduler has enough runnable tasks to keep the cores busy. We also
realized, Scalaris can handle a lot of clients at the same time. More than 200
clients per server are possible.

Over a wide range of system sizes the system scales linearly. The exception is
the single node scenario because of the absence of network overhead.
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In comparison to the results of the last year’s deliverable, the subscribe perfor-
mance has improved by 260% and the publish performance by 365%.

5 Current State and Deployment
Since July 2008, Scalaris is available as open-source at [7]. We were contacted
by several companies who expressed interest in using Scalaris. Therefore, there
are users outside of XtreemOS. They give us a lot of hints and bug reports. That
helped us improve scalaris, and to make it more convenient for productive use.

6 Conclusion
Scalaris provides a scalable and self managing pub/sub system and a transactional
key-value store. Compared to other data services, Scalaris has significantly lower
operating costs. Scalaris is now a robust and powerful service, that scales and is
able to handle massive node failures.
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