Information Society

Technologies

Enabling Linux
for the Grid

XtreemQOS)\ BUH
—

Project no. IST-033576

XtreemQOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

On the feasibility of cloud computing
functionality for Grid applications

D3.2.15

Due date of deliverable: December 1°¢, 2009
Actual submission date: December 1%¢, 2009

Start date of project: June 1°¢ 2006

Type: Deliverable
WP number: WP3.2
Task number: T3.2.x

Responsible institution: VUA

Editor & and editor’s address: Guillaume Pierre
Vrije Universiteit Amsterdam

Dept. of Computer Science

De Boelelaan 1081a

1081HV Amsterdam

The Netherlands

Version 1.1 / Last edited by Guillaume Pierre / December 2™¢, 2009

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU | Public v/

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services)

Revision history:

Version Date Authors Institution Section affected, comments

0.0 02/11/09 | Guillaume Pierre VUA First draft

1.0 06/11/09 | Guillaume Pierre VUA Ready for internal review

1.1 2/12/09 Guillaume Pierre VUA Updated version according to internal reviews
Reviewers:

Bjorn Kolbek (ZIB) and Michael Schéttner (UDUS)

Tasks related to this deliverable:

Task No. | Task description Partners involved®

T3.2.5 Cloud computing services VUA™

°This task list may not be equivalent to the list of partners contributing as authors to the deliverable
*Task leader

Executive summary

Cloud computing emerged as a new paradigm for utility computing after the start
of the XtreemOS project. Although such developments were impossible to pre-
dict at the start of the project, XtreemOS and Clouds are very relevant to each
other. Cloud computing can be categorized into Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). This deliverable
claims that:

e XtreemOS is directly comparable to a full [aaS platform;

e XtreemOS is a good platform to further develop PaaS functionality, as demon-
strated by our port of the HBase database.

e SaaS is irrelevant to the work on XtreemOS, and we have no plans for de-
velopment there.

1 Introduction

Cloud computing is an emerging paradigm for utility computing. Although this
new field is notoriously difficult to define [4] and most announcements in the do-
main are dictated by hype rather than actual content [11], it nevertheless represents
a fundamental and interesting paradigm shift from more classical forms of utility
computing such as Grid computing.

Both paradigms rely on the concept of statistical multiplexing, which exploits
the fact that the resource usage of any single user varies over time and that peaks
of activities are usually not correlated from one user to the next [15]. Rather
than provisioning resources for each user individually based on the expected peak
resource usage, statistical multiplexing proposes to share resources between users,
which allows to provision resources based on the average utilization. Although
statistical multiplexing was originally invented for sharing network bandwidth
resources, Grids and Clouds rely on the same principles regarding the sharing
of computing and storage resources.

The two paradigms also have a number of important differences. First, Grid
computing relies in principle on resource sharing that does not necessarily imply
a monetary accounting of resources used by each user. Conversely, in Cloud com-
puting resources are usually under the control of a single operator, and users get
charged under a pay-as-you-go pricing scheme.

Second, the types of services offered by Grid and Cloud computing are some-
what different. Grid computing originates from the field of high-performance
computing, and hence tends to focus on parallel programming (e.g., MPI) and ab-
solute performance figures. Cloud computing originates from enterprise hosting
platforms, and focuses on cost efficiency and scalability.

Cloud computing functionality is often categorized as follows:

Infrastructure-as-a-Service (IaaS) is the delivery of computer infrastructure (typ-
ically a platform virtualization environment) as a service [12]. Typical laaS
services are Amazon.com’s EC2 (which offers generic virtual machines
for hosting applications in the Cloud) and S3 (which offers scalable stor-
age of unstructured files). Other Cloud vendors have similar (mostly API-
incompatible) offers as well.

Platform-as-a-Service (PaaS) is the delivery of a computing platform and solu-
tion stack as a service [13]. Typical PaaS services are Google’s Map/Reduce
(which automates the parallelization of massive data processing applica-
tions), BigTable (which provides scalable structured data storage) and Ap-
pEngine (which automates the scalable hosting of Web applications). Here
as well, many competing offers exist, but there is no consensus on stan-

2

dard APIs that could facilitate the migration of applications from one Cloud
platform to another.

Software-as-a-Service (SaaS) is a model of software deployment whereby a provider
licenses an application to customers for use as a service on demand [14].
Typical SaaS services include Google’s Gmail or Google maps. SaaS is ir-
relevant to the work on an operating system for the Grid, as SaaS focuses
mostly on providing Web interfaces to end-user office applications such as
email, spreadsheets and text editors. We therefore do not plan any develop-
ment in this area.

This deliverable argues that: (i) XtreemOS can be seen as a relatively ma-
ture platform for IaaS, where the Application Execution Manager (AEM) offers
similar functionality to EC2 and XtreemFS offers similar functionality to S3; (ii)
XtreemOS can be extended to become a good platform for Paa$S, as illustrated by
our port of the HBase open-source scalable database onto XtreemOS.

This deliverable is structured as follows. Section 2 discusses in which sense
XtreemOS can be seen as an laaS platform already. Then, Section 3 shows how
we ported HBase to XtreemOS to give it a first PaaS service. Finally, Section 4
concludes.

2 XtreemOS as an IaaS platform

Infrastructure as a Service (IaaS) refers to systems that provide their users with
computing resources delivered as a service, including servers, network equipment,
memory, CPU and disk space [12]. Although the term was coined after the start of
the XtreemOS project, this is precisely the goal that XtreemOS aims to achieve:
provide users with computing resources that can be assigned to them dynamically
when they need them. In particular, AEM and XtreemFS can legitimately be
classified as [aaS components.

AEM allows users to reserve machines through an XtreemOS Virtual Organiza-
tion (VO) when they need to execute a job. In this sense, it is directly comparable
to Amazon’s EC2 and other similar services. The two types of services differ in
four main aspects:

1. Different computation-as-a-service offers rely on different APIs. No clear
consensus emerges at the moment regarding a standard access API for such
services. On the other hand, AEM is meant to be invoked via the XOSAGA
API, which relies on the standard SAGA API for Grid Applications. One
could relatively easily build an EC2-compatible API to the AEM but this is
not in our immediate priorities at the moment.

3

2. TaaS services typically rely on virtualization techiques where the resources
are offered to users in the form of a full virtualized operating system in-
stance. On the other hand, the AEM executes jobs directly, with no vir-
tualization. This difference arises from different requirements in different
services. Cloud platforms must be usable by a very large range of users who
may each want to use a different operating system and work in total isola-
tion from each other. On the other hand, XtreemOS intends to be the stan-
dard operating system to develop Grid applications, so there is no need to
virtualize XtreemOS on top of XtreemOS. XtreemOS also provides strong
isolation between multiple jobs running on the same hardware through the
use of Linux containers [6].

3. lTaaS platforms use a pay-as-you-go pricing model, while XtreemOS relies
on the trust relationships between system administrators of a VO to imple-
ment a shared resource available to all users of the VO.

4. The security of IaaS platforms relies on a one-to-one trust relationship be-
tween the cloud provider and the cloud customer. On the other hand, the VO
support in XtreemOS allows one to support several potentially mutually dis-
trusful Cloud providers, allowing Cloud customers to select (and possibly
revoke) the provider of their choice.

XtreemFS allows Grid users to store data efficiently and share them across the
whole system. In this sense, it is directly comparable to Amazon’s S3 and other
similar services. The two types of services differ in two aspects:

1. Again, no standard API for Cloud storage seems to emerge yet. Most Cloud
storage services provide simplistic functionality, where a user can write
blocks of files that can be later read but remain immutable. Conversely,
XtreemFS implements the full Posix API where files can be updated and
overwritten. One could relatively easily build an S3-compatible API to
XtreemFS but this is not in our immediate priorities at the moment.

2. Performance-wise, it is hard to compare XtreemFS with S3 as the two run on
different hardware. As a first indication, we report preliminary performance
comparisons between XtreemFS and HDFS (an open-source clone of the
Google file system) in Section 3.4.

In conclusion, XtreemOS provides the two main elements necessary for an
laaS platform. Although a number of differences exist with their pure Cloud-
computing counterparts, both the AEM and XtreemFS provide similar functional-
ity and could potentially develop API-compatible interfaces to facilitate migration
of Cloud users onto XtreemOS.

3 XtreemOS as a PaaS platform

Although XtreemOS was not originally designed for Cloud computing applica-
tions, it does provide a good base platform for developing advanced Cloud com-
puting functionality. We selected the specific topic of scalable database support to
demonstrate how one can deploy Cloud functionality on XtreemOS.

Relational databases (RDBMS) such as MySQL and Oracle have been popu-
lar for decades thanks to their conceptual simplicity, the great expressive power
of the SQL query language, and the performance improvements that have been
brought by decades of development. However, their great expressive power also
makes it very difficult to scale them up by using large numbers of computers in-
stead of a single powerful database server. Because users are assumed to be likely
to query any set of data items from the database through a single query, distributed
RDBMSs often rely on full replication to distribute their computation across mul-
tiple machines. Read queries can thus be addressed to any replica, and scale very
well. On the other hand, update queries must in one way or another be propagated
to all replicas. This means that, when using N database replicas, each replica
must process % X ReadQueries + WriteQueries. When the number of write
queries alone grows beyond the capacity of a single replica server, no additional
improvement can be brought by adding extra replicas. The only solution to scale
an application further is to use data partitioning [9]. Partitioning data manually is
a difficult process, so developers prefer to rely on automatic data partitioning.

A new family of scalable database systems is being developed for Cloud com-
puting environments, exemplified by Amazon.com’s SimpleDB [1], Google’s Big-
table [2], Yahoo’s PNUTS [3] and Facebook’s Cassandra [7]. Although all these
systems are slightly different from each other, they all rely on the same underlying
principles. These systems scale nearly linearly with the number of servers they
are using, thanks to the systematic use of automatic data partitioning. On the other
hand, they do not support the SQL language and rather provide a simpler query
language. Data are organized in tables, which can be queried by primary key only.
Similarly, these systems do not support join operations. As restrictive as such lim-
itations may look, they do allow to build useful applications. Scalable database
systems typically provide weak consistency guarantees such as eventual consis-
tency [8] or single-record transactions, but one can apply stronger consistency as
an added layer on top [10].

To demonstrate how XtreemOS can be a great platform for PaaS Cloud com-
puting, we ported the HBase system [5] (an open-source clone of Bigtable) to
XtreemOS. This provides XtreemOS with a scalable database service that can be
used by Grid applications to store and query their structured data.

5

3.1 Design
3.1.1 HBase requirements

HBase is a Java program designed to run on many cheap Linux servers. In a
default HBase installation, each server requires the following:

Java 1.6.x preferably the Sun JVM although HBase should in theory work with
other compatible JVM’s.

Hadoop 0.19.x required in a default installation for providing the Hadoop Dis-
tributed FileSystem to HBase servers.

OpenSSH HBase needs the ssh command-line client to remotely start and stop
the HBase master and region servers.

NTP the system time on each node in an HBase cluster is assumed to be in basic
alignment. A Network Time Protocol client may be used to synchronize
time on the nodes.

Configuration at minimum each HBase region server needs to know the loca-
tion of the HBase master server, and the path to the shared filesystem be-
tween all HBase servers. This can be configured using the hbase.master and
hbase.root configuration keys respectively. Additionally, in a default HBase
setup the location of all region and master servers are stored in a textfile to
automate SSH commands for starting and stopping HBase.

3.1.2 Shared filesystem

In order to successfully run a HBase installation, each HBase “region server”
needs to have access to a filesystem which is shared among all HBase region
servers. HBase uses various built-in filesystem modules provided by Hadoop
which can be configured as the shared filesystem using the hbase.root configu-
ration key, including the default HDFS, FTP, Amazon’s S3 and the local filesys-
tem. Each supported filesystem can be configured using the corresponding URL
in the hbase.root configuration key, for example to use HDFS one would configure
HBase as illustrated in figure 1.

To port HBase to XtreemOS, we should replace the default HDFS with XtreemFS
to provide a shared storage among HBase region nodes, as XtreemFS is already
available as shared storage among all XtreemOS resource nodes. The XtreemFS
client is built on top of the FUSE kernel module. This allows applications, includ-
ing HBase running in the OpenJDK Java Virtual Machine, to access XtreemFS
with regular POSIX functions on the local filesystem. Fortunately, HBase sup-
ports accessing the local filesystem using the file:// URL in the hbase.rootdir con-
figuration key, which we have used to point to the user’s XtreemFS home direc-

6

<property>
<name>hbase.rootdir</name>
<value>hdfs://my.host.com:9000/hbase</value>
<description>The directory shared by region servers.
Should be fully-qualified to include the filesystem to use.
E.g: hdfs://NAMENODE_SERVER:PORT/HBASE_ROOTDIR
</description>
</property>

Figure 1: Example HBase configuration when using HDFS as shared filesystem

[

3
I
|
Bl B!
= — |
|
|
|

7/

7/

I N —

(a) Initially reserve all nodes. (b) AEM schedules the pro- (c) Keep reserving and sub-
gram on one node from the mitting until enough pro-
reservation. Now we reserve grams running.
all remaining nodes.

Figure 2: Scheduling jobs in AEM on different resource nodes using reservations

tory. This way we where able to run HBase region servers using XtreemFS as
shared storage. Therefore, to replace the Hadoop Distributed FileSystem (HDFES)
with XtreemFS to provide a shared storage among all HBase region nodes, we did
not need to modify the HBase source code.

3.1.3 Remote execution

In aregular HBase installation, the bin/start-hbase.sh and bin/stop-hbase.sh scripts
are used to start and stop HBase using remote SSH commands, respectively. The
location of each HBase region is written in the configuration file conf/regionserver,
which is read by these scripts in order to connect to the right SSH daemon.

For running the HBase region servers on XtreemOS it is important that the
AEM schedules them on different resource nodes, as otherwise there would be no
performance gains if multiple HBase region servers are launched multiple times
on the same machine(s), or worse it could overload them. At the time we ported
HBase, the AEM supported multiple-process jobs but unfortunately could not
guarantee that different physical nodes would be used for each process. How-
ever, it supports reservation of resource nodes. By reserving XtreemOS resource
nodes, an application can supply AEM with a number of machines of interest, and
the time at which the application wants to use them. The application is then able to
run a program on any of the reserved machines. It is then possible to only reserve
resource nodes, which the application knows it has not yet started an instance of
it’s program, as illustrated in Figure 2. Our current HBase implementation uses
this method to run HBase on different XtreemOS resource nodes.

With current improved support for multiple-node jobs in the AEM we should
now be able to greatly simplify the deployment process.

3.1.4 Time synchronization

HBase region servers are expected to have their system time synchronized to the
system time of the HBase master server. HBase developers suggest to use NTP to
synchronize clocks across the system. In a grid environment such as XtreemOS
it may not be guaranteed that each node has it’s system time synchronized, and
that all nodes reside in the same timezone. Our current implementation of HBase
on XtreemOS does not deal with this problem and assumes that system times are
correctly synchronized.

3.1.5 Configuration

HBase is configured using two XML files: conf/hbase-default .xml con-
taining the default configuration and conf /hbase-site for user configuration.

Configuration for HBase region servers is expected to be in a known location, and
should be available for each HBase server.

In a grid environment such as XtreemOS, no assumptions can be made on the
contents of the local filesystem in each resource node, such as the location and
access permissions of configuration files, as the resource nodes where HBase is
scheduled on may change each time it is restarted with a new job. Therefore
we use XtreemFS to store the HBase configuration for both the HBase mas-
ter and region servers. An advantage is that the user can configure all HBase
servers using one configuration file, instead of configuring each region server in-
dividually as in the default HBase distribution. Administrators of XtreemOS re-
source nodes can override the HBase user configuration when appropriate. The
conf/hbase-default.xml file on the XtreemFS is a symbolic link to the
conf/hbase-default .xml configuration file in the default /usr/share/hbase
HBase installation directory to allow configuration overrides per XtreemOS re-
source node. The conf/hbase-env. sh file on the user’s XtreemFS home di-
rectory, containing HBase environment variables, also reads the conf /hbase-env. sh
if available to also allow overrides of environment variables. For example, HBase
can be configured to consume a maximum amount of system memory with the
HBASE_HEAPSIZE environment variable in the conf/hbase—env. sh file.
Administrators of XtreemOS resource nodes can set this value to an acceptable
level based on the amount of system memory available on the resource node.

3.1.6 Automating administration

To automate the process of submitting jobs to start and stop HBase on XtreemOS,
we have written four python scripts which automatically edit the HBase XML
configuration files, especially the hbase .master configuration key. This con-
figuration key contains the location of the currently active HBase master and needs
to be edited each time the HBase master is started on the XtreemOS grid, as the
resource node chosen by AEM to run the HBase master may change. Figure 3
illustrates the interaction between the HBase python scripts, AEM and XtreemFS.

3.2 User Programs
3.2.1 hbase-xo0s

Users can start and stop HBase on an XtreemOS grid using the hbase-xos pro-
gram. It supports the actions start, stop, restart, status and setup. setup must be
used by the user to initialize HBase configuration in the user’s XtreemFS home
directory before starting HBase on XtreemOS. start, stop and restart are used to
start, stop and restart HBase on XtreemOS respectively. status may be used to out-

9

put the current status of HBase, whether it is running and optionally on which re-
source nodes. hbase-xos optionally accepts command-line arguments to print
out help information, enable verbose debugging output, override the location of
the HBase configuration and data, the number of HBase regions to be started or
stopped and the location of the XtreemOS user certificate to authenticate to AEM.

3.2.2 hbase-xos-master

When submitting a job to AEM to start the HBase master, hbase—-xos constructs
a JSDL to start the hbase-xos-master script. Once started on a XtreemOS
resource node, it is responsible for overwriting the hbase .master configura-
tion variable with it’s own IP address. After updating the HBase configuration,
it invokes an HBase master server. Although possible, this script should not be
called directly by users.

3.2.3 hbase-xos-region

After hbase-xos has submitted a job to run the HBase master, it starts sub-
mitting JSDL jobs to run the hbase-xos—-region program. It is used to start
an HBase region server and like hbase-xos-master it should not be directly
invoked by users.

3.2.4 hbase-xos-setup

To initialize the user’s HBase configuration, hbase—-xos submits a job to run
hbase-xos-setup on any of the XtreemOS resource nodes. It creates ini-
tial XML files and points symbolic links to the appropriate files. Per default
hbase-xos-setup initializes HBase configuration in .hbase in the users
XtreemFS home directory.

3.3 Deployment

Mandriva does not currently have a standard HBase RPM package. For easy in-
stallation of HBase we have created a RPM package “hbase” for the default HBase
installation and an XtreemOS-specific “hbase-xos” package containing the python
scripts for managing HBase on XtreemOS.

HBase-xos is documented through man pages (“man hbase-xos”) and the ~help
command-line argument for a brief description of its syntax.

10

Figure 3: hbase-xos interacts with AEM to submit HBase jobs to XtreemOS.

3.4 Performance Evaluation

In this section we present the performance of HBase on XtreemOS we measured.
For the performance tests we used three nodes from the VU testbed: node004,
node005 and node007. Each node had the following hardware and software in-
stalled:

e Processor: dual core 996.928 Mhz pentium III Coppermine
e Memory: 1 GB

e Disk: 20 gigabyte Seagate ATA disk

e Network: Intel Pro 100Mbit ethernet card

e XtreemOS: version 1.0 RC1

e Kernel: 2.6.20-0.5mdvsmp

e Java: OpenJDK 1.7.0

e HBase: version 0.19.2

e XtreemFsS: version 1.0 RC1

e Hadoop: version 0.19.1

We benchmark our HBase installation using the Per formanceEvaluation
program, which is included in the official HBase distribution. This program sup-
ports 5 different tests: random reads and writes, sequential reads and writes and
scanning. It starts a given number of HBase clients as a local process or a MapRe-
duce job. A similar number of HBase region servers should be started for each
test, to spread the load generated by the clients among the available HBase region
servers. For our tests we configured PerformanceEvaluation to read and write

11

XtreemFS 1.0 RC1 —+—
HDFS 0.19.1 —----

Y

Rows per Second

(a) The Sequential Read test performs a (b) Performance results.
read on each row key in order.

Figure 4: Sequential Read test

512 MB of data, and used 64 MB regions in HBase. For comparison with the de-
fault Hadoop Distributed FileSystem (HDFS) included in HBase, we used version
HDES 0.19.1.

Each node ran an XtreemFS MRC and OSD service, or a HDFS Datanode
respectively. Node004 ran the HBase master, and node007 the PerformanceEval-
uation test, and all nodes ran an HBase region server as required by the tests. The
XtreemFS and HDFS services where restarted on each test, to prevent caching to
pollute the performance measurements. For the same reason all HBase master and
region servers where restarted before each test was ran.

3.4.1 Sequential Read

The Sequential Read test performs a single read operation on each row in HBase
in lexicographical order, as illustrated in Figure 4(a). Figure 4(b) displays the
number of 1000-byte rows read per second. XtreemFS seems to be almost twice
as fast as HDFS on Sequential Reads. Both filesystems perform very well.

3.4.2 Sequential Write

Sequential Write performs the same test as Sequential Read, except that it writes
a new value to each row instead of reading, as Figure 5(a) illustrates. Prformance
results are presented in Figure 5(b). For Sequential Writes HDFS appears to be
twice as fast as XtreemFS. The throughput barely increases when adding region
servers with XtreemFS, while HDFS shows an increasing line. However with
three region servers, throughput seems to decrease with HDFS.

We believe that the relatively poor write performance of XtreemFS is due to
the fact that the tested version updates file metadata synchronously upon each

12

y

(a) The Sequential Write test performs a
write on each row key in order.

Rows per Second

1400

1200 |

1000

400

200 [

800

600

XtreemFS 1.0 RC1 —+—
HDFS 0.19.1 ----

,,,,,,,,,,,,,,,,,,

2 3
Region Servers

(b) Performance results.

Figure 5: Sequential Write test

Rows per Second

(a) The Random Read test requests a read
on each row key in random order.

600

100

XtreemFS 1.0 RC1 —+—
HDFS 0.19.1 —x---

(b) Performance results.

Figure 6: Random Read test

block write. The current XtreemFS release now supports asynchronous metadata

3.4.3 Random Read

updates, which should significantly improve these measurements.

In practice, HBase clients may not read or write row keys in order. The Random

13

Read test measures the performance of single read operations on all row keys in
random order, as illustrated in Figure 6(a). Figure 6(b) displays the performance
results. As in the Sequential Read test, these results show that XtreemFS is faster
on Random Reads than HDFS. Both scale very well when adding region servers.

1200
XtreemFS 1.0 RC1 —+—
HDFS 0.19.1 —-x---

foo o T o

""""""""""

800

600

400 \/

200

Rows per Second
<

1 2 3
Region Servers

(a) The Random Write test requests a write (b) Performance results.
on each row key in random order.

Figure 7: Random Write test

3.4.4 Random Write

Like reads, HBase clients may not write to row keys in the order as they appear
in the map, as illustrated in Figure 7(a). Random Write measures HBase per-
formance when writing to row keys in a random order. Figure 7(b) presents the
results of the Random Write test. Like in Sequential Write HDFS is much faster
than XtreemFS. XtreemFS shows a slight performance increase with three region
servers, but a performance drop with two region servers. The decreasing line of
HDFS shows that it does not scale very well with Random Writes.

3.4.5 Scans

HBase supports scanning of row ranges. With a scan, HBase clients can read a
range of rows a once, as illustrated in Figure 8(a). Scanning reduces the com-
munication overhead between the HBase client and region servers. Performance
results are shown in Figure 8(b). For a single node setup, XtreemFS is faster
than HDFS. However HDFS scans twice the rate of XtreemFS with more than
one region server. HDFS shows better performance increases when adding region
Servers.

3.4.6 Discussion

Our performance evaluations show that HBase performs well on XtreemOS and
allows Grid developers to write scalable data-intensive applications easily.

The evaluations also confirm the potential of XtreemFS to significantly out-
perform well-known state-of-the-art distributed file systems such as HDFS. Per-
formance for read-intensive workloads is indeed much better than using HDFS.

14

10000 -

XireemFS 1.0 RC1 ——
HDFS 0.19.1 --x---
9000 L

8000 [
7000 |
6000 [

5000

Rows per Second

4000 |~
3000 [
2000

1000

2 3
Region Servers

(a) The Scan test requests a read from a (b) Performance results.
range of row keys.

Figure 8: Scan test

On the other hand, these tests allowed us to attract the attention of XtreemFS de-
velopers onto the relatively poor write performance of XtreemFS. Such effects are
likely to be caused by the synchronous metadata update strategy implemented by
XtreemFS at the time of our benchmarks. The current XtreemFS supports asyn-
chronous metadata updates, which should allow significant write performance im-
provements. Confirming this is in our immediate agenda.

4 Conclusion

Cloud computing emerged as a new paradigm for utility computing after the start
of the XtreemOS project. Although such developments were impossible to predict
at the first stages of the projects, the XtreemOS technology is XtreemLY relevant
to Cloud computing:

e XtreemOS is directly comparable to a full [aaS platform;

e XtreemOS is a good platform to further develop PaaS functionality, as demon-
strated by our port of the HBase database.

We hope that these results contribute to making XtreemOS a major platform
for utility computing in the coming years.
References

[1] Amazon.com. Amazon SimpleDB. http://aws.amazon.com/
simpledb.

15

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable : a distributed storage system for structured data. In Pro-
ceedings of The 7th USENIX Symposium on Operating Systems Design and
Implementation, pages 205-218, 2006.

[3] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and
Ramana Yerneni. PNUTS: Yahoo!’s hosted data serving platform. In Pro-
ceedings of the 34th International Conference on Very Large Data Bases,
pages 1277-1288, 2008.

[4] Jeremy Geelan. Twenty-one experts define cloud computing. Cloud Com-
puting Journal, January 2009. http://cloudcomputing.sys—con.
com/node/612375.

[5] HBase. An open-source, distributed, column-oriented store modeled after
the Google Bigtable paper. http://hadoop.apache.org/hbase/.

[6] Yvon Jégou and Jérome Gallard. Evaluation of Linux native isolation mech-
anisms for XtreemOS flavours. XtreemOS deliverable D2.1.6, January 2009.

[7] Avinash Lakshman, Prashant Malik, and Karthik Ranganathan. Cassandra:
A structured storage system on a P2P network. In Keynote talk at the ACM
SIGMOD international conference on Management of Data, 2008.

[8] Werner Vogels. Eventually consistent. Communications of the ACM,
52(1):40-44, 2009.

[9] Zhou Wei, Jiang Dejun, Guillaume Pierre, Chi-Hung Chi, and Maarten van
Steen. Service-oriented data denormalization for scalable web applications.
In Proceedings of the 17th International World Wide Web Conference, Bei-
jing, China, April 2008.

[10] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. Scalable transactions for
web applications in the cloud. In Proceedings of the Euro-Par Conference,
Delft, The Netherlands, August 2009.

[11] Wikipedia.org. Hype cycle. http://en.wikipedia.org/wiki/
Hype_cycle.

[12] Wikipedia.org. Infrastructure as a service. http://en.wikipedia.
org/wiki/Infrastructure_as_a_service.

16

[13] Wikipedia.org. Platform as a service. http://en.wikipedia.org/
wiki/Platform as_a_service.

[14] Wikipedia.org. Software as a service. http://en.wikipedia.org/
wiki/Software_as_a_Service.

[15] Wikipedia.org. Statistical multiplexing. http://en.wikipedia.org/
wiki/Statistical_multiplexing.

17

