Xtreemog' 'B

Enabling Linux . .
for the Grid N Information Society
Technologies

Project no. IST-033576

XtreemQOS

Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Basic services for application submission, control and checkpointing
D3.3.3
Basic service for resource selection, allocation and monitoring
D3.3.4

Due date of deliverable: November 30th, 2007

Actual submission date: December 19th, 2007

Start date of project: June 1" 2006

Type: Deliverable

WP number:3.3

Task number (optional):

Name of responsible: Toni Cortes

Editor & editors address: Julita Corbalan. Julita.corbalan(@bsc.es
Gregor Pipan . gregor.pipan@xlab.si

Version 5.0/ Toni Cortes / 19/12/2007

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU Public v

PP Restricted to other programme participants (including the Commission

RE Restricted to a group specified by the consortium (including the

Cco Confidential, only for members of the consortium (including the

Keyword List:

IST-033576

Revision history:

Version Date Authors Institution Sections Affected / Comments
1.0 26/09/07 Julita Cotbalan BSC First proposal
1.1 8/11/2007 Gregor Pipan, XLAB Installation guide
Matej Artac Resource Management
Ales Cernivec Config description
Eva Milosev Ganglia
Uros Jovanovi¢ Resource Allocator
3.0 12/11/2007 | Julita Corbalan BSC Re-otrganization and first validation
4.0 14/11/2007 | Toni Cortes BSC Executive summary and review
5.0 14/12/2007 |]Julita Corbalan BSC Reviews included
5.0 19/12/2007 Toni Cortes BSC Include conclusions and future
work
Reviewers: Yvon Jegou and Luis Pablo Prieto

Task related to this deliverable

Task number

Task description

Partners involved

T3.3.3

Basic services for job management

BSC*, XLAB

T3.3.4

Basic services for resource management

XLAB*,BSC

This task list may not be equivalent to the list of partners contributing as authors to the deliverable

*Task leader

XtreemOS - Integrated Project

2/41

IST-033576

Merging deliverables D3.3.3 and D3.3.4

When writing the DoW for XtreemOS, before the project started, we had the intention of
making a clear difference between job and resource management services. For this reason, we
planned parallel deliverables to describe the advances in both resource and job management.
After a year and a half of working on the application execution services, we have concluded
that we can make a much better work if we design and implement both kinds of services in a
more coupled way.

On one hand, we can share the same architectural infrastructure (already presented in D3.3.2
and updated in this deliverable). Sharing this part of the code has many advantages: reduce
the developing time, make more stable code (it naturally gets much more tested), simplify
very frequent interactions, etc.

On the other hand, and in order to take good decisions, both sets of services need to cooperate
very frequently and designing and implementing them as a whole (as opposed to two different
set of services) allows a much better cooperation.

For all these reasons, we have worked both set of services as a single set and thus we believe
that we should deliver them as a whole, thus we have merged D3.3.3 (job management
services) and D3.3.4 (resource management services) into this single document.

Executive summary

In this deliverable we present the first prototype for the Application Execution Management
(AEM) services (job and resource). In this very initial prototype, we support the execution of
both sequential and parallel (master/slave) jobs but always restricted to a single resource
(although it can be a cluster). We can also send events to a job (currently all Linux signals).
And finally, it is also possible to request information on the status of a job and of a resource.

It is important to keep in mind that the current prototype has not been integrated with the rest
of prototypes and thus runs in a standalone way. Integration with other services such as VOM
(Virtual Organization Manager) and ADS (Application Directory Service) will be performed
in the next 6 months.

After some initial tests, we have decided to move the architecture to a staged architecture
(SEDA) and the implications it has on the architecture presented on D3.3.2 are also presented
in this document. It actually does not mean great changes in the components, but just on how
they are implemented. In addition, we also present XATI (XtreemOS Application Toolkit
Interface), the interface AEM will export. The good thing of this interface is that it is
automatically generated and thus exporting functionality to the user is as simple as adding
some notation to the internal call and when compiled the user library to call it will be
automatically generated.

After the architecture is presented, we also give a detailed description of the installation and
user guides including commands, API and some examples.

XtreemOS - Integrated Project 3/41

IST-033576

Finally, a set of appendixes describing internal tools such as the resource console (which is
also delivered in this prototype but it is mostly designed for internal use), the description of a
new service that has not been presented in any previous deliverable (cron), and some
additional information such as the java libraries used.

XtreemOS - Integrated Project 4/41

IST-033576

XtreemOS - Integrated Project 5/41

IST-033576

Table of contents

1 DESCRIPTION OF PROTOTYPEcovtiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeerereeeeeeeeees 8
1.1 JOB MANAGEMENT SERVICESuuuttiiiiieeeiiiiiiiirreeeeeeeeeeeiiisrreeeeseeeesiesssseesseseeeensisrneseeeens 8
1.2 RESOURCE MANAGEMENT SERVICESccuuuuuuuuuururururresrsrsssrsssssssssssmnssssssssssmssnsssnnsssns. 9

2 AEM ARCHITECTUREuuutiriiiieeeeeeieiiitreeeeeeeeeeeeettaeeeeeeeeeeeeiaassaeeseseeeensnsssseeeseeeesensnssnneeeeees 11
2.1 DATA FLOW oottt a s asasassssassassssssssssssssssssssssssssssssssssssnsnsnsssnnns 12
2.2 AEM ARCHITECTURE — SERVICE STAGEcccotetttrrriiieeeeeieiiirreeeeeeeeeeeseiareeeeseeeeeenennnes 12
2.3 CREATING A NEW SERVICEuuuuuuuuuuuununuernssssssssssssssssssnssssssssmsssssssssssssssssnsssssssssssnnsssnnne 13
2.4 LINKING EXTERNAL SERVICES TO THE AEMoouuuiiiiiiiiiiiiiiiieieiiiieiieeieessevsvaeasaaaaanns 14

3 XATI: XTREEMOS APPLICATION TOOLKIT INTERFACEccoovvvviiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeee 15
3.1 WRITING XATIT APPLICATIONS ...uuvvvrreiieeeeiieiirreeeeeeeeeeeieisrrreeeseeeeeeesssseeeseseessmsesnneeseeens 15

4 INSTALLATION AND CONFIGURATION GUIDE........cuuuuuuuuurururrererensesssssssssssssssssnsssssssssssnnnnnnnees 17
4.1 SYSTEM ENVIRONMENTuvvviiieeeiiieiirreeeeeeeeeeeiiitrreeeeeeeeeeeeiasseeeseseesensesrrsseeseeeesonsnnsens 17
4.2 INSTALLING AEM FROM SVNuuuuuuuuuuuuuerrurrerrssssesssmsssnsssssssssssssssssssssssssmssssssssssnsnnnnsnnn. 17
4.3 INSTALLING AEM AS ECLIPSE PROJECT.......ccooiiiuiriiiiiee et 18
4.4 INSTALLATION OF C-LIBRARIES.......uuuuuuuuuuuuureurunerssussssssssssssmsssssssssssssssssssssssssssnsnnnnsnn. 18
4.5 INSTALLATION OF GANGLIA MONITORING FRAMEWORKcuvvvuuuiererereinrneereesreennnennnnns 19
4.6 INSTALLATION OF JAVA VO ...uuuuuiiiueiueeieeerieeeeisesassssssssssssssssssssssssssssssssssssnsssssssssnnnnnssnnne 19
4.7 RUNNING XOS DAEMON - CONFIGURATIONcuvvveiieeeeeiieiirreeeeeeeeeeniisnreeeeseeeessnsnnnens 19
4.8 HOW TO RUN XOS DAEMON?.....cuuuuuuuuuurereenenrsesssssssssssnsssssssssssssssssssssssssannarsrs....————————. 20

5 USER GUIDE ..uuvveiiiiiiiieiiiieeeee e e e e eeeetereee e e e eeeeetaaaaeeeeeeeeeesestaaeaesseeeeeesstsssaeeseeeeeensesssssaeeseeeenanns 22
5.1 XCOMMANDS AND XATIMETHODScuuuuueuuuererererererrrrrrsssrresessnssesssssssensnsnreesea————.. 22
5.2 JOB SUBMISSIONcoooittrreiieeeeeeeieitrreeeeeeeeeeeiirreeeseeeeeessiissrreeeseeeeeaesssssreeseseesonsirrnreseeens 23
5.3 RESOURCE MANAGEMENTccuuutuuuuuuueuuusrereessesesesssssssesemsssssmssesensseseaes......—.—————————— 24

6 CONCLUSIONS AND FUTURE WORK ...cceiiiiieiiiiirreeeeeeeeeeeiittneeeeseeeeeeninsreeeseseesemssssssseeesseeenanns 26

A 123 0 (0161 27N & G 27

APPENDIX — RESOURCE MANAGEMENT CONSOLE.......cccoiuvrriieeeeeeeiiitirreeeeeeeeeeesirrneeeeeeeeeeennnnnes 27

APPENDIX — RESOURCE MANAGEMENT CONSOLE........cuuuuuuuurutrurererereessssesrnsresssrssmsssssssssnsnn... 28

APPENDIX — EXTERNAL LIBRARIESuuuuuuuuiiiiiunieinaneeenensesesnessssnssessessnssssssssssssssesasssssssssssnsenaneee 36

XtreemOS - Integrated Project 6/41

IST-033576

XtreemOS - Integrated Project 7/41

IST-033576

1 Description of prototype

1.1 Job Management services

All the services provided in this prototype are designed having in mind two types of
scenarios. We will refer to the first one as shell scenario and the second one as application
scenario. Most of the users will work in the shell scenario, using what we call xcommands to
submit and monitor jobs, see Figure 1. Making a parallelism with Linux, it is the traditional
exec command+ps way of work. To work in this scenario, we provide a set of xcommands
with the most used functionality'. In the current prototype we include a shell script that offers
users a working environment similar to a UNIX shell, the xconsole. In section 5.2 some
examples can be found about how to use it. The xconsole offers a prompt where users can
execute the different xcommands existing in the prototype both for job management and for
resource management.

Figure 1 shell scenario

$vi example.jsdl

$xsub -f example.jsdl
801929a6-9acl-4f1b-8cl18-0267958a0ad4a has been submitted
$xps —Jj 801929%9a6-9acl-4f1b-8cl8-0267958a0ada

The application scenario is a context where an application, for instance a SAGA[S5]
application, acts as an orchestrator, submitting and managing jobs, see Figure 2. For this kind
of applications, we will provide a more complex and powerful API. However, in this basic
prototype, a subset of the xcommands and AEM API is provided. The prototype implements
the AEM architecture and API mechanisms to be used with Java applications. In next releases
support for C applications will be provided.

Figure 2 Application scenario

#include <XATI.h>

void main(int argc,char ** agrv)

{
int ret;
jobID j1,32;
statusJob exitl,exit2;
ret=createdob (»testl.jsdl«, &jl);
if (ret<0)
ret=createJob (»test2.jsdl«, &jl);
if (ret<0)
waitjob(jl, &exitl);
waitJob(j2, &exit2);
printStatus(exitl) ;printStatus(exit?2);

In this document, we present the API in its current status, only with features supported. Most
of them will change in the next release, supporting extended/advanced functionality.

! From now on, the symbol = will represent the prompt of the Shell.

XtreemOS - Integrated Project 8/41

IST-033576

The prototype includes submission of sequential and parallel jobs. Job submission can be
done either by the AEM API (createjob and runJjob) or through the specific command line
(xsub). Jobs are described using a JSDL file [2] that includes the description of the executable
and resource requirements. We only support execution of parallel jobs where the AEM starts
the first process of the job and the rest is created by the first one. In the case of MPI jobs, only
parallel jobs running in a single resource is supported. We will also refer to applications using
the AEM API as XATI (XtreemOS Application Toolkit Interface) applications, since this is
the name of the automatic framework used by AEM developers to automatically generate the
AEM APL

Concerning scheduling, a first scheduling algorithm is provided, where the first resource
available is selected. In the current prototype, no advanced reservations are provided, so the
only criteria to select the resources will be resource requirements.

Job Submission will return a jobID with format UUID [3]. In a similar way to PID’s in Linux
kernels, the jobID is unique within the VO and is the handler that allows users to manage the
job after the submission (job control operations).

Concerning job monitoring, basic services are provided for accessing job information. In the
case of a shell scenario, we provide a xps command that returns information for all the jobs of
a user (in a VO) or for a single job. In the current prototype, we return the jobID, the list of
nodes where the job is running, the Ilist of processes, the status of the job,
submission/user/system time, and the exit status.

In the application scenario, we provide the same functionality but divided in two AEM calls:
getJobID (returns the list of all the joblDs of the user), and getjobinfo (returns the
information available for the job).

Concerning job control operation, we support cancelling jobs and implicit exit of jobs.
Send/receive UNIX signals is also supported.

1.2 Resource Management services

In the current prototype, most of the resource management functionality is internal to the
AEM. In the advanced version we plan to export some of the functionality supported
internally in the AEM APL

Current resource selection is basically a filter of attributes. Since we are using the JSDL as
submission language, we support JSDL resource requirements in the current prototype and we
will include some extensions to support specific XtreemOS requirements such as geographical
limitations in the next release. The resource filtering process is done by WP3.2. They will
provide a list of resources that fulfill job resource requirements to start the negotiation
process. The list of attributes currently supported in the JSDL schema is:

e ExclusiveExecution

e OperatingSystem (Maybe this should be ignored and restricted to XtreemOS)
e CPUArchitecture

¢ Individual CPUSpeed

¢ Individual CPUCount

¢ IndividualNetworkBandwidth

XtreemOS - Integrated Project 9/41

IST-033576

IndividualPhysicalMemory
Individual VirtualMemory
Total CPUCount
TotalPhysicalMemory
TotalVirtualMemory

TotalResourceCount

In the current prototype we support three features: resource selection based on JSDL
requirements, weigthed resource resource selection based on JSDL requirements and basic

resource monitoring. The resource monitoring is based on Ganglia [4].
prototype, we only support resources belonging to a single VO.

In the current

Resource allocation is supported without reservations, and no external resources managers
(MAUI, SLURM) are supported. Resource allocation and enforcements is based on the fork
and ptrace system calls.

XtreemOS - Integrated Project

10/41

IST-033576

2 AEM architecture

This section describes the main changes from what was described in D3.3.2 in regards
message communication and service implementation. We have decided to follow the SEDA
concept [1] to implement components described in the architectural document (see ;jError!
No se encuentra el origen de la referencia.).

AEM architecture is based on the staged event driven architecture — SEDA concept [1] first
published by Matt Welsh. The architecture enables us to decouple complex services into
stages, and use concept of event — message passing for communication between them. In
addition such architecture proves to be highly scalable, and provides good performance under
high load. In a nutshell, SEDA is a set of classes, which implement event handler, which is
automatically triggered as soon there are some incoming messages, and message queue,
which is called by a stage, which wants to send a message to a particular stage.

Figure 3 AEM Architecture

Mode 0 ity g
XATI -+
Services
Resource| [Resource
ResMng |\ yonitar || Maonitor
Daeman Exechng| [JobMng
SEDA

Mode 1 ‘ Maode b \-I
s Resource| |Resource B IS Resource| |Resource
Reshng Wl anitar Wl anitar Reshng M anitar W anitar
Daermon Exeching| |Jobhing Dagrmon Exeching| |Jobhing
AEM SEDA architecture is composed of following objects:
e Event Machine — is a root object, which is used to load stages, and connects

queues.

XtreemOS - Integrated Project 11/41

IST-033576

® Message Bus Stage— is an object, which provides communication -capabilities
between various stages. It parses through message header, and based on the
information found, sends message to the appropriate service.

e Communication Stage — is used to send and receive messages from the network
interface(s).
e A Service— any service, which is handled by the SEDA server, is connected to

message bus through a simple interface.
In order for AEM to run, there have to be running at least following stages: Communication
Stage, and MessageBus Stage. These two stages are started by default, and can not be turned
off. For each user service developed, a new stage is created as, for example, information about
daemons network: Daemon (Stage). See below for more information about creating a service.

Network communication: By default Communication Stage creates an appropriate object
which implements IServer interfaces (see CommunicationFactory and ServerNIO), and
provides network connectivity. IServer is started in separate thread (automatically done so by
CommunicationStage), and does listen to selected port. In parallel to IServer object a ISender
object is created, which is used to dispatch out bound messages to network device - similar
approach with factory is used here.

Event Messages: There are 4 important message types defined in the core architecture:

NetlncomingMessage - incoming network traffic
NetOutgoingMessage - outgoing traffic

ServiceMessage - to send messages between services in the daemon
CallbackMessage - used to specify return path of the message

2.1 Data flow

First a message is received on a network device and sent to ServerNIO. ServerNIO package
call callback supplied by CommunicationStage with following information: ByteBuffer
message, SocketAddress localAddress, SocketAddress
remoteAddress. After this message is forwarded to Communication Stage, through a
callback is called, the information is packaged into NetIncomingMessage and send to
MessageBusStage. At this point the message is in the MessageBusStage queue and will be
handled as one of the following kind of messages, which are accepted by MessageBusStage
(NetIncomingMessage, NetOutgoingMessage, and ServiceMessage).

e As described earlier, where in the case of NetIncommingMessages, strips out the
message buffer, and serialize it to ServiceMessage, which is than dispatched to the
appropriate service.

* One a message is received by a Service, where the message is of ServiceMessage type,
a switch is used to call appropriate method.

e When some information is to be send outside the daemon a NetOutgoingMessage is
created, which embeds ServiceMessage, and possibly CallbackMessage, and then in
similar (but reversed) way dispatched to CommunicationStage, which uses ISender
object to send the message to network device.

2.2 AEM architecture — Service Stage

The design of the AEM is meant to be simple, but provide good and stable support for
running various services (i.e. Job Manager). As SEDA objects have already been described,
we shall focus on the design of the Service stage.

XtreemOS - Integrated Project 12/41

IST-033576

Figure 4 AEM stages
/ AN

AEM XOSD

NETWORK
XOSD - XOSD
XATI - XOSD

J9OV.LS NOLLYIINNWWOD
.‘;
sng 39vSSaw

There are several utilities, components, which helps in the process of writing a service.

e Abstact stages - provides basic stage functionality, with or without input output
message queues and handlers.

e Service Processor - generates the APIs required to allow calling the service from
other services or from user code.

e xosd (EventMachine, CommunicationStage, MessageBusStage) are facilities, which
provide access to network devices, and handle all the tedious work with creating
threads, handling queuing, sending and receiving messages.

At the end of the day, the goal of the framework is, to provide developer all necessary tools,
which would speed up the service development, and reduce unnecessary time spending
debugging distributed architecture. Figure 4 shows some of the current stages in AEM
architecture. Cron service is a new service used to schedule the execution of any code, see
Appendix for more details.

2.3 Creating a new service

Service by definition has to implement IStage interface, which allows the system to be
handled by event machine. For the developer convenience we have provided several
abstracted version of the stages, which already implement some common functionality.

e AbstractStage - provides basic thread handling

® AbstractReceivingStage - extends AbstractStage, and provides facilities to receive
requests (incoming queue, abstract event handler for the incoming messages).
Incoming queue is, when used in xosd automatically connected to MessageBus Stage,
which will automatically forward all received messages addressed to this service.

e Abstract2wayStage - extends AbstractReceivingStage with sending capabilities,
where the outgoing queue (named sink), is linked to MessageBus Stage (MessageBus
Stage will receive all the messages, send by this stage).

Implementation of a service:

XtreemOS - Integrated Project 13/41

IST-033576

The Service skeleton, see Figure 5, does implement basic service, which can be included in
the xosd daemon

Figure 5 Example of simple xos service

@XOSDGLOBALSERVICE
public class Daemon extends Abstract2wayStage {

public Daemon () {
// this constructor provides name to the
thread
super (getShortName (Daemon.class.getName ()));

}

public void init () {
// : provide initialisation for the
service

}

@XOSDXATICALL
public ArraylList<CommunicationAddress> getDaemons () {
return list;

}

public void handleEvent (Object event) throws
Exception{}
public String getHandledEventType () {return "";}

First of all, Daemon class extends one of the provided abstract stages, which gives it various
capabilities. Additionally we have to tag the whole class with "exospcrosanservice", which
will generate following code:

® 'pwd'/service/${Name}Handler.java Linkage code to the MessageBusStage

® 'pud'/service/${Name}CB.java Methods to create specialised
CallbackMessages

® cu/xtreemos/xati/API/${Name}.java XATTI interface for client program

developer convenience

Second important information which the developer has to provide is information of the
method visibility.

XATTI access: In order for XATI to access a function in the service a method has to be
annotated with "exospxaricart" (see Figure 5). After completing the service you have first to
run service processor, which will generate the aforementioned files, which will allow writing
all the code, which calls these services.

2.4 Linking External Services to the AEM

The AEM services depend also on several external services — i.e. directory service or resource
selection service provided by WP3.2. The access to these services is provided through proxy
services, which decouple the AEM code from an API provided by a specific service.
Integration with external services will start after month 18.

XtreemOS - Integrated Project 14/41

IST-033576

3 XATI: XtreemOS Application Toolkit Interface

AEM API is automatically generated by the XATI framework developed in the context of
WP3.3. XATI framework will provide an easy access to the public part of the AEM
functionality, where currently we foresee supporting XATI for Java and C applications. At the
current time, it is only available for the java API, however, we plan to have it accessible also
for C code. General XATI architecture is depicted on Figure 6:

Figure 6 XATI application > AEM interface

%

—

% :] S 5

5 |E————» & 3

3 |7 g

g' § Java o =

=3 S object

g J X0SD

IdV-dsSOoX
103[qo eAel «>dLUaDH

ERIVVEN
ILVX-TWX

<INFO>
<Command> createJob</command>
<param> -f </param>
<param> kmines.jsdl </param>
</INFO>

uoneordde
D IdV-ILVX

First important feature of XATI is that it is capable of operating in two distinct modes. In the
first mode, XATI is composed of a Java client side, which is capable of wrapping XATI calls
to native XOSD format, where on the other hand we have C applications, which do not have
capability to create Java objects, and therefore communicate with XOSD through a XML
formatted messages. This distinction is presented in the figure above. In this prototype we will
only provide Java interface, however, the same mechanism is suitable for any other language.

3.1 Writing XATI applications

As we have mentioned before service deployed in XOSD can easily annotate methods as
XATI methods, which will generate XATI client code, which is than called by the Java client.
An application that wants to communicate with XOSD, only has to call appropriate methods,
and all the processing is done in the background, see Figure 7.

XtreemOS - Integrated Project 15/41

IST-033576

Figure 7 Example: Using XATI to call AEM XOSD

public class XATItest {

/**

*

*/

public static void main(String[] args) {
ArrayList resourcelist =
(ArrayList)ResMng.getAllResources() ;

System.out.println(resourcelist);

)

rgs

}

Developer is provided the whole object model, which enables compile time check on the calls
to the XOSD. In section 5 we present main XATI methods offered with this prototype.

XtreemOS - Integrated Project 16/41

IST-033576

4 Installation and configuration guide

This is a description of how to install the AEM code and to have it run. Installation
instructions for various Linux distribution might vary (especially for system paths or system
variables), but based on these instructions it should be easy to adapt to other distributions.
Steps to have a running AEM environment are:

Configure the system environment

Install AEM XOSD java code, either from the INRIA svn or as eclipse project
Compile C libraries used in Execution Manager Service.

Install Ganglia monitoring framework used by the Resource Manager service.

Run the AEM XOSD daemon

4.1 System Environment

Linux

Java Virtual Machine (v6), see Appendix — Java6
Eclipse (v3.2)

gcc (v4)

subversion client

additional java libraries see Appendix — External Libraries

4.2 Installing AEM from svn

Create a folder under your home directory (~/wp3.3) for AEM to be checked out.

Get AEM source code from the inria svn server:
%$svn checkout
$svn+ssh://<user>@svn.gforge.inria.fr/svn/xtreemos/WP3.3/x0S/trunk

This results into the folder xos-code being created with subfolders:

The checkout should create at least following folders in your directory:

AllocationMng - Allocation Manager, a service

CDAMNng - an interface service to access CDA functionality developed by 3.5
Daemons - a temp service, which stores all the currently connected XOSDs
JobMng - Job manager

ResMng - Resource Manager

ResourceMonitor - a Monitoring service, which collects information from ganglia
and transforms it to GLUE schema®[6]. Resource manager uses this information to
provide dynamic information about the resources

> The GLUE Schema is an abstract modeling for Grid resources and mapping to concrete
schemas that can be used in Grid Information Services

XtreemOS - Integrated Project 17/41

IST-033576

Support - jars needed to compile the projects
VOPS - VO Policy Service - mostly part of the 3.5 functionality.

XML_access - this will be merged with XCLIService, and provides parsing
functionality to decode the XML.

XMLEXxtractor - a low level XML parsing service, which is capable of transforming
JSDL, GLUE, and other XML schema based XML files (probably policy language, ...)

XOS_SEDA - Staged Event Driven Architecture - core daemon framework, which is
capable of dynamically load any service. It also includes network communication
layer.

XOSd - starting of the daemon - configuration

XOSdCommon - some XML parsing functionality, which will be integrated to some
other project

XServiceProcessor - generator of the Automatically generated code, includes
configuration class generator

In the SVN are also some additional projects, which are result of the code generation process,

XATI - Interface for client side applications.
XOS_Services - Interface for communication service-2-service

Config files see appendix

4.3 Installing AEM as Eclipse Project

Ensure java compiler of version 6 is used! (Window-> Preferences—>Java—> Compiler).
(See section 4.6 for Java v6 installation)

Each of the points mentioned before creates one Java project. To import AEM source
code into new Eclipse projects:

o Go to “new project” wizard,

o select SVN project type (subclipse required for performing check out directly
in Eclipse)

o Enter aforementioned SVN URL into the repository path,
o Select projects you want to CO,
o Finish.

o In the Workspace you have to define a user library XOSLIBS, which includes
all the jars provided in the “Support” subfolder.

4.4 Installation of C-Libraries

The Execution Manager uses some C code for low level process management: process
creation, monitoring, etc. To use it, you have to compile it.

$cd ~/wp3.3/x0SCode/ExecMng/JINI
$gcc XExecMng.c -o XExecMng.so —-shared -I $JAVA_HOME/include/

-I $JAVA_HOME/include/linux/ -o libXExecMng.so

XtreemOS - Integrated Project 18/41

IST-033576

4.5 Installation of Ganglia Monitoring Framework

Ganglia[4] is a scalable distributed monitoring system for high-performance computing
systems such as clusters and Grids. It is based on a hierarchical design targeted at federations
of clusters. It leverages widely used technologies such as XML for data representation, XDR
for compact, portable data transport, and RRDtool for data storage and visualization. It uses
carefully engineered data structures and algorithms to achieve very low per-node overheads
and high concurrency. We use Ganglia as the basis for resource monitoring.

Installing Ganglia is elementary. In some Linux distribution, you can simply find the Ganglia
package in your package manager of choice (YAST, Synaptic,...). If not, you can download
the source (currently ganglia-3.0.5.tar.qgz) from
http://sourceforge.net/project/showfiles.php?group id=43021&package id=35280 or follow
the download link on http://www.ganglia.info. In the case of package install, there is nothing
to do but click OK.

Installation from source amounts to:

% ./configure
% make
% make install

It is not necessary to install gmetad, only gmond (= Ganglia Monitoring daemon) for
ResourceManager to work. Once there is a gmond binary in the /usr/sbin directory, the gmond
is started by typing

% ./gmond
Installation can be tested by typing

% telnet localhost 8649
If the installation was successful, and gmond is running, you should see an XML with the

description of the monitored machine. For more detailed instructions (see Appendix Ganglia-
Installation Guide).

4.6 Installation of Java v6

Java 6 is used instead of Java 5. We recommend using SUN Java to be used to run AEM
modules.

Manual installation: Get the JDK from http://java.sun.com/javase/downloads/index.jsp (5ax-
6u2-linux-i586.bin) and execute it. Copy resulting folder to /usr/1ib/jvm. Set links to new
java, javah, javac:

%cd /us r/bin/

%$1ln -s /usr/lib/jvm/jdk1l.6.0_02/bin/java java
%$ln -s /usr/lib/jvm/jdk1.6.0_02/bin/javac javac
%$1ln -s /usr/lib/jvm/jdk1l.6.0_02/bin/javah javah
Enter bash.bashrc and export path to new jdk:
$cd /etc

$export JAVA_HOME=/usr/lib/jvm/jdk1l.6.0_02

4.7 Running XOS daemon - configuration

When running the AEM XOSD server, a configuration file to initialize daemons variables can
be provided:

XtreemOS - Integrated Project 19/41

IST-033576
® rootaddress Which is comprised of IP address/port.

® services 1s list of strings, which enables user to choose which stages daemons
architecture will load at start-up.

User can not change IP (rootaddress.ip) because it is bounded to the local machine where
daemon with services is started, meanwhile rootaddress.port property can be an arbitrary
value. rootaddress.port property is passed into CommunicationStage class where server is
started on provided port value.

If user does not provide configuration file, a default file is created in daemons home directory.
Values of default variables which will be written in newly created file are set automatically.
Listing of automatically created xospconfig.conf is shown in Figure 8:

Figure 8 AEM XOSD configuration file

#Properties File for the client application

#Thu Nov 15 11:14:32 CET 2007

rootaddress.host=/84.88.50.104
services.8=eu.xtreemos.service.test.service.TestHandler
services.7=eu.xtreemos.xosd.execMng.service.ExecMngHandler
services.b6=eu.xtreemos.xosd.jobDirectory.service.JobDirectoryHandler
services.5=eu.xtreemos.xosd. jobmng.service.JobMngHandler
rootaddress.port=60000
services.3=eu.xtreemos.xosd.resourcemonitor.service.ResourceMonitorHandl
er
services.2=eu.xtreemos.xosd.xmlextractor.service.XMLExtractorHandler
services.l=eu.xtreemos.xosd.resmng.service.ResMngHandler
services.size=10

services.O=eu.xtreemos.xosd.daemon.DaemonGlobal
xosdRootDir=/home/martag/workspace—-xos

If user wants to run just some of these stages, he/she should remove lines which contain
services he does not want to run (numbering order of services is not restricted, but should be
less than services.size property).

4.8 How to run XOS daemon?

Script for running XOS Daemon is located in support/runscript folder. Execute the
following line in a bash shell:

S xosd_run.sh

Daemon is now running. In support/runscript new files are created:
® support_bin_dirs (list of root binaries of all projects)
® support_jars (list of jars from Support project)

® x0sdConfig.conf (configuration file, see D3.3.3 deliverable for description;
documentation of configuration classes are in

Support/Documentation/configGenerator.txt)

These files are used by xosd_run script to run java class XOSd with xosdconfig.conf
configuration file (if something goes wrong, user can cat these files to see if all paths are

XtreemOS - Integrated Project 20/41

IST-033576

correct). It is important that developer has directory structure of projects like on AEMs
repository.

XtreemOS - Integrated Project 21/41

IST-033576

5 User guide

5.1 Xcommands and XATI methods

Table 1 and Table 2 make a brief description of xcommands and XATI methods supported in

the current prototype.

Table 1 Xcommands supported

Xcommand

Description

Xsub -f jobdefinition.jsdl

In the current prototype, we provide a command, xsub,
for job submission. It receives a JSDL file name as
parameter. The xsub command creates and runs the job.
It waits until the job id is returned and prints it.

Xps —-j jobID

Xps —a

-Shows the info for the job with
-Shows the info for all the submitted jobs

id jobID

Xwait jobID

It waits for the finalizations of a specific job specified by
jobID

Xkill event jobID

Sends the specified event (currently UNIX signals) to
the jobID

Xrs —a

xrs —-f jsdl_file

Xrs
—cpu architectureName
—-numcpu cpuCountInterval
—ghz cpuSpeedIntervalGHz
—o0s osName
-ram RAMSizeIntervalGB

-Shows all the resources available
-Shows the list of resources that fits into the JSDL

requirements

- Shows the list of resources that fits the query expressed
in the command line. At least one of the cpu, numcpu,
ghz, os or ram parameters has to be provided. The values
of cpuCountlnterval, cpuSpeedInterval and
RAMSizelnterval can be either a single value (e.g. 1.5)
or an interval (e.g. 1.5-3). For example:

xrs -cpu x86 -os Linux -ram 1-3

selects all resources with x86 architecture, Linux
operating system and with physical memory between 1
and 3 GB

xmonctr —-node address -m

xmonctr —-node address -1

- Shows the list of attributes that are being monitored at
the node. The address has the form of IP:port. The port
can be obtained using the xrs -a command.

- Shows the details on the node by listing the values of
the monitored resource attributes. The address has the
form of IP:port

XtreemOS - Integrated Project

22/41

IST-033576

Table 2 XATI methods supported

Scope XATI call Description
Job createJob(String jsdlFilePath, . X
Submission boolean run) Creates a job based on a job
definition (jsdlFilePath
parameter). If run is true, the job
is created and submitted for
execution. Otherwise, it is only
created.
runJdob (String jobId) . .
Starts the execution of the jobld
jobControl (String jobID, int . X
Job Control operation) Only CANCEL operation is
implemented
sendEvent (String jobId, int event) X
Job Events Send the specified event (only
UNIX signals) to the jobID
getJobIDs () . . .
M J.?:b . Returns the list of jobIDs of jobs
onitoring existing in the system
getJobInfo(String jobID) X X
Returns the attributes associated
with the jobID
getResources (String jsdlQuery)
MResource ¢ Returns the resources that match
ahagemen the provided resource query.
getResInfo (CommunicationAddress X X
l\?(fljﬁgiicgg nodeAddress) Returns the information on the

nodeAddress. The returned value
consists of the resource attributes
currently selected and their
values.

getResMetrics (CommunicationAddress
nodeAddress)

Retrieves a list of the node’s
attributes that are currently being
monitored.

5.2 Job Submission
e Start the AEM:

%cd ~/Support/runscript/
%./xosd_run.sh
%./xconsole.sh

o This results into the following output, the Xconsole coming up:
XTreemOS Console
Version 1.0

$

« Once started the Xconsole, you will get a prompt where xcommands can be executed.
Now you can submit a job for execution using xsub command (see Figure 9 for a
JSDL example) :

$xsub —-f tests/kmines. jsdl

Job submitted succesfully:

XtreemOS - Integrated Project

53c92b29-9a58-4620-b7ab-2dc6d363de35

23/41

IST-033576

Figure 9 Example of JSDL file. File kmines. jsda1 has to be saved under
~/workspace/x0S/tests/

<?xml version="1.0" encoding="UTF-8"7?>
<JobDefinition xmlns="http://schemas.ggf.org/jsdl1/2005/10/jsdl">
<JobDescription>
<JobIdentification>
<Description>Execution of Kmines KDE game</Description>
<JobProject>BSC_Test</JobProject>
</Jobldentification>
<Application>
<POSIXApplication
xmlns:nsl="http://schemas.ggf.org/jsdl/2005/06/jsdlposix">
<Executable>/usr/games/kmines</Executable>
<Output>out_kmines.txt</Output>
<Error>err_kmines.txt</Error>
</POSIXApplication>
</Application>
</JobDescription>
</JobDefinition>
</JobDefinition>

¢ The output confirms a job has been submitted successfully.

¢ In order to display the process being in the system issue xps command on the
Xconsole (xps -a to show all the processes).

e Output is:
Sxps -a
JOB ID - COMMAND - JOB STATE * RESOURCE ADDR:PORT
+ PID - USER TIME - SYS TIME - PROC STATE
53¢c92b29-9a58-4620-b7ab-2dc6d363de35 —/usr/games/kmines - Done
95f6ad50-b918-4b71-8795-18ab78efe67a —-office -LocalSubmited * 84.88.50.104:60000
+ 9164 - 00:01.29 - 00:00.13 - S
+ 9149 - 00:00.00 - 00:00.00 - S

5.3 Resource management

In the same xconsole, you can type

$ xrs -a
Address = [:///192.168.0.178:60000]
Address = [:///192.168.0.219:60000]

The output shows two resources. To get the details on the resources we first check which
attributes are being at one of the resources.

$ xmonctr -node 192.168.0.178:6000 -m
operatingSystemName
processorArchitecture
CPUCount
RAMSize

We then query the details on each of the nodes.

$ xmonctr -node 192.168.0.178:60000 -1

[hostIP={Address = [:///192.168.0.178:60000]}, hostUniqueID={localhost},
operatingSystemName={Linux}, processorArchitecture={x86}, CPUCount={1.0},
RAMSize={2.146435072E9}]

$ xmonctr -node 192.168.0.219:60000 -1i

XtreemOS - Integrated Project 24/41

IST-033576

[hostIP={Address = [:///192.168.0.219:60000]}, hostUniqueID={localhost},
operatingSystemName={Linux}, processorArchitecture={x86}, CPUCount={1.0},
RAMSize={7.43440384E8}]

If we would like to select the resource with physical RAM between 1 GHz and 4 GHz, we
invoke:

$ xrs -ram 1-4
Address = [:///192.168.0.178:60000]

XtreemOS - Integrated Project 25/41

IST-033576

6 Conclusions and future work

In this deliverable we have presented the first prototype for the Application Execution
Management (AEM) services (job and resource). In this very initial prototype, we support the
execution of both sequential and parallel (master/slave) jobs but always restricted to a single
resource (although it can be a cluster). We can also send events to a job (currently all Linux
signals). And finally, it is also possible to request information on the status of a job and of a
resource.

It is important to keep in mind that the current prototype has not been integrated with the rest
of prototypes and thus runs in a standalone way. Integration with other services such as VOM
(Virtual Organization Manager) and ADS (Application Directory Service) will be performed
in the next 6 months.

In addition, in the next 6 months we plan to work on the following issues: porting of the
XATT interface to C (including the supported commands in a standalone — not Java — version),
start developing very basic reservation and SLA mechanisms, improving the semantics to
send events, and start defining the monitoring and negotiation architectures,

XtreemOS - Integrated Project 26/41

IST-033576

7 Bibliography
[1] Matt Welsh, SEDA: An Architecture for Highly Concurrent Server Applications

URL: http://www.eecs.harvard.edu/~mdw/proj/seda/

[2] JSDL specifications. http://www.ggf.org/documents/GFD.56.pdf

[3] UUID . http://en.wikipedia.org/wiki/UUID

[4] Ganglia. http://ganglia.sourceforge.net/

[5] T.Goodale, S.Jha, H.Kaiser, T.Kielmann, P.Kleijer, G.von Laszewskik, C. Lee, A.Merzky,
H.Rajic, J.Shalf. SAGA: A Simple API for Grid Applications. High-Level Application
Programming on the Grid. http://wiki.cct.lsu.edu/saga/

[6] GLUE schema. http://glueschema.forge.cnaf.infn.it/

XtreemOS - Integrated Project 27/41

IST-033576
Appendix - Resource Management Console

XResourceConsole is an utility that enables the access to the functionality of the Resource
Manager service and other relevant services such as the Resource Monitor service. The utility
offers a command line interface in either an interactive mode or through command line
parameters. Using this utility, we can manually test any new functionality we introduce for
resource management and monitoring. We include its description as appendix because it is
included in the code prototype.

Name

xrc — XResourceConsole, a utility for managing the resources from the console.

Synopsis
xrc [OPTION]...
Options
-1 Run in an interactive mode.
-1 List all available node addresses.

-s JSDL_FILENAME List nodes selected by a resource query. Use the file with name and/or path
JSDL_FILENAME as an input for the resource query. The file has to contain an XML following
a JSDL schema.

Examples

Interactive mode

Interactive mode of XResourceConsole consists of a set of menus that let the user form a
resource query and test it live with the currently available computation nodes. The following
menus are available:
¢ Main menu
o Query editing
= String constant selection
= Numerical range selection
= Upper bound selection
= Lower bound selection
= Range selection
= Exact value selection
o Attribute selection for ordering the results

o Attribute weight selection for scoring the query hits

Main menu

The main menu has the following options:

XtreemOS - Integrated Project 28/41

IST-033576

k edit current query

create new query

list all nodes

list selected nodes (using current query)

list ordered selected nodes (using current query)

list selected nodes (using current query) ordered by hit scores
print this menu

g quit

35 0w o 3

Entering the letter next to an option enters a submenu or performs the selected option. The
options in this menu are as follows:

e Edit current query — enters a menu for managing the current resource query.

¢ C(reate new query — clears the current resource query and enters a menu for managing
the query.

e List all nodes — calls the Resource Manager to obtain all the available nodes, and lists
their addresses. Stores the results as the current list of nodes.

e List selected nodes — uses the current query to call the Resource Manager service to
obtain the list of nodes, selected by the query. Stores the results as the current list of
nodes.

e List ordered selected nodes — uses the current query to call the Resource Manager
service to obtain the list of nodes, selected by the query and ordered by attributes as
defined by the current ordering. Displays the list and stores the results as the current
list of nodes.

e List selected nodes ordered by hit scores - uses the current query to call the Resource
Manager service to obtain the list of nodes, selected by the query. The results are
ordered by the hit scores in the descending order. Displays the list and stores the
results as the current list of nodes.

¢ Print this menu — prints again the options of the menu.

® (Quit — exits the XResourceConsole.
Query editing

The menu for editing the resource query enables an interactive way to add the query entries.
The query is structured as an XML that follows a JSDL schema, and the menu reflects the
schema’s structures. The substructure relevant to the node selection is the Resource structures
with entries that represent either string types or JSDLS RangeValue Type structure. The menu
enables entering the queries for the resource attributes currently supported by the Resource
Manager service.

When we enter the menu, we get the following options:

print the current query
select OS

select CPU instruction set
select CPU clock speed
select the number of CPUs
select the RAM size

print this menu

exit this menu

X 838 3 r 0T

Entering the letter next to an option enters a submenu or performs the selected option. The
options in this menu are as follows:

¢ Print the current query — displays the XML structure currently entered by the user.

XtreemOS - Integrated Project 29/41

IST-033576

Select OS — enters the string constant selection menu for selecting the operating
system name required by the resource query.

Select CPU instruction set — enters the string constant selection menu for selecting the
instruction set required by the resource query.

Select CPU clock speed — enters the numerical range selection menu where the user
can select acceptable values for the CPUS clock speed. The values entered are in GHz.

Select the number of CPUs — enters the numerical range selection menu where the user
can select acceptable values for the number of physical CPUs or the available cores.

Select the RAM size — enters the numerical range selection menu where the user can
select acceptable values for the physical memory size. The values entered are in MHz.

Print this menu — prints again the options of the menu.
Exit this menu — returns to the previous menu.

Attribute selection for ordering the results

This menu lets the user enter the sequence of resource attributes which the nodes will be
sorted by. The first attribute in the sequence will define the primary ordering of the results.
The nodes that have equal values of the first attribute are then sorted by the second attribute in
the sequence, etc. In this menu the user can also select the direction of the ordering (ascending
or descending).

The menu has the following options:

X 83Wh =25 0Q0QHR OO0 NT

print the current attribute sequence

restart the ordering attribute sequence

append attribute: OS name, ascending

append attribute: OS name, descending

append attribute: CPU instruction set, ascending
append attribute: CPU instruction set, descending
append attribute: CPU clock speed, ascending
append attribute: CPU clock speed, descending
append attribute: number of CPUs, ascending
append attribute: number of CPUs, descending
append attribute: RAM size, ascending

append attribute: RAM size, ascending

print this menu

proceed

Entering the letter next to an option enters a submenu or performs the selected option. The
selection letters are case-sensitive. The options in this menu are as follows:

Print the current attribute sequence — displays in the console the sequence of attributes
entered by the user so far.

Restart the ordering attribute sequence — clears the sequence of attributes entered by
the user so far, letting the user to enter a new sequence.

Append attribute: <attribute name>, ascending — the next attribute in the sequence will
be the one denoted by the attribute name, and the ordering will be ascending (e.g., 0,
1,2,..).

Append attribute: <attribute name>, descending — the next attribute in the sequence
will be the one denoted by the attribute name, and the ordering will be descending
(e.g.,42,41,40, ..).

Print this menu — prints again the options of the menu.

Proceed — confirm the current sequence and proceed with the workflow.

XtreemOS - Integrated Project 30/41

IST-033576

Attribute weight selection for scoring the query hits

The menu for selecting the attribute weights lets the user to select the importance of the
resource attributes as they take part in the resource query. Each attribute§ weight is a value
from the interval [0..1], where a higher value means a higher importance. The sum of all
attributes' weights has to equal 1.0.

The menu presents us with the following options:

print the current attribute weights

reset to uniform weights

set weight for OS name

set weight for CPU instruction set

set weight for CPU clock speed

set weight for number of CPUs

set weight for RAM size

proceed with selected weights

proceed without selected weights (uniform weights)

'O

C X B 3QF ON

Entering the letter next to an option enters a submenu or performs the selected option. The
options in this menu are as follows:

¢ Print the current attribute weights — displays in the console the currently entered
attribute weights.

e Reset to uniform weights — sets all attributes' weights to identical values.
e Set weight for <attribute name> - assign a weight for the attribute with attribute name.

® Proceed with selected weights — confirm the weights and use them in the proceeding
with the workflow.

¢ Proceed without selected weights — proceeds with the workflow, but without the
weights currently assigned to the attributes. This effectively works as if the attributes
that take part in the resource query are set to an equal non-zero weight, while the
attributes not in the query have zero weights.

Usage example

The following example shows a possible usage of XResourceConsole. We first start the utility
in the interactive mode. We start by listing all available nodes.

k edit current query

create new query

list all nodes

list selected nodes (using current query)

list ordered selected nodes (using current query)

list selected nodes (using current query) ordered by hit scores
print this menu

quit

Q 3 =003

a

Getting resources

Found the following resources:
- Address [:///192.168.0.178:60000]
— Address [:///192.168.0.190:60000]

The call resulted in a list containing two nodes, one with 2 GB RAM and a single 3 GHz
CPU, and another one, an old computer with 256 MB RAM and 900 MHz CPU clock. We
proceed with creating a query that will filter out the slower computer.

k edit current query
n create new query
a list all nodes

XtreemOS - Integrated Project 31/41

IST-033576

s 1list selected nodes (using current query)

o list ordered selected nodes (using current query)

w list selected nodes (using current query) ordered by hit scores
m print this menu

g quit
n

This puts us in a menu where we can select the attributes to be used in the query.

Edit query menu:

print the current query
select OS

select CPU instruction set
select CPU clock speed
select the number of CPUs
select the RAM size

print this menu

exit this menu

X 838 3 r 0T

We would like the selected node to use an x86 CPU architecture.

1
CPU Instruction Set selection
0 sparc
1 powerpc
2 x86
3 x86_32
4 x86_64
5 parisc
6 mips
7 ia64
8 arm
9 other
Please type the number next to the selected architecture: 2

Edit query menu:

print the current query
select 0OS

select CPU instruction set
select CPU clock speed
select the number of CPUs
select the RAM size

print this menu

exit this menu

X 38 B QFH 0T

We want the selected node to have the CPU clock higher than 1 GHz and lower or equal to 5
GHz.

c

Menu for Range_Type of the CPU speed [GHz]
u upper bound

lower bound

range

exact value

print the menu

exit menu

X 3 0B =

#r

Range entry

Lower bound: 1

Exclusive lower bound: [y/n] y
Upper bound: 5

Exclusive upper bound: [y/n] n

The exclusive bound modifier sets whether the boundary value should be within acceptable
values (exclusive bound y) or not (exclusive bound n).

Menu for Range_Type of the CPU speed [GHz]

XtreemOS - Integrated Project 32/41

IST-033576

X 3 0B FC

Next, we would like to set the condition for the memory size resource attribute.

x

upper
lower
range
exact
print

bound
bound

value

the menu
exit menu

Left current menu.
Edit query menu:
print the current query

X 38 B QFH 0T

#r

select
select
select
select
select
print

oS
CPU
CPU
the
the
this

instruction set
clock speed
number of CPUs
RAM size

menu

exit this menu

Menu for Range_Type of the RAM size [GB]

u

X 3 0B =

We need the computer to have at least 512 MB of physical memory.

1

upper
lower
range
exact
print

bound
bound

value

the menu
exit menu

Range entry
Lower bound: 0.
Exclusive lower bound: [y/n] n

Menu for Range_Type of the RAM size [GB]

u

X 8 08 =

x

upper
lower
range
exact
print

bound
bound

value

5

the menu
exit menu

Left current menu.
Edit query menu:
print the current query

X 38 3 r 0T

We display the XML that forms the query we have built.

p

select
select
select
select
select
print

0S
CPU
CPU
the
the
this

instruction set
clock speed
number of CPUs
RAM size

menu

exit this menu

Printing the current query:

Done printing the current query.

Edit query menu:
print the current query

p

o
i
c

select

0s

select CPU instruction set
select CPU clock speed

XtreemOS - Integrated Project

33/41

IST-033576

n select the number of
CPUs

<?xml version="1.0" encoding="UTF-8"?>
<JobDefinition xmlns="http://www.example.org/"
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsd1l"
xmlns: jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<JobDescription>
<JobIdentification>
<JobName>Interactive Test Job</JobName>
</JobIdentification>
<Application>
<POSIXApplication>
<Executable>/usr/temp/test</Executable>
</POSIXApplication>
</Application>
<Resources>
<IndividualPhysicalMemory>
<Range>
<LowerBound>5.36870912E8</LowerBound>
</Range>
</IndividualPhysicalMemory>
<IndividualCPUSpeed>
<Range>
<LowerBound
exclusiveBound="true">1.073741824E9</LowerBound>
<UpperBound>5.36870912E9</UpperBound>
</Range>
</IndividualCPUSpeed>
<CPUArchitecture>
<CPUArchitectureName>
x86
</CPUArchitectureName>
</CPUArchitecture>
</Resources>
</JobDescription>
</JobDefinition>

r select the RAM size
print this menu
X exit this menu

3

x

Left current menu.

k edit current query

create new query

list all nodes

list selected nodes (using current query)

list ordered selected nodes (using current query)

list selected nodes (using current query) ordered by hit scores
print this menu

quit

Q 3 =003

Finally, we list the nodes selected by our resource query.

s
Getting selected resources
Found the following resources:
- Address = [:///192.168.0.178:60000]

To quit the program, we enter (.

k edit current query
n create new query
a list all nodes

XtreemOS - Integrated Project 34/41

IST-033576

list selected nodes (using current query)

s
o list ordered selected nodes (using current query)

w list selected nodes (using current query) ordered by hit scores
m print this menu

g quit

#q

XtreemOS - Integrated Project 35/41

IST-033576

Appendix - External Libraries

List of the libraries used in the AEM:

axis2-kernel-1.3.jar

Used to retrieve parameter names of methods in
XServiceProcessor

djep-1.0.0.jar

(deprecated) The DJep collection of packages offers a
number of extensions to the standard JEP package (library
for expression evaluation)

commons-logging-api-1.1.jar

Logging facility API

junit-4.4.jar

JUnit testing framework

vivaldiLib.jar

Library for Vivaldi support

mina-core-1.1.2.jar

MINA core communication library

slif4j-api-1.4.3.jar

Simple Logging facility

velocity-1.5.jar

Velocity library for code generation (XServiceProcessor)

commons-logging-1.1.jar

Logging core facility

log4j-1.2.14.jar

Apache logging facility

commons-logging-adapters-
1.1.jar

Apaches common logging, provides thin-wrapper Log
implementations for log4;j

vsuite-findbugs-0.4b.jar

(deprecated) VSuite is a project that aims at finding and
reporting problems in your Java code

dom4j-1.6.1 jar

XML parsing framework

bcprov-jdk16-137.jar

The Bouncy Castle Crypto APIs for Java

tools.jar

Common tools classes used in AEM (XServiceProcessor)

java_cup-0.10k.jar

Parsing tool

sunxacml.jar

XACML support (VOPS)

velocity-dep-1.5.jar

Velocity library dependencies

bamboo.jar Bamboo - DHT implementation
oncrpc.jar Used by Bamboo API
slif4j-log4j12-1.4.3.jar Logging facility

jep-2.3.0.jar Java Expression Parser

mina-filter-ssl-1.1.3.jar

SSL filter for SSL support in MINA communication
library

XtreemOS - Integrated Project

36/41

IST-033576

Appendix — Cron Service

CronDaemon is a service that provides functionality to schedule the execution of any user
code. Depending on the type of the entry, the code is executed at a defined time or repeated in
some predefined intervals. The entries can also be tagged, making it easy to distinguish and
group different entries. We give an overview of the architecture and the components,
finishing with some code examples how the CronDaemon service can be used.

Entries

The user defines the execution code by extending one of the basic classes shown in the Figure
1. The basic and most primitive class is the CronDaemonEntry class. The CronDaemonEntry
defines the time of execution, where the class itself is executed only once.

CronDaemonEntry

CronDaemon

EntryTags CronDaemon CronDaemon

EntryTagged EntryRecurr

CronDaemon -

EntryUUID

CronDaemonEntry
TaggedRecurr

Figure 1 Basic classes for cron daemon

The user creates an extended class of CronDaemonEntry and overrides execute() method. An
example of an extended class and its usage:

class MyCronEntry extends CronDaemonEntry {
public MyCronEntry (GregorianCalendar at) {
super (at) ;
//todo: add your initialization code here

If the code needs to be executed repeatedly, the CronDaemonEntryRecurr class is used, which
defines the interval (in milliseconds) of execution and the starting and ending time of
execution. If the ending time is not defined, it is expected, that the entry does not have a time
limit. An example of usage:

XtreemOS - Integrated Project 37/41

IST-033576

class MyRecurrCronEntry extends CronDaemonEntryRecurr {
public MyCronEntry (GregorianCalendar startAt, GregorianCalendar finishAt,
int interval) {
super (startAt, finishAt, interval);
//todo: add your initialization code here

An example of an entry that starts within next 5 minutes and ends after an hour and is
executed every 2 seconds:

GregorianCalendar startAt = new GregorianCalendar(); //set to now
startAt.add (GregorianCalendar .MINUTE, 5);
GregorianCalendar endAt = (GregorianCalendar)startAt.clone();

endAt.add (GregorianCalendar.HOUR, 1);
cron.addEntry (new MyRecurrCronEntry (startAt, endAt, 2000));

When the total timeframe is not known, set the end time to null. The CronDaemon is
informed to never remove the entry by itself and waits for the user to manually remove the
entry:

cron.addEntry (new MyRecurrCronEntry (startAt, null, 2000));

Both types of entries described so far can be seen as anonymous entries. They can not be
distinguished and therefore can not be identified and acted upon. In order to provide
additional information, CronDaemonEntryTagged class must be used. The class provides
tagging functionality, from basic UUID to wuser defined complex tags. The
CronDaemonEntryTaggedRecurr provides the basis for recurring tagged entries.

The tagging is provided by the CronDaemonTags class. The tags can also have one or more
objects associated with it. One can use tags as a description of an activity, while the values of
the tags describe different attributes of the activity. For example, many entries can be tagged
as "test" with values describing the stages of the testing, giving the user complete control over
the execution process.

Entries can be identified by:

e UUID
* simple tags (no values)

e aset of tags and their dependent values.

In the last case, the entry is a match if the given entries and their values are proper subset of
entries tags (there is no such tag or value, that is present in the query but not in the entry).

XtreemOS - Integrated Project 38/41

IST-033576

An example of basic UUID tagging:

class MyTaggedEntry extends CronDaemonEntryTagged {

}

MyTaggedEntry myTagged = new MyTaggedEntry(...);
myTagged.getTags () .generateUUID() ;

CronDaemonEntryUUID uuid = myTagged.getTags () .getUUID() ;
//TODO: store the uuid for later use

An example of more complex tagging:

myTagged.getTags () .addSimpleTag("testing process");
GregorianCalendar startTime = new GregorianCalendar();
myTagged.getTags () .addTag ("Process A", startTime)

mySecondTagged.getTags () .addSimpleTag ("testing process");
int numThreads = 100;
mySecondTagged.getTags () .addTag ("Process B", numThreads);

myThirdTagged.getTags () .addSimpleTag("testing process");
numThreads = 50;
myThirdTagged.getTags () .addTag("Process B", numThreads);

An example of tag search:

ArrayList<CronDaemonEntry> group
cron.gorupByTags ("testing process");
//return all three entries

ArrayList<CronDaemonEntry> group = cron.gorupByTags ("Process B");
//return only second and third

ArrayList<CronDaemonEntry> group = cron.groupByTags ("Process B", 50);
//returns only the third one

Cron Architecture

The CronDaemon service is designed to handle as many simultaneous requests for execution
as possible. The entries are added to the sorted queue, from the entries that will be executed
sooner in the front and the ones executed later in the back of the queue. The first entry of the
queue determines the time of execution. The CronDaemon holds a special thread which waits
in suspension until the first entry is scheduled. After this given interval, the WaitThread
notifies the CronDaemon that it needs to process its first entry. The CronDaemon creates a
special execution thread and executes the entries code inside this threads context. As soon as
the execution thread is created and the first entry is removed from the queue, the waiting
thread is notified of new suspension time, defined by the new top entry in the queue. The
process is shown in the Figure 2.

XtreemOS - Integrated Project 39/41

IST-033576

CronDasmonEntry Queue

E] [I] bacrihi
Sleeping
.FIJ'

Time

' Insert New Entry l
.—/4

WaitThread
Executing Thread E]

1. Figure 2 Cron architecture

User’s entries can be inserted into the queue at any given time, therefore an entry that is added
right in the beginning of the queue must interrupt the waiting thread and force new suspension
time recalculation. The described process is shown on Figure 3.

CronDasmonEntry Queue

1.) Insert New Entry

3.) Recalculate Sleeping Time

Figure 3 Insertions in the cron queue

Besides adding entries to the queue, the CronDaemon also provides the following
functionality:

® pause/resume
¢ remove all entries

* remove tagged entries

XtreemOS - Integrated Project 40/41

IST-033576
® group tagged entries

The last two features enable the user to control the entries that depend to a certain process.
For example, the user can remove an entry defined by its UUID. Grouping of tagged entries
enable the user to act on a group of entries, as shown in Figure 4. For example, one can group
all entries with a specific tag or tag value and then corrects the recurrence interval, or add new
tag or simply remove the group of entries from the CronDaemon.

CronDasmonEntry Queus

e el

Apply Action to

Tagged ~ Group of Entries

Cron Entries

Figure 4 Grouping entries

The grouping of tagged entries is useful especially in cases of entries that belong to a certain
process in the system. Suppose users job is composed of three subtasks, task A, task B and C.
Each of the tasks requires recurrent execution of some code during the tasks processing time
(such as monitoring its progress, gathering statistical data, etc). When the task terminates, the
CronDaemon must remove dependent entries and possibly change the entries from the other
task, where the described functionality comes to use.

XtreemOS - Integrated Project 41/41

