Xtreem OS A
—

Enabling Linux Information So ciety

for the Grid
Technologies

Project no. IST-033576

XtreemQOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

AEM Prototype

T3.3.5-9: Basic grid checkpointing, VO support with some accounting, dependencies, signals, basic co-allocation and
job monitoring.

D.3.3.6

Due date of deliverable: November 30th,2008
Actual submission date: December 18th,2008

Start date of project: June I*' 2006
Type: Deliverable

WP number:3.3

Task number (optional):3.3.5-9

Name of responsible: Toni Cortes
Editor & editor’s address:Ramon Nou
Barcelona Supercomputing Center

Version 2.0/ Last edited by Ramon Nou/ Date 08/12/18

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU Public v

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

co Confidential, only for members of the consortium (including the Commission Services)

IST-033576

Keyword List:

Revision history:

Version Date Authors Institution Sections Affected / Comments
0.01 08/10/10 Toni Cortes BSC Initial Draft
1.0 08/10/20 Ramon Nou BSC Monitoring Section
1.0 08/10/20 John Mehnert-Spahn UDUS Checkpointing Section
1.0 08/10/20 Matej Artac XLAB Basic VO Section
1.0 08/10/22 Uros Jovanovi¢ XLAB Resource Negotiation Section
1.0 08/10/23 Marta Garcia BSC Advanced Setvices Job Control
1.1 08/10/23 Ramon Nou BSC Merge, editing
1.2 08/11/10 Ramon Nou BSC Xtrace and xcommands update
1.3 08/11/19 Ramon Nou BSC XPS with dependencies update,
Executive Summary
1.4 08/11/21 Matej Artac XLAB Updates and changes
1.4 08/11/21 John Mehnert-Spahn UDUS Checkpointing review
1.5 08/11/21 Ramon Nou BSC Merge, editing.
2.0 08/12/18 Ramon Nou BSC Final comments added
Reviewers
Luis Pablo Prieto (TID), Bernd Scheuermann (SAP)
Tasks related to this deliverable
Tﬁ:k Task description Partners involved
3.3.5 GRID checkpointing and migration UDUS*,INRIA
3.3.6 Basic VO support XLAB
3.3.7 Advanced services to control jobs BSC
3.3.8 Co-allocation and resource negotiation XLAB
3.3.9 Job Monitoring BSC

* Task leader

XtreemOS - Integrated Project 2/26

IST-033576

Executive Summary

AEM (Application Execution Manager, the instance responsible for Job/Resource management in
XtreemOS) is evolving and adding more and more features. In this document, we present the current
prototype of AEM as in M30. We include several features like checkpointing, advanced job control and
resource related features and finally job monitoring.

Checkpointing is able to stop, restart and migrate jobs to another resource. It is important to allow
features as fault tolerance and load balancing. If a resource fails the user/system could migrate and restart
the job in another resource without losing the work done.

Advanced job control features, enables features that can be used by workflow managers. One of these
features is the concept of Job dependencies where we can relate two or more jobs with a tag or label able
to be used by other tools. We present an example of dependencies in the xps xcommand.

Basic VO support, the job submission and execution highly depends on the VOs, their presence within
grid, and the current set of VO-level policies. The Application Execution Manager’s operation should
therefore ensure that the resources selected for a particular job are actually suitable for running the job.
This means that, even though the AEM is not directly affected with the VOs and their policies, it should
not remain VO-agnostic if we are to ensure a smooth operation of the system and reliable resource
scheduling. The document will explain the AEM’s role in the scheme of the VOs, and the way AEM
handles requests and limitations pertaining to the VOs in Section

With respect to resource negotiation and co-allocation, AEM needs an efficient way to keep the schedule
of the resources available in the grid. It is essential that the schedule is being kept on the grid level to help
in the process of negotiating the time slots and the resources to be used by the jobs. Section[5]illuminates
the topic of receiving, keeping and changing the resource schedule.

Finally, job monitoring gives us information about jobs using XML output so different tools can use it.
We present xps and xtrace as examples to show job monitoring. xtrace produces an execution trace of a
running Job (and its associated processes) able to be analyzed using paraver.

In this deliverable, we also included the xcommands: a set of non-java standalone commands that allow
using, and demonstrating, some of the AEM interface that we export to the user.

As in M30 we have still some interesting features to add to resource, monitoring and job control. Job

monitoring enhanced by callbacks when some events fire and the concept of metric, which will allow the
user to display its self-made metrics.

XtreemOS - Integrated Project

3/26

IST-033576

Table of contents
1 Introduction 6
2 Checkpointing 7
2.1 Overview 7
2.2 Use Cases 7
2.3 Architecture 7
2.4 Implementation 10
|i __Basic VO Support 11
3.1 Overview 11
3.2 Use cases and details 11
3.3 Architecture 12
3.4 Implementation 13
Ii Advanced Services to control jobs 13
4.1 Overview 13
4.2 Use Cases 14
4.3 Architecture and implementation 14
5 ___Resource Negotiation and co-allocation 15
5.1 Overview 15
5.2 Use cases 15
5.3 Architecture 15
5.4 Implementation 16
6 ___Job Monitoring 18
6.1 Overview 18
6.2 Use Cases 18
6.3 Architecture 19
6.4 Implementation 20
7 User guide 20
7.1 ___Checkpointing 20
7.2 Basic VO Support 21
7.3 Advanced Services to control jobs 21
7.4 ___Job Monitoring. 21
7.5 Other xcommands 23
|i Dependencies / Roadmap 24
8.1 Checkpointing 24
8.2 Basic VO support 25
8.3 Advanced services to control jobs 25
XtreemOS - Integrated Project

4/26

IST-033576

§4—Resource Negotiation-and-Co-altocation 25
8.5 Job Monitoring 25
9 Conclusions. 26
10 References 26

XtreemOS - Integrated Project 5/26

IST-033576

1 Introduction

AEM, Application Execution Management, will provide several capabilities related to the job execution
and the resource management inside XtreemOS.

The prototype includes features achieved by month 30 of the project: checkpointing, VO support,
advanced services to control jobs, resource negotiation, co-allocation (reservations) and job monitoring.
There are some features that are still under development, like monitoring callbacks, but we offer a
snapshot of what it will do with tools like xfrace. We included the Application Firewall (AFW) which
enables the control and enforcement of the outgoing traffic generated by the job. This prevents malicious
binaries that would generate unwanted network traffic, and a fine-grained control on the level of each
process that blocks or permits network communication. The technical details of the AFW can be found in
[D3.5.8].

e Checkpointing: A former version of the XtreemOS checkpointing architecture has already been
explained in deliverable D2.2.3, see [D2.2.3]. We give a conceptual overview of the architecture.
In this context, we explain how heterogeneous kernel checkpointers can be used in XtreemOS to
allow for job-unit migration and fault tolerance for jobs on diverse grid node types. Herein we
give details about the integration of the LinuxSSI kernel checkpointer, BLCR checkpointer as
well as adaption of AEM. Finally, we describe how the grid checkpointer will be used and what
configuration-related prerequisites have to be met before.

e Basic VO support: AEM services need a tight cooperation of the Virtual Organization
Membership (VOM) services to assert the user's identity and membership in the VOs, and to
avoid scheduling the jobs to such resources that would be categorically rejected at the time of the
execution. The prototype uses an integration of the AEM with the VOM services such as the
VOPS to check the resources against the current VO policy. The user needs to provide the
credentials obtained from the CDA services to be able to exploit the VOs, otherwise AEM
rejects the user.

e Job monitoring: In the monitoring side, we provide XML output for xps, so it will be easily
parsed with external tools. An example is the xtrace tool that can generate paraver (a
visualization tool) traces showing job behaviour. We provide also a set of standalone (not Java)
commands able to do a set of operations like job submission, job monitorization and job control.
We will show them in the user guide.

e Advanced services for control jobs are also described in deliverable D3.3.3-4, see [D3.3.3-4].
We provide the tools to get job information and to control them (send events). In this
deliverable, we include the interface to build dependencies between jobs that can be used by
workflow managers.

e With respect to resource negotiation and co-allocation, AEM needs an efficient way to keep the
schedule of the resources available in the grid. It is essential that the schedule is being kept on
the grid level to help in the process of negotiating the time slots and the resources to be used by
the jobs. Section [5|illuminates the topic of receiving, keeping and changing the resource
schedule.

XtreemOS - Integrated Project

6/26

IST-033576

2 Checkpointing

2.1 Overview

The execution of grid applications can be disturbed by failures. Rollback-recovery is a well-known fault
tolerance strategy. A distributed application is periodically checkpointed (a distributed consistent
snapshot is saved to disk). In case of a failure, the application can be restarted from the last checkpoint
with no need to restart from scratch. Checkpoint/restart can also be used to realise migration.

The grid checkpointing architecture of XtreemOS is designed to support almost all kinds of distributed
grid applications, including scientific, business, and interactive applications. Grid environments connect
heterogeneous resources (hardware and software) including different existing low-level checkpointing
solutions tailored to a specific operating system or runtime library. The challenge is to integrate all these
checkpointing solutions to build a grid-wide checkpointing and restart service that is able to consistently
checkpoint/restart applications.

Currently, XtreemOS supports the following kernel checkpointers: Berkeley Labs Checkpoint Restart
(BLCR) for PCs and the LinuxSSI kernel checkpointer for clusters. These existing checkpointing
implementations have different interfaces and capabilities. Translation services implementing a common
kernel checkpointer API allows the grid layer to access all these implementations in a uniform and
transparent fashion. Different semantics must be translated (e.g. process synchronization, process group
addressing) and missing functionality must be emulated (e.g. callbacks).

Furthermore, checkpoint image files need to be protected against unauthorized access because they store
sensitive kernel data. In order to be safe and secure the restart needs to tightly interact with the XtreemOS
security services. For more details refer to [XGCA]

2.2 Use Cases

Checkpoint/restart is a building block for different important grid functionalities in XtreemOS, e.g.:
® Job checkpointing: A job is checkpointed for fault tolerance reasons. Thus, the job can be
restarted from one of the previous checkpoints at any time.
® Job suspension: A job is checkpointed before being killed. It can be restarted later on the same or
on other nodes
® Job migration: A job will be checkpointed when job migration has been decided. The job is
checkpointed, killed and restarted from the checkpoint on the same or other nodes..

These functionalities can be used in different cases, e.g.:
® Scheduling: Job migration can be used to realize scheduling. Low priority jobs are suspended to
release resources for high priority jobs. Afterwards low priority jobs are restarted.
® Node disconnection: Before disconnecting a node from the XtreemOS grid, the jobs running on
this node should be migrated or suspended to avoid computation loss.
® Fault tolerance: To avoid computation loss in the event of a failure, periodic checkpointing can
be used. If a failure occurs, the job will be restarted from its last checkpoint.
® Debugging: A job checkpoint allows a developer to restart a job before a failure occurs and thus
to examine the job behaviour from a certain time point in the past.
Currently, job checkpoint and restart to achieve fault tolerance is covered by the prototype.

2.3 Architecture
2.3.1 Components

The grid checkpointing architecture (see figure 1) consists of a hierarchy of logical components that
tightly interact with each other via the SEDA communication mechanism, see [D2.2.3] and [XGCA]. For
the sake of completeness its components are shortly explained again.

XtreemOS - Integrated Project

7/26

IST-033576

Job Checkpointer ; Job Checkpointer

Jobh Unit Checkpointer : Job Unit Checkpointer

Kernel Checkpointer LinuxSSI-XOS ' Kernel Checkpointer Linux-X0S

Tee| .

Linux $S1 Cluster E : Linux PC

Figure 1: XtreemOS Grid Checkpointing Architecture

2.3.1.1 The Job Checkpointer

The job checkpointer is the central component of the architecture that realises job checkpoint and job
restart. It takes over the role of the coordinator in coordinated checkpointing. Thus, it must conduct all
involved grid nodes for job-unit synchronization.

Existing kernel checkpointers can only save the states of a single job-unit, since they are restricted to one
grid node. In the opposite, the job checkpointer has a global view on all job-units that constitute a job.
This knowledge is saved as grid checkpoint meta-data, which is indispensable at job restart.

Additionally, it is the job checkpointers duty to identify a kernel checkpointer that suits an applications'
requirements for consistent checkpoints.

The job checkpointer also interacts with the checkpoint file garbage collector to efficiently manage disk
space.

2.3.1.2 Job-unit checkpointer

The job checkpointer contacts all job-unit checkpointers, that have been selected for job-unit
checkpoint/restart. Each job-unit checkpointer contacts an appropriate underlying kernel checkpointer.
For the job-unit checkpointer-service to be used unmodified on each cooperating grid node, the service
provides an abstraction layer, the common kernel checkpointer API. The API allows the job-unit
checkpointer to transparently access different kernel checkpointers.

2.3.1.3 Translation Library

To bridge the abstract job-unit checkpointer, running on a all grid nodes, with an individual kernel
checkpointer, a translation component must be provided. This translation library implements the common
kernel checkpointer API of the upper layer for an underlying kernel checkpointer. It resolves semantic
differences between the AEM world and different kernel checkpointers regarding calling semantics,
process groups (job-unit vs. Unix sessions, Unix process groups, process trees, LinuxSSI applications),
prepares an environment for using a chosen kernel checkpointer (set capabilities, etc.) and resolves inter-
job dependencies.

2.3.1.4 Kernel checkpointers
Kernel checkpointers are the low-level components in this architecture that checkpoint and restart process
groups.

XtreemOS - Integrated Project

8/26

IST-033576

2.3.2 Checkpoint File Management

Two basic types of checkpoint data exist. Files containing the checkpoint image itself and files describing
the snapshot: grid checkpointing meta-data. Generally, checkpoint images are bigger than the meta-data.
A garbage collector has to decide which files became unnecessary and thus can be removed. For example
checkpoints, created in the context of a migration, can be deleted immediately after the migration has
finished.

Checkpoints created in terms of fault tolerance must be analysed properly before removing.

Dependencies between checkpoint images can occur (incremental checkpoints). In the worst case if one
image has been removed, the remaining ones can become useless.

Both types of checkpoint files are placed under XtreemFS volumes to make them available at restart
independent of the destination node.

2.3.3 Security

Several security threats exist in the grid checkpointing context. Checkpointing job-units include putting
processes asleep, which is a security-sensitive action. Unauthorised job interruptions must not occur.
Therefore, only authenticated and authorised users are allowed to issue job checkpointing.

Furthermore, it is not enough to identify a user as an XtreemOS user at restart. The user must be the
owner of the checkpoint files to successfully restart - the user-identification must match the owner of the
checkpoint files. The user-identification must also match the user-identification of the task (process).
Otherwise, security mechanisms at kernel level deny the restart due to insufficient file access and task
permissions.

Checkpoints are files that will be transferred over nodes and that are stored on disks. Data integrity must
be ensured to use an unmodified image at restart time. Eventual data corruptions during image transfers
must be detectable.

2.3.4 Fault Tolerance Workflow
2.3.4.1 Checkpoint Sequence

The sequence consists of the following phases:

1 Kernel checkpointer selection: When the job checkpointer receives the job checkpoint command, it
figures out the belonging job-units and grid nodes. Then, an appropriate kernel checkpointer per involved
grid node will be identified and the matching translation service will be called.

2 Preparation of kernel checkpointer environment: Afterwards the prepare phase is entered. The job
checkpointer addresses each job-unit checkpointer in order to set up an environment where the selected
kernel checkpointer can be used. Furthermore, the job-unit checkpointer must evaluate, whether the job-
units processes can be referenced by a process group the kernel checkpointer uses for checkpoint/restart.
If this cannot be ensured, the job-unit checkpointer must notify the job checkpointer about that -
checkpointing of all job-units must be aborted to avoid inconsistent checkpoints or disturbance of other
processes. At the end of this phase restart-relevant meta-data per job-unit are returned to the job
checkpointer to save on disk.

3 (Job Synchronization and) Job Checkpoint: The next phases depend on the checkpoint policy. In
coordinated checkpointing the job checkpointer asks all involved job-unit checkpointers to stop the job-
units. Before that, the job-unit checkpointer requests the kernel checkpointer to execute user-defined
callback functions. In the checkpoint phase, the job checkpointer requests the job-unit checkpointer to
take a snapshot of each job-unit. The job-unit checkpointer propagates the request to the kernel
checkpointer. Kernel structures representing memory pages, registers, signal structures, etc. are saved
onto disk.

4 Resume job execution: After all job-units have finished with checkpointing, the job checkpointer has
the job-unit checkpointers resume the job-units.

2.3.4.2 Restart sequence

For job-restart a job identification and a checkpoint version are provided. Other restart-related
information (e.g. needed kernel checkpointer, resources to be reallocated, etc.) are retrieved from the per
job-unit meta-data by the job checkpointer. The job checkpointer rebuilds the logical components that
constitute a job. The job checkpointer requests the job-unit checkpointer to recreate the belonging job-

XtreemOS - Integrated Project

9/26

IST-033576

units. The per job-unit resources, as valid before checkpointing, will be reallocated by the job-unit
checkpointer.

After having setup these grid OS inherent components, native OS entities such as processes must be
recreated. Therefore, the job-unit checkpointers address the underlying kernel checkpointers. Control is
thus shifted to the kernel checkpointers for rebuilding processes.

After all job-units processes have been rebuilt, the job checkpointer advices the job-unit checkpointers to
have the kernel checkpointer resume the newly recreated processes. The local OS scheduler decides when
they proceed with execution.

Finally, the kernel checkpointer causes a job-unit to execute their restart-callbacks (e.g. to read in files,
recreate communication channels).

2.4 Implementation

2.4.1 Components

2.4.1.1 Job checkpointer (CRJobMng)

The CRJobMng is a new AEM service implementing the job checkpointer, see The job
checkpointer is an extension of the job manager (JobMng) to realise fault tolerance and migration for
jobs.

The job checkpointer creates grid-checkpointing meta-data at checkpoint time and saves them per job-unit
in the grid checkpoint xml (cpx) file. The cpx file is based on a self-defined xml schemata that is
optimized for checkpoint/restart use-cases. Meta-data will be saved in a directory structure optimized for
job restart (jobld/checkpoint version/job-unit/) under XtreemFS.

At job recreation, the job checkpointer requires access to the job manager in order to add a job to the job
list and the job directory.

Furthermore, resource reallocation is realised by existing code on AEM. Few modifications are still
needed to select grid nodes that suit checkpoint/restart related parameters (resource reallocation is not
based on jsdl file, but on the cpx file). A new interface to the resource allocation functionality is needed
taking cpx file values into account.

The job checkpointer relies on the job manager for setting and releasing a job lock that had to be
introduced. It is used to prevent the job from intermediate checkpoints/restarts triggered while such an
action is in progress.

2.4.1.2 Job-unit checkpointer (CRExecMng)

The CRExecMng is the service implementing the job-unit checkpointer, see[2.3.1.2] It takes a job-unit
checkpoint, and recreates a job-unit. The job-unit checkpointer presents an abstract API that must be
implemented individually by each underlying kernel checkpointer translation library.

The JNI technology is used to bridge the Java grid service world to the C kernel checkpointer world.

The job-unit checkpointer relies on accessing the execution manager to achieve: retrieval of job process
ids (kernel checkpointer is unaware of the job concept), recreation of a job-unit (members of the
execution manager need to be accessed, e.g. job-unit hashtable) and reassignment of processes to a
restarted job.

The job-unit checkpointer provides an interface for applications to register functions that can be called
before checkpointing, after restart, in a kernel checkpointer transparent fashion.

2.4.1.3 Translation Library

The CRTransLib is the translation library, see It realises the common kernel checkpointer API for
a specific kernel checkpointer. The translation library is capable of addressing user-space, hybrid and
pure kernel checkpointers. It bridges calling primitives of various kernel checkpointers. Furthermore, it
sets up a specific environment for a kernel checkpointer to be usable. The translation library must ensure
that the kernel checkpointer can reference the exact processes that AEM detects as a job-unit. Otherwise,
checkpointing will not work, see [CPGGE] for more information.

2.4.1.4 Kernel checkpointer

The LinuxSSI and LinuxXOS kernel checkpointers had to be extended in order to be addressable by
AEM to realise coordinated checkpoint/restart of a job with multiple job-units.

XtreemOS - Integrated Project 10/26

IST-033576

2.4.2 Limitations of the current prototype

Resource reallocation at restart is yet based on the jsdl file (as job submission). Thus, resource allocation
is done without taking a suitable kernel checkpointer into account, as can be done when using the cpx file.
The current mapping of a global user identity to a local user identity is not static. If a user gets
authenticated at restart, he gets another uid/gid assigned. These results in the abortion of restart since the
same user with another uid/gid does not get file access permission and cannot be identified as owner of
the task stored in the checkpoint. As long as this issue is not solved, security cannot be applied to job
checkpoint/restart.

Resource conflicts at restart following a reboot have to be addressed.

3 Basic VO Support

3.1 Overview

Application Execution Management is a complex set of services that spans the whole spectrum of the grid
nodes:

® client nodes, where the user sets up the jobs and submits them, inspects the job's progress, and
examines the results of the finished jobs,

® core nodes, which run the essential AEM services, and
® worker nodes, where the jobs execute in the form of the processes.

The user therefore appears on the client end, submitting the job request to the core services of the AEM.
AEM then selects the worker nodes to schedule the job execution on. At the scheduled time, AEM node
services execute the job. The client enables the user to check the progress of the job and accesses the
results. The job consumes resources, being a subject to local and global policies. This means that the
AEM services need a tight cooperation of the Virtual Organization Membership (VOM) services to assert
the user's identity and membership in the VOs, and to avoid scheduling the jobs to those resources that
would be categorically rejected at the time of the execution.

In this section, we will focus on the measures taken in AEM to ensure the basic VO support.

3.2 Use cases and details

3.2.1 User credentials

In XtreemOS, we employ the user authentication and authorization using an X.509 certificate. The user
needs to obtain the valid certificate (XOS-Cert) from the CDA server. AEM then relies on the
trustworthiness of the certification authority which signed the user's XOS-Cert. For performance reasons,
AEM does not check with any servers for the authenticity of the user, but rather checks the validity of the
XOS-Cert, and obtains the needed details on the user from the certificate's extensions.

The user's certificate is a required parameter for all job-related AEM client actions. The internal API also
assumes that with AEM service calls the service obtains the public certificate part of the XOS-Cert. AEM
services uses this certificate to check its validity, and extracts the certificate's Common Name which
contains the unique global ID of the user. AEM uses this ID to map the job and the corresponding actions
to the user. The further use of the certificate is to pass it on to the other VOM services, so that they can
take advantage of the certificate extensions and their values.

Checking the certificate's validity in AEM involves the following:

® checking, whether the current date and time is at or after the certificate's not before field value,
® checking, whether the current date and time is before or at the certificate's not after field value,

® asserting that the certificate was signed by one of the trusted certification authorities.

3.2.2 Resource Selection
AEM's Resource Management relies on other services to obtain the list of the resources suitable for the
user's job. The policies related to different VOs permit or deny the access to specific nodes; therefore

XtreemOS - Integrated Project 11/26

IST-033576

AEM should first ensure that the resource scheduling assigns realistic resources to a job. The user selects
which VO to use for the job submission, but the submission has a chance to succeed only if the user has
the proper credentials for the VO. AEM consults VOPS and ADS in this process.

ADS. This service provides the resource discovery. AEM submits a query in the form of a JSDL
document that contains the resource requirements for the job. Optionally, in a more advanced scenario,
the query also includes the policy filter obtained from VOPS to provide a better early resource selection.
VOPS. This service stores the policies for the VOs. AEM makes a service call to VOPS, providing the
outcome of the resource discovery and the user's credentials. VOPS performs additional filtering based on
the VO's and user's details, and returns a signed decision containing the certified resources that can run
the user's job.

Therefore, AEM does not enforce anything regarding the VOs explicitly, but rather uses other, specialised
services as decision points.

3.2.3 Job Execution and Result Collection

AEM's Execution Manager runs the processes belonging to a job. The processes need to run on behalf of
the user.

XtreemOS PAM modules provide a session on a local node to run the job's processes. AEM passes to
the modules the user's certificate, letting the job's processes be run as if the user logged into the node
using the global user ID. AEM also sets the policies and limitations required by the VO-level policies and
the schedule constraints, and the PAM modules enforce them, combined with the local policies.
XtreemFS service provides the distributed storage and networked access to the working files. AEM does
not interact with XtreemFS directly, but the jobs executed by AEM can load the input data from or store
the output into a VO volume of XtreemFS.

3.3 Architecture

In the prototype, AEM represents the consumer side of the Virtual Organization Management (VOM)
services. [Figure 2]shows a simplified diagram of the workflow for the job submission, illustrating the
overall architecture of the VO support for the job submission. The illustration involves the following
steps:

1. Certificate request. The user obtains her credentials from the CDA server or through the
VOLife’s web interface (not shown on the figure). This involves the user first authenticating
with the certificate issuing service either using a shell log in or the web account. The user’s
interaction here is purely with the VOM services, but they are a prerequisite for working with the
AEM.

2. User’s certificate gets installed on the user’s client computer either automatically (CDA client)
or manually (VOLife web interface). The CDA client installs the certificate in the user’s home
directory (profile) where the AEM client programs expect it to be.

3. Job request, formed by the user, is an input to the AEM client program (e.g., xsub). The client
program also reads the user’s certificate, and sends it along with the job request, to the AEM
core services.

4. AEM obtains the resource candidates using resource discovery provided by the ADS service.
The resource candidates conform to the requirements expressed in the job description.

5. The resource candidates then need to be checked for the VO policies. AEM sends the candidate
list to the VOPS and obtains the certified list using the VO policy filter. The result is a list of
candidates that are both capable of running the user’s job, and the VO policies permit the user to
actually run the job. This is an important step in using the VOs because it makes for a high
likelihood that the job scheduled on the node will actually be able to run on the node.

6. Once the jobs are assigned to the nodes, the AEM executes them on the worker nodes. To do
this, it passes the user’s credentials to the PAM modules installed on the worker nodes.

XtreemOS - Integrated Project

12/26

IST-033576

3. job request B

User .
Client
£r
1. certificate request g3
g ¢
Core scope X
<> ~r 5. VO policy filt
X-VOMS |*» CDA AEM |l Potey fiter VOPS
4. resource candidates
6.Yobs assigned to nodes
ADS
Worker
Node
VO2
orker
Worker ode
Node Worker orker
Node Node

VO1

Figure 2: VO support in the AEM.

3.4 Implementation
The considerations that went into the implementation of the prototype relating to the VO support involve

the following:
The AEM client programs use configuration files to learn the path to the user’s certificate. The

default configuration points to $SHOME/.xos/truststore/certs/user.crt, and the

private key in/ $HOME / . xos/truststore/private/user.key.
The client programs also provide a way to pass the path to a user key alternate to the one in the

current configuration.
AEM’s Resource Manager uses the API of the VOM’s VOPS to have the policy decisions done.
PAM modules’ API expects the user’s certificate content, and the AEM’s node-level services

pass them through the Java’s JNI.

4 Advanced Services to control jobs

4.1 Overview
XtreemOS as in M30 provides the users with a deeper control of job’s execution. The two main

contributions that appear are the following:

Handling of signals for the jobs running in the Grid. AEM offers two mechanisms of signals for the
jobs running in the Grid, on one hand we export the existing automatic signals in Linux to the grid job.

XtreemOS - Integrated Project 13/26

IST-033576

On the other we provide a set of grid signals that can be sent to the jobs. On both cases the AEM system
will provide that all processes of a job receive the sent signal.

Relationship of dependencies between jobs. In order to offer the needed tools for the implementation of
workflows by third parties AEM offers an interface to manage the relationships of jobs.

4.2 Use Cases

The use cases targeted by this task can be divided in two groups: to improve the cohesion of the processes
of a job running in the grid, and to enable the relationship between different jobs running in the system.

The basic use cases are:

— Send the XOS_SIG_CHLD to the processes of a Job when a process finishes.
— Add arelationship of dependence between jobs associated to a tag.

— Get all the jobs that depend from a job given for a specific tag.

Examples of more complex use cases:

— Create a workflow manager for jobs.

— Send a signal to all the jobs that are dependent from one.

4.3 Architecture and implementation

4.3.1 Signals

The AEM implements a new signal XOS SIG_CHLD. This signal will be sent to all the processes of a
job still alive when one of the processes of the job ends. This feature will need to extend the kernel to add
this new signal. For this prototype we change the signal to SIGRTMIN.

When a process of a job running in XtreemOS finishes (or an SIG CHILD is received), a
XOS _SIG_CHLD signal will be sent to all the processes of the job in a transparent manner independently
of where they are running. Any XtreemOS-aware application can catch this signal to manage its
processes.

For the rest of the signals the following interface is provided to send any signal to a job.

void sendEvent(string jobld, int signal, int operation, ArrayList<int> list, X509Certificate userCtx)

4.3.2 Dependencies

The interface to manage dependencies between jobs will provide the programmers with the tools to
implement workflows. The dependencies will be organized by tags that will ease the use of dependencies
by different layers. The tags will be represented as a string, and each relationship of dependence will be
associated with a tag.

Dependencies are accessible in both directions. This information will be stored with the information of
the job, in the Job Manager.

The AEM offers an interface that allows adding dependence between two jobs or deleting an existing
dependence. The interface provided to manage dependencies is as follows:

addDependence(string Jobldl, string Jobld2, string TAG, X509Certificate)

deleteDependence(string Jobldl, string Jobld2, string TAG, X509Certificate)

XtreemOS - Integrated Project 14/26

IST-033576

The interface to obtain the dependences needs a jobld and the TAG associated to the dependence. We can
specify the levels and the direction in which to search the relationship.

getListOfDependences(Jobldl, TAG, levels, direction, X509Certificate)

5 Resource Negotiation and co-allocation

5.1 Overview

Service for reservations of resources: user is allowed to allocate reservations for single resource or a
group of resources. Reservations are made for a time interval and if needed the amount of the resource is
also provided (for example, how much RAM is needed). Service provides transactional reservations and
migrations, allowing for safe group reservations. Also, the service architecture is based on static types —
each attribute of a reservation must be represented by an object, making handling of errors in reservation
requests easier. Requests for allocation are queued, allowing concurrent writes, however, the back-end is
single threaded.

5.2 Use cases

® Dbasic operations: adding, removing (outline of the image: actor, then a box with operations,
stating that actor selects an operation, another actor — execution unit, performs the operation on
the time-table, notifies the user about results)

® group resources (user makes a reservation, several time-tables are checked by the execution unit,
result is returned)

® transactions (execution unit makes an operation over time-table, migrations manager records the
changes)

5.3 Architecture

[Figure 3]shows the architecture of the reservations service: having three parts, front-end, execution unit

Service \ Execution Unit

engueue reguesls
\\& Decode
(: reguest
Maodify
time-tables

Reservation | ‘ Reserv, | Rl%s.

Figure 3: Overview of the reservations architecture.

XtreemOS - Integrated Project 15/26

IST-033576

and time-table. Front-end contains a queue of requests, which are then pulled by execution unit one by
one, processed and then required operations are performed on the time-table. The operations are recorded
to the migrations mechanism. Interaction with the service is shown on jError! No se encuentra el

origen de la referencia..

5.4 Implementation

The components are divided into the following groups:
attributes

attribute handlers

basic elements

manipulators of the basic elements

groups

migrations

front-end

System

Make
request

Check all
time-tables

Execute
request

v

Execluti
on Unit

Figure 4: Abstract use case for the service.

Attributes represent the object that is mapped from the reservation document. This allows for static typing
and provides greater control over the execution and mapping than using simple maps with strings.
However, such rigid environment also demands an active involvement when new attributes are

introduced.

XtreemOS - Integrated Project

16/26

IST-033576

Operation

Remove

/ Update

0o

Generate
operation

User

/

Time-table

Executi
an Unit

Execute
oepration

Figure 5: Use case for operations

XtreemOS - Integrated Project 17/26

IST-033576

Each attribute has a dedicated handler, which knows what to do with an attribute. These handlers provide
operations that are allowed over different attributes as shown on jError! No se encuentra el origen de la
referencia..

Basic elements are the basic building blocks of the service. Like an entry in the time-table, time-table, etc.
Each of these elements has a dedicated manipulator which represents an operation over the element (for
example adding, removing, and searching in the time-table). Collective reservations are handled within
the groups’ package.

System

Select
entries to be
changed

Store
current state

[\

Execlti

an Unit Modity

time-table

/ Migrati
an Unit

If failed,
restore

Figure 6: Use case for migrations.

Migrations use simple object mapping mechanisms that provide atomic operations over the manipulators
as shown in jError! No se encuentra el origen de la referencia.;Error! No se encuentra el origen de
la referencia..

6 Job Monitoring

6.1 Overview

In any operating system we have a set of operations, commands and even programming interfaces that
provides the user with the ability to know what is happening on the system. In XtreemOS we will provide
them into the job monitoring interface.

The job monitoring capability on XtreemOS as M30 will provide information about the jobs, and
processes related to these jobs, of the caller user.

Although we will provide basic features now, more advanced ones that will be described on D3.3.5 will
be developed in the next months. These features are monitoring callbacks and the ability to add any
monitoring value by the user using the concept of Metric.

6.2 Use Cases

Job Monitoring will have the next aim:

e To automatically provide typical information associated to jobs such as execution time
e To provide mechanism to limit the type and the granularity of information collected
e To provide mechanism to easily add new information to the generated by the system

XtreemOS - Integrated Project 18/26

IST-033576

e To provide mechanism to be notified when certain monitoring events fire (callbacks)

We can describe several use cases using the monitorization that we will provide on this prototype:

e Get information about the execution of a job (typical Linux ps command)
e Generate trace information about the behaviour of a job (tracing / profiling tool).

6.3 Architecture

The architecture of job monitorization is provided by JobMng and ExecMng inside AEM. It uses XATI
and its C-XATI (C-interface) to export methods to the users. The architecture for the prototype doesn’t
include any work on callbacks export to the user and buffering mechanism. Getting buffering working
over some metrics will need to create several circular queues that will be filled up with the values (and
their timestamp). We will need to provide events to notify when a buffer is full.

In|Figure 7|we can see a diagram showing relations between components to enable monitoring.

User Scope Core Scope
credentials
-« 3.5: CDA
User
llba job |D and
C‘T h”_r"f evenls to 3.3: Job Directory
measures i
job 1D and job info
3.1 XOSAGA events to
manitor A 4
- reservation info _— . -
3,3: Reservation
3 3. L . araner e '
3.3: XATI < 3.3: Job Manager <€ Manager
callback A
measures ~
resource info local resource
job unit info
info
™~
~
3.3: Exec Manager 3.3: Resource Manager
process info resource info
2.1 + 2.2: XO5 Node
Node Scope

Figure 7 - Monitoring Diagram (D3.1.7)

6.3.1 JobMng

JobMng provides us with job related information, we get into contact with the job manager that
“controls” the job and ask for information of the status of the job (like submit time, or status).

When we enable buffering of metrics in the future, JobMng will store those per job in case of metrics
related to the job.

6.3.2 ExecMng

ExecMng provides us with information about the execution of a Job; in concrete we can get processes’
job information. So the different ExecMng are contacted to get all the information of the running
processes. As in the JobMng buffering for metrics related to the ExecMng will be stored here per job-
unit.

XtreemOS - Integrated Project 19/26

IST-033576

6.4 Implementation

We have the next set of operations ready to use:
int getJobsUser(X509Certificate userCert, @OUT list<String> joblds),

int getJobsInfo(list<String> joblds, int typeOfinfo, int infoLevel, list<String> metrics,
X509Certificate userCert, @OUT XMLString jobInfoList);

int getJoblnfo(string jobld, int typeOfinfo, int infoLevel, list<String> metrics,
X509Certificate userCert, @OUT XMLString jobInfoList);

These operations are related to JobMng. getJobinfo can ask for extra information (about running
processes) to ExecMng (using getProcsInfo). Now, the output information is fixed but it will be
customizable with the input parameters (typeOfInfo, infoLevel and the list of metrics) to reduce
monitoring overload provided when contacting other components. Currently we present the results as an
XML with the next structure:

Finally xcommands, xps and xtrace are built using the previous interfaces (with XATI-C). The advanced
version of xtrace will be built using callbacks and metrics functionality, now we are providing a poll
version. The xcommands should be taken as examples on how to use the XATI-C interface.

7 User guide

Code is accessible through XtreemOS SVN repository at|https:/scm.gforge.inria.fi/svn/xtreemos/WP3.3/|

7.1 Checkpointing

Two new commands can be issued on the console to address fault tolerance functionalities. The job
checkpoint command is:

xcheckpoint jobID.

The CRJobMng implements the command via the interface:

public void checkpointJob(String jobID, X509Certificate userCert)

The job restart command is:

xrestart jobID checkpointVersion

The CRJobMng implements the command via the interface:

public void restartJob(String jobID, String checkpointVersion, X509Certificate userCert)

A job checkpoint can be taken by issuing 'xcheckpoint jobID' at the xconsole.

During checkpointing two types of data will be set up: grid checkpointing meta-data and kernel
checkpointer generated image files. Currently, the grid checkpointing meta-data will be saved under the
XtreemOS checkpoint path '/etc/xos/job_checkpoint image directory/ which is created automatically if
non-existent. After issuing a checkpoint command, the directories joblD/checkpointVersion/JobUnit 1/
will be created under the XtreemOS checkpoint path, containing an xml file with the meta-data.

In LinuxSSI the kernel checkpointer stores image files under /var/chkpt/. In case of a successful
checkpoint, the following files will be created: global VERSION.bin, node NODEID VERSION.bin,
task APPID_VERSION.bin, task_ mm_APPID_VERSION.bin.

For LinuxXOS the directory /etc/xos/bler/ must exist with read/write access permission for any user.
Furthermore, the BLCR kernel modules (blcr, blcr_ vmadump, blcr_imports) must be loaded by issuing
'‘make insmod' applied to the BLCR installation directory. In order to checkpoint a job using BLCR, the
application has to be linked statically with BLCR user library (gcc -o test test.c -lcr). This overhead will
be replaced in a later AEM version. In case of a successful checkpoint, the following files will be created:
PID.VERSION.blcr, PID.VERSION.xos, proc.txt, queue, thread for process PID.txt.

To restart a job one has to issue 'xrestart jobld version' at the Xconsole. For a restart to be successful the
grid checkpointing meta-data and the kernel checkpointer image files must locally be available under the
before-mentioned locations.

XtreemOS - Integrated Project 20/26

https://scm.gforge.inria.fr/svn/xtreemos/WP3.3/

IST-033576

7.2 Basic VO Support

To configure Job Manager to properly check whether the certificate is trusted, the node that runs Job
Manager locally needs a folder containing the public certificates of the certification authorities that we
trust. Currently, this includes the public certificates of the CDA services of each organisation that our
organisation trusts, as well as their root certification authority public certificates. By default, these
certificates are placed into /etc/xos/truststore/certs/. The Job Manager reads the path from its
configuration file /etc/xos/config/JobMng.conf, defined as the value of the trustStore option.

The clients using XATI needs to take care of loading the user's certificate and the private key, prompting
the user to enter the password to obtain the private key contents. The AEM client programs provided in
the XtreemOS Linux distribution, such as xconsole and command-line xsub, xkill etc., however, already
take care of loading the necessary files. By default, the command-line CDA client places the certificate
files in the folders where the AEM client expects them:

® ~/.xos/truststore/certs/cda.pem is the user's public certificate,

® ~/.xos/truststore/private/cda.pem is the private key corresponding to the user's certificate.

If the user prefers a different location for the certificates, then the XATI configuration (found by default
in ~/.x0s/XATIConfig.conf) and C-XATI configuration (found by default in ~/.x0s/X4ATICAConfig.conf)
need to be modified:

® userCertificate option contains the path to the user's public certificate file, and

® userKeyFile option contains the path to the user's private key.

7.3 Advanced Services to control jobs
We will explain the different methods and interfaces provided via XATI and C-XATI interfaces.

The new interfaces provided to manage signals and control jobs is this one:
void sendEvent(String jobld, Integer signal, Integer operation, ProcessList list, X509Certificate userCtx)

This method allows choosing the processes of the job that will receive the signal. The operation parameter
indicates if the signal should be sent to all the processes of a job, just to the master process of the job,
only to the processes that appear in the list or all the process of the job except the ones that appear in the
list.

We have also an xcommand, xps able to send events directly without java console.
The interface provided to manage dependences is as follows:

addDependence(Jobldl, Jobld2, TAG, X509Certificate)
Will add the dependence from Jobld1 to Jobld2 associated to the TAG.

deleteDependence(Jobldl, Jobld2, TAG, X509Certificate)
Will delete the dependence from Jobldl1 to Jobld2 associated to the TAG.

getListOfDependences(Jobldl, TAG, levels, direction, X509Certificate)

Will return the list of Joblds that have a dependence relationship with the job with the Jobld
given and the TAG specified. The direction parameter indicates if we want the dependences from that job
or to that job. The level parameter will indicate how many levels of dependences we want. If the level is 0
we will only get the joblds directly related to the one we are indicating.

7.4 Job Monitoring

We provide the next methods for the job monitoring, they are shown through XATI and C-XATI
interfaces being able to use them through JAVA code and C code.

int getJobsUser(X509Certificate userCert, @OUT list<String> joblds),

XtreemOS - Integrated Project 21/26

IST-033576

int getJobsInfo(list<String> joblds, int typeOfinfo, int infoLevel, list<String> metrics,
X509Certificate userCert, @OUT XMLString jobInfoList);

int getJoblnfo(string jobld, int typeOfinfo, int infoLevel, list<String> metrics,
X509Certificate userCert, @OUT XMLString jobInfoList);

More information about these interfaces can be found on D3.3.5 [D3.3.5]. The output expected on
getJobinfo/getJobsinfo is the XML shown in jError! No se encuentra el origen de la referencia..

Table 1 - XML output from getJobInfo

<jobInfoList>
<jobInfo jobID=100000-00000-000000-00000>
<metric>
<name>submitTime</name>
<type>time</time>
<value timestamp=120202020>1/1/09 10:00</value>
</metric>
</jobInfo>
<jobInfo jobID=200000-00340-003240-00000>
<metric>
<name>status</name>
<type>string</time>
<value timestamp=120202020>GRID SUBMITTED</value>
</metric>
</jobInfo>
</jobInfoList>

There are a two xcommands related to Job Monitoring as they use the XATICA interface, they need a
XATICAConfig.conf file similar to the one in jError! No se encuentra el origen de la referencia..

Table 2 - Sample XATICAConfig.conf file

xosdaddress.host=XOSDHOST

xosdaddress.port=55000

address.host=LOCALIP

address.port=10001
certificateLocation=/etc/xos/truststore/certs/xati_dummy.pem
privateKeyLocation=/etc/xos/truststore/private/xati_dummy.pem
trustStoreSSL=/etc/xos/truststore/certs/dixi_ssl

useSSL=false

cdaaddress.host=CDAHOST

cdaaddress.port=60000
userCertificateFile='home/rnou/.xos/truststore/userCert.pem

xps command has this signature:

xps [-a] [-A] [-c userCert] [-j jobid]

-a Selects all the jobs of the current user

-A ANSI output (color console)

-c userCertificateFile Will use the user certificate provided. We will get X4TICAConfig.conf as default

-j jobID Will gather information about the job with the specified jobID

-T TAG. Displays the jobs related to the jobID specified with the TAG (One direction only, 5 levels deep)

We can see a sample output in jError! No se encuentra el origen de la referencia. where we can see the
job, the resource where it is executing and the information of the related processes. The output is
generated from the previous XML file so the user can adapt it to any use he wants.

Table 3 - xps output

XtreemOS - Integrated Project

IST-033576

870f5901-0dde-40{6-b9ca-eabdf3c99908 @ 1224589742536 :
jobld = 870f5901-0dde-40f6-b9ca-eabdf3c99908
status = LocalSubmited
submitTime = Tue Oct 21 13:48:58 CEST 2008
resource]lD = XOSDHOST/192.168.0.101:60000
PID =20514
userTime = 00:00.38
systemTime = 00:00.00
status = R
PID =20526
userTime = 00:00.34
systemTime = 00:00.00
status = R

The xtrace is similar to xps, but it includes one parameter —i <int> where we can put the time between
status update on the trace.
xtrace [-j jobID] [-c usercertificate] [-i interval] [-o outputtrace] [-f jsdl]

Xtrace generates a trace file that can be open through paraver visualization tool [REF], it can also accept a
JSDL file to launch and get the trace in one shot. JobID or jdsl file is mandatory.

As an example calling xtrace with:
xtrace —j <JobID> -i 1 —o testTrace

Generates testTrace.prv, testTrace.pcf and testTrace.row paraver files for job with jobID and an update
interval of 1 second. In this first prototype we will support status metric only.

The result in Paraver is shown on Figure 8:

@ &4 009b9

A147 53,354,197

Figure 8 - xtrace output on Paraver

7.5 Other xcommands

With the C-XATI interface we provide a set of user commands (like xps or xtrace, shown before) to
execute several operation without the need of a JVM. Those commands (from now xcommands) can be
used on several scripting and testing jobs. For example, one can execute an xps command and process its
output to see if a recently submitted job is running. ;Error! No se encuentra el origen de la referencia.
contains a list of those xcommands currently available in the prototype.

Table 4 — XCommands available on the prototype

XCommand Feature / Equivalence

xsub Job Submission / xsub

xsub.sh Job Submission without providing JSDL

Xps Job monitorization (job and process state) /xps
xkill Send job events / sendEvent / jobControl

XtreemOS - Integrated Project 23/26

IST-033576

xwait Waits / receives job exit status / jobWait

xtrace Generates a Paraver trace

It is planned to have a wider subset to be able to have an MPIRun being able to execute on XtreemOS.
Those xcommands work with X4TICAConf.conf configuration.

7.5.1 xsub

xsub xcommand provides a non-java way to submit and execute a job providing a JSDL. There is a
simpler version based on a shell script that creates itself the JSDL.

xsub [-h] [-V] [-V] [-c cert] [-f jsdI]

-h help output

-v verbose and debug mode

-c userCertificateFile will use the user certificate provided. We will get XATICAConfig.conf as default
-f jsdl will submit the jsdl

xsub.sh calls xsub but the user needs to specify only the executable file, the parameters if any and —in —out
—err files to redirect the different channels.

xsub.sh <executable> <parameters> -in <input> -out <output> -err <error>

7.5.2 xkill

xkill provides a way to send events to jobs providing the jobID and the number of the event (or signal).
xKill [-h] [-v] [+ joblID] [-c cert] [-e event]

-h help output

-v verbose and debug mode

-c userCertificateFile will use the user certificate provided. We will get XA TICA Config.conf as default
-j jobID

-e Event. Event to be sent to the job with the specified jobID

7.5.3 xwait
xwait will block until the jobID is done/finished.

xwait [-h] [-v] [-c cert] [} jobID]

-h help output

-v verbose and debug mode

-c userCertificateFile .Will use the user certificate provided. We will get XAT/CAConfig.conf as default
-j jobID. JobID of the job to wait.

8 Dependencies / Roadmap

In this section we will show the roadmap for the components of the prototype and introduce the
dependencies with other components.

8.1 Checkpointing

Recently, the LinuxSSI checkpointer has been extended to checkpoint / restart a subset of multithreaded
and multiprocess applications. This translation library must be refined to work properly with the new
LinuxSSI kernel checkpointer functionality.

Currently, checkpointing using BLCR works only for single-process applications. The BLCR translation
library will be made working for multiprocess application to checkpointable by the end of November
2008.

XtreemOS - Integrated Project 24/26

IST-033576

Issuing a job checkpoint works only on grid nodes where the job manager resides. Check-pointing of a
multi-job-unit job must be enabled. Both functionalities will be available by the end of March 2009.

Checkpoint related files must be made accessible to all grid nodes, since it is unknown which grid node
will serve for job restart in case of a grid node failure. This can be achieved by using XtreemFS. Each VO
sets up an XtreemFS volume to host migration-related checkpoints that can be removed immediately after
the migration has finished. User-initiated checkpoints can be saved in the XtreemFS HOME volume of
the user.

For realising load balancing, job migration must be enabled. In XtreemOS migration will be realised by
checkpointing a job on a source grid node and restarting it on a destination grid node. Integration of
XtreemFS as well as job migration may be realised by the end of March 2009.

A static mapping of the global and the local user and group identification is needed. The changing uid/gid
between multiple PAM authentications leads to denials of the checkpoint/restart service by the kernel
checkpointers. Resulting id collisions must be handled. However, this functionality needs to be provided
by security/authentication related work packages.

8.2 Basic VO support

We see the further development of the AEM support in the following areas.

e The first release of the XtreemOS supports only one VO. As a result, AEM expects that the user
wants to submit the job as a part of the first VO listed in the user’s certificate. In the next release,
the users will be able to take part in any number of VOs, and the AEM client programs and its
API will need to accommodate the selection of the VO to be used.

e Currently, the services or the sets of services individually take care of reading and handling
user’s credentials. Further development should also focus on taking advantage of common tools
already developed by the project partners. For instance, the Credential Obtention Framework
[D3.6.3], developed for the mobile devices in the WP3.6, could be extended for the desktop
devices as well. While this is the task for the WP3.5, the AEM should take advantage of it.

e AEM should support a more advanced management of the jobs. Currently, the job belongs to the
creator (i.e., the user submitting the job), and the owner is the sole user who can monitor, stop or
checkpoint the job. AEM would therefore need to support a kind of an access control to a job,
letting the owner set permission to the other users within a VO to manipulate the job.

e ADS/RSS currently provide the resource discovery only depending on the job requirements. This
increases the likelihood that many or all of the retrieved candidates would be denied by the VO
policies. In the next release, ADS is to support the selection refinement based on the VO policy
filter, reducing the retrieval of unsuitable resource candidates even further.

8.3 Advanced services to control jobs

Scheduling hints and resource related behaviour will be completed on March 2009. With this prototype
we have fulfilled R58, R68 from [D4.2.5]

8.4 Resource Negotiation and Co-allocation

Front-end to the other services must be built. Front-end is composed from an enqueuing mechanism and
reservations objects, which are pushed to the evaluation and execution part of the reservations service.

8.5 Job Monitoring

The Job Monitoring needs a set of features and capabilities (will be described on D3.3.5). Next steps
includes building metrics operations (creation, description, adding user metrics) and finally building
callbacks infrastructure to export callbacks to the user. It is planned to add buffering on several events, in
order to reduce calling overhead on some cases (like tracing tools). These features need some work that
will be finished in March 2009. The monitoring work is related to accounting so we will need interaction
with VOM. We fulfilled partially R62, R63, R64, R65, and R57 from [D4.2.5]

XtreemOS - Integrated Project 25/26

IST-033576

9 Conclusions

A lot of improvements and new features have been included on this deliverable and most of the technical
issues (as checkpointing) have been solved.

In the next months we need to work on AEM to improve and complete monitorization features, with key
points as user callbacks and metric implementation, complete checkpointing for multiprocess and multi-
job-unit job, job migration to provide load balancing. Regarding VO further improvements need to be
done but the main infrastructure is done. Finally reservations services need to be offered to other services
via a front-end that needs to be built.

Within the next months we will work also in the scheduling hints and related behaviour that will create a
collaboration between resources and jobs, and to provide VOM with accounting tools.

10 References

[CPGGE] J. Mehnert-Spahn and M. Schoettner and C. Morin, Checkpoint process groups in a grid
environment, 2008, December, PDCATO0S8, Dunedin, New Zealand

[XGCA] J. Mehnert-Spahn and Thomas Ropars and M. Schoettner, XtreemOS grid checkpointing
architecture and implementation, Technical Report, 2008

[D2.2.3] J. Mehnert-Spahn and M. Schoettner, Design and implementation of basic checkpoint/restart
mechanism in LinuxSSI D2.2.3, 2007

[D3.3.3-4] Toni Cortes, Julita Corbalan, Gregor Pipan, Basic Services for application submission,control
and checkpointing. Basic services for resource selection, allocation and monitoring D3.3.3-3.3.4, 2007

[D3.3.5] Toni Cortes, Julita Corbalan, AEM Monitoring. D3.3.5, 2008
[D3.5.8] Jaka Moénik, Specification of application firewall, D3.5.8, 2008
[D3.6.3] Luis Pablo Prieto, Jesus Malo, XtreemOS-G for MDs/PDA, D3.6.3, 2008

[D4.2.5] SAP, Evaluation Report and Revision of Application Requirements, D4.2.5, 2008

XtreemOS - Integrated Project

26/26

