
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A L INUX -BASED OPERATING SYSTEM TO SUPPORTV IRTUAL
ORGANIZATIONS FORNEXT GENERATION GRIDS

The XtreemOS File System - Requirements and Reference
Architecture

D3.4.1

Due date of deliverable: 30-NOV-2006
Actual submission date: 21-DEZ-2006

Start date of project: June1st 2006

Type: Deliverable
WP number: WP3.4

Responsible institution: ZIB
Editor & and editor’s address: Felix Hupfeld

Zuse Institute Berlin
Takustrasse 7
14195 Berlin

Germany

Version 1.1 / Last edited by Felix Hupfeld / 21-DEZ-2006

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.4 23.10.06 As sent out for review of document structure
1.0 23.11.06 Final submission to INRIA
1.1 21.12.06 Submission of harmonized version to INRIA

CONTENTS CONTENTS

Contents

1 Introduction 4

1.1 Document Structure . 5

1.2 Features and Feature Lists . 5

2 General Requirements 6

2.1 Fault Tolerance and Scalability 7

2.2 Federation . 8

2.3 POSIX Compliance . 8

2.4 Requirements by Other WPs 10

2.5 Use Cases . 12

3 Architecture 15

3.1 XtreemFS and existing object-based file systems 15

3.2 Overview . 16

3.3 General Definitions and Concepts 17

3.4 System Components . 17

3.5 Architectural Artifacts . 18

3.6 Interaction between Components 21

4 Object Storage Device (OSD) 28

4.1 Objects and Object Storage Devices 28

4.2 Multi-Object Files . 29

4.3 Transactional Files . 30

4.4 Architecture . 31

4.5 Feature List . 32

4.6 Open Issues . 37

4.7 Interface . 38

4.8 Research Prospects . 38

1

CONTENTS CONTENTS

5 Replica Management Service (RMS) 40

5.1 Replication Policies . 40

5.2 Architecture . 41

5.3 Open Issues . 47

5.4 Interface . 48

5.5 Research Prospects . 48

6 Metadata and Replica Catalogue (MRC) 50

6.1 Security . 50

6.2 Architecture . 52

6.3 Feature List . 53

6.4 Testing . 58

6.5 Open Issues . 58

6.6 Interface . 59

6.7 Research Prospects . 59

7 Object Sharing Service (OSS) 61

7.1 Architecture . 61

7.2 Feature List . 65

7.3 Interface . 68

7.4 Research Prospects . 68

8 Access Layer 70

8.1 Introduction . 70

8.2 Approach . 70

8.3 Feature List . 73

8.4 Implementation . 80

8.5 Research Prospects . 85

2

CONTENTS CONTENTS

A Relations to other WPs 87

A.1 Service Discovery - WP3.2 . 87

A.2 Publish/Subscribe - WP3.2 88

A.3 Remote Execution - WP3.3 88

A.4 Replica and Job Collocation - WP3.3 88

A.5 SSI - WP2.2 . 88

A.6 Checkpointing - WP2.2 . 89

A.7 VO Management - WP2.1 . 89

B Protocols 89

B.1 HTTP Protocol for XtreemFS 90

C FAQ 91

3

1 INTRODUCTION

Executive Summary

This document describes XtreemFS, a federated object-based file
system for Grid environments, and the Object Sharing Service (OSS),
which facilitates for inter-process communication for applications.

The object-based file system architecture splits files into their pure
content, the objects, which are stored on so called object storage de-
vices (OSDs), and the file metadata, which is put on dedicated meta-
data servers. XtreemFS extends the architectural concept of object-
based storage to Grid environments by replacing the centralised meta-
data servers with a federation of metadata servers in order to ensure
independence of participating organisations while maintaining a global
view of the system.

In order to achieve scalability and fault tolerance, XtreemFS will
also feature replication and partitioning/striping for both file meta-
data and the file content. Dynamically created communication over-
lays will coordinate concurrent accesses and ensure the data’s consis-
tency in a scalable way. Data can be replicated across organisation
boundaries, and therefore special attention needs to be paid to the
latencies that the connecting wide area networks introduce and to
failure cases like those of possible network partitioning.

Files can not only be placed manually to different stores, but an
automatic system will monitor file access and resource conditions to
automatically optimise data layout in the Grid. In addition, semantic
naming and advanced query functions will allow users to find data in
huge archives, with the aim of overcoming limitations for the organi-
zation of data of traditional hierarchical file systems.

The Object Sharing Service (OSS) will provide inter-process com-
munication mechanisms via volatile memory, mapped files, dynami-
cally allocated objects and grid pipes.

In the following chapters we review the requirements to the data
management of XtreemOS, and describe the architecture of XtreemFS
in general along with the design of its individual components. For each
component, we also sketch a possible evolution of its implementation
and name open issues and research prospects.

1 Introduction

This document is a draft of the architecture of XtreemFS and the Object
Sharing Service. The architecture identifies components, their interdepen-
dencies and interfaces. Moreover, it incorporates use cases, requirements
and issues.

4

1 INTRODUCTION 1.1 Document Structure

1.1 Document Structure

Section 2 lists the general requirements and objectives of XtreemFS and the
Object Sharing Service (OSS). It also includes comments on requirements
to XtreemFS by other work packages (section 2.4) and a list of use cases
(section 2.5) developed in cooperation with other work packages. The overall
architecture and interaction of components is described in section 3. The
following sections 4, 5, 6, 7 and 8 give details on the individual components,
including a list of features and technologies for each component. Appendix
A lists requirements to other workpackages. Appendix B gives an overview
of technologies that the system will use.

1.2 Features and Feature Lists

The features listed in the respective sections are meant as a guideline to the
implementation and research that will be conducted in this workpackage.
Most aspects of our file system have not been implemented routinely. Thus,
feature lists do not serve as a strict schedule but rather help to structure
and synchronise our intended efforts within the workpackage. The features
XtreemFS will expose to the environment are listed in section 2.

For the feature lists throughout the document the following template is used:

ID: Feature ID

name short name of the feature
type the type of the feature can be one of

• basic are features that are necessary to build a work-
ing prototype.

• advanced are features that require more elaboration
and are not absolutely necessary for a working pro-
totype.

• research features are similar to advanced but require
additional research.

• optional features add extra value to the system but
are not part of the core functionality. They may be
changed or not be implemented at all.

dependencies a list of other major features on which the feature depends
description a short description of the feature

5

2 GENERAL REQUIREMENTS

2 General Requirements

Aiming to build a full-featured file system for XtreemOS as a software prod-
uct, we have gathered features that are commonly required for file systems.
This section states requirements that are derived from the project’s descrip-
tion and goals, from file system literature, and from common features of other
file systems. Likewise, input from other workpackages (incl. users) has been
incorporated.

While XtreemOS is a research project, it is also expected to deliver software
ready for production environments. Because data management is an integral
part of the overall system, the reliability of XtreemFS is essential for the
success of the entire project. Bearing that in mind, this document differ-
entiates between basic and advanced features. Basic features are essential
for a usable data management system and will be implemented during the
first eighteen months. Advanced features are part of the research prospects
of XtreemOS. They have not been routinely implemented before and aim to
increase the attractiveness of the XtreemOS platform.

Other workpackages are more likely to depend on basic features than on
advanced features. Therefore, basic features should be available earlier than
advanced features in order to set the stage for progress with both interfaces
and implementations. In turn, advanced features require less interaction with
other workpackages and can therefore be studied with the required patience.

As a distributed system which encompasses systems from multiple organisa-
tions, it is important that:

• it is fault tolerant, so that outages do not affect the overall system and
are automatically handled

• it is scalable, i.e. increased performance demands can be matched with
proportionally adding more machines

• organisations are independent, i.e. can join and leave at will, and they
can work without connectivity (referred to as federation)

• it is loosely coupled and asynchronous, so that failures and temporary
performance issues do not spread over the whole system

6

2 GENERAL REQUIREMENTS 2.1 Fault Tolerance and Scalability

Being a platform for distributed UNIX software, XtreemOS will need to
develop a UNIX-like file system. Because of the laws of nature of distrib-
uted systems, which are especially relevant in a WAN-system like XtreemOS,
trade-offs will have to be made for its UNIX compatibility. These trade-offs
should be made visible or even accessible to client applications.

The main aspects of data management in XtreemOS are mainly user and
group files and their sharing for collaboration purposes. Expecting to han-
dle large numbers of files, it is recognised that the directory hierarchy and
filenames of traditional file systems are not sufficient. In addition to hierar-
chical directory structures, the system hence requires support for extended
meta-data. A semantic naming of files allows a database-like arrangement
of the file system, including a retrieval of files by means of queries based on
attributes.

To be attractive to a wide audience, the file system is supposed to run on
commodity hardware. That means it does not assume the presence of unusual
large amounts of main memory (>4 GB), RAID protected drives, etc.

In short, the system should

• exhibit UNIX-like (POSIX) behaviour where possible,

• support tunable trade-offs where necessary and possible,

• support extended metadata,

• support but not require hierarchical names (i.e. a directory structure),

• support private data, shared and collaboration data, and data archives,

• run on commodity hardware.

2.1 Fault Tolerance and Scalability

As a system running on standard hardware connected with WAN links, the
system must tolerate hardware outages. Moreover, it must handle amounts
of data and requests that exceed the capacity of single machines. This is
achieved by distributing the system over multiple machines. Adding more
machines to the system should not involve a disproportional increase in over-
head.

7

2.2 Federation 2 GENERAL REQUIREMENTS

2.2 Federation

XtreemFS will keep data of many institutions. While it allows a global view
on all data available in the system, it must also guarantee the availability of
data in presence of network disconnections or institutions leaving the feder-
ation of systems.

Institutions should be able to use their local system with their local data when
they are disconnected or when parts of the overall system are disconnected.

2.3 POSIX Compliance

To support traditional UNIX applications, we have to be POSIX compliant.
Because strict POSIX compliance severely restricts scalability of the file sys-
tem, we allow XtreemOS-aware applications to fine tune guarantees in order
to improve their performance.

This section aims to list all aspects of POSIX compatibility, and identifies
their impact on the general architecture. Because of the lack of free avail-
ability of the POSIX standards, we refer to the Single UNIX Specification
Version 3 [8] instead.

The specification basically deals with the following aspects:

• read/write consistency

• access control

• hierarchical file space

• file metadata

• extent locking

2.3.1 Read/Write Consistency

In POSIX read and write operations are seen as atomic. So read operations
do either see the entire block written or nothing. However, this behaviour
is only intended and not mandatory according to [8]. Future versions of the
standard may see this as mandatory!
Tests on Linux systems showed that concurrent read and write operations on
local filesystems (e.g. ext3 or ReiserFS) are not atomic. Tests for NFS will
be conducted.

8

2 GENERAL REQUIREMENTS 2.3 POSIX Compliance

For subsequent write/reads [8] requires something that could be interpreted
as strict consistency:

“Writes can be serialized with respect to other reads and
writes. If a read() of file data can be proven (by any means)
to occur after a write() of the data, it must reflect that write(),
even if the calls are made by different processes. A similar re-
quirement applies to multiple write operations to the same file
position. This is needed to guarantee the propagation of data
from write() calls to subsequent read() calls. This requirement
is particularly significant for networked file systems, where some
caching schemes violate these semantics.”[8]

2.3.2 Access Control

In short, POSIX defines an access control model based on users and group
of users, and defines read/write/execute privileges for each filesystem entity
(e.g. files or directories). Access control is evaluated recursively, i.e. the
access rights of directories in the file’s paths influence the access rights for
the file, see [4], [20].

2.3.3 File Metadata

According to [8], delayed, periodic updates to file times are allowed (section
6.5). Moreover, some file systems have options to turn off atime updates to
increase performance (noatime mount option) [15]. Other metadata requires
online (immediate) updates, e.g. the filesize.

2.3.4 extent locking

POSIX includes facilities to lock byte-ranges of files. XtreemFS will support
these mechanisms.

2.3.5 hierarchical file space

Like traditional filesystems XtreemFS will support a hierarchical file space
(i.e. directory tree).

9

2.4 Requirements by Other WPs 2 GENERAL REQUIREMENTS

2.4 Requirements by Other WPs

2.4.1 R67

”It must be possible to concurrently read from files which are
open for write access. It must also be possible to concurrently
write to files open for reading. [...]”

Concurrent read/write access is possible, and the system will provide real
POSIX, actual UNIX, or application-defined consistency guarantees. Locking
is not mandatory.

2.4.2 R71

”It should be possible to check for file data and metadata
changes. It should also be possible to subscribe to the information
on file data and metadata changes, e.g. through registering a
callback function.”

Change notification mechanisms are supported via Feature MRC 4.4. How-
ever, most POSIX metadata (size, atime, etc.) will be updated lazily for
performance reasons.

2.4.3 R72

”File access time must be below 10 s to prevent time-out errors
in applications. The data access time for interactive applications
using a database must be below 150 ms. Furthermore, data access
is very frequently. [...]”

Our system will provide means for partitioning and replication for load bal-
ancing. These features and the latencies will strongly depend on the network,
switches, layout, cluster design, and the like.

2.4.4 R73

”It must be possible to limit the number of replicas. Some
applications need this possibility because of copyright, storage
space, security, and performance constraints.”

Replication policies will cover most of these aspects. Client-side built-in data
encryption could also be useful for such scenarios.

10

2 GENERAL REQUIREMENTS 2.4 Requirements by Other WPs

2.4.5 R74

”The versioning of data to allow incremental changes is re-
quired. [...]”

WP3.4 will investigate how copy-on-write techniques can be used to make
versions of data available without sacrificing the overall architecture and
system performance. We will try design in the possibility of this feature, but
no statements can be made on when it might available, because it is a rather
special and advanced feature.

2.4.6 R75

”It must be possible to explicitly copy/move data between
different resources. [...]”

WP 3.4 will provide access pattern-aware replication management. Behav-
iour can be controlled via fine-grained policies. Manual creation of replicas
will be supported as well.

2.4.7 R76

”The GOM layer must support an object based access/shar-
ing. The GOM layer must support transactional consistency for
object sharing. This includes restartable transaction combined
with optimistic synchronization.”

WP3.4 will provide object-based sharing combined with transactional con-
sistency by the OSS service.

11

2.5 Use Cases 2 GENERAL REQUIREMENTS

2.5 Use Cases

This section gathers use cases. They are not prioritised or guaranteed to be
supported.

1. User rights management

• Alice wants to store files in a file space and share them with Bob.

• Bob can read and write files in this space.

• In addition, Alice would like to give read permission to a group of
users that does not include Bob.

2. Multiple file spaces

• Alice works on project A, Bob works on project B. Both projects
have nothing in common.

• Alice does not want to see files of project B, while files of project
A are not of interest for Bob.

• Both Bob and Alice only want to be aware of files belonging to
projects they are working on.

3. Efficient data retrieval

• Alice is a chemist and works with approx. 35,000 files containing
protein information.

• Alice regularly searches for certain proteins based on additional
information contained in the files.

• Then she creates lists of matching protein files to feed into her
programme.

• She does this regularly with repeating queries.

4. Well-known interfaces

• Bob has a huge amount of images on his Linux computer.

• He wants to copy these files into the new XtreemFS repository.

• Bob is always in a hurry and too lazy to learn how to use a fancy
graphical UI programme for a new storage system. He wants to
’cp -a’ his images.

5. Separate rights management for meta attributes

12

2 GENERAL REQUIREMENTS 2.5 Use Cases

• Chuck is a student who has been assigned the task of making
annotations to Alice’ latest research results.

• Since Alice wants to keep him from accidentally destroying her
data, she only grants him read access to the data while granting
full access to the attributes.

6. Named grid pipes

• Alice has a workflow where different processes produce data and
some others consume it.

• These processes may be executed at different nodes.

• Producers should be able to send data to a named grid pipe and
consumers should be able to read data from the pipe.

7. Job execution at different VOs

• Alice belongs to two non-overlapping VOs.

• Alice has a job that can be run in both VOs indistinctly.

• This job uses a set of files distributed in the Grid.

• The job should be able to access the files regardless of the VO in
which it is executed.

• The job should be able to locate the files in the same way regard-
less of the VO in which it is executed.

8. Exporting local files

• Bob has a set of files in the home directory of his laptop.

• Bob should be able to make the files globally available without
copying them.

• Jobs from any node should be able to access Bob’s local files when
they are exported.

9. “transactional files”/file snapshots/copy-on-write files - this use case is
related to a functionality proposed in WP3.3

• Alice has a very urgent job that can be run at different sites (or
at different VOs).

• The application execution service decides to queue the job in sev-
eral queues.

13

2.5 Use Cases 2 GENERAL REQUIREMENTS

• Once the job is started in one queue, it is cancelled from the
remaining queues.

• As we cannot guarantee atomicity, an instance of the job may
have been started before it is cancelled, and thus has potentially
modified files.

• The application execution environment should be able to roll back
all changes in files done by the instance being cancelled.

• This transactional behaviour should not be the default but on
demand.

10. sequential processes relying on a file

• Process A writes its results into a file.

• Then A sends a message to process B indicating that it has written
its output into the file.

• Process A calls a method to enforce synchronisation (e.g. fsync).

• Process B waits for the message and upon reception reads the file.

• Process A writes to ODS1 and sends the message when writing to
OSD1 was completed.

• Process B reads from OSD2 (holding a replica of the file).

14

3 ARCHITECTURE

3 Architecture

File data in XtreemOS will be handled by XtreemFS, which is an object-
based federated file system. This section describes the architecture of XtreemFS
by reviewing the interactions between its components.

3.1 XtreemFS and existing object-based file systems

Object-based file systems [6] are the state of the art in commercial distributed
file systems and are still a hot topic in research [19]. They are used in
production deployements in both industry and research in sizes exceeding
10.000 clients [20]. Only highly specialized file systems like the Google File
Systems (GFS) [7] are presumably used in larger installations. Object-based
file system products and services are available from a number of a number
of commercial vendors, including Lustre [1], Panasas [2], and IBM’s GPFS
[15].

Available object-based file system were designed with a the corporate data
center in mind. They assume that both metadata servers and object storage
devices are hosted in central facility on dedicated reliable hardware. Fault
tolerance is usually achieved rather with hardware measures like RAID in-
stead of software solutions.

In contrast, the operating environment of XtreemOS is characterized by a
Grid with file system deployements at participating organizations. These
deployements are likely to run on commodity hardware for economic reasons,
they are connected by wide area networks, and participating organizations
want to stay independent in that they can leave the Grid at anytime and
their local availability of data does not rely on the Grid operation.

XtreemFS is designed with this operating environment environment in mind.
In contrast to the centralized approach of existing object-based file systems,
XtreemFS will consist of a federation of single XtreemFS installations at
participating institutions while maintaing the view of a global file system.
Federation will ensure that members can join and leave the Grid at anytime,
and that local operation is not affected by remote outages.

In order to be able to ensure high-performance access to all data and to
increase availability of data, XtreemFS will allow replication at both file
metadata and file content level, a feature not available in existing object-
based file systems. In addition, replication can be done manually, but a
monitoring of data access will be put in place that is able to automatically

15

3.2 Overview 3 ARCHITECTURE

make replication decisions in order to optimize the layout and access of data
in the Grid.

Also, XtreemOS will help its user to build high performance file system instal-
lations out of commodity hardware by parallelizing access to both metadata
and file data. To this end, file data can be striped across storage devices,
which allows parallel IO to a large amount of hard disks, and metadata can be
partitioned across metadata servers, which makes large file volumes tractable
with off-the-shelf hardware.

3.2 Overview

XtreemFS is a distributed file system structured according to the object-
based file system approach [12][6]. Its core abstraction, the object, is the
pure content of a file without its metadata.

The system consists of the following components:

• Object Storage Device (OSD) stores objects and implement a read-
/write interface to them.

• Metadata and Replica Catalog (MRC). This component stores file
metadata (extended and POSIX) and replica locations of files. It also
make authorisation decisions according to access policies.

• Replica Management Service (RMS). This component will cooperate
with other services to decide when and where replicas are created and
when replicas should be removed from the system.

• The Access Layer consists of a client-side library and a POSIX com-
patible file system module. The library offers access to all XtreemFS
features for XtreemOS aware applications. The file system module al-
lows mounting of XtreemFS as part of the traditional UNIX file system
layout.

• XtreemFS supports applications with an Object Sharing Service (OSS).
It allows sharing of data residing in volatile memory with object gran-
ularity. In this context, objects are volatile memory regions containing
dynamically allocated objects and/or memory-mapped file data.

16

3 ARCHITECTURE 3.3 General Definitions and Concepts

3.3 General Definitions and Concepts

3.3.1 Physical Environment

Hosts are all XtreemOS machines in the Grid.

Storage Hosts are hosts that have disks attached that are available for
storing file data and run OSD instances.

Server Hosts are hosts that have resources to run MRC instances.

3.3.2 Administrative Environment

An organisation is an administrative real-world body (like an institute, a
university or a laboratory).

A virtual organisation (VO) consists of entities of multiple organisations
that are connected for collaboration purposes, typically through resource
sharing. An organisation can be member of multiple VOs. VO membership
is usually implemented by accepting user credentials and enforcing associated
policies. Organisations shall be able to join and leave VOs at any time. This
definition is in agreement with the one from WP 3.5.

3.4 System Components

3.4.1 Object Storage Device (OSD)

The task of the Object Storage Devices is to provide functionality for data
access in the file system. It offers an object-based storage interface to hide
the complexity associated with underlying block-based storage mechanisms.
Capabilities of the component include read and write access, concurrency
control and communication with remote storage hosts.

3.4.2 MRC

The Metadata and Replica Catalog (MRC) is responsible for maintaining
all file system metadata, extended (user defined) metadata as well as infor-
mation on replica locations. It also hosts access control policies and makes
authorisation decisions.

17

3.5 Architectural Artifacts 3 ARCHITECTURE

3.4.3 RMS

The Replica Management Service (RMS) is responsible for deciding when
replicas have to be created and with what distribution among OSDs. This
service is also responsible for removing replicas that are not needed or useful
anymore.

3.4.4 Client

In this document clients are hosts running components of the access layer,
i.e. the file system adapter or the XtreemFS library. Applications and
user processes use the access layer to communicate with XtreemFS compo-
nents (MRC, OSD, RMS). This can be done transparently to the application
through the traditional Linux file system interface. XtreemOS aware appli-
cation can take advantage of the native XtreemFS interface through a library
provided by the access layer.

3.5 Architectural Artifacts

3.5.1 Objects and Files

An object is a sparse array of bytes that is stored in an OSD, identified by
a handle. The actual implementation of an OSD can choose how it wants to
store the object (one file, multiple files, directories, etc.).

Files contain data and have metadata describing them. The data of files
is stored in one or more objects. The metadata is kept separately in the
Metadata Catalog (see MRC).

3.5.2 Multi-object Files

The data of a file may be stored in more than one object in the following
cases:

• The file’s data is cut into pieces which are distributed over several
storage devices. Each piece is stored in a separate object. The file(’s
data) is striped into many objects.

• The data is redundantly stored (replicated) in several objects on dif-
ferent storage devices.

18

3 ARCHITECTURE 3.5 Architectural Artifacts

Both mechanisms can be combined. The file has then multiple copies (’in-
stances’) in the system, the replicas, each of which can be stored as one or
multiple stripes in objects.

File

101001010101001
100101010111010
111101111000001
010100111100000

1365 Bytes
Content.txt

Metadata

Contents

File Contents
fileID

Object
fileID

MRC

OSD OSD OSD OSD OSD

File Instance
(non­striped)

O
bj

ec
t

f
i
l
e
I
D

File Instance
(striped)

O
bj

ec
t

f
i
l
e
I
D

O
bj

ec
t

f
i
l
e
I
D

O
bj

ec
t

f
i
l
e
I
D

Figure 1: Relationship between Files, Objects and OSDs

In figure 1 the relationship between a file, its contents and the objects is
shown. First the file is split in two parts, the metadata is stored on the MRC
while the contents (raw data) is distributed among OSDs. Therefore, file
instances are created, each holding one replica of the file’s contents. These
file instances can consist of one or several objects, depending on the striping
pattern used. These objects are stored on OSDs.

3.5.3 Metadata

Any data maintained by the file system that describes an entity and is not
part of the file data is considered as metadata. An entity in the file system

19

3.5 Architectural Artifacts 3 ARCHITECTURE

(e.g. file or directory) is associated with different kinds of metadata items,
referred to as meta attributes or simply attributes. Certain attributes are
required for POSIX-compliance, such as the size of the corresponding data
or timestamps referring to last access, change of metadata or modification of
content.

3.5.4 Additional Meta Attributes

Besides the required meta attributes, it should be possible to define new at-
tributes with different scopes of visibility. Such attributes would be helpful
in terms of arranging huge amounts of files in a grid file system. Instead
of searching complex directory trees for data only by specifying file names,
a user could describe and efficiently retrieve a set of files by specifying at-
tribute constraints, e.g. by means of an SQL-like query language. Additional
attributes could be added to files in different ways. Besides a user interface
for manually setting user-defined meta attributes, there could be tools for
an automatic extraction of meta information from file content. Non-POSIX
metadata maintained by the file system could also be attached to files as
additional meta attributes.

Some examples of metadata that could be held in the form of additional meta
attributes are:

• personal annotations of single users, like ”this file contains relevant
information for me”

• information about replicas, replica locations and striping patterns of a
file

• filetype-specific metadata, e.g. the dimensions of an image or the sam-
pling rate of a sound file

3.5.5 Volumes

In order to structure the huge amounts of files in a cross-institutional file
system, we introduce the concept of volumes. Volumes can be accessed by
one or more users and contain a subset of the overall file space. Files can be
shared between volumes.

Within a volume, files can be optionally arranged in the traditional way of
a directory hierarchy, but can also be structured purely by their extended
metadata.

Volumes can be mounted as a subtree of the normal UNIX file system.

20

3 ARCHITECTURE 3.6 Interaction between Components

3.5.6 File Access Capabilities

Access authorisation in the object-based architecture is split between the
MRCs and OSDs. While MRCs make authorisation decisions according to
their policies, OSDs have to enforce them later. The medium to convey this
authorisation decision from an MRC to an OSD is the file access capability.
When a client wants to access a file, it requests access from the metadata
server, which hands out a capability to the client that securely captures its
access control decision. The client presents this capability to a storage server,
which is then informed about the MRC’s decision, and grants the proper kind
of file access.

File access capabilities are secured by encrypting them with a key that is
shared between the MRC and OSDs. They contain:

• the fileID of the file that the client is allowed to access

• the operations that the client is allowed to perform

• some means for revocation (expiration time or object version)

• some means of client authentication (its IP address, or certificate sub-
ject for example).

3.6 Interaction between Components

In this section we describe the interaction between the XtreemFS compo-
nents for basic file system operations. The file system is accessed by appli-
cations through the client interface. In turn, the client component invokes
services provided by other data management components, i.e. MRC, OSD,
RMS and OSS. In some cases it is also necessary that components interact
directly with each other without involving the client, despite that behav-
iour should be avoided in general for scalability and performance reasons.
The component diagram in Fig. 2 shows the different components and their
interdependencies.

In the following we illustrate how components interact by showing details of
the basic operations read, write, create and delete.

21

3.6 Interaction between Components 3 ARCHITECTURE

<< component >>

Object Sharing Service (OSS)

POSIX FS Interface

XtreemFS Interface

<< component >>

Client

<< component >>

Object Storage Device (OSD)

<< component >>

Metadata and Replica Catalogue (MRC)

<< component >>

Replica Catalogue
<< component >>

Metadata Catalogue

cd: XtreemFS components

OSDInterface

OSDInterface

OSSInterface

OSSInterface

<< component >>

Replica Management Service (RMS)

RMInterface

RMInterface

RMInterface

RMInterface

MRCInterface

MRCInterface

Figure 2: Components and their interdependencies

:Client :Metadata Cat. :Replica Cat. :OSD

open(path,context)

getReplicas(objectID)

replica list

capability, replica list

read (capability, off, size)

sd

open(path,context)

capability, replica list

O
p

e
n

R
e

a
d

Figure 3: Interaction for reading a file with no replicas

3.6.1 Reading a File

Figure 3 shows a sequence diagram of the steps and actors involved when
reading a file that is neither replicated nor striped. Some technical details
are left out for the sake of simplicity.

A read operation consists of an open and a subsequent read request. The
open operation at client side will contact the MRC, which retrieves a list of

22

3 ARCHITECTURE 3.6 Interaction between Components

replica locations of the file. In the present case it only receives one replica
location because this file has not been replicated yet. In addition to the list,
the MRC makes an access control decision according to the access policy
and includes a file access capability in this response that allows this client
to access the OSD directly. With this information, the client can read the
object from the OSD by sending the offset and size of the request.

The second scenario for reading a file arises when the file is not replicated,
but has been striped among different OSDs (Figure 4). In this case, the
Metadata Catalog returns information for a single replica, but a list of OSDs
and the policy used to distribute the data among the different OSDs. Using
this information, the client can compute which offset of the file is stored on
which OSD. Not that even a single read operation may have to interact with
several OSDs.

:Client :Metadata Cat. :Replica Cat. :OSD j

open(path,context)

getReplicas(objectID)

replica list

capability, replica list

sd

open(path,context)

capability, replica list

:OSD k

O
p

e
n

R
e

a
d read (capability, off, size)

read (capability, off, size)

Figure 4: Interaction for reading a striped file

A third case arises when a file is replicated, but none of the replicas are
striped (Fig. 5). As a response to the open request the client receives a list
of OSDs that have a replica of the file. With this information the client can
decide which replica is the best one to access and then act as if a single replica
had been returned. A second option, the one presented in the figure, is that
the client uses several of the replicas to perform parallel access to speed up a
single client read operation. Once again, this implies more knowledge at the
client side.

Combining these cases, we have a scenario where there are several replicas
with some of them being striped.

23

3.6 Interaction between Components 3 ARCHITECTURE

:Client :Metadata Cat. :Replica Cat. :OSD j

open(path,context)

getReplicas(objectID)

replica list

capability, replica list

sd

open(path,context)

capability, replica list

:OSD k

O
p

e
n

R
e

a
d read (capability, off, size)

Figure 5: Interaction for reading a file with multiple replicas

3.6.2 Writing a File

A write operation is essentially equal to a read, but with the extra task of
maintaining the other replicas up-to-date according to the consistency policy
of the file. Figure 6 presents the interaction of the different actors when
writing a file.

The first step is to open the file. This step is the same as for reading. The
difference is that either as part of the open, as part of the first operation,
or in the middle, the client has to inform the OSD that it will be accessing
a given object. This step is intended for the OSD to contact the Metadata
Catalog and request all available replicas of the given file. These replicas will
be used in the future to update modifications according to the consistency
policy. This means that OSDs will be responsible for update propagation.

As an option, the OSD may contact the other OSDs to work on potential
optimisations, e.g. to know which OSDs are really being used and only update
those OSDs immediately, leaving the rest of replicas for an off-line update.
However, these optimisations still need to be worked out.

Once the client performs the write operation, the OSD takes care of propa-
gating the update. The client call will not be acknowledged until all required
replicas (according to the consistency policy) have been updated.

24

3 ARCHITECTURE 3.6 Interaction between Components

:Client :Metadata Cat. :Replica Cat. :OSD j

open(path,context)

getReplicas(objectID)

replica list

capability, replica list

Inform about “open”

sd

open(path,context)

capability, replica list

Synchronous update

:OSD k

O
pe

n

Ask about replicas

Write (capability, off, size)

opt writeComplete(...)

W
rit

e

:OSD l

Asynchronous update

Synchronous info.

Asynchronous info.

replica list

Asynchronous Info.
Inform about “close”

opt

opt

Figure 6: Interaction for writing a file

3.6.3 Creating a File

In order to create a file (see Figure 7) the client contacts the MRC for per-
mission. The MRC will make use of its information about remaining OSD
capacity and quota limitations in this step. If successful, it will add this
location to its Replica Catalog. If necessary, it will also contact the OSD
informing it that a new object is created. Once all these steps are done, the
client will receive the same information as for an open and will act in the
same way.

If the file was created in striped mode, nothing would change but the number
of OSDs being contacted by the Metadata Catalog.

3.6.4 Deleting a File

Deleting a file is started by a client, but finally performed by the OSD (see
Figure 8). The client accesses the Metadata Catalog to get permission to
delete it. Once it has this information it contacts the OSD which will retrieve

25

3.6 Interaction between Components 3 ARCHITECTURE

:Client :Metadata Cat. :Replica Cat. :OSD j

Create (path,context)

create(objectID)

capability, replica list

sd

capability, replica list

C
re

a
te

Create(objectID)

replica list

Figure 7: Interaction to create a file

a list of replicas and will take care that all of them are removed. In addition,
it will also inform the MRC that this file is not existent anymore.

:Client :Metadata Cat. :Replica Cat. :OSD j

open(path,context)

getReplicas(objectID)

replica list

capability, replica list

Delete file

sd

open(path,context)

capability, replica list

:OSD k

O
p

e
n

Inform about file deletion

D
e

le
te

Forward deletion
List of replicas

Figure 8: Interaction to delete a file

26

3 ARCHITECTURE 3.6 Interaction between Components

3.6.5 Creating and Deleting Replicas

Besides creating a new file, the system is also in charge of creating new
replicas. This decision will usually not come from a client but from the RMS
(see Figure 9). The RMS service will decide that a replica is needed and will
contact a source OSD (or several soures if parallelism or striping is used) and
the new OSD(s) where the replica will be placed. These two sets of OSDs
cooperate to create the new replica and to copy the information (if needed).
Finally, when the replica is created, the OSD that initiated the replication
informs the Replica Catalog that the new replica is now available.

:Replica Mng. :Metadata Cat. :Replica Cat. :OSD j

Create replica

Create replica

capability, replica list

sd

:OSD k

C
re

a
te

R
e

m
o

ve

Create replica

Remove replica

Remove replica

capability, replica list

Figure 9: Interaction to create/delete a replica of a file

Finally, to delete a replica the same steps are done, but only the OSDs
holding the obsolete replica are contacted.

27

4 OBJECT STORAGE DEVICE (OSD)

4 Object Storage Device (OSD)

The OSD enables the creation of self-managed, shared and secure storage for
network environments. Our storage architecture has been designed after the
object-based storage paradigm, where the object is the fundamental unit of
data storage and encapsulates the pure content of a file.

The task of an Object Storage Device is to provide functionality for data
access in XtreemFS. Its main tasks consist in storing objects and offering an
object-based storage interface to hide the complexity associated with under-
lying block-based storage mechanisms. Capabilities of the component include
read/write access, concurrency control and communication with remote stor-
age hosts.

The storage service runs on each OSD and handles access to file data. In ad-
dition, this service will also be in charge of implementing the “transactional
files” described in Section 2.5. The idea of transactional files is that modifi-
cations will only be seen by the job making them until they are committed.
If these changes are rolled back, they will be lost.

Furthermore, the OSD is an excellent place to perform monitoring that will
be used by other services in the system. For instance, at this level issues
such as access patterns, effective bandwidth and device load, among others,
can be monitored. We should be aware that this monitoring (or part of it)
can also be done in the access layer. The best place, if not a combination of
both, still has to be studied.

The OSD service implements the functionality described by Task T3.4.1
(CNR) and Task T3.4.4 (BSC). An initial prototype is planned to be de-
veloped in Python. Later versions will be developed in Python/Java, with a
partial reimplementation in C/C++ if necessary performance-wise.

4.1 Objects and Object Storage Devices

The object is the fundamental unit of data storage in the proposed service (see
Section 3.5.1). Objects do not have any persistent information about their
metadata. In order to support coordination of concurrent writes, open files
might have a volatile knowledge about the whereabouts of their replicas, and
track additional metadata like file size and access time in order to update the
persistent metadata in the MRCs. Access control to objects is purely done
by the MRCs, and communicated to OSDs via cryptographically secured
capabilities.

28

4 OBJECT STORAGE DEVICE (OSD) 4.2 Multi-Object Files

An Object Storage Device (OSD) is essentially a container of objects, and its
primary function is to reliably store and retrieve data from physical media.
Like any conventional storage device, it manages the data as it is laid out
into standard tracks and sectors. Each OSD provides an interface for access-
ing objects it contains. Furthermore, data is not accessible outside the OSD
in block format, but only as an object. The OSD provides security enforce-
ment for access to the objects it contains, but it does not provide security
management, i.e. an OSD does not determine who is allowed to access an
object. Indeed, as previously mentioned, objects do not have any persistent
information about access capabilities. When an external entity (i.e. a client)
wants to access an object, it requests permission from the MRC which is the
unique manager of access capabilities for the objects. If the MRC returns a
capability, the client presents it together with the request to the OSD.

OSDs raise the level of abstraction presented by a storage control unit from
an array of blocks to a collection of objects. The object store provides fine-
grained file-level security, improved scalability by localising space manage-
ment, and improved management by allowing end-to-end management of
semantically meaningful entities [3].

A file might be stored in more than one object on several OSDs. Such a
scenario may occur in two different cases:
The first is when a single file is stored in several objects on many OSDs, i.e.
when it is striped in pieces, with each one being stored in a separate object
on a different OSD.
The second case consists of keeping several copies of the same file in different
OSDs, either for fault-tolerance or for performance reasons. Both concepts
can be combined, i.e. several replicas of a file exist and each replica of the
file is striped. This could even include different striping sizes for the different
replicas. These features will be analysed in the next section.

4.2 Multi-Object Files

In XtreemFS, striping is used in a more general sense. The idea is that pieces
of file data can be distributed in a round-robin way among a set of OSDs.
However, it does not mean that the objects placed in each OSD will have the
same size. When a file or a file replica is created, the system decides on the
striping policy to use. E.g. it may decide to place twice the number of bytes
in one object than in the other objects. This decision will take into account
the access patterns, the characteristics of the OSDs, the network to which
they are connected, etc.

29

4.3 Transactional Files 4 OBJECT STORAGE DEVICE (OSD)

In addition, striping will be used on a per-replica basis. Thus, each replica
may have a different striping policy. Such information will be part of the file
metadata and will be kept by the MRC, as explained later.

Regarding replicas, it will be a task of the OSD to make sure that objects
containing replicas of a file are being updated according to the consistency
semantics defined for the file. Initially, OSDs do not keep information about
other replicas. This information is only kept by the MRC. As soon as a
client accesses a replica, it will obtain information about the current location
of the replicas and will get in contact with all these replicas to start the
needed coordination. Of course, in the case of strict sequential consistency,
optimisations guarantee that most common operations such as reads or writes
by a single client are as fast as if done locally. Optimisations will be mainly
based on updating only OSDs being used and the rest will be updated off-line.
On the other hand, multiple writes to many replicas will have a performance
penalty in case of sequential consistency.

As a final consideration, although this kind of multi-object placement for files
(striping and replication) is a very powerful mechanism, we need appropriate
policies to limit its scope. For instance, we should be able to limit the places
where a file’s objects can be located. It makes no sense for a confidential
file to be replicated to the disk of a user’s laptop where the root account is
not trusted. Legacy software may be another case that needs restrictions on
where the object is really stored. A third case could be check-pointing of
files. It may not be a good idea, in some cases, to place these objects on an
OSD located at the same node where the application is running because if
the node fails, there will be no way to migrate the application to a running
node.

4.3 Transactional Files

Another concept that will be handled by OSDs is the transactional file. When
a file is opened in transactional mode, all changes will be done in a copy at the
OSD and changes will not be forwarded to other OSDs. If the file is finally
committed (not necessarily at the close operation, but earlier) all changes
will be updated following the consistency policy. If the file is rolled back,
then all these changes will be lost.

30

4 OBJECT STORAGE DEVICE (OSD) 4.4 Architecture

4.4 Architecture

Three main entities compose the architecture of our module: the Storage
Media, the Object and the Object Storage Device.

The Storage Media is any physical device storing data. The object is the
fundamental unit of storage known in the system (see Section 3.5.1).

The Object Storage Device is an intelligent device that contains the storage
media, a processor, RAM and a network interface that allows it to manage
and store local objects, and autonomously serves requests from the network.
Within the storage device, all objects are identified via their objID. In more
detail, the object can be accessed by a simple interface based on the handle,
the beginning of the range of bytes inside the object and the length of the
byte range that is of interest.

In an object store environment, space is allocated and managed by the object-
based storage architecture, not by higher level software such as a file system.
Users of an OSD operate on data by performing operations such as creating
an object, reading/writing at a logical position in the object or deleting
the object. Since objects do not have persistent information about access
capabilities, each request has to be accompanied with such information. For
this reason, all operations carry a capability, and it is the responsibility of the
OSD to validate capabilities carried by the user’s request. It is evident that a
client can handle an object through an OSD and work on it. Moreover, since
no proxy functionality is performed, an OSD can access only an object it
contains. Alternatively, it is possible to access an ”external” object through
the OSD holding it.

31

4.5 Feature List 4 OBJECT STORAGE DEVICE (OSD)

4.5 Feature List

OSD 2.6
Advanced monitoring

OSD 1.4
Basic monitoring

EXT

= advanced = research = optional = est. progress

OSD 1.1
Basic interface

OSD 2.1
Advanced interface

OSD 1.2
Check client capability

OSD 1.3
Check MRC/OSD
capability

OSD 2.2
Accept connection
from client

OSD 3.3
Accept disconnection
from client

OSD 4.3
Timeout disconnection
from client

OSD 3.1
Read portion of object

OSD 3.2
Write portion of object

OSD 2.3
Delete portion of
object

OSD 2.4
Initiate replica creation

OSD 2.5
Create portion of
object

OSD 3.4
Inform MRC about
[dis]connection

OSD 4.4
Find if replica is
up-to-date

OSD 4.5
Update portion of
object

OSD 4.6
Maintain weak
consistency

OSD 5.1
Maintain sequential
consistency (basic)

OSD 6.1
Maintain sequential
consistency (optimised)

OSD 3.5
Create transactional
instance

OSD 4.1
Commit transactional
instance

OSD 4.2
Rollback transactional
instance

ID: Feature ID

name the name of the feature
type the type of the feature (one of ’basic’, ’advanced’, ’re-

search’, ’optional’)
dependencies other features on which the feature depends

description a description of the feature

ID: OSD 1.1

name Basic interface
type basic

dependencies -
description A basic interface with the features needed for the basic

operations.

32

4 OBJECT STORAGE DEVICE (OSD) 4.5 Feature List

ID: OSD 2.1

name Advanced interface
type advanced

dependencies OSD 1.1
description An interface containing, besides the basic functionality, all

advanced functionality needed for the advanced and re-
search tasks.

ID: OSD 1.2

name Check client capability
type basic

dependencies -
description Every time a client want to connect, disconnect, read, or

write an object, the OSD will need to check that it can do
what it asks to do. Here we will take care of this checking.

ID: OSD 1.3

name Check MRC or RMS capability
type basic

dependencies -
description Every time the RMS or MRC requests to create a replica

or a portion of replica, as well as when it removes them, we
need to guarantee that it has the privilege to do so. Here
we will do this checking.

ID: OSD 2.2

name Accept connection from client
type basic

dependencies OSD 1.1, OSD 1.2, OSD 1.3
description Although initially we might think that clients do not need

to connect to the OSD to access objects, if we want OSDs
to handle consistency with the rest of replicas, we will need
to send the information we received from the MRC for
them to be able to update the rest of OSDs. In addition it
will help to have an updated version of connected clients to
make optimisation in the replica update mechanism. The
client connection will be associated with a lease.

33

4.5 Feature List 4 OBJECT STORAGE DEVICE (OSD)

ID: OSD 3.3

name Accept disconnection from client
type advanced

dependencies OSD 1.1, OSD 2.2
description In the same way we need clients to connect, they also have

to disconnect so we have a clear view of who is using a file
to make future optimisations. This will actually be like
returning the acquired lease.

ID: OSD 4.3

name Leases
type advanced

dependencies OSD 3.3, OSD 2.2
description We ask clients to connect/disconnect, but we cannot guar-

antee that a client will disconnect. It can fail, become dis-
connected, etc. This is the reason we used leases. Leases
have a timeout and after this timeout a new lease has to
be requested to be able to access the protected object.

ID: OSD 3.1

name Read object
type basic

dependencies OSD 2.2, OSD 1.2
description This is one of the basic operations for OSDs, read data

from the devices and send it to the client.

ID: OSD 3.2

name Write object
type basic

dependencies OSD 2.2, OSD 1.2, OSD 2.5
description This is the other basic operation for OSDs, receive data

from the client and write it to the device.

ID: OSD 2.5

name Create object
type basic

dependencies OSD 1.1, OSD 1.2, OSD 1.3
description In order to create new files and to create replicas we need

to be able to create a new object in an OSD.

34

4 OBJECT STORAGE DEVICE (OSD) 4.5 Feature List

ID: OSD 2.4

name Initiate a replica creation
type basic

dependencies OSD 1.3, RMS 2.3, RMS 3.3
description When the MRS decides to create a replica it will contact

one or more OSDs to tell them that they need to copy
their object (or part of it) to another OSD to create a new
replica.

ID: OSD 2.3

name Delete object
type basic

dependencies OSD 1.1, OSD 1.3
description In the same way we create objects, we also need to be able

to remove them.

ID: OSD 3.4

name Inform MRC about connection/disconnection
type advanced

dependencies OSD 2.1
description Although there will be mechanisms to detect failed OSDs,

it is nice to know when an OSD leaves the system volun-
tarily. Here we will implement this mechanism that will
contact the necessary services.

ID: OSD 4.4

name Find if replica is up-to-date
type advanced

dependencies OSD 3.2
description As we will have optimised mechanisms to update replicas,

it may happen that a replica that it is not currently being
used is not up to date. If we want to use it, then we may
need to update it for the user to find the correct data.

35

4.5 Feature List 4 OBJECT STORAGE DEVICE (OSD)

ID: OSD 4.5

name Update object
type advanced

dependencies OSD 3.2
description After we have detected a given replica is not up-to-date,

we may want to update it before allowing the user to use
it. In this case, we will offer a mechanism for such an
update. Nevertheless, we expect this to be a seldom used
mechanisms because we plan to keep replicas updated as
soon as possible (although not immediately for not used
replicas)

ID: OSD 4.6

name Maintain weak consistency
type basic

dependencies OSD 3.1, OSD 3.2
description In the first version we will offer some kind of weak consis-

tency for files. (still to be decided)

ID: OSD 5.1

name Maintain sequential consistency (basic)
type advanced

dependencies OSD 4.6
description In the second version of the file system we will provide a

strict sequential consistency policy for files. This will be
semantically correct, but not necessarily optimised perfor-
mance wise.

ID: OSD 6.1

name Maintain sequential consistency (optimised)
type research

dependencies OSD 5.1
description Once the basic version of the strict sequential consistency

is implemented, we will work on ways to optimise it based
on OSDs really being active. The goal will be to optimise
the most common cases.

36

4 OBJECT STORAGE DEVICE (OSD) 4.6 Open Issues

ID: OSD 3.5

name Create transactional instance
type optional

dependencies OSD 2.5
description WP3.3 requested the idea of transaction files as described

earlier. here we will create the necessary information to
create such files.

ID: OSD 4.1

name Commit transactional instance
type optional

dependencies OSD 3.5
description When a transactional file is committed, all changes are

forwarded to all OSDs following the consistency policy of
the file.

ID: OSD 4.2

name Rollback transactional instance
type optional

dependencies OSD 3.5, OSD 4.1
description If the file is rolled back, all changes will be discarded.

ID: OSD 1.4

name Basic monitoring
type basic

dependencies RMS1.4
description Monitoring the effective performance of the OSDs.

ID: OSD 2.6

name Advanced monitoring
type advanced

dependencies OSD 1.4, RMS 1.4
description Monitoring the access patterns used in the objects.

4.6 Open Issues

• Disk space and quota handling.

• Update of POSIX metadata in the metadata server (times, file size).
Who updates it (client or storage server), and when (periodically or on
close)

37

4.7 Interface 4 OBJECT STORAGE DEVICE (OSD)

• Protocol for keeping replicas in sync

• Protocol for coordinating concurrent reads/writes on multiple replicas

• Protocol for distributed extent lock coordination

4.7 Interface

The OSD provides the following simple interface for read/write operations:

• Byte[] read(objID, size, offset)

returns size bytes read from the object identified by objID and starting
at the specified offset.

• int write(objID, size, data)

writes data of the object identified by objID, by appending it at the
end of the object. It returns the exact offset/position (in bytes) at
which data is started to be written.

For the communication between client and OSD, we intend to use the HTTP
protocol. In fact, it seems sufficient to encapsulate all operations. If objects
are accessed via HTTP, an object read is done via GET, a write via PUT,
object deletion via DELETE, etc. The standard HTTP byte range header is
used to name offset and length of the operation. The request URI has the
format /objID/capability, where capability is the Base64 representation
of the capability as defined in the architecture section. Byte ranges can
be requested through the Content-Range header field, which is part of the
HTTP 1.1 standard. This idea has to be refined, to provide a more detailed
format for the HTTP request. In Appendix B more details are given.

Regarding monitoring, we need two sets of calls to get() and reset() monitor-
ing information both for individual files and for the device. The information
that we would get for a file would be its access pattern. On other hand, we
would like to have global performance values such as the effective bandwidth
for the device. These monitoring calls are not intended for end-users (al-
though we could decide to make them available to end-users), but for other
services in the system.

4.8 Research Prospects

In this section, we will mention some research topics and challenges. We
could investigate one or more of them during the project. This is just a

38

4 OBJECT STORAGE DEVICE (OSD) 4.8 Research Prospects

preliminary list, and we will feel free to analyse some new topics, when they
emerge (and if they are considered interesting) during the advancement of
our work.

• Efficient dynamic replica management
This file system will allow different levels of consistency for files and
the efficient and scalable implementation of this consistency levels (es-
pecially the strict sequential consistency) will be a research challenge.
The idea is to update used replicas in a synchronous way, and leave the
rest of the replicas to a later update process.

• Performance evaluation of a grid object-based storage system
Performance evaluation of the storage system is a fundamental point,
because overall system performance will heavily depend on the file sys-
tem performance; a find-grained monitoring of some suitable measures
(i.e., disk I/O time) could be useful to evaluate the suitability of the
architecture and it could lead to an improvement of the storage system.

• Resource and file namespace design
Another aspect to be further studied is the Resource Namespace Ser-
vice (RNS); the research effort, in this field, could provide namespace
services for any addressable file by an easily accessible, hierarchically
managed identifier.

• File system grid services
We could analyse the way to make available our services as Grid Ser-
vices, and to study suitable interfaces for them.

• Intelligent storage data
It could be interesting to study some techniques aimed at a smart han-
dling of objects in an object storage device; to achieve such a goal, we
could employ data mining techniques for an efficient storing/retrieval
of objects, based on their access pattern.

• Definition of transactional files
This mechanism allows modifications to a file to be seen within a job,
but not outside the job till they are committed. The research part of
this feature is more in the definition of what is really needed and how
to use it than on the implementation because the implementation can
be easily done by duplicating files in the needed OSDs. This research
should be conducted in close collaboration with WP3.3.

39

5 REPLICA MANAGEMENT SERVICE (RMS)

5 Replica Management Service (RMS)

The support of file replication has two important aspects. We need to main-
tain persistent meta-information about the files’ replicas, including their lo-
cations. In addition, we need to make decisions on when or where to create
new replicas or when to remove obsolete ones. These tasks are assigned to
two services: the Metadata and Replica Catalogue (MRC) and the Replica
Management Service (RMS).

The MRC, described in the next chapter, will take care of persistently stor-
ing meta-information about replicas, while the RMS, the service described in
this chapter, will take care of autonomous creation and deletion of replicas.
Therefore, this service will implement partially the functionality described
in part of Task 3.4.2 (Replica Management service) (ZIB) and all the func-
tionality described in T3.4.4 (Pattern Aware data Access) (BSC).

For deciding when to create new replicas we will take into account what jobs
are being started and the files they need (in cooperation with the application
execution manager), the files that are opened and where they are opened,
the pattern of opened files (i.e. file A is always opened after file B is opened)
etc. Regarding where and how these new replicas will be distributed, we
will take into account access patterns learnt by previous usage as well as
the characteristics of the available resources “near” the node or nodes using
the replica. Nevertheless, these replicas will always follow the placement
restriction supported by the system.

In addition, replicas that are not useful anymore, or replicas of files that use
too much space will be removed. Also, if one of the replication policies (see
next section) changes, replicas that do not fulfil these requirements will also
be removed.

Initial prototype will be developed in Python. Later versions will be pro-
grammed in Python, although some parts may need a reimplementation in
C/C++ for performance reasons.

5.1 Replication Policies

Users have a need that the system enforces policies on file location and repli-
cation to satisfy security needs and to comply with local regulations. Ad-
ministrators must be able to implement these company policies, user needs,
or laws into a replication policy. Thus, these policies must be fine-grained
enough to cover a wide range of use-cases.

40

5 REPLICA MANAGEMENT SERVICE (RMS) 5.2 Architecture

These policies could work on different levels like countries, real-world organ-
isations, VOs or even racks in a data centre. Examples include regulations
not to store EU customer information in countries outside the EU. Scientific
users may want to make sure that novel results are not replicated to servers
belonging to competitors.

An illustrative example could look like this:

<ReplicationPolicy>

<rule>

<entity>/volume_A</entity>

<level>org</level>

<filter>in (ZIB, CNR, BSC)</filter>

</rule>

<rule>

<entity>/volume_A/customerData</entity>

<level>cn</level>

<filter>not Mordor</filter>

</rule>

</ReplicationPolicy>

This policy would enforce that for everything on volume_A only OSDs are
used that belong to ZIB, CNR or BSC. Anything in the directory customerData

must not be replicated to the country of Mordor.

5.2 Architecture

5.2.1 Gathering Information

This service will heavily depend on the other services within the storage sys-
tem as well as on services in the whole system in order to get the information
it needs.

Every time a file is opened, either the MRC or the OSD that is finally selected
(this decision still needs to be evaluated), has to contact the RMS to see if
a better replica should be created for this access. This decision will depend
on the size of the file (how long it would take to make the copy?), on the
available OSDs (is there any better OSD to place this new replica?), etc.
If it is the MRC that contacts the RMS, then we can delay the client till
the replica has been created and then include the new replica in the list of
available replicas. If it is the OSD, then we allow the client to start accessing

41

5.2 Architecture 5 REPLICA MANAGEMENT SERVICE (RMS)

the file with the “bad” replica and then switch to the new replica, but this
would require a mechanism to notify clients of new replicas (asynchronous
notification).

Regarding the MRC, we also expect this service to keep track of opens so
that we can predict future access from the previous ones. Things like “after
file A is opened, file B will be opened by the same client” could be used to
start replication of file B (if needed) after the open of file A. This kind of
prediction can be easily done in a similar way to what was done long ago for
Unix systems [10]. How this idea scales to the Grid is a research issue of the
project.

Another service that could start a replication (and would allow much more
efficient replica creation) is the execution management service. At some
points, this service may know that a given application will be executed on a
given node shortly and that this application uses a given set of files. With
this information the RMS can decide whether the available replicas are good
enough for the application or whether new replicas are needed. In the latter
case, the creation of replicas is started even before the application starts
running and thus we have it finished before the first access.

In addition, in the moment a replica has to be created, this service needs to
decide on the best OSDs to place the replica and the best striping policy (if
any) to be applied. To take this decision the RMS needs to have informa-
tion on the effective performance of OSDs, their load, their predicted load
and information on the access patterns usually occurring for that file. Such
information will be gathered by OSDs (and potentially clients) and will be
used by the RMS to take this kind of decisions.

5.2.2 Creating new Replicas

With all the information gathered from other services, the RMS will create
a file replica. Actually the creation of a file replica will imply the following
steps.

First, the RMS selects the OSDs that will hold objects of the new file replica.
Second, it will decide which OSDs, already holding a replica or part of it,
will be origin of the new replica. Once all involved OSDs are chosen, it will
contact the source OSDs to ask them to start replicating the objects to the
new OSDs. Once all objects are copied, the MRC has to be informed about
the new replica and its striping policy (in case there is any).

42

5 REPLICA MANAGEMENT SERVICE (RMS) 5.2 Architecture

5.2.3 Removing “obsolete” Replicas

Regarding the cleaning of “obsolete” replicas, the RMS will take care of
deciding when a replica has to be removed. This decision will take many
parameters into account such as: free space (or lack of it) in a given OSD,
a file (or the replica) is very seldom used, some close replicas were created
at a given point of time when a lot of bandwidth was needed but this high
bandwidth is not needed anymore, the space occupied by a file becomes too
large etc.

In this case, the steps that the RMS will take are the following ones. First
it will decide which replicas to remove and then it will inform the MRC that
a given replica is not available anymore. The OSDs will be contacted by the
RMS to remove these replicas from their storage.

It is important to notice that replicas can be removed at any time, even while
they are being used (if this makes sense will be decided later when designing
the policies) because when the client tries to access a deleted replica, the
OSD will inform the client that the replica does not exist anymore. The
client will either use other OSDs in the list it received when opening the file
or contact the MRC once again to get a new list of replicas it can access.

43

5.2 Architecture 5 REPLICA MANAGEMENT SERVICE (RMS)

5.2.4 Feature List

EXT

= advanced = research = optional = est. progress

RMS 1.1
Interface

RMS 1.2
Simple polices to
decide replica creation

RMS 2.1
Advanced policies to
decide replica creation

RMS 2.2
Simple policies to
decide replica deletion

RMS 3.1
Advanced policies to
decide replica deletion

RMS 2.3
Create replica on a
single OSD

RMS 3.2
Remove replica on a
single OSD

RMS 1.3
Decide stripping policy

RMS 3.3
Create stripped replica

RMS 4.1
Remove stripped
replica

RMS 2.4
Create replica
restriction policy

RMS 3.4
Create replica
restriction policy

RMS 4.2
Check is replica follows
restriction policies

RMS 5.1
Find/remove replicas
not following policies

RMS 1.4
Gather monitored
Info. from services

RMS 1.5
Gather monitored Info.
from Exec. Manager

RMS 3.5
Inform RMC about
new/removed replicas

ID: RMS 1.1

name Interface
type basic

dependencies -
description Interface needed to communicate with MRC and others

services in order to get all the information it needs to take
its decisions

ID: RMS 1.2

name Simple polices to decide replica creation
type basic

dependencies -
description This feature will implement very basic replication polices

that always replicate into close OSDs unless there is al-
ready a nearby copy.

44

5 REPLICA MANAGEMENT SERVICE (RMS) 5.2 Architecture

ID: RMS 2.1

name Advanced policies to decide replica creation
type research

dependencies RMS 1.2, RMS 1.5, MRC 9.1, MRC 9.2, OSD 1.4, OSD
2.6

description This feature will extend the simple polices in RMS 1.2 to
include information such as file size, what is the access pat-
tern that will be used, what is the real bandwidth needed
by the application, hints from the execution management,
prediction of files that will be accessed in the future by the
application, etc.

ID: RMS 2.2

name Simple policies to decide replica deletion
type basic

dependencies RMS 1.2
description These basic features will only take into account full OSDs.

ID: RMS 3.1

name Advanced policies to decide replica deletion
type research

dependencies RMS 2.2
description This feature will extend the simple removal policies from

RMS 2.2 with information such as the number of replicas
for a given file, the actual amount of storage used, the
utilisation of the replicas, etc.

ID: RMS 2.3

name Create replica on a single OSD
type basic

dependencies RMS 1.1, RMS 1.2, RMS 3.2, MRC 2.4
description All the communication needed to ask OSDs to create a

replica into another OSD

ID: RMS 3.2

name Remove replica from a single OSD
type basic

dependencies RMS 1.1, MRC 2.3
description All the communication needed to ask OSDs to remove a

replica

45

5.2 Architecture 5 REPLICA MANAGEMENT SERVICE (RMS)

ID: RMS 1.3

name Decide striping policy
type research

dependencies OSD 1.4, OSD 2.6
description Decide the best striping policy taking into account the ac-

cess pattern of the file and the available OSD characteris-
tics

ID: RMS 3.3

name Create striped replica
type advanced

dependencies RMS 1.3, MRC 2.4
description All the communication needed to ask one (or several) OSD

to create a replica into a set of OSDs

ID: RMS 4.1

name Remove stripped replica
type advanced

dependencies RMS 3.2, OSD 2.3
description All the communication needed to remove a replica from

several OSDs

ID: RMS 2.4

name Create replication policy
type advanced

dependencies RMS 1.1
description Inclusion of new replication policies in the system

ID: RMS 3.4

name Remove replication policy
type advanced

dependencies RMS 1.1, RMS 2.4
description Removal of replication policies from the system

ID: RMS 4.2

name Check if replica follows restriction policies
type advanced

dependencies RMS 2.3, RMS 3.3, RMS 3.4
description Once a new replica restriction policy is inserted, we need

to check whether some replicas fail to follow it, in which
case these replicas will need to be removed

46

5 REPLICA MANAGEMENT SERVICE (RMS) 5.3 Open Issues

ID: RMS 5.1

name Find/remove replicas not following restriction policies
type advanced

dependencies RMS 2.3, RMS 3.3, RMS 4.2, MRC 1.1, MRC 1.2
description This feature will be in contact with MRC to check whether

all available replicas fulfil the new replication policies
added.

ID: RMS 1.4

name Gather monitored information from other services
type advanced

dependencies MRC 9.1, MRC 9.2, OSD 1.4, OSD 2.6
description This feature will be in charge of contacting the cooperating

services and get their monitoring information to build the
needed information to take decisions.

ID: RMS 1.5

name Receive hints from execution manager
type advanced

dependencies -
description This feature will receive information from the execution

manager about new jobs, where they will be executed, and
the files they may use. With this information some replicas
may be created.

ID: RMS 3.5

name Inform MRC about new/removed replicas
type basic

dependencies RMS 2.3, RMS 4.1, MRC 1.1, MRC 1.2
description Every time a replica is created/removed, we need to inform

the MRC about this change.

5.3 Open Issues

• Who should enforce replication policies such as ”files on volume X
cannot be replicated to OSDs outside the EU”. The RMS can enforce
rules when creating the replica, but the MRC has the complete list of
replicas and when rules change, only the MRC knows which ones do
not comply with the new rules.

47

5.4 Interface 5 REPLICA MANAGEMENT SERVICE (RMS)

5.4 Interface

The first interface we will need to work on is the one needed to specify
restrictions on the location of replicas. A potential example was presented
in section 5.1, but the real interface will be defined during development.

In order to be able to offer users a specific level of fault tolerance, we will
allow users to set the number of replicas that a file must have to avoid
failure problems. This will be specified extending the same interface offered
to change general characteristics of files.

Finally, we will need an interface for the application execution manager to
inform the RMS that a given job will be executed at a given location and the
files it will use. Once again this interface needs to be studied (in cooperation
with WP3.3).

5.5 Research Prospects

• Information management
This service depends a lot on having huge amounts of information from
all potential OSDs and files. Gathering all this information and being
able to use it is a research challenge. To approach this problem, we
plan on implementing clustering and pseudo-general policies to take
the decisions.

A second research challenge regarding the information management is
to decide what information is really usefull and what is not necessary
and thus should not be taken into account.

• Replication policies: where and how
Deciding where is the best location of a replica and if this replica should
be striped or not is another research challenge. To solve this problem we
plan on using autonomic approaches by modelling the possibilities and
chosing the best possible (or near optimal) solution given the gathered
information from the system and files.

• Replication policies: when
Besides the place to create a replica, another vital issue is the time to
create it. To approach this item, we will use traditional mechanisms
such as cooperating with the aplication execution environment (but in
a more tightly way than in the past). In addition, we will try to predict
which files will be used by running jobs before the file is really used

48

5 REPLICA MANAGEMENT SERVICE (RMS) 5.5 Research Prospects

and then replicate it in advance. This prediction will be based on the
job and a history of open files (not necessarily within a job).

• Replica deletion
If replicas are not removed, they will tend to fill the entire available
storage. Deciding which replicas and when they need to be removed is
also another research topic (that has not been addressed enough in the
past). We will work on polices that take into account space availability,
space used by individual files, file and replica usage, etc.

49

6 METADATA AND REPLICA CATALOGUE (MRC)

6 Metadata and Replica Catalogue (MRC)

While OSDs keep pure file data (objects) without metadata and handle all
direct data access to them, the MRC is responsible for storage, retrieval and
querying of all file metadata and locations of replicas. Therefore, this service
implements the functionality described in Task T3.4.2 (Replica Management
Service, ZIB) and Task T3.4.4 (Metadata Lookup Service, ZIB).

As ’metadata’, we consider all non-file-content data in the file system, i.e.
data necessary to describe the file system itself. Amongst others, this in-
cludes locations at which the actual file content data is stored, as well as file
attributes, such as file size or access rights. The MRC stores this metadata.
To manipulate and query metadata, it provides dedicated functionality in the
form of a service interface which is accessed by the client side in connection
with file system operations. The main task of the MRC is the arrangement
of distributed file system metadata with respect to a fast and efficient file
access and retrieval.

The MRC will act logically as one service in a non-partitioned network, but
will be composed of partitioned and replicated service instances on many
hosts in order to improve availability and performance.

An initial prototype was developed in Python. Java will be used for the final
version. Some parts might be implemented in C or C++ if necessary for
increased performance. The current prototype uses Java and XMLRPC [21].

6.1 Security

6.1.1 Access Control Mechanisms

Objects stored in XtreemFS will be accessed by different users and user
groups. We assume that each user and user group respectively has a unique
identifier. In order to keep unauthorised users from reading or manipulating
data, some kind of user rights management is necessary.

Access control is required to support data privacy, sharing, and collaboration.
As defined in POSIX, file systems usually support access control on a per-file
and per-directory basis.

The MRC should support a variety of different access control policies based
on different entities of the file system. This enables us to develop the MRC
independent from any decision on a concrete policy. Moreover, different
policies can be used on different volumes as defined by system administrators.

50

6 METADATA AND REPLICA CATALOGUE (MRC) 6.1 Security

In general a policy must satisfy the following requirements to be usable by a
MRC:

1. It must be able to grant or deny access to a file system volume, direc-
tory, file or metadata based on the current grid user ID and VO

2. It must be translatable into POSIX permissions (owner, group, other
rwx) based on the current context (grid user ID and VO)

3. In addition, policies can support translation from some or all POSIX
permission changes into their mechanism to support setattr functions
(e.g. chmod command).

Those policies can be implemented using a plug-in mechanism providing some
basic interface:

boolean checkPermission(objID, userID, VO, accessMode)

int convertToPosixACL(objID, userID, VO)

boolean setByPosixACL(objID, userID, VO, posixACL)

Volume ACLs We consider it more beneficial to have access rights on a
per-volume basis, while supporting the easy creation of volumes as the unit
for collaboration. We allow users to have private volumes for their private
data, public volumes for archive data with extended access rights for archive
administrators, and collaboration volumes, which may link to private data
and give a group of users access to common files.

In order to enable an user to specify who is allowed to access objects in the
file system, each volume is associated with an access control list (ACL). Since
there is no hierarchy of volumes, an ACL-based access control model at vol-
ume level can minimise complexity and overhead while ensuring a reasonable
granularity of the file access control model.

An ACL comprises both access rights for the metadata as well as for the data
object itself. Distinguishing between these two kinds of rights gives a user
the possibility to allow another user to modify meta attributes of an object
while keeping that user from reading or making changes to the actual data.

6.1.2 Encryption

Encryption of file contents can only be part of the client libraries. Support
for encryption of metadata is not planned.

51

6.2 Architecture 6 METADATA AND REPLICA CATALOGUE (MRC)

6.2 Architecture

6.2.1 Data Model

The MRC implements a data model for organising file data by both hierarchi-
cal directory structures and extended metadata. The usage of directories or
extended metadata is optional, the user can chose either or both to support
retrieving data.

The core abstraction for controlling access to file metadata and file data is
the volume. Volumes are associated with a set of users or user groups along
with a definition of the kind of operations that they are allowed to perform.
Volumes can be mounted as subtrees of the directory hierarchy of any host
in the system.

Files can be copied between volumes, and links to files in other volumes can
be created.

6.2.2 Internal Architecture

Both system and user-defined attributes of a physical object in XtreemFS
are encapsulated in a meta object. For each physical object on a storage
device, exactly one meta object is maintained by the metadata service.

Meta objects belong to one volume. In addition, links to a meta object
can be created on other volumes and/or other directories. How this will be
implemented (soft links, internal soft links, hard links, aliases) is not clear
at this time.

52

6 METADATA AND REPLICA CATALOGUE (MRC) 6.3 Feature List

6.3 Feature List

MRC 2.1
basic backend

MRC 1.1
basic interface

MRC 1.2
optimised interface

MDS 1.1
basic interface
MRC 2.2
native backend

MDS 1.1
basic interface
MRC 2.3
partitioned backend

MRC 2.4
part. & replicated
backend

MRC 4.1
simple query engine

MRC 4.2
enhanced query engine

MRC 4.4
persistent queries

MRC 4.3
query optimisation

MRC 3.1
indices over metattr

MRC 3.2
distributed indices

MDS 1.1
basic interface
MRC 8.1
per­volume acls

MRC 8.2
per­file or hierarc.
acls

MDS 1.1
basic interface
MDS 7.1
basic security

MRC 7.2.1
client auth.

MRC 7.2.2
signed&encr.
capabilities

MRC 7.1
basic security

MRC 7.3
checksums

MRC 6.1
async IO

MRC 9.1
basic monitoring

MRC 9.2
advanced monitoring

EXT
= advanced = research = optional

ID: MRC 1.1

name basic MRC interface
type basic

dependencies MRC 7.1
description A basic API is implemented in XMLRPC over HTTP.

This is extremely useful during the software development
process as it is easy to debug. This implementation relies
on an existing J2EE container like Tomcat.

53

6.3 Feature List 6 METADATA AND REPLICA CATALOGUE (MRC)

ID: MRC 1.2

name optimised MRC interface
type basic

dependencies MRC 1.1, MRC 6.1
description Since XML-based protocols, especially untyped ones like

XMLRPC, are not very performant w.r.t. parsing and
message size, a different protocol might be used for pro-
duction use. This could be something like Sun RPC or a
native protocol. This feature will be developed together
with MRC 6.1 since both have to be tightly integrated in
the MRC to ensure maximum performance.

ID: MRC 2.1

name basic MRC backend
type basic

dependencies -
description Storage of MRC metadata and directory hierarchy in a

MySQL database, no additional indices over metadata are
possible. Used for rapid prototyping, however not suitable
for testing advanced techniques like replication, partition-
ing or indices.

ID: MRC 2.2

name native MRC backend
type basic

dependencies MRC 2.1, MRC 6.1
description Implementation of a native backend for data storage is ab-

solutely necessary since the data model used by the MRC is
not optimal for relational databases. The implementation
of indices requires additional data structures. This task
is also intended to provide a base for advanced techniques
like data replication.

ID: MRC 2.3

name partitioned MRC backend
type advanced

dependencies MRC 2.2
description Partitioning of data (into slices) and distribution among

several MRCs. The model used for partitioning must be
able to provide means to avoid hotspots especially in di-
rectories.

54

6 METADATA AND REPLICA CATALOGUE (MRC) 6.3 Feature List

ID: MRC 2.4

name partitioned and replicated MRC backend
type research

dependencies MRC 2.3
description Replication of slices to increase performance and resilience.

Research into applicable consistency models and the eval-
uation of available algorithms. Performance comparisons.

ID: MRC 3.1

name indices over metadata
type advanced

dependencies MRC 2.2
description Creation and maintenance of indices over any (user de-

fined) metadata attribute to increase performance of search
operations.

ID: MRC 3.2

name index distribution
type research

dependencies MRC 3.1
description Research into optimal distribution of indices, realisation of

global indices. Consistency models for distributed and/or
replicated indices. Replication and partitioning will add to
parallelisation of search requests.

ID: MRC 4.1

name simple query engine
type basic

dependencies MRC 2.1
description Search over metadata attributes w/o indices or query opti-

misation. For the basic SQL backend this is just a mapping
to corresponding SQL statements. With the native back-
end this will be replaced by a native query engine.

ID: MRC 4.2

name enhanced query engine
type advanced

dependencies MRC 2.3, MRC 4.1
description Search over metadata attributes w/ usage of (global) in-

dices and partitioned MRC. Could also include parallelisa-
tion on replicated indices.

55

6.3 Feature List 6 METADATA AND REPLICA CATALOGUE (MRC)

ID: MRC 4.3

name optimised query engine
type optional (research)

dependencies MRC 2.3, MRC 4.2
description Query optimisation, query caching... (open to future ideas)

ID: MRC 4.4

name persistent queries
type advanced

dependencies MRC 4.2, WP 3.2 pub/sub
description Change notification via pub/sub on persistent queries im-

plemented in the MRC.

ID: MRC 6.1

name embedded asynchronous socket IO
type basic

dependencies MRC 2.2
description Evaluation of server models, especially alternatives to

server/worker model. Identified as basic because it is a
fundamental part of the software. However, research into
alternatives to server/worker model is ongoing and has to
be evaluated. (So, this item is basic in terms of software
development but requires research – at least evaluation of
proposed models).

ID: MRC 7.1

name basic security
type basic

dependencies -
description In a first implementation clients are not authenticated and

capabilities are sent as plain text. This module should
be exchangeable with 7.2.x any time of the development
process to ease debugging!

ID: MRC 7.2.1

name client authentication
type basic

dependencies MRC 7.1, WP 3.5
description Authentication of client hosts through mechanisms pro-

vided by WP 3.5. Subject to interfaces provided by WP
3.5.

56

6 METADATA AND REPLICA CATALOGUE (MRC) 6.3 Feature List

ID: MRC 7.2.2

name signed and/or encrypted capabilities
type basic

dependencies MRC 7.1
description Implement a protocol to sign and encrypt capabilities.

Should closely resemble existing and well studied security
protocols, e.g. kerberos.

ID: MRC 7.3

name checksums/advanced integrity checks
type optional

dependencies -
description Additional checksums to increase integrity of on-disk data

and data transmissions. Experiments show that checksums
provided by TCP and/or UDP are not sufficient to protect
transmission of file contents (see [5]).

ID: MRC 8.1

name volume ACLs
type basic

dependencies -
description A plug-in architecture for Access Control is implemented in

the MRC (see 6.1.1). A basic module defines user/group-
based Access Control Lists per volume.

ID: MRC 8.2

name hierarchical ACLs
type optional

dependencies MRC 8.1
description Finally, other mechanisms can be developed. This will be

the result of discussions/requirements from WP 3.5.

ID: MRC 9.1

name basic MRC monitoring
type basic

dependencies -
description Monitoring of the MRC. Will be specified during the soft-

ware development process as needed. Basic information
for hotspot detection, load, disk and memory usage will be
provided.

57

6.4 Testing 6 METADATA AND REPLICA CATALOGUE (MRC)

ID: MRC 9.2

name advanced MRC monitoring
type advanced

dependencies MRC 9.1
description More elaborate/uncommon functions go into this feature.

ID: MRC 10.1

name MRC management console
type optional

dependencies MRC 1.1, MRC 9.1 (and many more)
description GUI-based management and monitoring tool. Could be

completed by visual access policy and replication policy ed-
itors. Might also include a web-based interface for users to
allow file access regardless of location, system or installed
client libraries.

6.4 Testing

On module level we try to employ white-box testing to allow for regression
tests. These tests are done on a regular basis and have to be documented.
Similar to agile methods, testing should be part of the development process
from day one. For some modules unit testing is not feasible, e.g. the interface
modules. These should be tested as part of integration test of the MRC for
each build.

6.5 Open Issues

1. How does the MRC get information about the actual filesize after a
write operation has completed?
Possible solution: The client notifies the MRC when the file is closed.
Alternative solution: The MRC includes a notification request in the
capability sent to the OSD, who in turn informs the MRC upon com-
pletion of an operation (cf. Section 4.6).

2. How are fsync and fflush handled regarding the filesize attribute in
the MRC?

3. Is a fast update of atime necessary, are there use cases for applications
relying on correct atimes?

58

6 METADATA AND REPLICA CATALOGUE (MRC) 6.6 Interface

4. How to enable the revocation of capabilities, e.g. when permissions
change? Possible approaches include: expiration of a capability, ver-
sioning of files/volumes and capabilities or lists of issued capabilities in
the MRC.

5. How to handle a/c/mtime with clients and servers in different time-
zones?

6.6 Interface

The final version of the MRC interface is still in development. This section
outlines the basic functionality provided by the MRC which covers

• traditional FS operations like mkdir, readdir, rename

• operations for meta-attribute handling like getAttributes

• query operations to explore the filesystem based on the meta-attributes
rather than through the hierarchy (although combinations are possible,
too)

• operations for clients to acquire/renew capabilities necessary for au-
thentication with OSDs

• operations for servers to find out about replica locations (e.g. for job
schedulers)

The MRC Services are available through standard XMLRPC via HTTP. In-
teroperability between different implementations (and different programming
languages) was tested.

6.7 Research Prospects

• Implementation of a replicated database (MRC backend)
Resilience will be an important aspect of XtreemFS. We plan to tackle
this problem by means of data replication. With respect to this, it will
be important to evaluate different approaches to provide for consistency
of replicas.

59

6.7 Research Prospects6 METADATA AND REPLICA CATALOGUE (MRC)

• Partitioning of tables (in the MRC backend)
Partitioning is a means to reduce the load on individual MRC servers
by splitting a table into several parts which are then distributed among
MRC servers.

• Federation of MRCs
The XtreemFS offers a global view on all available storage resources.
Since the system is built of several distributed MRC installations a
federation of these is needed. However, autonomous operation of a site’s
part of the file system is required allowing only a loose coupling of the
individual sites. Finding out to what extent it is possible to decouple
system components while preserving a global view to the system is a
research issue.

• Global queries and global indices
Users may want to search for files in a number of different volumes on
different sites or even on the entire system. This requires global indices
to speed up global search operations.

• Query engine optimisations
A query engine will be needed to evaluate queries. Optimisations
like caching and pre-fetching might be reasonable to speed up query
processing.

60

7 OBJECT SHARING SERVICE (OSS)

7 Object Sharing Service (OSS)

This OSS service implements the functionality described by task T 3.4.5 Grid
Object Management. Furthermore, grid pipes will be implemented.

The object sharing service (OSS) runs on each client machine allowing shar-
ing of objects residing in volatile memory. An object in this context is a
replicated volatile memory region, dynamically allocated by an application
or (a part of) a memory-mapped file. Larger memory regions store groups
of objects. Grid pipes are offered, too; built on a shared memory page that
may be accessed by several writers and readers. Sharing of objects is possible
within a VO, only.

Objects may contain scalars, references, and code. OSS handles the con-
current read and write access to objects and is responsible for maintaining
consistency of replicated objects. Persistence and security for objects (i.e.
files) is provided by XtreemFS.

7.1 Architecture

The OSS service manages volatile shared memory for dynamically allocated
objects, memory-mapped files, and grid pipes. All components will be de-
signed to be scalable and fault tolerant to deal with the dynamic behaviour
of the grid.

7.1.1 Terminology

False Sharing This is a well-known performance penalty causing page thrash-
ing when using page-based consistency units. If two objects reside on
a memory page and each object is accessed by a different node, at least
one node writing, the page is exchanged all the time between the in-
volved nodes. It is important to note that this is a time dependent
phenomenon and during a time interval none of the two nodes accesses
both objects. Obviously, the problem could be solved by moving one
object two another memory page or reducing the size of the consistency
unit to object or variable level. Of course false sharing can also occur if
more objects are located on a 4 KB page and more nodes are accessing
such a page.

True Sharing Occurs if two or more objects are stored on a memory page
that are all accessed by a node during a time interval. As these objects

61

7.1 Architecture 7 OBJECT SHARING SERVICE (OSS)

are anyway accessed during a time interval by a node it is a good
idea to store them together on a memory page. When the first object
is accessed the others will be sent to the accessing node, too. Thus
only the first object access is expensive. When using a fine grained
consistency unit, e.g. object level, each object must be fetched over
the network. There may be situations with true and false sharing of
objects on the same memory page.

But of course also true sharing is a time dependent effect and may turn
into false sharing and vice versa. Important to note is that resolving
false sharing means also to prevent a later true sharing. Finally, true
sharing does not always imply good scalability. If a parallel algorithm
is not partitioned well there may be many conflicts on true sharing
pages. But in these case conflicts will occur independent of the chosen
consistency unit size and a refinement of the algorithm is necessary.

7.1.2 Heap Management

As long as no references are shared relevant logical memory blocks may be lo-
cated at different addresses on different nodes. This is sufficient for memory-
mapped files, grid pipes, and shared memory blocks storing scalars only, e.g.
matrices storing floats.

But when sharing full-fledged object structures including references (e.g.
scene graphs), objects need to be stored at the same address on each partici-
pating node. Furthermore, when objects are allocated dynamically a scalable
distributed heap management is mandatory. Small objects will be allocated
using a two-level memory allocation scheme. On the first level a larger chunk
of memory is allocated in an hierarchical fashion. Subsequent allocations for
small objects are served by memory regions within this larger chunk. Further
memory allocation strategies will be studied.

For 32-Bit machines it may be necessary to support fragmented shared ad-
dress spaces for large object structures.

7.1.3 Object access detection

Accesses to objects need to be detected to request objects if not present lo-
cally and to implement consistency protocols. To be generic and transparent
a page-based approach seems to be the best choice as a basic memory access
detection scheme. The first prototype will be implemented at the user level

62

7 OBJECT SHARING SERVICE (OSS) 7.1 Architecture

but some functions may move into the kernel depending on the synergies
with WP2.2.

When several objects (instances of object-oriented languages typically con-
sume 32-64 byte) are stored on a 4 KB memory page the access detection
may be to coarse. We plan to allow allocating one object per single logical
memory page what is feasible for 64-Bit address spaces. To avoid wasting of
physical memory several objects may be stored together on a single physical
memory page. Thus we can detect memory access on an object-based level.
The granularity of access detection may be adapted during runtime. OSS
can enable access to all/some/one logical object(s) residing on an affected
physical page.

7.1.4 Object access monitoring

OSS will also implement object access monitoring to control false sharing and
object replicas. The latter are used to speed up object access and to provide
a base for fault tolerance. Writes to object data items are propagated to
replicas as invalidate or update messages.

Depending on the monitored object access pattern history and/or program-
mer hints the OSS may control where and how many replicas of an object
exist. Typically, not all replicas will be updated each time but those are
preferred that are stored on clients that have accessed them frequently in the
past. Furthermore, access information may also be used for prefetching of
shared objects to hide network latency.

Another important task of the access monitoring facility is to provide the
necessary information to allow controlling the consistency unit size. This
is necessary to cope with the problem of false sharing causing expensive
page thrashing. We plan to use the monitored access information to detect
false sharing. The situation will be dynamically resolved by changing the
consistency unit size from page-level to object-level during runtime for the
affected objects.

The advanced Java support runtime (e.g. used by Wissenheim in WP4.2)
will allow to concurrently relocate objects during runtime. Because false
sharing is a time dependent penalty OSS will later switch back to a coarser
consistency granularity to allow true sharing. The latter speeds up memory
access and hides network latency.

63

7.1 Architecture 7 OBJECT SHARING SERVICE (OSS)

7.1.5 Object consistency management

A lot of consistency protocols have been proposed for replica management
in shared memory environments [14]. OSS will be configurable allowing to
plug-in new consistency protocols as needed. Furthermore, OSS will support
multi consistency for shared objects, so an object replica may be seen by
different clients under different consistency constraints.

We plan to provide three reference implementations: strict, weak, and trans-
actional consistency. Strict consistency is recommended for single shared
objects only and for testing purposes. Weak consistency is described in the
literature, e.g. [11].

Transactional consistency bundles object access in transactions thus reduc-
ing the number of messages. Basic transaction support will rely on locks.
Transactions doing speculative object accesses will provide more efficiency
by hiding network latency. These transactions need to be restartable in case
of a conflict. The programmer needs to annotate where transactions (TAs)
start by BOT and where they end by EOT. TAs may also be aborted volun-
tarily to avoid network communication if a condition is not true.

The restart property necessary for speculative TAs requires that OSS is able
to reset TAs to their initial state before BOT. Shadow copies will be used for
resetting memory. Device and file access may be considered as an advanced
feature. We expect synergies with the checkpointing and restart mechanisms
developed within and WP2.1 & WP2.2. Another advanced feature is to allow
conflicting transactions to commit under the control of the programmer. This
will increase the transaction throughput.

The main part of OSS will be developed as a shared library in C. Later ver-
sions will include a Java library to allow Java applications (e.g. Wissenheim,
see WP4.2) to take advantage of the OSS service. Advanced OSS features
implemented in this Java library will be considered, too.

64

7 OBJECT SHARING SERVICE (OSS) 7.2 Feature List

7.2 Feature List

= advanced = research = optional = est. progress

OSS 1.1
Basic interface

OSS 1.2
Advanced interface

OSS 2.1
Basic heap
management

OSS 2.2
Advanced heap
management

OSS 3.2
Advanced object
access detection

OSS 3.1
Basic object access
detection

OSS 6.2
Advanced replication

OSS 6.1
Basic replication

OSS 7.2
Advanced consistency
management

OSS 7.1
Basic consistency
management

OSS 8.2
Advanced Java
support library

OSS 8.1
Basic Java
support librrary

OSS 9.1
Grid pipes

OSS 5.1
True and false
sharing control

OSS 4.1
Object access
monitoring

ID: OSS 1.1

name Basic interface
type basic

dependencies -
description Basic interface offered to client applications and to com-

municate with the XtreemFS client.

ID: OSS 1.2

name Interface
type advanced

dependencies -
description Final interface offered to client applications and to com-

municate with the XtreemFS client.

65

7.2 Feature List 7 OBJECT SHARING SERVICE (OSS)

ID: OSS 2.1

name Basic heap management
type basic

dependencies -
description This feature will implement very basic heap management

allowing to allocate memory blocks at same addresses.

ID: OSS 2.2

name Advanced heap management
type research

dependencies -
description This feature will implement a scalable heap management

(for 64-Bit address spaces) allowing dynamic allocation of
small and large objects.

ID: OSS 3.1

name Basic object access detection
type basic

dependencies -
description This feature will implement a basic page-based access de-

tection scheme.

ID: OSS 3.2

name Advanced object access detection
type research

dependencies OSS 2.2
description This feature will allow to control the access detection on

an per object granularity that may be adapted during run-
time.

ID: OSS 4.1

name Object access monitoring
type advanced

dependencies OSS 3.1, OSS 3.2
description This feature will monitor and record access patterns to be

used as an input for replica management and true and false
sharing control.

66

7 OBJECT SHARING SERVICE (OSS) 7.2 Feature List

ID: OSS 5.1

name True and false sharing control
type research

dependencies OSS 4.1
description This feature will be used to detect and resolve false sharing.

ID: OSS 6.1

name Basic replication
type basic

dependencies -
description This feature will implement a basic replication scheme for

shared objects.

ID: OSS 6.2

name Advanced replication
type advanced

dependencies -
description This feature will implement an advanced replication

scheme that will integrate fault tolerance strategies.

ID: OSS 7.1

name Basic consistency management
type basic

dependencies -
description This feature will implement a basic consistency manage-

ment including strict consistency and transactions with
locks.

ID: OSS 7.2

name Advanced consistency management
type research

dependencies -
description This feature will implement an advanced consistency man-

agement including speculative transaction support and
multi consistency.

67

7.3 Interface 7 OBJECT SHARING SERVICE (OSS)

ID: OSS 8.1

name Basic Java support library
type basic

dependencies -
description This feature will implement a basic Java native library

to support shared memory Java applications (e.g. Wis-
senheim in WP4.2).

ID: OSS 8.2

name Advanced Java support library
type research

dependencies -
description This feature will implement an advanced Java native li-

brary including garbage collection and a concurrent object
relocation facility. The latter will allow a more flexible true
and false sharing control.

ID: OSS 9.1

name Grid pipes
type advanced

dependencies -
description This feature will implement grid pipes that emulate tradi-

tional named pipes in UNIX.

7.3 Interface

OSS will expose its basic functionality through the XtreemFS interface. This
will include a function like mmap() to support memory-mapped files. Through
the access layer OSS will be able to load persistent data (OSD), to memory-
map files, and to do an authorisation for file/object access (MRC).

All advanced OSS functions, e.g. sharing of dynamically allocated objects,
transactions, and grid pipes will be exposed by the OSSInterface.

7.4 Research Prospects

We expect fruitful research prospects from the consistency topic with re-
spect to scalability and fault tolerance, especially when relying on specula-
tive transactions. We are also interested in strategies dynamically controlling

68

7 OBJECT SHARING SERVICE (OSS) 7.4 Research Prospects

true and false sharing based on monitored access patterns. Finally, a 64-Bit
heap management for a larger scale is another challenging research topic.

69

8 ACCESS LAYER

8 Access Layer

8.1 Introduction

The access layer serves as interface between user processes and the file system
infrastructure. It manages the access to files and directories in the XtreemFS
for user processes as well as the access to grid specific filesystem features for
users and administrators.

All accesses of user processes to file system entities have to go through this
layer. As such the access layer implements the client-side part of the distrib-
uted file system. It knows how to do all file operations by communicating with
the XtreemFS services like MRC, OSDs, and uses XtreemOS and XtreemFS
level mechanisms to enforce grid policies for file access.

The implementation of the access layer will follow the user requirements
defined in workpackage WP4.2 and the use cases described in section 2.5.
The functionality of the access layer will be mapped as closely as possible
and reasonable to the POSIX standard (IEEE 1003.1, 2004) and in addition
implemented as an independent library that can be used by applications.
The former case has the inherent advantage of being able to serve legacy
applications.

In the following we describe the approach chosen for the access layer. The
feature list classifies the expected features, it is followed by an implemen-
tation section listing more details. The section closes with research ideas
related to the access layer.

8.2 Approach

As stated in the section above, the access layer can be layed out in different
fashions. A schematic view is given in figure 10. As a first step we choose the
POSIX interface approach and implement a prototype using a user space file
system called FUSE1. FUSE is a collection of a library and a kernel module
that allows the implementation of a file system in user space.

The access layer itself is not a single piece of software but is distributed over
several components. The MRC and OSD have some aspects of the access
control implemented (cf. section 6).

1Filesystem in Userspace: http://fuse.sf.net

70

8 ACCESS LAYER 8.2 Approach

Figure 10: Schematic overview of access layer

8.2.1 Direct Access to XtreemFS Components

The simplest way to provide access to files and directories living in the
XtreemFS is through the client interfaces delivered by the components MRC,
OSD, RMS and OSS. As described in section 3.6 the client will need to in-
teract with the MRC as well as the RMS for opening or creating a file, then
transfer file data directly to/from the OSDs. These calls and data transfers
will be encapsulated into a user library linkable by applications. The library
will provide access to files through an appropriate API as well as access
to lower level functionality of the XtreemFS services in order to gain finer
control over the filesystem behavior.

The direct access to XtreemFS functionality through the library API allows
full control to any capabilities provided by the filesystem services. No restric-
tions to the API exist, therefore this can be chosen to fit the XtreemFS design
optimally. The drawback is that applications will need to be adapted to this
particular API and be less portable to other filesystem access methods.

8.2.2 POSIX with FUSE

In order to easy portability and support for legacy applications, we will
provide a POSIX compliant access layer in addition to the direct library based
API. As a first approach to POSIX compliance we will implement a FUSE-
based filesystem. FUSE provides a simple library API for implementing most
of the filesystem functionality in user space. The user space part interacts
with the FUSE Linux kernel module, which is integrated into the mainstream

71

8.2 Approach 8 ACCESS LAYER

Linux kernels. The kernel module integrates the filesystem functionality into
the Linux VFS (virtual filesystem) layer, making it look similar to any native
Linux filesystem. With the filesystem functionality being in userspace, it can
be coded in any programming language supported by the FUSE API and is
not limited to C, as a normal kernel module filesystem client would be.

Local to Global Identity Mapping

Grid filesystem entities have a global scope and are therefore assigned to grid
identities like global user IDs or VO IDs. When accessed by processes which
carry temporary local identities (local user and group IDs), the access control
mechanisms must convert local to global identities and enforce the file access
policies defined also in global context.

The file system components MRC and OSD must be able to provide user
ID and VO information for each filesystem object (file, directory, object).
With this information, the access layer can translate the grid access control
mechanisms to local ones. The way in which data is stored in XtreemFS is
completely transparent to the client application.

Sharing files between members of a VO is one of the requirements for the
file system. The local IDs should therefore reflect the relationship between
users. The same VO should get the same local group ID.

The conversion between local and global identities is expected to be done
by a mapper grid service. This service should run on every node and will
probably be implemented within workpackage WP2.1.

Client Application View

An application that runs on a node and uses XtreemFS with a POSIX-like
interface cannot distinguish between local and grid files. It must therefore
be possible for an application to fstat a file in the grid file system and
retrieve information about the local user id, group id and permissions. This
information should be meaningful in the sense that, for instance, the user
id corresponds to a grid ID and the local group id corresponds to the user’s
VO. The application can then decide what it is allowed to do with that file
and whether its contents is accessible, even if the user does not own it. The
access restrictions are enforced by the local file system layer.

72

8 ACCESS LAYER 8.3 Feature List

8.2.3 Advanced POSIX Interface

In a more advanced phase of the project we will investigate the suitability
of the FUSE approach, its performance and limitations. We might consider
the implementation of the client filesystem completely in kernel space as a
module.

8.3 Feature List

This feature list describes the necessary and desirable items that the access
layer should incorporate. It lies in the nature of an access layer that it
accesses features that are implemented elsewhere. As such the access layer
is dependent on the features of the MRCs, the OSDs and the OSSs that are
visible to the outside world.

8.3.1 Basic POSIX I/O

Features and capabilities for file I/O are as defined by POSIX. For most
features only a brief description is given. More detailed information can be
found in the POSIX standard. A prerequisite for using the XtreemFS in
a POSIX like fashion is of course the ability to mount and unmount the
XtreemFS in the local file system hierarchy. If the OSS can be accessed
through the file system, some of the POSIX I/O functions can be used.

ID: AL 1.1

name create

type basic
dependencies -

description Create a file with certain permissions

ID: AL 1.2

name stat

type basic
dependencies -

description Get information on a file, like user id or file protections.

ID: AL 1.3

name open

type basic
dependencies -

description Open a file in specified access modes.

73

8.3 Feature List 8 ACCESS LAYER

ID: AL 1.4

name write

type basic
dependencies -

description Write memory content to a file.

ID: AL 1.5

name read

type basic
dependencies -

description Read file content to a memory location.

ID: AL 1.6

name lseek

type basic
dependencies -

description Set file position pointer of a file.

ID: AL 1.7

name close

type basic
dependencies -

description Close an open file.

ID: AL 1.8

name mkdir

type basic
dependencies -

description Create a directory.

ID: AL 1.9

name opendir

type basic
dependencies -

description Open a directory.

ID: AL 1.10

name readdir

type basic
dependencies -

description Get next entry in an already open directory.

74

8 ACCESS LAYER 8.3 Feature List

ID: AL 1.11

name closedir

type basic
dependencies -

description Close directory.

ID: AL 1.12

name rmdir

type basic
dependencies -

description Delete a directory.

ID: AL 1.13

name chmod

type basic
dependencies -

description Change permissions of a file.

ID: AL 1.14

name chown

type basic
dependencies -

description Change ownership of a file.

ID: AL 1.15

name acces

type basic
dependencies -

description Check permissions of a file.

ID: AL 1.16

name utime

type basic
dependencies -

description Change access and modification time of a file.

These basic I/O features need capabilities to map from the POSIX view
of users to the grid view. These capabilities are provided elsewhere and
the interface to that provider will be given here. In the POSIX view these
features are not exported to a user’s application but are needed internally in
the access layer.

75

8.3 Feature List 8 ACCESS LAYER

ID: AL 1.17

name getGridID
type basic

dependencies -
description Requests the grid identity of a user identified by a local

uid.

ID: AL 1.18

name getVOID
type basic

dependencies -
description Get VO identitf from a local gid.

ID: AL 1.19

name getLocalUID
type basic

dependencies -
description Get local uid from user’s grid identity.

ID: AL 1.20

name getLocalGID
type basic

dependencies -
description Get local gid from user’s grid identity and VO.

ID: AL 1.21

name testAccess
type basic

dependencies -
description Tests whether the policy governing a file or directory would

allow a specific POSIX access mode, like writing to a file.

8.3.2 Advanced POSIX Interface

The features in this section will not be part of the basic version.

76

8 ACCESS LAYER 8.3 Feature List

ID: AL 2.1

name mmap

type advanced
dependencies -

description Map a contiguous part of a file into memory with given
access protection.

ID: AL 2.2

name mprotect

type advanced
dependencies -

description Set protection for memory mapped file area.

ID: AL 2.3

name msync

type advanced
dependencies -

description Write back mapped part of a file to the file system.

ID: AL 2.4

name munmap

type advanced
dependencies -

description Delete the mapping of a file.

ID: AL 2.5

name lockf

type advanced
dependencies -

description Set, test or remove a lock of portions of a file.

ID: AL 2.6

name aio read

type advanced
dependencies -

description Asynchronous read from a file.

ID: AL 2.7

name aio write

type advanced
dependencies -

description Asynchronous write to a file.

77

8.3 Feature List 8 ACCESS LAYER

ID: AL 2.8

name aio fsync

type advanced
dependencies -

description Synchronize all outstanding operations.

ID: AL 2.9

name aio suspend

type advanced
dependencies -

description Suspend execution of a process.

ID: AL 2.10

name aio cancel

type advanced
dependencies -

description Cancel an outstanding I/O operation.

8.3.3 OSS Interface

The OSS is a general service for sharing objects living in volatile memory
between nodes. Virtual files in the file system could be the easiest way to
integrate the OSS with XtreemFS. For such virtual files, the basic POSIX
I/O features for files (cf. 8.3.1) can be used and the OSS can be accessed
through the POSIX file interface.

In a future version the use of mmap and munmap for shared objects is planned.
The shared objects will then be part of a processes memory.

The OSS also provides grid pipes. These can – like the distributed shared
memory files – be mapped as special files in XtreemFS. The MRC must
therefore know about the special files for shared memory and grid pipes as
these are mapped into the directory structure maintained by the MRC. For
these purposes it does not matter whether the MRC has internally a flat or
hierarchical structure.

The access to pipes would also be covered by the basic file interface. Reading
from and writing to pipes is done with the usual commands.

8.3.4 Management and Monitoring of XtreemFS

The access layer is not only intended to access files but also to provide general
access to the entire system. This includes monitoring and management of the

78

8 ACCESS LAYER 8.3 Feature List

file system. While simple operations like deleting a file or copying a file can
be done with already existing system tools such as rm or cp in the POSIX
view in a transparent way, more sophistication is needed to incorporate more
aspects of the file system. For the direct approach the access layer must
provide the following capabilities.

ID: AL 3.1

name getMetadata
type advanced

dependencies -
description Get all or parts of the meta data for a file.

ID: AL 3.2

name addMetadata
type advanced

dependencies -
description Add a meta data entry.

ID: AL 3.3

name clearMetadata
type advanced

dependencies -
description Clear all user defined meta data.

ID: AL 3.4

name getOSDInfo
type advanced

dependencies -
description Get information on which OSDs hold the files data.

ID: AL 3.5

name getStripingInfo
type advanced

dependencies -
description Get striping information of a file.

ID: AL 3.6

name setStripingPattern
type advanced

dependencies -
description Hint on a striping pattern that suits the data best.

79

8.4 Implementation 8 ACCESS LAYER

ID: AL 3.7

name getNumOfReplica
type advanced

dependencies -
description Get the number of replica of a file.

ID: AL 3.8

name getReplicaLocation
type advanced

dependencies -
description Get the URI of a replica of a file.

ID: AL 3.9

name setNumOfReplica
type advanced

dependencies -
description Hint on the number of possible replica of a file.

ID: AL 3.10

name getPolicy
type advanced

dependencies -
description Get the policy that is governing a file.

8.4 Implementation

The different file system components MRC and OSD need intensive testing in
order to provide high performance and reliability. To help the development
of these components we plan to have an early prototype of the access layer
based on FUSE. This prototype also helps to identify possible conflicts and
problems as early as possible that were not thought of in the planning phase.
Refinement of the requirements and further implementation details will also
be derived on the experiences gained with the prototype.

8.4.1 FUSE Prototype

Based on the general idea that the user of the filesystem should be able to
use it as if it was a local file system, the architecture must provide features
to mount the filesystem in the local filesystem hierarchy. One such means is
FUSE, a file system in user space that will be employed here for prototyping.
FUSE allows file systems to be implemented in the user space of different

80

8 ACCESS LAYER 8.4 Implementation

Figure 11: File system architecture. This figure shows how the file system
is split into components that are located in the kernel, the nodes user space
and the grid.

operating systems (right now Linux and FreeBSD) and thus avoiding the
hassle of dealing with kernel level implementations. Figure 11 shows different
components of the architecture and their location in the kernel space, the user
space and in the grid itself.

FUSE provides a kernel module that interacts with the kernel’s virtual file
system layer (VFS). Since kernel version 2.6.14 the kernel module of FUSE is
contained in the official kernel tree. The file system code uses a FUSE library
which in turn communicates with the kernel over a device called /dev/fuse.
The filesystem code itself will take advantage of the services offered by the
MRC and OSD services.

The client application that uses the file system will not know if it is using the
XtreemFS. It will access the files in the XtreemFS through the VFS layer of
Linux using a POSIX interface.

81

8.4 Implementation 8 ACCESS LAYER

8.4.2 POSIX I/O

As stated in the description of the architecture, a client application is not
necessarily aware of the underlying XtreemFS. It treats files as if they were
on a local file system. This approach requires a common interface between
all different file systems. POSIX I/O is a standard for accessing I/O and the
file system is required to adhere to that standard as strictly as possible and
reasonable.

POSIX conformance can be achieved through the use of FUSE. The user
space code of the file system can register the functions presented in listing 1
with the FUSE library. These functions represent some parts of the POSIX
I/O interface for file systems (not for general I/O).

Listing 1 shows a summary of different file system operations supported by
FUSE and the corresponding C language API. The POSIX I/O interface to
applications is provided by the C library and the VFS of the Linux kernel.
The corresponding user space code of the file system must have a POSIX
compliant semantic.

Listing 1: FUSE basic operations
/∗

FUSE: F i l e s y s t em in Userspace
Copyr i gh t (C) 2001−2006 Mik los S z e r e d i <mik l o s@s z e r e d i . hu>

This program can be d i s t r i b u t e d under t h e terms o f t h e GNU LGPL.
See t h e f i l e COPYING. LIB .

∗/

struct f u s e op e r a t i o n s {
int (∗ g e t a t t r) (const char ∗ , struct s t a t ∗) ;
int (∗ r e ad l i nk) (const char ∗ , char ∗ , s i z e t) ;
int (∗ g e td i r) (const char ∗ , f u s e d i r h t , f u s e d i r f i l t) ;
int (∗mknod) (const char ∗ , mode t , dev t) ;
int (∗mkdir) (const char ∗ , mode t) ;
int (∗ unl ink) (const char ∗) ;
int (∗ rmdir) (const char ∗) ;
int (∗ symlink) (const char ∗ , const char ∗) ;
int (∗ rename) (const char ∗ , const char ∗) ;
int (∗ l i n k) (const char ∗ , const char ∗) ;
int (∗chmod) (const char ∗ , mode t) ;
int (∗chown) (const char ∗ , u id t , g i d t) ;
int (∗ t runcate) (const char ∗ , o f f t) ;
int (∗ utime) (const char ∗ , struct utimbuf ∗) ;
int (∗ open) (const char ∗ , struct f u s e f i l e i n f o ∗) ;
int (∗ read) (const char ∗ , char ∗ , s i z e t , o f f t , struct f u s e f i l e i n f o ∗) ;
int (∗ wr i te) (const char ∗ , const char ∗ , s i z e t , o f f t ,

struct f u s e f i l e i n f o ∗) ;
int (∗ s t a t f s) (const char ∗ , struct s t a t v f s ∗) ;
int (∗ f l u s h) (const char ∗ , struct f u s e f i l e i n f o ∗) ;
int (∗ r e l e a s e) (const char ∗ , struct f u s e f i l e i n f o ∗) ;
int (∗ f sync) (const char ∗ , int , struct f u s e f i l e i n f o ∗) ;
int (∗ s e t x a t t r) (const char ∗ , const char ∗ , const char ∗ , s i z e t , int) ;
int (∗ ge txa t t r) (const char ∗ , const char ∗ , char ∗ , s i z e t) ;
int (∗ l i s t x a t t r) (const char ∗ , char ∗ , s i z e t) ;
int (∗ removexattr) (const char ∗ , const char ∗) ;
int (∗ opendir) (const char ∗ , struct f u s e f i l e i n f o ∗) ;
int (∗ r eadd i r) (const char ∗ , void ∗ , f u s e f i l l d i r t , o f f t ,

struct f u s e f i l e i n f o ∗) ;
int (∗ r e l e a s e d i r) (const char ∗ , struct f u s e f i l e i n f o ∗) ;
int (∗ f s yn cd i r) (const char ∗ , int , struct f u s e f i l e i n f o ∗) ;

void ∗(∗ i n i t) (void) ;
void (∗ dest roy) (void ∗) ;

82

8 ACCESS LAYER 8.4 Implementation

int (∗ acc e s s) (const char ∗ , int) ;

int (∗ c r ea t e) (const char ∗ , mode t , struct f u s e f i l e i n f o ∗) ;
int (∗ f t r unca t e) (const char ∗ , o f f t , struct f u s e f i l e i n f o ∗) ;
int (∗ f g e t a t t r) (const char ∗ , struct s t a t ∗ , struct f u s e f i l e i n f o ∗) ;

} ;

8.4.3 Access control

Processes that run under Linux in XtreemOS are ordinary UNIX processes
with an associated local user ID (UID) and local group ID (GID) that identify
the user that runs the process. The process in XtreemOS also carries a global
user ID and an identifier for the VO that the process belongs to. The most
common way for processes to access files or directories in a file system is by
using a POSIX compliant interface. The access to file system entities like
files and directories is controlled by the permission bits read (r), write (w)
and execute (x) and eventually access control lists (ACLs).

On the other side, a user in the grid is represented by a globally unique
identifier and executes jobs in the context of a specific VO. A job may consist
of several UNIX processes running on different nodes. The job’s processes
execute under temporary local UIDs and GIDs which are assigned by a part
of the grid’s job management service.

Considering the case where a process accesses grid files via a POSIX-like
interface, the process itself only sees the local world of the node where it is
running. The process does not have a notion of policies, user certificates or
VOs but works with the POSIX view of the file system, that contains permis-
sion bits, local uids and gids and access control lists, eventually. Therefore
access mechanisms from the XtreemFS (like, for instance, user identities and
VOs and policies for access restriction) must be mapped onto mechanism
that are defined in the POSIX I/O.

A grid file should at any moment be associated with a global user ID (speci-
fying the file’s owner) and the owner VO ID. The VO ID doesn’t need to be
associated with the file, this can be inherited for example from upper layers
like the namespace to which a file belongs to. Both global user ID and VO
ID are entities permanently carried by each grid process, they are required
for accounting and policy enforcement purposes.

When using the POSIX interface a process that creates a new file can asso-
ciate only POSIX permissions, including local UID and GID, with that file.
It is the task of the file system to translate these into something globally
meaningful for the XtreemFS, respecting for example policies on global user

83

8.4 Implementation 8 ACCESS LAYER

and VO identities. The local file ownership and permission will need to be
correlated with the global UID and VO ID carried by the process.

The mapping of local UIDs and GIDs to global user IDs and VO IDs is an
economic way to enforce UNIX like access control to global grid files on grid
nodes. It uses native UNIX mechanisms for access permission checking and
enforcement which are implemented in the kernel. The mapping gives the
global identities a simple meaning in local node context: that of user and
group IDs.

The mapping from local IDs to grid identities is temporary and specific to
each grid node. Once a grid process is running on a node, the mapping of its
global identities exists on that node and the local UID/GID can be associated
with the grid user ID and VO ID. The process will see files belonging to its
grid user and the POSIX interface will take care of presenting these files as if
they were owned by the corresponding local UID/GID. Therefore at a given
time a file can seem to belong to different local UID/GIDs on different grid
nodes. This leads to the corner case of a process attempting to access a file
that doesn’t belong to itself (its global UID or VO). While the process has
a local UID/GID mapping associated with its global UID and VO ID, the
file doesn’t. A temporary mapping for the global UID and VO ID associated
with the file must be created on the fly and persist as long as it is needed,
i.e. as long as the file is opened.

This shows the necessity for a service that manages the mapping from grid
identities to local IDs on every node. This service is part of WP 2.1.

Beyond the basic file access control and identity mapping described above,
the access layer will need to incorporate more advanced mechanisms to en-
force arbitrary file-related policies. These are considered advanced features
and will be implemented after M18.

8.4.4 Non POSIX

Of course the POSIX like access is not the only possibility to access the grid
file system. The XtreemFS can also be accessed by a specifically designed
API that may be implemented in a shared library. As presented in figure 11
the POSIX way is through the Linux kernel. But the user space part of
the file system code might be accessible via a shared library that is placed
between the client application and the user space code. This approach has
the disadvantage that any kind of access control has to be implemented in
this library and that the library cannot take advantage of the kernel support

84

8 ACCESS LAYER 8.5 Research Prospects

for access control. Moreover, application I/O must be reimplemented to meet
the requirements of the new API.

8.4.5 Access to Grid-specific Filesystem Features

The functionality of XtreemFS goes far beyond simple file access. Replicas
are created or removed, files can be striped in different ways – even over
multiple OSDs, and file metadata could be very complex, too. A grid-aware
application should be able to take advantage of these features and to give
hints to the file system how to store data best, because the application has
the best knowledge about the structure of data. This information can, for
instance, include information about possible striping patterns or information
on how many replicas should be created. In turn, applications could retrieve
information about VOs which the files belong to and different, more fine-
grained access policies. These policies can include the role of a user in a
VO.

In an advanced version, the access layer should allow applications to com-
municate with the different components of the file system directly. It is not
yet clear how this can be done. But one approach might be through calls of
ioctl in order not to introduce too many fundamental changes in existing
codes.

8.4.6 Open Issues

• Handling of special files by MRC

• Dealing with failures of nodes with volatile shared objects

8.5 Research Prospects

One research topic is the meaningful extension of the POSIX-like interface
in order to take advantage of the XtreemFS features. These extensions allow
applications to better adapt to the grid infrastructure. A monitoring interface
could help them avoiding performance bottlenecks, because the application
usually knows its data access pattern best.

Another research issue is the integration of distributed filesystem concepts,
ideas for replica management and distributed shared memory into a com-
mon interface and how far this integration can be done with conventional
interfaces (like POSIX) The OSS component emerged from object-oriented

85

8.5 Research Prospects 8 ACCESS LAYER

programming methods. Building an object-oriented filesystem interface op-
timally fitting the OSS needs is another potential research topic.

86

A RELATIONS TO OTHER WPS

APPENDIX

A Relations to other Workpackages

A.1 Service Discovery - WP3.2

MRC requirements for Service Discovery/Directory Service. In
our design of the XtreemOS file system, the directory service is a central
service which ties its components together. File system clients use it to find
metadata servers for the volumes they want to access, and metadata servers
use it to find out extended static and dynamic information about object
storage devices. All changes of information in the directory service is subject
to the publish/subscribe system, so that clients can monitor services.

Thus, we will register all our service instances. Those registrations are at least
(name, access point) pairs, but usually contain extended static information:

• organisation, country, VOs (these must be validated through mecha-
nisms from WP3.5)

and dynamic information:

• availability (e.g. online, offline, dead)

• load information

• service-specific information (e.g. current disk capacity)

Result sets of query requests need to be sorted by dynamic metrics, for
example bandwidth/latency/... between a given address and the server (as
described in Annex.1). Queries over the list of servers should be possible
(e.g. select specific server types). Updates to the volume name → MRC list
must be atomic and should be synchronised with the list of available volume
names. Status changes of servers (e.g. dead) could be disseminated via WP
3.2 pub/sub service.

87

A.2 Publish/Subscribe - WP3.2 A RELATIONS TO OTHER WPS

A.2 Publish/Subscribe - WP3.2

Within the scope of WP3.2, a scalable pub/sub system will be implemented.
Possible applications for pub/sub in our workpackage are:

• disseminating application/network/host monitoring information

• persistent queries in the Metadata Catalog

• notification on OSD join/leave/crash may need reliable transport

A.3 Remote Execution - WP3.3

We would like WP3.3 to offer us support for remote control of demons. This
could be done by having all demons behave as processes of a single job and
thus be able to treat all of them with job functionality to control them,
monitor them, signal them, etc. WP3.3 will offer a mechanism to create this
kind of jobs.

A.4 Replica and Job Collocation - WP3.3

It is important for efficiency reasons that replicas of files are located near
(performance wise) to where the jobs using them will be executed. This can
be done in two different ways. The first option is to try to place the job near
the files. To approach this solution we will work on mechanisms to inform
the execution management system of how near (performance wise) the files
used by a job are to the set of resources being evaluated. On the other hand,
once the resources have been assigned to a job, and before it is executed, this
service will inform the file system to allow the creation of replicas nearby if
needed.

A.5 SSI - WP2.2

The SSI functionality of WP2.2 includes a basic DSM for clusters. It is not
planned to put much efforts on the existing Kerrighed DSM within WP2.2
but it seems natural that there may be synergies with the OSS service of
WP3.4.

Furthermore, the container concept of Kerrighed - a data sharing facility -
might be a good candidate to be extracted from Kerrighed and pushed into

88

B PROTOCOLS A.6 Checkpointing - WP2.2

the Linux kernel mainstream. Pushing Kerrighed as a single big kernel exten-
sion into the Linux community seems too be to ambitious. If the containers
would be extracted within WP2.2 further synergies with OSS may show up.

A.6 Checkpointing - WP2.2

The OSS service needs to support fault tolerance, e.g. by ensuring that
always enough replicas of an object exist. In the world of reliable DSM
systems checkpointing has been interweaved into consistency protocols.

Checkpointing requires resetting a node to a previously saved state. OSS will
allow speculative memory access typically bundled within transactions that
may also be aborted and thus affected operations must be reset, too.

Although these resetting actions have different origins (crashes and aborts)
both would prefer a fast recovery with a low overhead during fault free execu-
tion. Definitely, a discussion with WP2.2 is reasonable to identify potential
synergies.

A.7 VO Management - WP2.1

The access layer needs to dynamically translate file ownership and access
policies from their global scope defined on the grid, i.e. related to global user
ID, virtual organisation (VO) ID, other global entities, to local, node specific
permissions and access rights. The mapping between global and local entities
is expected to be a service provided as output of workpackage WP2.1. The
concrete mechanisms and APIs need to be adapted to the XtreemFS access
layer needs in close collaboration with WP2.1. This will be eased by the fact
that some WP3.4 members are working on WP2.1, too.

B Protocols

The standard protocol for storage systems iSCSI [9] of T10, with its OSD
extension for object-based storage systems. The important design consider-
ations of iSCSI are [13]:

1) It uses TCP instead of a custom reliable transport protocol built on
UDP

2) It mixes command/control and data in one connection

89

B.1 HTTP Protocol for XtreemFS B PROTOCOLS

3) It allows parallel connections

4) It is stateless

5) It uses a binary representation with fixed size field lengths in order to
facilitate in-hardware parsing

The disadvantages of iSCSI are:

• It is a complex protocol and there are not many open source imple-
mentations around (reusability of code)

• Being a binary protocol, it is harder to debug

In order to not hinder ourselves by protocol stack implementations, we chose
to use HTTP as our base protocol. It shares all design features of iSCSI but is
ASCII-based, which makes it easier to debug, and hardware implementations
are not in our scope anyway. Also, it is very extensible, and there are many
tools and implementations available. If iSCSI support becomes desirable at
one point, for example to communicate with commercial object stores, we
have similar protocol semantics and therefore supporting it should be doable.

A marshalling protocol for structured data/RPCs is still to be found, candi-
dates are XMLRPC, SOAP, JSON, Sun XDR ([16][17][18]).

B.1 Usage and Extensions of the HTTP Protocol for
XtreemFS

Communication with the MRC is done through XMLRPC, all necessary in-
formation is contained in the XMLRPC request. No extension to the HTTP
protocol is necessary.

For the OSD the HTTP protocol itself is sufficient to encapsulate all opera-
tions. Byte ranges can be requested through the Content-Range header field,
which is part of the HTTP 1.1 standard. For the capabilities and information
on replicas, we introduce non-standard header fields

x-capability: "<capability string>"

and

x-replicas: "<list of OSDs holding replicas>".

OSD operations can now easily be translated into HTTP methods. The
objID is transmitted as the URI.

90

C FAQ

• read is translated into a GET request.

• write is translated into a PUT request.

• delete is translated into a DELETE request.

• create is not translated but implied by a PUT for a non-existing object.

An example request to the OSD could look like this:

GET /123456789 HTTP/1.1

Host: osd1.xtreemos.org

Content-Range: bytes 1000-2999/*

x-capability: "74f876e8a8340d6e0b06585f9834e0659a"

x-replicas: "osd1.xtreemos.org:8080 osd2.xtreemos.org:8084

osd5.xtreemos.org:8080"

The answer could look like this:

HTTP/1.1 200 OK

Host: osd1.xtreemos.org

Content-Range: bytes 1000-2999/*

Content-Type: application/octet-stream

Content-Length: 2000

Cache-Control: no-cache

Here starts the filecontent...

C FAQ

Does the client do caching?

No, caching is not done in the client. This is required in order to be able to
offer POSIX/Linux semantics in presence of concurrent access from multiple
clients. Therefore, we don’t need any special deviating semantic definitions
as for example CODA’s session semantics.

Can I export a directory on my local machine to XtreemFS?

No. But you can setup an XtreemFS volume on your machine which becomes
available on the grid when you are connected to the internet. Technically
speaking you set up an MRC and an OSD on your machine creating a new
XtreemFS volume.

91

C FAQ

Is XtreemFS similar to NFS?

Yes and No! From the user’s perspective it is similar. You can mount
XtreemFS volumes through the FUSE Interface in your directory tree. Just
like an NFS server. Volumes can also be automounted when you need them.
From the technical perspective XtreemFS is completely different from NFS.
First of all, it is distributed, there is no central server as in NFS. In addition,
various XtreemFS installations export their volumes and are tied together in
a federation. The user, however, does not notice that and how XtreemFS is
distributed.

Do I have to make backups of XtreemFS volumes?

Not really. You can choose the replication policy of volumes or files. So you
can decide how many copies you need. Of course, you can still make backups
of XtreemFS volumes using standard software.

Do I have to change my applications to work with XtreemFS?

No. Legacy applications can use the traditional Linux file system interface
without restrictions. To benefit from advanced features like replication poli-
cies or user defined metadata your application can be linked against the
XtreemFS client lib.

A single MRC must be a bottleneck?

Yes. But you usually have a federation of MRCs, and those MRCs are
replicated and partitioned. This does not only enhance performance but
increases also the availability.

How can a file be striped?

The user can choose from a range of striping patterns depending on his or
her needs, e.g. RAID 0 for performance or RAID 5 to save disk space.

But I don’t want my files to be stored at host X or in country Y!

Users can specify replication policies to tell XtreemFS where to replicate to,
and where not.

92

REFERENCES REFERENCES

Will you support ACLs?

Yes, it is planned to support them.

What is the difference between XtreemFS and a RDBMS?

XtreemFS is not an RDBMS. However, it is a database and a filesystem. You
can store arbitrary attributes per file and do queries over attributes. But you
do not have tables or SQL statements.

Can a file belong to multiple VOs?

Yes, a file can be accessed from users of multiple VOs, if access policies
permit.

Can XtreemFS notify me/my application if a file changes?

Yes. XtreemFS supports persistent queries, i.e. you send a query to an
MRC which it will keep. Once a file matching your query changes, you get a
notification via WP3.2’s pub/sub service.

Does XtreemFS provide POSIX/UNIX file system semantics?

Yes. We try to be as close as possible to Linux file system semantics. This
is, however, not always what you expect when reading the POSIX standard.

References

[1] Lustre: A Scalable, High-Performance File System.

[2] Panasas ActiveScale File System (PanFS).

[3] Alain Azagury, Vladimir Dreizin, Michael Factor, Ealan Henis, Dalit
Naor, Noam Rinetzky, Ohad Rodeh, Julian Satran, Ami Tavory, and
Lena Yerushalmi. Towards an Object Store. In MSST ’03: Proceed-
ings of 20th IEEE / 11th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST 2003), 2003.

93

REFERENCES REFERENCES

[4] Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Lan Xue.
Efficient Metadata Management in Large Distributed Storage Systems.
In MSS ’03: Proceedings of the 20 th IEEE/11 th NASA Goddard Con-
ference on Mass Storage Systems and Technologies (MSS’03), page 290,
Washington, DC, USA, 2003. IEEE Computer Society.

[5] Mike Burrows. The Chubby Lock Service for Loosely-Coupled Distrib-
uted Systems. In OSDI’06: Seventh Symposium on Operating System
Design and Implementation, 2006.

[6] Micahel Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, and Julian
Satran. Object storage: The future building block for storage systems.
In 2nd International IEEE Symposium on Mass Storage Systems and
Technologies, 2005.

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 29–43, New York, NY, USA,
2003. ACM Press.

[8] The Open Group. The Single Unix Specification, Version 3.

[9] IBM, Hewlett-Packard. RFC 3720 - Internet Small Computer Systems
Interface (iSCSI), 2004.

[10] T. M. Kroeger and D. D. E. Long. Predicting the future file-system
actions from prior events. In Proceedings of the Annual Technical Con-
ference, 1996.

[11] F.A. Briggs M. Dubois, C. Scheurich. Memory access buffering in multi-
processors. In Proceedings of the Symposium on Computer Architecture,
1986.

[12] M. Mesnier, G. Ganger, and E. Riedel. Object-based storage. IEEE
Communications Magazine, 8:84–90, 2003.

[13] Kalman Z. Meth and Julian Satran. Design of the iscsi protocol. In
IEEE Symposium on Mass Storage Systems, pages 116–122, 2003.

[14] D. Mosberger. Memory consistency models. In Proceedings of the ACM
SIGOPS review, 27(1), 1993.

[15] Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System for
Large Computing Clusters. In FAST ’02: Proceedings of the 1st USENIX

94

REFERENCES REFERENCES

Conference on File and Storage Technologies, page 19, Berkeley, CA,
USA, 2002. USENIX Association.

[16] Sun Microsystems, Inc. RFC 1050 - RPC: Remote Procedure Call Pro-
tocol specification, 1988.

[17] Sun Microsystems, Inc. RFC 1831 - RPC: Remote Procedure Call Pro-
tocol Specification Version 2, 1995.

[18] Sun Microsystems, Inc. RFC 1832 - XDR: External Data Representation
Standard, 1995.

[19] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th Conference on Operating Systems
Design and Implementation (OSDI ’06), volume 7. USENIX, November
2006.

[20] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and Ethan L. Miller.
Dynamic Metadata Management for Petabyte-Scale File Systems. In SC
’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
page 4, Washington, DC, USA, 2004. IEEE Computer Society.

[21] Dave Winer. XML-RPC Specification.

95

	Introduction
	Document Structure
	Features and Feature Lists

	General Requirements
	Fault Tolerance and Scalability
	Federation
	POSIX Compliance
	Requirements by Other WPs
	Use Cases

	Architecture
	XtreemFS and existing object-based file systems
	Overview
	General Definitions and Concepts
	System Components
	Architectural Artifacts
	Interaction between Components

	Object Storage Device (OSD)
	Objects and Object Storage Devices
	Multi-Object Files
	Transactional Files
	Architecture
	Feature List
	Open Issues
	Interface
	Research Prospects

	Replica Management Service (RMS)
	Replication Policies
	Architecture
	Open Issues
	Interface
	Research Prospects

	Metadata and Replica Catalogue (MRC)
	Security
	Architecture
	Feature List
	Testing
	Open Issues
	Interface
	Research Prospects

	Object Sharing Service (OSS)
	Architecture
	Feature List
	Interface
	Research Prospects

	Access Layer
	Introduction
	Approach
	Feature List
	Implementation
	Research Prospects

	Relations to other WPs
	Service Discovery - WP3.2
	Publish/Subscribe - WP3.2
	Remote Execution - WP3.3
	Replica and Job Collocation - WP3.3
	SSI - WP2.2
	Checkpointing - WP2.2
	VO Management - WP2.1

	Protocols
	HTTP Protocol for XtreemFS

	FAQ

