XtreemQS /f* BUHE

Information Society

Enabling Linux <
for the Grid \A/ Technologies

Project no. IST-033576

XtreemQOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Third Specification of Security and VO Services
D3.5.11

Due date of deliverable: November 30", 2008
Actual submission date: January 15, 2009

Start date of project: June 1% 2006

Type: Deliverable
WP number: WP3.5
Task number: T3.5.2/T3.5.3

Responsible institution: STFC

Editor & and editor’s address: Erica Y. Yang
Rutherford Appleton Laboratory

Science and Technology Facilities Council
Harwell Science and Innovation Campus
Didcot OX11 0QX

United Kingdom

Version 1.0 / Last edited by Erica Y. Yang / January 14, 2009

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU | Public

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services) | y/

Revision history:

Version Date Authors Institution Section affected, comments

0.01 03/10/08 | Erica Y. Yang STFC draft outline

0.02 23/10/08 | Ales Cernivec XLAB VOPS

0.03 23/10/08 | Matej Artac XLAB RCA
0.1 12/11/08 | Erica Y. Yang STFC background
0.2 03/12/08 | Erica Y. Yang STFC VO management
0.3 08/12/08 | Erica Y. Yang STFC user management
0.4 10/12/08 | Erica Y. Yang STFC trust model
0.5 15/12/08 | Erica Y. Yang STFC certificate management
0.6 16/12/08 | Erica Y. Yang STFC XVOMS section
0.7 17/12/08 Erica Y. Yang STFC revisited RCA and VOPS sections
0.8 17/12/08 | Erica Y. Yang STFC introduction, executive summary, conclusions
0.9 06/01/09 | Erica Y. Yang STFC incoporated Luis’s comments

0.9.1 10/01/09 | Erica Y. Yang STFC Luis’s remaining comments: reworked XVOMS,

VOPS
0.9.2 12/01/09 | Erica Y. Yang STFC Thilo comment: rework VOPS upcoming features, and
minor typo corrections

0.9.3 12/01/09 | Erica Y. Yang STFC Thilo comment: rework introduction

0.9.4 12/01/09 | Erica Y. Yang STFC Thilo comment: rework exec summary

0.9.5 13/01/09 | Matej Artac, Ale$ Cernivec XLAB rework VOPS and RCA

0.9.6 13/01/09 | Erica Y. Yang STFC finishing touches
1.0 14/01/09 | Erica Y. Yang STFC final

Reviewers:

Thilo Kielmann (VUA) and Luis Pablo Prieto (TID)

Tasks related to this deliverable:

Task No. | Task description Partners involved®
T3.5.2 Specification of XtreemOS Security Services STFC*, SAP, XLAB, ICT, ULM, INRIA
T3.5.3 Autonomic Security Policy Management and Enforcement STFC*, SAP, XLAB, ICT, ULM, INRIA

°This task list may not be equivalent to the list of partners contributing as authors to the deliverable
*Task leader

Contents

[Executive Summary|

(L Introduction|

(1. Briet Recapotf D3.5.4{.

2 Basic Concepts|

2.1 Background L

D14

Usage Scopes|

2.2 VO Management|

D21

D23

VO Software Layers|

n24

VOHost: a VO Hosting System|

2.3 User Management|.

2.4 Certificate Management|.

312

Major Components|

B13

Interactions with Other Security Services|

B14

Supporting XtreemOS Application Execution|

B15

Supporting XtreemOS File Management|.

B.16

Supporting MD| oo oL

B1.7

Supporting WP3.2’s Services|

[3.2.2 Major Components| 56
[3.2.3 Interactions with Other Security Services| 59
[3.2.4 Supporting XtreemOS Application Execution| 60
[3.2.5 Supporting XtreemOS File Management|. 60
[3.2.6 SupportingMD|. 0 0L, 60
[3.2.7 Supporting WP3.2’s Services| 60
[3.2.8 Features for the Next Releasel 61
................................. 62

3.3.1 Brmef Introductionl. oL 62
[3.3.2 Major Components| 62
[3.3.3 Usageof RCAl 64
[3.3.4 Interactions with Other Security Services| 65
[3.3.5 Supporting XtreemOS Application Execution| 67
[3.3.6 Supporting XtreemO\S File Management|. 67
[3.3.7 SupportingMD|. 0 0L 67
[3.3.8 Supporting WP3.2’s Services| 67
[3.3.9 Features for the Next Releasel 67
68

Glossary

AEM
CDA
CA
GGID
GUID
GVID
NLP
PDP
PKI
RCA
TCB
VOM
VOPS
VOLife
XtreemFS
XVOMS
XOSD

Application Execution Management
Credential Distribution Authority
Certification Authority

Global Group IDentifier

Global User IDentifier

Global VO IDentifier

Node Level Policy

Policy Decision Point

Public Key Infrastructure

Resource Certification Authority
Trust Computing Base

Virtual Organization Management
Virtual Organization Policy Service
Virtual Organization Lifecycle service
XtreemOS File System

XtreemOS Virtual Organization Management Service

XtreemOS Daemon

List of Figures

(1 The structure of a computer system that runs XtreemOS.| 12
[2 Components of a XtreemOS system.| 22
[3 How VO and security components fit into the overall XtreemOS [
[software stacks)o Lo oL 26
4 A bhierarchical trust model of PKIl. 35
b____The XtreemOS trustmodell 38
(6 The relationship between XVOMS, CDA, and RCA 1n a networked [
[environment) oL 39
[/ A hypothetical user attribute certificate with a hierarchical struc- [
| ture between groups androles| oo oL 48
(8 A hypothetical user attribute certificate with a flat structure be- |
[tween groups androles| oo oL 49
9 A hypothetical machine attribute certificate| 50
(10 XVOMS architecturel 54
(IT A generic policy model describing the relationship between PIP, |
[PDP, PEP, and PAP o oo 57
(12 VOPS nteractionsl. oL 60
I3 Interactions between resource admin and RCA serven 65
U4 Interactions between a machine and RCA server| 66

List of Tables

(1 Usage Scopes of the Attributes| 20
[2 Certificates for Users and Machines (PKC: Public Key Certifi- |
[cates, AC: Attribute Certificate), a user and a node can concur- |
| rently belong to multiple VOs, thus simultaneously holding mul- |
[tiple ACs.| 46

Executive Summary

This deliverable is the third edition of the specification of security and VO services
for the XtreemOS project. It aims to revisit and consolidate the foundation and
development roadmap after the first release of the XtreemOS prototype system.

Although the first release has made some progress towards making security
and VOs more managable than conventional Grid middleware systems, the sys-
tem deployment in our testbed has revealed a few critical issues that we will have
to address if the expectation of XtreemOS users (including end users, develop-
ers, system adminstrators) is to be met. These issues include a) the complexity
of managing and distributing certificates, b) the lack of a clear definition of the
trust model underpinning XtreemOS, c) static realisation of VOs in the first re-
lease, d) the missing links between the implemented VO and security components
(from WPs 2.1 and 3.5), and, last but not least, e) a detailed definition of what a
XtreemOS system is composed from.

It should be pointed out that some of these issues, namely a) and c), are not
unique to XtreemOS: they also exist in the all the main stream Grid middleware
systems. They are more pressing to our project because users will have higher
expectations on XtreemOS, a Grid operating system featured by its support for
VOs and better usability (in terms of ease of use, compact system administration
and deployment). This deliverable makes extra efforts to address these issues. We
have therefore focused on two important aspects of our work: revisiting the key
concepts and design decisions that underly our system and giving an outlook into
the future direction of our development.

This deliverable contributes to the state of the art Grid computing research in
four different ways. For the first time in the project, we present the XtreemOS trust
model, which is fundamentally a cross-certified hierarchical PKI trust model. Dif-
ferent from other conventional PKI trust models, our model is established upon the
existence of one or more online Certification Authorities (CAs) in an XtreemOS
system. Second, by leveraging the online CAs, this trust model allows us to sim-
plify, and more importantly, automate the management and distribution of (root)
CA certificates in our system, which is often a stumbling block for large scale
deployment of PKI based systems. Such automation can significantly enhances
the capability of XtreemOS being deployed as a large scale distributed system
and reducing the level of manual and/or offline operations involved in configur-
ing widely distributed resources (this is a must with conventional Grid systems).
Third, we present a set of key protocols underlying this trust model, describe its
relationship with our security and VO services, and outline their connections with
the implementation we have delivered. Finally, this document also clarifies and
revisits the following fundamental questions to the project: what is a XtreemOS
system, what are the entities that a XtreemOS system involves, and what are the

6

VOs in a XtreemOS system.

As part of the overal system implementation roadmap, this deliverable finally
presents a preliminary implementation roadmap of our security and VO services.
in the upcoming release. We provide an update of the architectual relationship
between these services, and describe a set of advanced features that will appear in
the next release.

1 Introduction

This deliverable is the third edition of a specification of security and VO services
for the XtreemOS project. Itis delivered after the first public release of XtreemOS.
After two years into the project, we are now standing at a point where we have de-
signed and developed a range of services that have been integrated into the public
release and we have also accumulated a level of understanding of the strength and
limitations of the services we delivered.

The previous edition of this deliverable focused on presenting an overall secu-
rity architecture of XtreemOS, and that has been used as the foundation leading to
the the first release. However, the actual experience and knowledge accumulated
along the production (especially development, deployment and testing) to the first
release has given us many new insights and further understandings into the limita-
tions of implemented services as well as the (hidden) strengths of the XtreemOS
security infrastructure.

Therefore, this time, we revisit some of the design decisions, most importantly,
trying to understand the cause of the problems we have experienced during the
course of in the system deployment of the first release and present solutions on
how they can be addressed in the upcoming releases.

1.1 Brief Recap of D3.5.4

The previous edition of this deliverable (i.e. D3.5.4) was published a year ago.
It was a preliminary design document aiming to set the foundation for the WP3.5
implementation work in 2008. Over time, especially along with the indepth design
and development following the publication of D3.5.4 and throughout year 2008,
our understandings on the various topics discussed in D3.5.4 have significantly
been advanced and have undergone a continously (still ongoing) evolution. This
outcomes of this process has been reflected in the contents being produced for this
current deliverable - D3.5.11.

Although D3.5.11 is entitled as ”Third Specification of Security and VO Ser-
vices”, it actually is more than just a specification. It includes conventional topics
which are covered under a specification (i.e. service descriptions and upcoming
features). But it also presents the fundamental concepts and design decisions that
have evolved since the production of D3.5.4. These concepts, decisions, as well
as the rationale behind these decisions are valuable outcomes resulted from exten-
sive involvements in the implementation, deployment, and experimentations led
to the first XtreemOS release, especially on the topics related to security and VO
management. As they are “fundamental and representing the latest development”,
we see them as important foundations for the upcoming development and releases
for the work in the WPs and that in the project as a whole.

8

D3.5.4 vs. D3.5.11 D3.5.4 included the presentation of the following technical
topics:

1. entities for secure VO management
2. XtreemOS Security Architecture
3. technical discussion and evaluation aspects of the security architecture

Expansions Since D3.5.4, topic 1. has evolved significantly. In fact, through
a careful examination across the security services delivered in the first release, we
have concluded that a revisit and consoliation of the major concepts and design
decisions are urgently needed.

This is mainly due to two major limitations with the previous editions of this
deliverable (i.e. D3.5.3 and D3.5.4): a) there is a lack of systematic presenta-
tion of what the VOs in XtreemOS are and what are their relationships with the
XtreemOS system; and b) certificate management, a key foundation to XtreemOS
security, has not been clearly described. Addressing limitation a) allows us to un-
derstand the rationale behind the deisgn decisions regarding Grid-level and node-
level services. Tackling limitation b) paves the way to understand how XtreemOS
security infrastructure differs from that provided by conventional Grid middleware
and how we can avoid some major limitations (especially in terms of certificate
management) delivered in the first release and also present in the conventional
Grid middleware systems.

Having answers to both will certainly help readers (including developers, per-
spective users from XtreemOS consortium and outside) to appreciate and under-
stand the novelty of the security and VO features that will be delivered in the
upcoming releases.

Topic 1. in D3.5.4 has been largely expanded in D3.5.11 along three lines:

e (revised) background materials to XtreemOS VO and security
design: this includes the description of entities in a XtreemOS operating
system, credentials for each entity, actors related to our system, and usage
scope of each type of credentials.

e VO management in XtreemOS: this section examines what is a XtreemOS
system and how does the VO and security components relate to this system,
and what are the (security & VO)software layers included in this system.
This section also helps to understand how XtreemOS differs from a conven-
tional operating system and how do these key differences drive us to key
XtreemOS security design decisions.

e Certificate management in XtreemOS: this section presents the
XtreemOS trust model and explains how this model differs from a conven-
tional PKI trust model. More importantly, it highlights the key limitation

9

(in terms of security) of certificate management in the first release. It ex-
plains why it is possible and how to leverage the new features brought by the
XtreemOS trust model to offer novel security features that are not possible
with convnentional Grid middleware systems. This section also discusses
what features we can borrow from conventional Grid middleware systems
and how.

Revisions and New Materials The topic 2. - XtreemOS Security Architec-
ture of D3.5.4 has been significantly revised in D3.5.11 (although under a different
title). The revisions are two folds. First, we include the description and discus-
sion of security services as they were delivered in the first release. Some of these
services (e.g2. RCA and VOLife - a web frontend of XVOMS) are simply newly
developed after the publication of D3.5.4. Second, a consolidated architecture
of XVOMS (including three previously separated security components: XVOMS,
CDA, VOLife) is presented in D3.5.11. This provides a timely illustration of what
are the relationships between these components as they were presented in the first
release and will likely continue to be in the upcoming releases.

In addition, the upcoming features of each of the security services (XVOMS,
VOPS, and RCA) are described. For each, we also described how these services
relate to the services being developed in other WPs.

A Companion Document Regarding topic 3., a separate companion deliv-
erable - D3.5.10 "Security Evaluation” covers the evaluation aspects of this deliv-
erable. More specifically, D3.5.10 complements D3.5.11 by providing a quanti-
tative and qualitative evaluation of the security and VO services delivered in the
first release and a discussion of the materials presented in the current deliverable.
Please refer to D3.5.10 for the discussion of the design and implementation work
conducted by WP3.5.

10

2 Basic Concepts

Fundamentally, XtreemOS is a distributed operating system aiming to provide a
single abstraction of physical hardware and software services offered by a collec-
tion of standalone Linux operating systems so that they can function collabora-
tively to support the utilization of computational and storage resources regardless
of the geographical location of users or machines. In order to achieve that, two
layers of software, namely (Grid-wide) system services and (foundation-level)
node services, are directly integrated into Linux operating systems (e.g. Linux
PC, Linux Single System Image, and embedded Linux distributions) so that such
software programs can work natively alongside with the existing Linux kernel
and system programs to facilitate the coordination among the conventional Linux
operating systems.

Figure [I] shows the layered software stacks of a computer system that runs
XtreemOS as its operating system. A detailed digram consisting of the major
functionalities offered by each layer will be presented at Figure (3| According to
[2]], an XtreemOS operating system consists of three layers of software, XtreemOS
Grid layer, XtreemOS Foundation layer, and standard Linux operating systems,
all packaged and integrated to function as a single operating system. The design
and development work of the project focuses on former two layers; whilst the
packaging work occurs between the XtreemOS Grid/Foundation layers and the
standard Linux distributions.

This chapter examines the design principles of the added software layers: sys-
tem and node services and describes their relationships with the underlying Linux
system programs and the applications and tools sitting on top of XtreemOS. The
emphasis of this examination focuses on the software stacks, including Grid-wide
system services and node-level core services, to support VOs and the enabling
security mechanisms.

2.1 Background

A major function of XtreemOS is to hide the complexity of distributed resources
dynamically aggregated from cross-domain services providers and ensure the trans-
parency of using such a distributed operating system from users. For example,
just like with a standalone operating system, once a user is registered with the
XtreemOS system, it should be conceptually the same for the user to use resources
from any machines that the system is composed of, regardless of whether such re-
sources have been added to the system recently or for a long time. For system ad-
ministrators, XtreemOS administrative tools should also ensure the managibility
of XtreemOS regardless of how many VOs they machines are involved in the past,
now, and future. This section looks at a range of concepts that make XtreemOS

11

Applications & Tools

Interfaces & Libraries

XtreemOS Grid Layer

(Grid-wide) System Programs

(Foundation-level) Node Programs } XtreemOS Foundation Layer XtreemOS

Generic OS Programs

Standard Linux Distributions

Platform-specific OS Programs

Physical Hardware

Figure 1: The structure of a computer system that runs XtreemOS.

different from conventional operating systems and how XtreemOS accommodates
these concepts in the design of its software stacks.

2.1.1 Entities

One of the key features of XtreemOS is its support for VOs spanning across the
entire operating system. This system consists of two types of entities: global level
entities, that is, global entities, and (conventional) operating system level entities,
that is, local entities.

Local (OS-level) Entities XtreemOS is built upon conventional (standalone)
Linux boxes, which are not aware of global entities. In Linux, there are two
types of local (OS) entities: OS users and OS resources (files and processes).
Local entities exist in a OS (local) namespace and are identified by local identifiers
within a standalone operating system. In Linux, users are identified by a UID
(user id), files are identified by an inode number, which is a data structure which
contains information about a file in a Linux/Unix operating system, and processes
are identified by a PID (process id).

Global Entities Global entities persist in a global namespace and are identified
by a global identifier (an attribute of a global entity). Examples of global entities
are: users, nodes (machines), services, and VOs. However, only two types of
global entities, users and nodes, are associated with a X.509 public key certificate

12

[16l]. The X.509 certificate standard was chosen as credential format because it
is being used widely in production Grids and there are many mature technologies
manipulating certificates.

Other entities (e.g. VOs and services) which also persist in the global names-
pace and have a global identifier associated with them. But, these entities do not
have a certificate associated with them. In fact, we aim to avoid using certificates
in the system as much as possible.

Having too many certificates in the system could lead to a system management
disaster when it comes to deployment and management of the system. In addition,
creating certificates typically involves an off-line (this is the standard practice to-
day) certification authority and often involves humans in the loop (e.g. submitting
certification request and installing certificates). This implication hinders our aim
to support dynamic VOs, as they are often created in a very short time and are
short-lived. Thus, for the above reasons, we decide to reduce the number of cer-
tificates in the system as much as possible. Consequently, the other global entities
(i.e. VOs and services) are no longer configured with certificates. Their identifiers
will appear as attributes of a certificate-attached global entity.

Dealing with Global and Local Entites Global entities are associated with one
or more attributes, including a global identifier. A global identifier allows a global
entity to be recognize globally across the underlying collection of Linux operating
systems. However, the concurrent presence of global and local entities naturally
leads to two questions.

The first question is how to manage identifiers so that they are globally unique.
Without the guarantee of global uniqueness of identifiers, users sharing the same
identifier are able to access each other’s files/jobs without being detected. Given
that users and resources are often originated from different administrative do-
mains, it is not realistic to assume there is a centralized control on the assignment
and management of identifiers (this is the assumption in the first release). Fur-
ther, because there are different validity scopes in XtreemOS (see Section [2.1.4):
identifiers need to preserve the uniqueness within each and every valid scope it
belongs to during the lifetime of the corresponding scope.

Next, it comes the question of how to manage attributes of a global entity so
that the XtreemOS system can perform consistent access control across the board.
This can be a tricky issue as attributes can be associated with users or machines
of varied time period. For instance, because VOs can be created dynamically, a
user’s association with VOs, especially with dynamic VOs, can vary from time to
time, depending on the lifetime of the VOs.

In order to manage the entire XtreemOS system consisting of global and lo-
cal entities, the key challenges can be summarized as follows. First, XtreemOS

13

should provide a set of system-wide (global) services to serve all the Linux boxes
that the system is composed from. The purposes of these global services are
to manage global identity, attribute, policy, and VO membership, and provide a
global governance of resource usage.

Second, a new set of node-level system services should also be provided to
work alongside the existing native OS services and to coordinate with the global
services. To that end, these OS-level services are: a) to provide the bi-directional
mappings between a global user and a local user, a global resource (e.g. file) and a
local resource (e.g. file); b) to allow OS-level services to recognize and make use
of global attributes in its handling of local resources and providing varied quality
of services guarantees, and c) to corporately work with global services to enforce
policies to govern the usage of resources on a global local scale.

2.1.2 Credentials

Apart from the information (e.g. DN) embedded in its public key certificate, a
global entity basically has two types of credentials: identifiers and attributes. Both
are held in its attribute certificates. Put it simply, a credential is a piece of infor-
mation about a subject; whilst a certificate is a mechanism to carry credentials.

Identifiers In XtreemOS, an identity is a piece of human-readable informa-
tion about an entity; whilst an identifier is a computer processable piece of in-
formation about an entity. Specifically, there are four types of identifiers in a
XtreemOS system: Global User Identifier (GUID), Global Virtual organization
Identifier (GVID), Global Group Identifier (GGID) and Global Node Identifier
(GNID). Users and nodes are associated with a X.509 public key certificate and
their identity is represented by the Distinguished Name (DN) field in the certifi-
cate. In other words, the DN field in a certificate is the identity of an entity and
this entity can be users or nodes.

Distinguished Name (DN) 1In a PKI world, the DN in a certificate is the
unique way to identify an entity. A DN field consists of the following information:

Country

Locality (or city)
State (or province)
Organization
Organization Unit
Common Name

14

Once the DN is assigned to a global entity, the binding between the DN and the
entity should remain the same throughout the lifetime of the entity. For instance,
the DN of a user’s or a node’s certificate should remain the same regardless how
many VOs they register with and how many different attributes they may have
in each VO. However, in XtreemOS, the DN is not being used by the distributed
operating system as an identifier to handle global entities’ identity. The following
paragraph explains the rationale behind this decision. Section[2.4.3|describes how
the DN field is determined in a XtreemOS system.

Why Not Use DN as a Global Identifier? Although the DN field in a cer-
tificate is a useful source of information about an entity and it is unique across
the system, it is often descriptive and generally too long to be used as a unique
identifier for the Linux operating system: conventional operating systems are not
designed to recognize long descriptive names. In the traditional Linux (e.g. libc-
5), the POSIX compliant usernames is only 8-byte long. In the recent versions of
Linux (libc-6), the length of Linux usernames has been extended to 32 bytes [14].

Format Format wise, a XtreemOS identity certificate, called XOS-Cert, has
no difference to a standard X509 identity certificate [[16].

Attributes Global entities can have one or more attribute certificates associated
with them. An attribute is a property that a global entity can have. Attributes can
be bounded to an entity with a specified lifetime and a scope of valid usage(s).
Sometimes, such usage(s) are referred as policies. Typically, these policies restrict
the context where one (or more) attribute can be used with a global entity.

Instead of using the full DN field directly as a global identifier for a global
entity, the XtreemOS mapping process (see [3] for details) uses a 32-byte alpha-
numeric identifier to identify users and map them into operating system level user-
names. The format of a global identifier is comprised of two parts (for additional
details, see Section [2.4.4):

/<1l6-byte credential issuer’s IP address>/
<l6-byte host-wide unique ID>

The separators (i.e. forward slashes and dashes) are for illustration purpose:
they are not being counted as part of the identifier. An example of such is:
/130.246.76.73/ft841bf7-d6¢c543d7-9ad7-d54ad8c6cb91. This example uses a hy-
pothetical IPv4 address (i.e. 130.246.76.73), which only occupies 4 bytes of the
space. However, because 16 bytes are allocated, the first half of the identifier can
accommodate 16-byte IPv6 addresses. This is perhaps needed for XtreemOS as
the adoptation of IPv6 protocols in WP3.2’s proposed design and development.

15

Readers might wonder why don’t we use the more descriptive DNS hostnames to
replace the IP addresses. The major reason is that DNS hostnames can be up to
255 bytes long, which makes it practically not feasible for being used as a candidte
of Linux usernames.

The remaining 16 bytes are for host-wide unique IDs (i.e. {ff841bf7-d6c543d7-
9ad7-d54ad8c6cb91). Because it is unique within the issuing host, the host ad-
ministrator can choose how this is implemented locally. In the first release of
XtreemOS, we have chosen the widely used the UUID standard [14] to imple-
ment the host-wide unique IDs.

To summarize, the DN of a global entity is the identity of the entity in a PKI
world but not the global identifier being used by the XtreemOS distributed oper-
ating system to recognize a global entity. In our system, the global identifier is
being treated as an attribute of the entity.

Format Attributes can be stored as (non-standard) extensions in a X.509
identity certificate, thus forming an integral part of a certificate. However, in prac-
tice, this solution could restrict the usage of certificates because attributes in the
extensions may have different validity period and scope than those of the identity
of an entity (as an entity’s identity has a lifetime association with the lifetime of
the entity). Therefore, in XtreemOS, the attributes of a global entity are distributed
via attribute certificate [6]. An attribute certificate is a mechanism storing a set of
attributes of the same validity period of a global entity. An attribute certificate is
associated with an identity certificate through sharing of a common DN field. In
practice, a global entity may have multiple attribute certificates, each associated
with its identity certificate with a varied set of attributes.

Types of Attributes There are two types of attributes that users can have in
his/her attribute certificate.

1. Identifiers

e Global User IDentifier (GUID): a user’s global identifier (unique
within a XtreemOS system) Typically, a user is associated with one
GUID in the system. However, there is at least one exceptional case
(described in Section [2.4.4).

e Global Vo IDentifier (GVID): a user’s VO association (unique within
a XtreemOS system) A user can be associated with multiple GVIDs.

e Global Group IDentifier (GGID): a user’s global group association
(unique within a XtreemOS system) A user can be associated with
multiple GVIDs.

2. VO Attributes

16

e Group: a user’s group association within a VO (unique within a VO)

e Role: a user’s role in a group (unique within a VO’s group or unique
within a VO: the former means a hierarchical structure between groups
and roles within a VO; while the latter indicates a flat structure be-
tween groups and roles within a VO.)

e Capability: a list of capabilities that a user has over certain objects
(unique within a VO)

Machine attribute certificates can contain the following attributes:

¢ Global Node IDentifier (GNID): a machine/node’s global identifier (unique
within an XtreemOS system)

¢ Global Vo IDentifier (GVID): a node’s VO association (unique within an
XtreemOS system)

e Service: services running on the node for a VO

2.1.3 Actors

So far, we have discussed how the system assigns identity and attributes to global
entities. However, what we have not discussed are the actors involved in the pro-
cess. So, who are the people involved in generating, managing, distributing, us-
ing, and removing the credentials? Who run the services? More specifically, the
following questions are formulated to be investigated in this section:

e Who manages the lifecycle of the identities and attributes?
e Who uses the attributes?
e Who runs the services?

Types of Actors A XtreemOS system consists of: VOs, system services, and
resource nodes. Subsequently, three actors are involved in managing a XtreemOS
system: resource owners, system administrators, and VO owners. In addition, we
have users who interact with the XtreemOS system by using services from the
system. Here is a brief summary of the type of actors that a XtreemOS system
involves:

e users, including software (i.e. other systems) and humans, who interact
with a XtreemOS system by receiving services from the system. When
a user is a software system, the user interacts with the XtreemOS system
through Application Programming Interfaces (APIs). When a user is a hu-
man being, s/he interacts with the XtreemOS system through interactive
interfaces, such as web interfaces.

17

e VO owners typically are humans, but can also be software programs, who

create, manage and terminate a VO. The creator of a VO becomes the owner
of the VO. A VO owner can also grant its ownership privileges to others.
So, there can be more than one owner of a VO.

resource administrators (resource admins), either a system administrator
from a participating organization (managing a group of machines from that
organization) or an individual (managing his/her own machine). There can
be more than one resource administrator from an administrative domain.
This actor manages resource provision to the system, for example, by setting
resource usage policies with respect to each VO it participates in.

system administrators (system admins), a group of individuals who gov-
ern the global operations of the entire XtreemOS system by operating Grid-
wide system services for the system. There can be more than one system
administrators in a system: they manage the system collectively. However,
it should be emphasised that it is resource administrators who have the final
say on the resource provision of their machines.

Responsibilities of the Actors

Users A VO user has the following responsibilities:

1.

2.

configure his/her machine to allow interactions with XtreemOS Grid-wide
system services.
register with the system as a user: this also includes registration with VOs.

VO Owners A VO owner is responsible for the following tasks:

1.
2.

create a VO

determine what attributes (e.g. role and group) are supported in the VO, and
later, if necessary, modify these attributes

register a user into the VO and assign appropriate attributes accordingly
upon the request from the user

modify (add, change) the attributes (e.g. role) of users, when needed.
register/remove resources upon the request from a resource administrator of
a participating organization

remove users and resources from a VO

specify and managing (add, remove, change) VO policies to govern coordi-
nated use of resources among users

. report VO-wide resource usage
. terminate the VO

18

Resource Administrators The responsibilities of a resource administrator
are as follows:

1. obtain a specification of the resource (physical and abstract resources) pro-
vision

2. decide to which VOs this resource is (or is not) being contributed

3. register/de-register with the VO owner (or its delegates) with the specifica-
tion

4. specify node policies

5. configure nodes according to the instructions from VO owners

System Administrators A system administrator has the following respon-
sibilities:

1. configure and run Grid-wide system services, including setting up policies
and certificates for these services.

Who creates the identities and identifiers? We have discussed the format and
requirements of identities and attributes (except the VO attributes: groups, roles,
and capabilities, they have to be set by VO owners.) It should be pointed out
that it is not the actors described above, but the XtreemOS Grid-wide system
services (software programs), who are responsible for creating the identities and
attributes. These programs implement the guidelines described in Section [2.4] to
set the values.

2.1.4 Usage Scopes

Identifiers and attributes for global entities can be used within different scopes. In
XtreemOS, there are four usage scopes where identifiers and attributes of global
entities can be used (processed by XtreemOS node services). They are:

e node scope: only use within a standalone XtreemOS Linux box
e VO scope: only use within all the nodes belonging to a VO

e system (global) scope: use throughout an XtreemOS system

e XtreemFS scope: only use within XtreemFS

These scopes are only valid within the defined context. The identifiers and
attributes become meaningless when the context is changed. For example, even if
two VOs, VO; and V O, both have the concept of groups, the groups in VO, are
invalid in V' Oy, and vice versa. Table |l| summarises the relationship between the
attributes and usage scopes.

19

Attribute

Created by(when)

Processed by
what services

Validity

GVID

a Grid-wide system
service called XVOMS
(when a VO is created)

node

VO

GUID

a Grid-wide system
service called XVOMS
(when a user is success-
fully registered with the
system)

XtreemFS, node

system

GGID

a Grid-wide system
service called XVOMS
(when a global group is
successfully created in the
system)

XtreemFS

system

Group(s) in a VO

VO owner (when a VO is
created or modified)

node+VO

VO

Role in a group of a VO

VO owner (when a VO is
created or modified)

node+VO

VO

Capability in a VO

VO owner (when a VO is
created or modified)

node+VO

VO

GNID

a Grid-wide system ser-
vice called RCA (when a
resource node is success-
fully registered in the sys-
tem)

node

system

Service

resource admin (when a
service is added to a re-
source node)

node

system

Table 1: Usage Scopes of the Attributes

20

A user and a node can be associated with more than one VO. When more than
one GVIDs are associated with a user or a node, the first of such is the primary
GVID and the subsequent ones are the secondary GVIDs. Similarly, a user can
associate with multiple GGIDs. The first GGID is the primary GGID, and the
subsequent ones will be treated as secondary GGIDs.

2.2 VO Management

XtreemOS is not a conventional distributed operating system. It emphasis on the
support of large-scale dynamic collaboration and coordination among heteroge-
nous resource providers who are not subject to centralized administrative control.
One key concept underpinning such systems is referred as Virtual Organization
(VO) 7] in the Grid community. Let us first look at what is a XtreemOS system,
then proceed to describe the VOs that are building in the system.

2.2.1 A XtreemOS System

A XtreemOS system is an entity that consists of three parts: a set of machines
from one or more participants (e.g. individuals and/or physical organizations)
offering resources through a set of foundation-level node services (abbr. node ser-
vices), a set of Grid-wide system services (abbr. system services), and a set of
VOs to support cross-machine resource sharing and logical isolation of resource
usage within the system. Typically, neither the particpants nor the resources they
managed are subject to centralized administrative control. The resources include
computation and storage resources, software services, and data. The system ser-
vices and node services coordinate the machines to make them appear like a single
machine. The VOs consist a subset (or a complete set) of the machines in the sys-
tem to facilitate resource sharing among the participants. Figure [2] illustrates a
XtreemOS system, which consists of three parts: VOs, system services, and ma-
chines.

A user of a XtreemOS system is defined as another system, including humans
or separated autonomous software systems that interacts with the current system
through a set of well-defined inferfaces. If a user is a human, the interface is a
human-computer interface, such as a GUL. If not, the interface is a set of Applica-
tion Programming Interfaces (APIs) allowing programs from the other system to
use the resources within the XtreemOS system.

As illustrated in the figure, the machines, system services, and VOs are man-
aged by different people from different administrative domains: the machines are
owned by resource owners and managed by resource administrators, the system
services are administered by system administrators, and the VOs are owned and

21

es resources
'm machines
A, and C-G.

VOb utilizes
sources from
achines C-E.

VOa utilizes
sources from
achines A-C.

srvices are
:d by Grid-
T services

ition-level
: Services

A XtreemOS System

VOc
D
A
«— 2 7
W Ob
| c < > E
> |
Y
D e
VOa |
m c
W A <> B |
Grid-wide Grid-wide Grid-wide Grid-wide Grid-wide
System Service System Service System Service System Service System Service
RN
i
—

» 100100

Wlalsind

To0n

palsial

odrh Toon | e

7 Linux OS 7

7 Linux OS 7

7 Linux OS 7

7 Linux OS 7

7 Linux OS 7 7 Linux OS 7 7 Linux OS

Machine A

Machine B

Machine C

Machine D

Machine E Machine F Machine G

Administrative
Domain A

Administrative
Domain B

VOs
(managed by
VO owners)

System Services
(managed by
system admins)

Resources
(managed by
resource admins

Figure 2: Components of a XtreemOS system.

22

managed by VO owners. There is no central management authority to govern the
operation of the entire system.

The VOs can overlap with each other. In the illustration, three VOs, VO,,
V Oy, VO, share the physical infrastructure via the system. All three VOs share
machine C; VO, and VO, share machine C; VO, and VO, share machines C,
D, and E; VO, and VO, share machines A and C'. Because of the infrastructure
are managed by two distinct administrative domains, V'O, and VO, are actually
sharing the resources across the domains seamlessly via the XtreemOS system.

2.2.2 VOs in XtreemOS

A Virtual Organization (VO) is typically a temporary or permanent coalition
of geographically dispersed and autonomously governed (independent) partici-
pants, including individuals and/or organizations, who agree to share resources
so that users can consume the resources in the system to fulfill their tasks (e.g.
running jobs, sharing applications, accessing data).

VOs’s Properties VOs are typically characterized by the following properties:

1. the resources are geographically distributed,

2. the resources are autonomously governed by the participants themselves;
3. the lifetime of the collaborations can be short-termed or long-term; and
4. the coalition among participants the can be static or dynamic.

Without these characteristics, we can use conventional solutions from decades
of distributed systems research to address the resource sharing and collaboration
problem. So, let us briefly elaborate what these properties imply in the design of
our VO approach.

Property 1) means that when running a VO-based system (such as XtreemOS),
one has to take firewall issues into account because the resources do not normally
reside in a single administrative domains. From a practical point of view, conven-
tional network protocols, such as TCP/IP, may not be the best protocol for such a
large scale distributed system because non-conventional ports need to be opened
on organizational firewalls to allow traffic rather than TCP/IP.

Conventional distributed systems are generally under a single administration.
But, a VO-based distributed system aggregates resources from independent and
autonomous participants, among which, there may not be any administrative re-
lationship in existence. Therefore, when designing a XtreemOS system, it is im-
portant to accommodate the flexibility of allowing participants to choose to whom
they would like to share their resources and how. Consequently, forcing all the
participants to trust a single centralized authority to manage the entire system not
only does not scale but could also creates a single point of failure in the system.

23

For the short-term VOs mentioned in Property 3), it is mandatory that they can
be managed and operated by the system to the same flexibility as the long-term
ones. However, the challenge here is that a scalable approach has to be adopted to
allow the system to accommodate such VOs because of their short lifetime.

Now, let us discuss Property 4). A static coalition means that, through the
lifetime of a VO, the membership of participants are fixed, or type, quality, and/or
quantity of the resources offered by the participants are fixed, or both. A dy-
namic coalition is the opposition of a static coalition, meaning that, through the
lifetime of a VO, the membership of participants can be ever changing (partici-
pants are allowed to come and go as wish), or the type, quality, and/or quantity of
the resources offered by the participants are not fixed (participants are allowed to
change its offering of resources as wish), or both.

Challenges in Designing a VO-based System These important, yet closely re-
lated, properties differentiate a VO-based distributed system, such as XtreemOS,
from conventional distributed system, consequently leading to a range of funda-
mental challenges in the design of such a system. These requirements are: a) the
system has to support resource federation from different administrative domains,
meaning that there is no centralized authority over the ownership of the resources;
and b) the system has to support addition and removal of resources while main-
taining the overall transparency of such operations from users and shielding the
complexity of managing such operations from system and resource administrators.
As there is not a single authority over all the resources, it is unrealistic to assume
that the system will be governed by a single administrative authority. Therefore,
requirement a) essentially means that we have to support a decentralized manage-
ment infrastructure allowing the concurrent presence of multiple autonomously
managed authorities in the system.

The quality of the solutions to requirement b) largely depends on the degree
of support for dynamic VOs in the system. A dynamic VO is defined as follows: a
dynamic VO is a VO that is either created at runtime from the resources provided
by the system, to fulfill the tasks specified by the users.

Although forming from aggregated distributed resources, XtreemOS needs to
behave like a single computer to users, who should be shielded, as much as possi-
ble, from the complexity of managing and using such resources. This has been the
aim of conventional distributed operating systems, which is sometimes referred as
meta-computers, such as Legion [8)]. However, to support dynamic collaboration
and coordination, XtreemOS has to support the establishment and termination of
a fast and often short-lived relationship among resource providers. This breaks an
important assumption that conventional operating systems are based upon. Thus,
itis a non-trivial task for XtreemOS to manage distributed resources transparently.

24

2.2.3 VO Software Layers

XtreemOS is a distributed operating system to support VOs in the next generation
Grids. VO-related software plays an important role in the entire system software
stacks. Figure [3] focuses on the VO-related software layers and depicts their re-
lationship with the entire XtreemOS software stacks. This figure is a detailed
expansion of the same figure presented in Figure 1]

Above the physical hardware, there are six layers of software in the stack.
They are:

1. Applications & tools: software developed on top of the XtreemOS operating
system.

2. Interface & libraries: APIs and system software libraries from the XtreemOS
system.

3. Grid-wide system programs/services: global services operated by system
administrators.

4. Foundation-level node programs/services: node-wide services operated by
resource administrators managing the resource node.

5. Conventional OS system programs/services: common OS services, such as
process, file, and memory management services, running at a conventional
Linux OS.

6. Linux distribution: typical Linux distributions, including Linux PC, cluster,
and mobile distributions, that XtreemOS OS targets.

As illustrated, Figure [3] emphasis on VO and security related functionalities,
which are classified into two categories:

e Grid-wide system programs, which provides functionalities related to oper-
ating the distributed operating system globally.

e node-level programs, which provides functionalities operated alongside with
the native Linux system programs to support the distributed operating sys-
tem.

Grid-wide System Functionalities A range of Grid-wide VO-related system
functionalities, independent of those provided by standalone Linux boxes, are
needed to coordinate the standalone Linux machines. These system functional-
ities are classified into the following categories:

e Identity management: managing globally unique identifiers for the global
entities so that they can be uniquely identified uniformly across the entire
system regardless of the fact that nodes could be constantly added and re-
moved from the system.

25

Applications (e.g. workflow management)

Tools (e.g. command line tools & web portals)

Remote Login

User Mgt

Resource Mgt

VO Lifecycle Mgt

Interfaces

SAGA
treemOS APIs

Linux APls

Libraries

XtreemOS Libraries (e.g. user, resource, VO lifecycle, policy,

and credential management)

Linux Libraries

(Grid-wide) System Programs

Identity Attribute VO Membership VO Policy VO Lifecycle
Mgt Mgt Mgt Mgt Mgt

(Foundation-level) Node Programs

Identity (bidirectional) - " Credential Node Policy

Mappingll | [Nams Resoluion Authentication Authorisation Mgt Mgt (interactive & batch)
Conventional OS System Programs

Process File Memory . .
Mgt Mgt Mgt Naming Security
Linux Flavors
LInux Linux SSI Embedded Linux
PC Cluster Mobile Device

e N~

Applications &
Tools

Interfaces &
Libraries

(Grid-wide)
Distributed Operating
System Functionalities

Node Functionalities

(Existing Linux)
System Programs

Linux Distributions

Physical Hardware

he overall XtreemOS soft-

into t

ity components fit

How VO and securi

ware stacks.

Figure 3

26

Attribute management: managing attributes for the global entities so that
resource administrators can enforce policies based on these attributes dis-
cretionarily.

VO lifecycle management: managing the three phases of VO lifecycle: cre-
ation, evolution and termination to make sure that VOs can be recognized
and handled regardless of their lifetime (short-lived or long-termed).

VO membership management: managing the VO membership of users and
resources so that (nodes and global) services can enforce VO-based access
control.

VO policy management: managing and enforcing VO-wide policies on re-
source usage.

Node-level Functionalities The node-level VO-related functionalities added to
a conventional Linux box to allow it behave as part of a XtreemOS distributed
operating system are:

Identity mapping: dealing with the logical mapping from a global identifier
to a local entity. Note that this process varies on individual nodes depending
on its local strategy and policies.

(Bidirectional) name resolution: providing bidirectional name resolution
between a global identifier and a local identifier. This functionality is of-
ten used by node services before it talks to Gird-wide system services.
Authentication: authenticating global entities based on the credentials is-
sued by Grid-wide system services.

Authorization: authorizing the access from a global entity based on the cre-
dentials issued by Grid-wide system services.

Credential management: managing credentials for global entities in a node
so that credentials cannot be accessed by authorized entities.

Node policy management: managing node policies on VO-based resource
usage, identity mapping strategies, trust relationship with VO management
authorities, credential issuing authorities.

Session Management: managing sessions for global entities.

2.2.4 VOHost: a VO Hosting System

All the above functionalities are implemented by the services of VOHost, a VO
hosting sub-system, an integral part of the XtreemOS system. VOHost consists of
two parts: a) Grid-level services that implement the Grid-wide system function-
alities described above; and b) node-level services that implement the node-level
functionalities mentioned previously. Collectively, these services provide infras-
tructural support to enable users to access resources in a secure, accountable, and

27

coordinated manner in a multi-VO distributed computing environment. VOHost
differs from existing VO management tools by supporting

e secure VO and credential management for supporting diverse VO models.

e online credential distribution to users and resource nodes.

e resource certification to allow dynamic resource admission to, and exclusion
from, a VO.

o flexible support of various operational features of VOs (e.g. cross-VO shar-
ing, dynamic VOs).

e VO-level policy management to govern resource utilization within a VO.

A VOHost system can host multiple VOs created statically or dynamically
(created at runtime). It is a system jointly operated by three actors: VO owners,
system administrators, and resource administrators. For a description of these ac-
tors, please refer to Section A user can register with multiple VOs hosted
by one VOHost system. Within a VOHost system, multiple independently ad-
ministered services, offering the same collection of functionalities, can coexist to
manage the lifecycle of different VOs.

Grid-wide VO Services We have designed a range of services to implement the
Grid-wide system functionalities described above. These services are XVOMS,
VOPS, and RCA. The first version of their implementation are incorporated in
the first release of XtreemOS. The design of these services, except VOLife and
RCA, has been presented in the previous edition of this specification. Therefore,
to be self-contained, we shall briefly summarize the major functionalities of these
services here.

o XtreemOS VO membership service (XVOMS) - managed by system admin
and VO owner: this service consists of five software components: registra-
tion manager, credential distribution authority, VO manager, XVOMS na-
tive interface, and XVOMS web interface (i.e. VOLife). XVOMS follows
the rules described in Section [2.1] to specify identifiers and attributes of the
global entities.

- registration manager: allows users to register themselves with
the system and resource administrators to register resources with the
system.

— VO manager: allows VO owners to register, modify, and remove
VO members of the VOs they own, as well as manage VO attributes.

— Credential Distribution Authority (CDA) : issues se-
curity tokens, in the form of X.509 certificates, to end users. Such a
token binds a user’s DN to a set of credentials (e.g. VO attributes, VO
identifiers, and other XtreemOS specific attributes - for XtreemFS).

28

— XVOMS native interface: provides native APIs to programs who want
to access XVOMS functionalities through native APIs.

— XVOMS web interface - VO Lifecycle service (VOLife): provides a
web frontend to the XVOMS functionalities through a browswer in-
terface.

e Resource Certification Authority (RCA) - managed by resource admin: this
service allows resource administrators to certify the specification of re-
sources before they are provided to VOs. This provides a trustworthy way
(via cryptographic means) to allow the resource administrator to check whether
resource specification is genuine. Each participating organization (or do-
main) runs a RCA service, which is managed by the resource administrator
from that organization.

e VO Policy Service (VOPS) - managed by system admin and VO owner: this
service provides policy decision point to allow the policy checking and en-
forcement at a VO level. VO owners specify policies for the VOs they own
and this service acts as a VO-level policy decision and enforcement points
at a VO-level across all the VO nodes in the system. On each node, there
are also policy decision and enforcement points for VO policies, which are
specified by the resource administrator of that node to control how their re-
sources should be utilized by VOs. Altogether, the VO-level policies and
node-level VO policies are called VO policies.

Additional Notes There are two other security services, namely IDS - Iden-
tity Service and AttrS - Attribute Service, specified in the previous edition of this
specification. Their main purpose is to support integration and interoperability
with existing identity and attribute authorities. As this specification is focusing on
specifying and detailing new services, we shall not discuss them hereafter.

In addition, although VOHost offers the above services, when it comes to
implementation, each of these services does not have to be implemented as a stan-
dalone server.

Node-level VO Services A number of node-level services have been designed
and implemented to support node-level VO functionalities. They are:

e Pluggable Authentication Module (PAM) - managed by resource admin:
allows the flexibility of integrating different authentication schemes (e.g.
password, certificate, public key) into a high-level application programming
interface (API) so that program implementation can be freed from any spe-
cific authentication scheme.

29

e Name Service Switch (NSS) - managed by resource admin: allows Linux
configuration databases to be provided other than the standard sources, in-
cluding local files (for example: /etc/passwd, /etc/group, /etc/hosts),
LDAP, and others.

o Kernel Key Retention Services (KKRS) - managed by resource admin: offers
a way to cache authentication data (e.g. cryptographic keys, certificates,
cross-domain user mappings) in the kernel so that the kernel can improve
the efficiency of accessing these security tokens and also delegate important
operations to the user-space processes. It should be noted that, in the first
release, the KKRS has now been substituted for a more generic credential
store in WP2.1/WP2.3, to take into account systems (like mobile devices)
which do not include the KKRS in the kernel.

o Account Mapping Service (AMS) - managed by resource admin: local user
accounts are allocated dynamically on a resource node to match the actual
global users exploiting that node.

e Node-level Policy Service(NPS) - managed by resource admin: specifies
account mapping rules governing how a Grid user should be mapped to a
local user, VO policies specifying which VOs (or what types of VOs) the
node will admit, how much node resources (memory, file space) will be
allocated to a VO user.

The first three services (PAM, NSS, KKRS) are present in the standard Linux
distributions whilst the AMS was developed in XtreemOS WP2.1 to allow flexible
creation/deletion of user accounts in Linux OS. Together with the support of these
services, the authentication, authorisation, and session management of Grid users
are made transparent to the local OS users. For further details of their design, refer
to a previous WP2.1 deliverable [3]].

2.3 User Management

This section addresses an important issue: how users are managed in XtreemOS,
a Grid-wide distributed operating system.

User Account Management XtreemOS is a distributed operating system, which
needs a global strategy of managing users so that they can be not only uniformly
recognized globally but also be able to cope with the concurrent presence of multi-
ple user management authorities in the system. Like the conventional Linux/Unix
based file systems, XtreemFS itself does not manage users for XtreemOS. Instead,
it relies on the user management facility provided by the XtreemOS VO Member-
ship Service (XVOMS) to manage users’s identity and attributes globally. A user

30

is identified by a Global User Identifier (GUID). Two distinguished GUIDs repre-
sent two different users. These GUIDs, like its counterpart UIDs in Linux, provide
a unique way to identify users across the entire system. GUIDs are allocated to a
user by XVOMS upon its registration. The GUIDs are globally unique even when
multiple systems are present.

It should be pointed out that it is possible for a user to register with a XVOMS
(thus, giving a GUID) without being associated with any VOs. This is supported
in the current XVOMS implementation. A user can register with one XVOMS
multiple times or with multiple XVOMS, thus acquiring distinct GUIDs. How-
ever, in those cases, the user will be treated as different users, each identified by a
GUID.

User Credential Management In addition to GUIDs, Global Virtual Organi-
zation Identifiers (GVIDs) and Global Group Identifiers (GGIDs) are also useful
credentials in the system. Similarly, these IDs are also managed by the XVOMS.
A GVID, generated when a VO is created, is associated with a user (i.e. the cor-
respon ding GUID), thus effectively making the user the owner or a normal user
of the VO. Such an association can occur while the VO is created or after.

GGID is also generated by the XVOMS upon the creation of a new group in
a VO. A GGID is associated with a user when a user joins a group in a VO. In
the current design, the relationship between a VO group and a GGID is one-to-
one. This is a VO model being supported in the first XtreemOS release. Putting
it simply, a VO model is the type of attributes that a VO supports. For example,
the EGEE VO membership service (VOMS) supports four types of vo attributes:
role, group, subgroup, and capability. A VO owner can choose which attributes
his VO supports.

In the future releases, GGIDs can be associated with other attributes under
different VO models. For example, it is possible to associate a GGID with a role
of a group within a VO. That is, a GGID is uniquely mapped to a VO role within a
VO group of a VO. Depending on the VO model, furthermore, it is even possible
to associate a user (i.e. GUID) with different GGIDs, one for each combination
of attributes in various VO models.

2.4 Certificate Management

Grid Security Infrastructure (GSI) [15] are by far the most popular security
technology adopted by the Grid computing community world-wide as the de-
facto standard of managing Grid certificates. It is also an important building block
for the Virtual Organization Membership Service (VOMS) [l1], an attribute man-
agement and distribution authority previously developed by the EDG-DataGrid

31

project[12] and currently maintained by the EGEE project[13]].

GSlI relies on public key cryptography and the existence of PKI[17] to support
mutual authentication, secure communication, delegation of authority, and single
sign-on in a Grid system. Before using any GSI-based technologies, the end en-
tities in a Grid, typically including users, machines, services, containers, need to
perform two steps: a) obtain a public key certificate from a Certification Author-
ity (CA); and b) install trusted root and intermediate CA certificates in their trust
anchor'. In today’s practice, both steps are performed offfine: CA certificates
are obtained through off-the-band channels, typically via trusted emails or secure
web sites and the trust anchor is configured manually. As humans are involved
extensively in these processes, such operations are error-prone, time-consuming,
and complicated for users and system administrators in practice.

XtreemOS’ security infrastructure is also based on PKI, requiring global en-
tities (i.e. users and machines) to have end entity certificates? so that the sys-
tem can also support mutual authentication, secure communication, delegation of
authority and single sign-on in a large scale distributed environment. However,
XtreemOS adopts a novel approach to manage its security infrastructure, espe-
cially the certificates, by leveraging the benefits of XtreemOS Grid-wide security
services to automate the above steps. Although users and machine administra-
tors still need to perform both steps described above, acquiring certificates are
automated through introducing a set of novel and secure Distributed Certificate
Management (DCM) protocols.

The main aim of this section is to present a set of Distributed Certificate Man-
agement (DCM) protocols for managing XtreemOS certificates. To lay down the
foundation, we shall first describe a trust model that a XtreemOS system is based
upon. We shall then describe a set of secure DCM protocols for obtaining CA and
end entity certificates. Along with the protocols, four types of certificates used in
the system will be discussed, they are: a user’s identitity and attribute certificates,
and a machine’s identity and attribute certificates.

2.4.1 Trust Model

Trust is defined as the confidence that an entity A is able to believe the authenticity
of the information presented by another entity 5. The notion of trust can be
extended to a multi-party scenario, but we are not going to explore in this context.
There are many means through which one can establish the trust of the other, for

'A trust anchor specifies the key stores that contains trusted root and intermediate CA certifi-
cates.

2 An End Entity Certificate (EEC) is a certificate [9] belonging to a non-CA entity. Taken from:
http://www.globus.org/toolkit/docs/3.2/gsi/key/glossary.html

32

example, through personal recommendations, advertisements, ratings, comments,
and reputations from trusted sources.

We are particularly interested in measuring trust through cryptographic means:
permitting an entity to use computer programs to cryptographically verify the in-
formation given. If everything is all right, the trust on the information is estab-
lished. Otherwise, if things go wrong, the trust is broken. So, when a verification
is successfully performed, we say that A trusts B. Otherwise, we describe that as
A does not trust B. Although trust can be measured by different means, leading
to levels of trust between entities. Due to the use of cryptographic means, we only
have two possible outcomes of the verification: either A trusts B, or not.

In today’s production Grid environment, such as TeraGrid® or EGEE*, the
common approach to build a trust infrastructure is based on upon PKI technolo-
gies, which require all the end entities (non-CA entities) in the system, including
users, machines, services, containers, to have public key certificate installed and
configured before any users can utilize the Grids securely. In this section, we
will present the XtreemOS Trust Model with emphasis on how to boostrap the
trust relationships between users and machines in a Grid environment based on
a variant of the classic PKI Trust model. This new trust model solves the usual
deployment problems with offline management and processing of end entity and
CA certificates in PKI.

PKI Trust Model As with many production Grid software, we have adopted a
classic PKI trust model - a hierarchical PKI based trust model as the base of our
security infrastructure to establish trust among global entities in the first release
of XtreemOS. Let us first look into PKI trust models. Then, we shall describe a
range of challenging deployment problems we have experienced in using the PKI
trust model.

PKI Trust Models There are mainly two types of trust models used in a
PKI world: a) a hierarchical trust model, also called a subordinated hierarchy
trust model, where CAs are organized as a root CA and subordinate CAs. The
structure of the trust model is like a tree with a single root at the top with branches
and leaves laid underneath it; and b) a cross-certified hierarchical trust model,
also called a cross-certified mesh trust model, where there coexists of multiple
hierarchical CAs with their root CAs cross certified each other. Here, the structure
is like a forest with multiple trees, each has its own root on the top. There are
variants of these models, such as hybrid trust models and bridge trust models
[[10].

http://www.teragrid.org/
“http://egeel .eu-egee.org/test

33

Among these models, the hierarchical trust model is the most fundamental
one because it is the basis for all the other models. As illustrated in Figure
in order to establish trust among end entities, such as machines and users, it is
important that all the end entities and and subordinate CAs obtain and install a
trusted copy of the root CA’s public key certificate. This is often done offline
through a manual process. Once the trusted root CA certificate is in place, end
entities and subordinate CAs can obtain the certificates of the other subordinate
CAs offline or online securely.

Regardless of which trust models to be used, they all suffer from a range of
deployment and usability problems in practice. These problems often deter the
wide spread use of PKI technologies in real world end user applications, which
perhaps the reason why the basic password based authentication remains to be the
most popular.

Deployment Problems with PKI From an operational point of view, PKI
trust models deliver a poor quality of managibility and usability in an actual sys-
tem that involves a large amount of machines and users. The problems can be
classified into the following categories:

o Certificate Request: in order to acquire certificates, users and machine own-
ers need to manually create certificate signing requests and send them to be
signed by certificate authorities. This is often a cumbersome process for
normal users and resource owners, especially when a large number of re-
sources are involved.

o Trust Anchor Maintainence: users and machine administrators need to proac-
tively involve in the process of deciding who to trust in a distributed envi-
ronment by answering questions such as: what root CA certificates should
I trust? This is often not an intuitive question to answer.

e Certificate Installation: once the trustworthiness of root CA certificates is
established, users and machine owners need to install them manually. How-
ever, this process demands a fair amount of understanding of the system
(e.g. designated location of the private keys, certificates, which commands
to use etc.). Again, this is not intuitive for everyone.

e Machine or Service Migration: A machine or service certificate is typically
bound the machine (machine name or IP) or the service (service name or
machine IP) where it is installed. However, it is not that uncommon that
machines gain a new IP or are renamed. Similarlly, services can be rede-
ployed to a different environment (e.g. a container) on a different machine
(different IP or machine name). Both will cause the security exception in

34

Fah

LA
or CA ‘X\.‘\ |

D

3
%
2
S
eleg ation——
&
§/>;
K

S

Subordinate

¢ 5
> g Users
LI a
2> Subordinate CA ¥
[} ;
_ ELE’ b= .r»‘:%
Machines 2 !
C
o
©
C
]
Machines
— T » L
Open (untrusted) Trusted Offline Private Private key and CA . .
Channel Channel key CA Cert Cert Pair End Entity End Entity

Figure 4: A hierarchical trust model of PKI

35

the SSL/HTTPS post-handshake stage’.

All these problems are an issue for XtreemOS because it is a system consist-
ing of a fair number of Grid-wide system services facilitating the coordiations
within the system and of a large number of dynamically added end entities. As
the number of services increases, the amount of work involving certificate sign-
ing requests, certificate installation and configuration, trust anchor configuration,
and support for the continuous evolvement of the system will become tedious for
users and machine owners: most of them demand human involvement and manual
handling of offline processe, which can be error-prone, requiring both caution and
care by users.

XtreemOS Trust Model

The Challenges Our aim is to build up the trust between a user and a ma-
chine in the system by allowing them, through trusted online means, to obtain
end entity certificates and root CA certificates. To avoid the management prob-
lems with PKI, we are facing the following requirements in trying to design a new
solution to manage the trust within the system:

o Managing Trust Anchors Manually by Users: we try to avoid asking users
to maintain trust anchors manually: this can base on the established trust
means. With the conventional PKI based trust model, the offline manual
installation procedure is a way to ensure the authenticity of CA certificates.
Therefore, under the conventional model, it is compulsory to have such a
step. However, this can be error-prone and tedious process for the users.
Also, it can cause managibility problems when the number of root CAs
increases as root CA certificates need to be manually updated. So, avoiding
asking users to maintain trust anchors manually can solve the following
problems: 1) The users do not need to worry about the errors with offline
root CA certificate installation and configuration; and 2) There is no need
for users nor resource administrators to generate certificate signing requests
either: system could handle such steps automatically for them.

o [nstalling Trust Anchors by Resource Administrators: we also try to avoid
asking resource administrators to install trust anchors manually to avoid the
same types of problems.

e User Certificates: we should not require users to install certificates and cor-
responding private keys, thus avoiding problems with managing certificates
themselves.

3See, http://groups.google.com/group/mozilla.support.firefox/browse_thread/thread/9370ee21bae498ad

36

e Machine Certificates: we also try to avoid asking resource administrators to
install certificates and corresponding sprivate keys, also avoiding problems
of managing certificates themselves.

e User Registration: Apart from registering with a XVOMS, users are not
required to register with any other services.

e Machine Registration: Apart from registering with a RCA, machines are
not required to register with any other services.

XtreemOS Trust Model As illustrated in Figure[5] the XtreemOS trust model
is fundamentally a cross-certified hierarchical PKI trust model. At the top level of
the model, there are a list of cross-certified root CAs, which are implemented by
the Certificate Distribution Authority (CDA) component of XVOMS. The CDA is
responsible for directly disseminating end entity certificates to users. Note that a
CDA only distributes certificates but not manages them. That is the responsibility
of the other components within XVOMS. Underneath each root CA is a list of
subordinate CAs, which is implemented by a standalone service called Resource
Certification Authority (RCA). A RCA service manages and disseminates certifi-
cates for machines within an administrative domain. So far, our model has no
difference to the PKI model.

Now, without loss of generality, let us focus on a special case where there is
only one CDA/XVOMS in the system so that we can have an indept understanding
of the system. This case is illustrated in Figure[6]

XVOMS facilitates three functionalities: registration management, credential
distribution, and VO management. These functionalities are implemented by three
software components respectively: registration manager, CDA (Credential Distri-
bution Authority), and VO manager. The registration manager is responsible for
registering users and RCA services (not machines). The CDA component is a root
CA (there could be several of them) in the system which issues users with identity
and attribute certificates. Different from conventional offline CAs, the CDA is op-
erated online. The RCA (Resource Certification Authority) service is a standalone
service operating a subordinate CA of the root CA. The RCA service is also an
online CA which issues certificates (identity and attributes) on behalf of the CDA
to machines.

The following is a list of steps for building up the XtreemOS trust model.

1. XVOMS Certificate: The XVOMS has a self-signed CA certificate, repre-
senting a root CA certificate in the system. The private counterpart of this
certificate is used by the CDA component to sign end entity certificates for
users and a subordinate CA certificate for RCAs. Note that there can be
multiple root CAs currently present in the system.

37

8 g >

achines Machines achines achines

<

achines Machines Machines

oy @R e @ B

Trusted Online Root CA . . |
Channel Certificate Cross-signed Root CA Subordinate CA End Entity End Entity

Figure 5: The XtreemOS trust model

38

82

K

&
&
el

i P
Registration VO
Manager Manager

o 'ﬂ
e\e&‘e xvoms Q

O
(' Register—————
E h Machine Certificates——»
\\ £ Machines /

Networked Environ%ﬂ

C
(]
@
e
2]

—rUser Certificates

Register—p|

7
< N
m I E E’
Root CA Subordinate CA End Entity
T,
Trusted Online Root CA End Entity

Channel Certificate

Figure 6: The relationship between XVOMS, CDA, and RCA in a networked
environment.

39

2. User Registration with XVOMS: Users are registered with the XVOMS:
each user shares a secret (i.e. password) with the XVOMS. This password
allows a user to obtain a copy of the XVOMS’ public key certificate securely
through many well-established password based mutual authentication pro-
tocols®. Unlike the operation of an offline CA, this shared password allows
a user to mutually authenticate with the XVOMS without the need to have
any pre-installed certificate and private key pair. This mutual authentica-
tion channel is used for two tasks: a) to securely (encrypted and mutually
authenticated) upload a Certificate Signing Request (CSR) from a user to
the XVOMS so that the latter can securely bind the CSR to the user; and
b) to allow a user to securely obtain a trust copy of the root CA certificate.
Once both tasks are completed, the user can verify the authenticity of the
certificate given by the CDA.

3. RCA Registration with XVOMS: Each RCA in the system is registered with
one XVOMS in the system by the resource administrator of that RCA. As
part of the registration process, each RCA is given a shared secret (i.e. pass-
word) with the XVOMS. Again, this password allows the RCA to mutually
authenticate with the XVOMS without having any pre-installed certificate
and/or private key pair. Similarly, this mutual authentication channel is
used for two tasks: a) to securely (encrypted and mutually authenticated)
upload a Certificate Signing Request (CSR) from a RCA to the XVOMS so
that the latter can securely bind the CSR to the RCA; and b) to allow a RCA
to securely obtain a trust copy of the root CA certificate. Once both tasks
are completed, the RCA can verify the authenticity of the certificate given
by the XVOMS.

4. RCA Certificate: Because a RCA is a subordiante CA of a XVOMS, its
certifiate needs to be signed by the XVOMS’s certificate.

5. Machine Registration with RCA: Each machine needs to register with at
least one RCA in the system so that it can obtain identity and attribute cer-
tificates from the RCA.

Advantages Following this trust model, user management is cleanly separated
from resource management through a XVOMS service. Because of the separa-
tion, the addition or removal of users will not impose significant performance and
configuration impacts on resource management in a VO, and vice versa.

The key difference between the PKI trust model and that of XtreemOS resides
in the process that the trust model is set up. In the former, trusted root CA cer-
tificates are distributed through offfine means whilst in the latter, these certificates
are disseminated through online protocols. That is, different from other conven-

®For explaination, see http://en.wikipedia.org/wiki/Challenge-response_authentication

40

tional PKI trust models, our model is established upon the existence of one or
more online certification authorities in an XtreemOS system.

2.4.2 Root CA Certificates

The rationale for adopting passwords in various interactions (e.g. between a
XVOMS server and a user, and between a RCA server and a machine) is to sim-
plify the certificate deployment and management issues related to set up PKI.
When SSL-based mutual authentication is required, two communicating parties
involved in the protocol need to acquire the root CA certificate and any intermedi-
ate CA certificates through offline processes before any sort of SSL protocol (e.g.
socket-based SSL or https) can proceed. Although this is a standard practice in
today’s Grid world, it is still an practical issue for system administrators.

In this section, we shall first present a simplified password-based protocol to
establish a secure’ (encrypted and mutually authenticated) channel between two
communicating parties. This protocol is the foundation for our system to get
rid of the offline process of getting trusted root CA certificates, simplifying the
deployment of our system in practice.

Notations The following is a list of notations used in the rest of this chapter:

e X:a XVOMS server.
e U: aregistered user of X.

e R: aRCA server.

e M: aregistered machine of R.

e Ay: network address of the client program running on behalf of U

e v: default validity period of an attribute certificate issued by C

e V/: default validity period of a public key (identity) certificate issued by X
e GUIDy: U’s global user identifier

e K xy: ashare secret (password) between X and Y, it is equivalent to K xy .
e PK,: A’s public key.

e SK,: A’s corresponding private (secret) key.

e Ny: acryptographic nonce® generated by U

o C'SRy: acertificate signing request from U.

o <M>SK 4: amessage M signed by A’s private key.

o {M}Kyy: amessage M encrypted by Kxy.

e CredReqy: a credential request generated by U

e C'redy: a set of credentials requested by U.

7At some point, this term needs to be formally defined.
8See: http://en.wikipedia.org/wiki/Cryptographic_nonce

41

<Certy>SK 4: an end entity identity certificate signed by A’s private key.
<Certx>SKx: a self-signed root CA certificate.

A — B: sending a message from A to B via an insecure open network

[A — B]: sending a message from A to B via a secure (encrypted and
mutually authenticated) channel over an insecure open network

A Simplified Password-based Mutual Authentication Protocol It is evident
that these interactions have to be mutually authenticated to ensure the communi-
cating parties are conversing with an authentic party. Therefore, for completeness,
a simplfied password-based mutual authentication protocol between a client C'li
and a server Seruv is presented as follows with the aim to pave ways for the imple-
mentation. Upon successful execution of the protocol, two goals are achieved: a)
both parties are mutually authenticated; b) a secret session key is established for
the parties to securely communicate with each other.

It should be noted that the above protocol is just one of the many password-
based mutual authentication protocols® that are available in the literature.

1. Serv — Cli: aunique Serv generated challenge value sc

2. Cli — Serv: a unique Cli generated challenge value cc and cr, where
cr=hash(cc + sc + password)

3. Serv — Cli: sr, where sr=hash(sc + cc + password)

The protocol commences when Serv generates a sufficiently random and unique
challenge value, called a server generated challegne sc. Also in step 1.), sc is sent
to C'li in clear text.

In 2.), when C'i receives the value sc, he also generates a sufficiently random
and unique challenge value, called a client generated challenge cc and calculates a
client response cr where cr = hash(cc + sc + password) locally. If the password
is stored as a hashed value at Serv, password should be replaced by the hashed
value of password. Also, the calculation is done locally: the password is not
transmitted over the network in any form. Together with cc, cr is transmitted over
the network to Serwv.

In 3.), upon receiving cr in clear text, Serv computes a server response called
a server generated response sr and ensures cr is equal to sr. If they are equal, the
client is authenticated. Otherwise, the client is not authenticated and the protocol
stops Serv then sends sr, in clear text, to Cli, who then compares sr and cr. If
they are equal, the server is also authenticated, leading to the mutual authenticated
state of both parties. Otherwise, the server is not authenticated.

%http://en.wikipedia.org/wiki/Challenge-response_authentication

42

Upon successful execution of this protocol, a session key hash(cc + sc +
password) is also agreed between Serv and Cli so that they can communicate
using this session key afterwards.

Secure Channels in the Trust Model In Figure [6] there exists three secure
channels: between U and X, between X and R, and between M and R. Infor-
mally, a secure channel is defined as a channel encrypted using the shared secret
between two mutually authenticated parties. Therefore, no third party can eaves-
drop the messages exchanged in this channel. A mutually authenticated channel
is defined as a channel that a party can verify the identity of the other and vice
versa. Because U and X share a secret - U’s password, they can together execute
one of the many password-based mutual authentication protocols to establish a
secure and mutually authenticated channel between them. This also applies to the
communication between X and R, and that between M and R.

The Protocol over the Secure Channel Between Users and XVOMS Over
the secure channels described above, message authenticity can be verified and its
confidentiality can be guaranteed. At this stage, neither U nor R has been issued
any end entity certificate or aroot CA certificate. At this stage, all they know about
each other is the shared secret (i.e. password) between U and X, and between R
and X.

Specifically, over the secure channel between U and X, the following mes-
sages can be exchanged :

1. [U — XT: a certificate signing request C'S Ry

2. [X — U]: an end entity identity certificate <Certy>SKx of U signed by
X’s private key and a XVOMS’s certificate (a self-signed root CA certifi-
cate) <Certx>SKx

This protocol commences after U successfully registers with X, meaning that
U has a shared secret (i.e. his password Ky x) with X. This allows U and X to
establish a secure channel between them. U can start to generate a key pair lo-
cally, where the public key is then be used to generate a certificate signing request
CSRy. Normally, U needs to specify the DN information in the certificate while
generating a CSR. However, this is not required here because the DN information
will be automatically populated by X following the convention specified in Sec-
tion [2.4.3] Over the secure channel, U sends over the C'SRy to X. Because the
channel is mutually authenticated, X can safely bind this C'S Ry to the user, es-
tablishing the binding between the public key embedded in the CSR and the user’s
identity. Once the CSR is accepted by X, the user can request (short-term) proxy
certificates from X repeatitively.

43

Also over the secure channel, the next message is from X back to U, where
two pieces of information are sent: an end entity certificate <Certy>S Ky for U
signed by X’s private key, and a XVOMS’s self-signed certificate <Cert x>S K.
Because the channel is secure, U gets an authentic copy of X’s certificate, which
will be installed locally by the user to his machine. U’s certificate <Certy>S K x
can then be verified by <Certx>S K, if needed.

The Protocol over the Secure Channel Between RCAs and XVOMS The
channel between RCAs and XVOMS can also be secured using the password-
based mutual authentication protocol. However, the messages exchanged over this
channel is of the same nature as those presented in the protocol between users and
XVOMS. Only for completeness and self-containment, we include the protocol
over the secure channel between RCAs and XVOMS.

At this stage, R has not been issued any end entity certificate or a root CA
certificate. Between R and X, there exists a shared secret (i.e. password). There-
fore, over the secure channel between R and X, the following messages can be
exchanged :

1. [R — X]: a certificate signing request C'SRg

2. [X — R]: an end entity certificate <Certg>SKx of R signed by X’s
private key and a XVOMS'’s certificate (a self-signed root CA certificate)
<C€Ttx>SKX

This protocol commences after R successfully registers with X, meaning that
R has a shared secret (i.e. his password Krx with X. This allows R and X to
establish a secure channel between them. R can start to generate a key pair lo-
cally, where the public key is then be used to generate a certificate signing request
CSRpg. Normally, R needs to specify the DN information in the certificate while
generating a CSR. However, this is not required here because the DN informa-
tion will be automatically populated by X following the convention specified in
Section 2.4.3] Over the secure channel, R sends over the C'SRg to X. Because
the channel is mutually authenticated, X can safely bind this C'S Ry to the RCA,
establishing the binding between the public key embedded in the CSR and the
RCA’s identity.

Also over the secure channel, the next message is from X back to R, where
two pieces of information are sent: an end entity certificate <Certg>SK x for R
signed by X’s private key, and a XVOMS'’s self-signed certificate <Cert x>S K.
Because the channel is secure, I? gets an authentic copy of X’s certificate, which
will be installed locally by the resource administrator onto the machine. R’s cer-
tificate <Cert g>5 K x can then be verified by <Cert x>S K x, if needed.

44

The Protocol over the Secure Channel Between Machines and RCA As il-
lustrated in Figure [6] machines need to register with at least a RCA securely.
Because machines are operated within the same administrative domain as a RCA,
the problem of establishing of secure channels between machines and the RCA is
considered to be resolved. Thus, the root CA certificate can be securely transfered
to the machines via this channel.

2.4.3 User and Machine Identity Certificates

There are three ways that a global entity (e.g. a user, a VO, a node or a service)
can be added into a XtreemOS system: they can be either added via a XtreemOS
VO Management Service (XVOMS, see Section , via a Resource Certification
Authority (RCA, see Section [3.3)), or through importing them from an existing
Grid system.

In the former case, the Country, Locality, State, Organization, Organization
Unit subfields in the DN field is the same as those properties of the XVOMS server
or the RCA server and the Common Name is set to a host-wide unique identifier
given by a credential issuer, which is the XVOMS server for user identity cer-
tificates and the RCA server for machine identity certificates. Host-wide unique
identifiers are unique within the scope of the issuing server. Because they are
host-wide valid, it is not necessary to ensure their global uniqueness across the
system.

In the latter case, where users and machines already have certificates assigned
by a third-party trusted authority, such as an offline certification authority. In this
case, to maintain the backward compatibility with legacy Grid systems, the DN
of such certificates will not be replaced so that these certificates can still be used
within their existing Grid systems.

2.4.4 User Attribute Certificates

A user can simultaneously hold multiple attribute certificates, one per VO. For
example, when a user registers with multiple VOs, he will be associated with
multiple GVIDs. Similarly, a user can register with multiple global groups, and
associate with multiple GGIDs. Within a VO, a user can concurrently join differ-
ent groups and have multiple roles.

Global Attributes’ Value Format Table 2] summarizes the type of attributes
for the global entities. GUIDs, GVIDs, and GGIDs are global attributes for users
and they are are the concatenation of two 16-byte strings (separated by a forward
slash):

45

Global Entities has PKC has AC(s) Attributes

User yes yes GUID(s), GVID(s),
GGID(s), Group, Role,
Capability

Machine yes yes GVID(s), Services

VO no no N/A

Service no no N/A

Table 2: Certificates for Users and Machines (PKC: Public Key Certificates, AC:
Attribute Certificate), a user and a node can concurrently belong to multiple VOs,
thus simultaneously holding multiple ACs.

/<1l6-byte credential issuer’s IP address>/<l6-byte
host-wide unique ID>

A GNID, the identifier for a machine, is in the same format.

/<1l6-byte credential issuer’s IP address>/<l6-byte
host-wide unique ID>

However, the credential issuer for GNIDs is typically not the same as the cre-
dential issuer for GUIDs, GVIDs, and GGIDs. For GNIDs, the credential issuer is
the corresponding RCA server. Whilst, the credentials issuer for GUIDs, GVIDs,
and GGIDs is the corresponding XVOMS server.

Guaranteeing Global Uniqueness Ensuring the global uniqueness of the at-
tributes of global entities is important because they provide the fundamental sup-
port for the correct working of an XtreemOS system. Without such a guarantee,
users may be able to access each other’s files without being noticed and/or control
each other’s jobs without being detected.

However, in practice, an XtreemOS system is typically an aggregation of re-
sources from different administrative domains. Demanding participating orga-
nizations to rely on one single centrally controlled server to ensure the global
uniqueness is not likely to go far. And it is not scalable either. Thus, we have
to allow decentralized management of the system through the support of concur-
rent presence of multiple (user and machine) Credential Issuer and Credential
Distributor. Putting it simply, a credential issuer manages the lifecycle of cre-
dentials. From an implementation point of view, the service implements the func-
tionalities of a credential issuer is XVOMS. A CDA (for users) is responsible for
distributing credentials. Therefore, they act as credential distributors in the sys-
tem. Note that a RCA 1is also a Credential Issuer for machines.

46

To accommodate for multiple credential issuers in the system while ensuring
the global uniqueness, we require all global IDs (i.e. GUID, GVID, GNID, and
GGID) start from a globally unique string <ID issuer’s hostname> and is followed
by a (ID issuer’s) host-wide unique string. The uniqueness of the former is guar-
anteed by the DNS system, a well-known trusted third party, and the latter by host
self-checking mechanisms.

An hypothetical example of a user attribute certificate is showed in Figure
The first three attributes (i.e. GUID, GVID, and GGID) are in the plural form:
a user can have multiple GUIDs, belong to multiple VOs (thus having multiple
GVIDs), and belong to multiple global groups. Typically, a user has only GUID,
which has an one-to-one relationship with the DN in its public key certificate.

However, our design can also allow for the situation that a user has multiple
GUIDs. The fact that a user can have multiple GUIDs does not conflict with the
global uniqueness of the ID itself. These multiple GUIDs still correspond to the
same DN of the public key certificate of a user. This design simply gives receiv-
ing nodes the flexibility to handle the more complex situation that a process (on a
receiving node) can change the GUID according to the execution state and envi-
ronment. For instance, during an installation process of a standard SAP business
application, eight default user accounts, with varied privileges, are needed to in-
stall the application. It is a standard application installation as it is often installed
on a standalone machine. In a large-scale data centre scenario where applications
are needed to be installed remotely and on-the-fly, these accounts are often created
on-demand by the installation procedure by a privileged process. For the details
of this scenario, please refer to the 2nd specification [4]. To cope with such a
scenario, it is possible to reserve a range of GUIDs specifically for installation
processes on the XVOMS server and these GUIDs have predefined one-to-one
mappings with the original eight IDs that are required by the applications. The
GUIDs and the mappings are globally unique. At a result, the application can be
installed uniformly across the entire data centre.

Structure between Groups and Roles The relationship between groups and
roles can either be hierarchical or flat. In a hierarchical setting (as shown in Figure
[7), roles are further divisions within a group of a VO. Otherwise (as shown in
Figure [§), VO roles are independent from VO groups: they are equal.

Groups and Roles’ Value Format Groups and roles are only valid within the
context of a VO. They are not standalone attributes for global entities. Therefore,
they are always presented as VO attributes. In an attribute certificate, VO attributes
appear as a sub-attribute of a GVID.

For a VO group, its value format is:

47

U<Standard preambles = version, serial number etc.>
UHolder: Holder of PKC

Ulssuer: AttributeCertlssuer

USignatureValue: SignedByAttributeCertlssuer

============== Attributes ==============
UGUID: /130.246.76.73/fd588716-2f50-4c27-8314-cab9aa2b0961/STFC staff - Erica Yang
UGGID: /130.246.76.73/eed3b183-5bbe-4bd4-9d32-b69c6e7390a2/STFC admin group,
/130.246.76.73/df1d4858-ae2a-410f-a705-a8a21a886a98/STFC installation group,
/130.246.76.73/f8df861b-28fb-472a-b4bc-719b1945edab/STFC deployment group
UGVID:/130.246.76.73/dc2a448e-92a8-4eeb-b05f-901284473267/physics VO
=Group: /151/particle physics
*Role: /21/student
*Role: /63/physicist
=Group: /120/Astrophysics
*Role: /33/junior scientist
*Role: /12/senior scientist
UGVID:/130.246.76.73/ b27f89bb-15a7-4b71-859b-b3a1e08a9667/chemistry VO
=Group: /51/biochemistry
*Role: /33/biologist
=Group: /120/Physical Chemistry
*Role: /23/junior scientist
*Role: /22/senior scientist

Figure 7: A hypothetical user attribute certificate with a hierarchical structure
between groups and roles

48

U<Standard preambles = version, serial number etc.>
UHolder: Holder of PKC

Qissuer: AttributeCertlssuer

USignatureValue: SignedByAttributeCertlssuer

============== Attributes ==============
UGUID:/130.246.76.73/fd588716-2f50-4c27-8314-cab9aa2b0961/STFC staff - Erica Yang
UGGID: /130.246.76.73/eed3b183-5bbe-4bd4-9d32-b69c6e7390a2/STFC admin group,
/130.246.76.73/df1d4858-ae2a-410f-a705-a8a21a886a98/STFC installation group,
/130.246.76.73/f8df861b-28fb-472a-b4bc-719b1945edab/STFC deployment group
UGVID: /130.246.76.73/dc2a448e-92a8-4eeb-b05f-901284473267/physics VO

=Group: /151/particle physics

=Role: /21/student

=Role: /63/physicist

=Group: /120/Astrophysics

=Role: /33/junior scientist

=Role: /12/senior scientist
UGVID:/130.246.76.73/ b27f89bb-15a7-4b71-859b-b3a1e08a9667/chemistry VO

=Group: /51/biochemistry

*Role: /33/biologist

=Group: /120/Physical Chemistry

*Role: /23/junior scientist

*Role: /22/senior scientist

Figure 8: A hypothetical user attribute certificate with a flat structure between
groups and roles

49

O<Standard preambles = version, serial number etc.>
UHolder = Holder of PKC

Olissuer = AttributeCertlssuer

QSignatureValue= SignedByAttributeCertlssuer

============== Attributes ==============
LGNID=/131.244.76.45/60394de4-50e0-4c4c-be7a-b13870f4e0a5/nodel.stfc.ac.uk
UGVID=/130.246.76.73/dc2a448e-92a8-4eeb-b05f-901284473267/physics VO

=Service = /CDA/nodel.stfc.ac.uk:8888

=Service = /VOPS/nodel.stfc.ac.uk:7777

=Service = /RCA/nodel.stfc.ac.uk: 9999

Figure 9: A hypothetical machine attribute certificate

/<the group’s unique ID within the VO>/[description]

For roles, the situation is slightly complex. When VO roles are completely
independently from VO groups, the value format for a VO role is:

/<the role’s unique ID within the VO>/[description]

However, when VO roles are bound to VO groups as a subdivision to VO
groups, its value format is:

/<the role’s unique ID within the VO group>/[description]

2.4.5 Machine Attribute Certificates

Similarly, a node can also simultaneously hold multiple attribute certificates, which
are also one per VO.
An hypothetical example of a machine attribute certificate is showed in Figure

ol

Services’ Value Format A node could provide one or more services to a VO
by embedding its services information in a node’s attribute certificate. Of course,
a node may also choose not to constrain itself to any specific VOs, thus allowing
its services being used by anybody, with or without associations with VOs. This
is entirely down to the local policy set by the node administrator. That leads to
two possible outcomes in terms of the format of a node’s attribute certificate.

Possibility one is the case that services are valid within the context of a VO.
This is shown in Figure [9] where the services (i.e. CDA, VOPS, and RCA) are

50

presented in the context of the VO (/130.246.76.73/dc2a448e-92a8-4eeb-b051-
901284473267/physics VO).

The second possibility is that services are run independent of VOs. In this
case, services are not bound to any VOs, thus they are available to anyone.

A service’s value format is:

/<service type>/<hostname of a service>:<port>

2.4.6 Delegation and Single Sign-On

As explained in Sections[2.4.T| XtreemOS adopts the conventional PKI hierarchi-
cal based trust model. Therefore, from an end user perspective, it seems straight-
forward for our system to use the GSI technologies [15]], including proxy certifi-
cate [16] to support delegation of authority and single sign-on.

Given that there already exists large scale production Grid infrastructure being
widely deployed and maintained in scientific communities, the support for GSI
would allow the maximum competibility and interoperatibility with existing large
scale Grid infrastructure, such as EGEE and TeraGrid, in the world. In return,
such support will maximize the success of the XtreemOS project as a whole.

It should be noted that GSI is an umbrella term grouping a range of public key
cryptography based security technologies, including the following

1. single-sign on using proxy certificates
2. delegation using proxy certificates

3. secure communication

4. mutual authentication

5. securing private keys

Some of them (namely 3., 4., and 5.) are ”mature and old” technologies mean-
ing that they existed before GSI was invented. The term GSI simply covers these
technologies for convenience. What is unique to GSI (namely a GSI unique in-
vention) is technologies 1. and 2. As the foundation of the XtreemOS trust model
is based upon PKI and all end entities (users and nodes) in the system receive
end entity public key certificate, the introduction and use of GSI in XtreemOS
is straight-forward. For clarification, the first release of XtreemOS has already
incoporated support for technologies 3., 4., 5. through the use of SSL, HTTPS,
and configuration files (specifying the password for private keys) in the security
services.

51

3 Services

This chapter updates the design of the security and VO services offered by WP3.5.
The services presented here complement the description given in Section [2.2.4]

3.1 XVOMS
3.1.1 Brief Introduction

X-VOMS is an advanced Virtual Organisation (VO) management service for sup-
porting secure and flexible collaborations and resource sharing among people,
projects and organisations. It is written in Java and is backed by a (Hibernate-
based) X-VOMS database schema. X-VOMS provides three major functionali-
ties: registration management of users and resources, VO and credential manage-
ment, and credential distribution. It provides two types of interfaces: XVOMS na-
tive APIs (which programs can invoke directly) and VOlife web interfaces (which
users can directly interact with through a web browser).

X-VOMS’s novel design allows it go beyond the support for focused scientific
collaborations and resource sharing among scientists and across scientific insti-
tutions. It allows flexible management of VO lifecycle: VOs can be set up and
demolished manually and on-the-fly by runtime applications. It supports a power-
ful VO management structure: users can join multiple VOs under different types
of VO models; and credentials from all (or a selection of) registered VOs can be
obtained via API calls. In addition to managing users and VOs, X-VOMS can also
be used to manage resources. This makes it possible to construct an end-to-end
secure VO environment.

3.1.2 Major Components

Figure [10]illustrates the architecture of XVOMS, which consists of the following
major software components:

o Registration Manager: manages users and RCAs registration into the sys-
tem.

e VO Manager: maintains VO lifecycles and credentials across the system.

o Credential Distribution Authority (CDA): distributes signed credentials, in-
cluding identity and attributes to users and to RCAs. The XVOMS’s private
key is used by the CDA component to sign the certificates issued by the
XVOMS.

e XVOMS DB: stores three types of information: the registration details of
users and RCAs, including their certificates, VOs, and VO association de-
tails of users and RCAs.

52

o Web Interface: XVOMS comes with a web interface, called VOLife, which
provides a web frontend, which wraps around the XVOMS functionalities
(Registration management, VO management, and CDA) to allow human
users to use a web browser to interact with XVOMS.

e native XVOMS interface: XVOMS also provides native APIs allowing
software programs to directly invoke XVOMS functionalities.

As XVOMS is responsible for credential management, distribution, and regis-
tration management, readers are strongly recommended to read through Section
to fully understand and appreciate the design philosophy of XVOMS and the
underlying protocols that XVOMS uses.

3.1.3 Interactions with Other Security Services

A XVOMS server is operated by a system administrator of a XtreemOS system. It
also interacts with VO owners, resource administrators, and (system) users. There
are typically three stages of interactions (in a typical order of event occurence)
in the system: interactions with registration manager, those with CDA, and those
with VO manager.

The initial contact with a XtreemOS system starts by a user or a resource
administrator of a RCA registration with a XVOMS that the system operates. This
is depicted by the interaction with the registration manager in Figure As a
result of a successful registration, the user or the RCA is added to the XVOMS
DB. Also, a shared secret is established between the user and the XVOMS server,
and between the resource administrator and the XVOMS server.

The second type of interactions occurs between CDA and the corresponding
software clients acting on behalf of a user (i.e. user client), and CDA and the
corresponding software clients acting on behalf of the resource administrator (i.e.
RCA server).

The former allows the user to upload CSRs to the XVOMS and download
the XVOMS’s certificate and a user certificate. The user client also installs the
certificates to the designated location on the client machine. A similar type of
interactions occur between the RCA servers and XVOMS.

The final type of interactions occur after the end entity and root CA certificates
are in place. At this stage, the interactions can be done over a standard SSL/https
channel. Users, VO owners, and resource administrators can interact with the VO
manager to manage VOs. Updated VO information can also be pushed to RCA
Servers.

53

(&

XVOMS Server

&)
: : Resource
@glster RCAs————— Admins
password————
Registration £
Manager J
f;leer Registration———— Users
password——

el

c

8

5 (#)

: 8

Q0 -

2 Upload CSR——— ‘/" =1 User

8| ™ —GetXVOMS certificate—» ™ EL Clients
% o) Get certificates——» %

>

- & o>

D—"_’ é (‘—Get)li\l:;lgi/‘ljsccseﬁificate—b e E[ELE ggreers
; % | —Get RCA server certificate—»
] i &)
% <4—Manage VOs——— \%@ Users
o
&)
‘.‘i. <+ Manage VOs———— {;. E/g@” Vo
L Clients
VO Manager (fﬂ
% <7Manag; VOs—— ‘Z. ;{g;?g;ce
&
—Update VO Information—» ‘. (" RCA
% % E@LE Servers

T R S

Encrypted Encrypted & mutually Shared Private Public Ke_y
channel authenticated channel secret key key key Pair

Figure 10: XVOMS architecture

54

3.1.4 Supporting XtreemOS Application Execution

AEM does not manage users. It relies on XVOMS to register users and manage
their credentials. AEM does not directly interact with XVOMS. However, all user
and machine certificates acquired via XVOMS protocols (presented in Section
[2.4.2) are used in AEM.

For example, user identity certificates are used for delegation, single sign-on,
secure communication and authentication, all of which are essential for secure job
submission and execution. Machine identity certificates are used for authentica-
tion and secure communication. Users’ attribute certificates are used to support
VO-level and node-level authorisation, account mapping and dynamic account
creation. Finally, machines’ attribute certificates are used to perform checking of
whether the machines belong to a particular VO.

3.1.5 Supporting XtreemOS File Management

XtreemFS does not manage users. It relies on XVOMS to register users and man-
age their credentials. XtreemFS does not directly interact with XVOMS. How-
ever, all user and machine certificates acquired via XVOMS protocols (presented
in Section [2.4.2)) are used in XtreemFS.

For example, user identity certificates are used for secure communication and
authentication, all of which are essential for secure file accessing. Machine iden-
tity certificates are used for authentication and secure communication. Users’ at-
tribute certificates can be used to support VO-level and node-level authorisation,
account mapping, dynamic account creation, and bi-directional mapping between
global and local entities.

3.1.6 Supporting MD

Parallel to this deliverable, the mobile device work package (WP3.6) is producing
a credential management framework for mobile devices. This work is described
in a separate deliverable D3.6.3 - XtreemOS-G for MDs/PDA. For example, the
usage of proxy machines to get user certificates could be useful to be incorporated
or be used to extend the capabilities of the CDA component within XVOMS. Fur-
ther investigations and evaluation are required to fully appreciate the implication
of this framework to XVOMS.

3.1.7 Supporting WP3.2’s Services

At this stage, no interactions are perceived with the WP3.2’s services of XtreemOS.

55

3.1.8 Features for the Next Release
The first XtreemOS release suffers from two major limitations:

1. the trust boostrapping of the system is done offline. Root CA Certificates
have to be disstributed offline before any communication commences. Putting
it simply, to get a certificate from XVOMS/CDA, users need to obtain the
root CA certificate (i.e. the CDA certificate) offline and mannually install
them.

2. only one static VO is supported throughout the system. Static means that
the identity of the VO and VO attributes are known, through offline means
(word-of-mouth), to all services in the system.

Therefore, on the top of our agenda is to provide support to the XtreemOS trust
model presented in Section The full support of which could lead us resolve
the problem related to the first limitation and partially pave the way to provide a
scalable solution to the problem described in the second.

3.2 VOPS server
3.2.1 Brief Introduction

VOPS is a core-level service. It is a server primarily intended serving requests
and forwarding answers from/to resource discovery services and digitally signs its
decisions before forwarding responses back to services.

VOPS enforces user requests against VO level policies for gaining access to
specific resource nodes. It is a standalone security service which provides Policy
Administration Point (PAP), Policy Information Point (PIP) and Policy Decision
Point (PDP) to other XtreemOS services (e.g. Application Execution Manager).
VOPS acts as a authorization service which authorizes an entity to permit or deny
access to a resource by enforcing additional constraints.

Primary intention of having an entity acting as a policy service is to support
coordinated access control over VO resources by offering VO level policy deci-
sion point (PDP). Such access control can be performed on individual resources
and can be used as access control to a group of resources/services sharing certain
characteristics. VO-level policies and node-level policies form a hierarchical ac-
cess control framework that can be tuned to achieve various degrees of control to
resource usage within a VO.

3.2.2 Major Components

This section describes management components which are provided by the VOPS.
As illustrated in Figure [TT] there are four components related to a general policy

56

PIP

Service
PEP | ——
Users ‘
PEP © PAP < (5]

Policy Store Service Administrator

Figure 11: A generic policy model describing the relationship between PIP, PDP,
PEP, and PAP

model:

e PEP - Policy Enforcement Point: thisis where a user initiates
a request, which contains information about the user, such as certificates,
attributes, and context, targetted resource(s), and actions that the user wants
to perform over the resource(s).

e PDP - Policy Decision Point: a user request is subject to the
decision made by PDP, which can be a integral part of a service (as it cur-
rently stands in XtreemOS) or an independent trusted third party outside a
service providing general policy decisions for all services. A PDP is often
attached to a policy store which provides all the policies that the PDP is
used to make the decisions.

e PIP - Policy Information Point: uponreceiving a user request,
PDP can refer to PIP for further information, such as additional attributes
about the user, to make decisions.

e PAP — Policy Administration Point: this is a point where a
service administrator addes/modified the policy store.

Specifically, in XtreemOS, PIP is an entity which acts as a source of attribute
values. If we are considering different kind of attributes such as static or dynamic
attributes, we need to have a way to obtain these by contacting appropriate service
e.g. SRDS (Scalable Resource Discovery System) for static/dynamic attributes or
VO Management service for certificate attributes. Currently only static attributes

57

are taking part in requests against policies. These static attributes are extracted
from user and resource VO attribute certificates. VOPS PIP contacts RCA Client
service to obtain resource VO attribute certificates. User certificate and JSDL
document, which is used to describe resource requirements and also participates
in the request, have to be provided as parameters of the VOPS command.

Here is the list of attributes, which are used in a request against policies. If
some of these attributes are not provided or could not be extracted from certificates
or JSDL document, request is constructed using just a subset of these.

Attributes obtained from user certificate When the user submits a job to AEM,
she also needs to provide the user certificate containing the user’s VO credentials. VOPS
reads the following attributes from the user certificate.

DnIdAtCommonName
DnIdAtCountryName
DnIdAtLocalityName
DnIdAtStateOrProvinceName
DnIdAtOrganizationName
DnIdAtOrganizationalUnitName
ExtensionsRole
ExtensionsGroup
ExtensionsSubgroup
ExtensionsGlobalUserId
ExtensionsGlobalPrimaryGroupName
ExtensionsGlobalPrimaryVOName

Attributes obtained from resource’s VO attribute certificate Resource’s VO
attribute certificate is obtained by querying RCA Client service.

DnIdAtCommonName
DnIdAtCountryName
DnIdAtLocalityName
DnIdAtStateOrProvinceName
DnIdAtOrganizationName
DnIdAtOrganizationalUnitName
ExtensionsCPUSpeed
ExtensionsCPUCount
ExtensionsMemorySize
ExtensionsService
ExtensionsVO

Attributes obtained from JSDL description JSDL is provided when executing
XATI command through AEM.

58

JsdlResourcesOSTypeName
JsdlResourcesIndividualCPUSpeed
JsdlResourcesIndividualCPUCountExact
JsdlResourcesIndividualCPUCountLowerBoundedRange
JsdlResourcesIndividualCPUCountUpperBoundedRange
JsdlResourcesIndividualMemorySizelLowerBoundedRange
JsdlResourcesIndividualMemorySizeUpperBoundedRang
JsdlResourcesNetworkProto
JsdlResourcesNetworkNetmask
JsdlResourcesNetworkPorts
JsdlResourcesResourceCountExact

PIP constructs request comprised of upper elements in a key-value pairs. Val-
ues are obtained from certificates or JSDL specification. Attributes with prefix
Extensions are obtained from X509 certificate attribute extensions.

PDP is an entity which acts as a decision point, where applicable policies are
evaluated and authorization decision is made. Input to the PDP are attributes and
policies which apply to subject requesting a decision. Decision point is called by
other services like Application Execution Manager’s ResMng.

PAP is used as an administration point, where policies can be initially created,
maintained and eventually removed. PAP acts as a source of policies which are
used in PDP when evaluating a request.

VOPS policy storage Currently policies are stored as XML files under location
as configured in configuration files. There is a module implemented to manage
these policies (PAP) and will be extended to use database, see section [3.2.§]

3.2.3 Interactions with Other Security Services

VOPS uses the DIXI framework [5] as a communication bus to interact with other
services, security and otherwise. Services querying VOPS should have access to
VOPS public certificate to be able to check authenticity of its answers. Currently
one AEM service is interacting directly with VOPS - ResMng.

It is important that if VOPS is to enforce policies over user queries, RCA
client must run on resource node which is considered in the query. VOPS needs to
access RCA client service to obtain resource certificates from which VO attributes
are read and used in the query.

Interactions with other services in the current implementation are presented in

figure [12]

59

[N

g: filtered

PolicyStorage

VOPS

«—t—

[——

7: ViohttributeCerts[]

tesources[](\ Rl
ot

6: getVoAttributeCerts

stOfResourcel[]
)
-

JobMng

9: filteredResources(] \ /
e ——

T

4: listOfResources(]

ResMng

!

T —

1: xsub -f jsdIFile
usercert

2: jsdlFile,

usercert

10; startjob

3: getResources(jsdlFile)

ExecMng

Figure 12: VOPS Interactions with other services.

3.2.4 Supporting XtreemOS Application Execution

VOPS provides easy access point to decision point for Application Execution
Currently AEM’s contact point for resource selection,
ResMng, contacts VOPS for policy decisions and these decisions are forwarded

Management services.

towards AEM’s JobMng service.

3.2.5 Supporting XtreemOS File Management

Currently VOPS and XtreemFS do not interact. However, VOPS could provide
decision point for XtreemOS File System to perform policy enforcement over
user’s actions to enforce rights on VO level, e.g. user can not use storage if he is

over his quota on VO level.

3.2.6 Supporting MD

Currently, VOPS does not use any service provided by WP3.6.

3.2.7 Supporting WP3.2’s Services

Currently VOPS does not contact any of the services provided by WP3.2, nor does

provide any interaction directly.

60

RCAC

SRDS

3.2.8 Features for the Next Release

A number of features are planned to be incorporated in the upcoming release.
These are described as follows.

Structured Organization of Policy Store We shall support eXist database [11]
which will enable easier policy filtering and management. With incorporating
eXist as XML database engine and using more standard communication methods
(such as JSON, since DIXI will provide JSON gateway) flexibility of policy lan-
guages will be increased and VOLife web application will be able to manage poli-
cies easily through e.g. XQuery statements. EXist has also simple backup/restore
procedures which can be easily triggered from VOPS. During backup, eXist ex-
ports the contents of its database (as standard XML files) to a hierarchy of direc-
tories on the hard drive. This hierarchy is organized according to the organization
of collections in the database. This way the whole structure of XACML poli-
cies will be backed up and could be restored when administrator wishes to run
maintenance procedures (or if automatically maintenance will be scheduled to
run periodically).

Incorporation of Dynamic VO Information In the current release, most of the
information being taken into VOPS PDP is grabbed statically. This is largely due
to the static nature of the VOs being implemented in the first release. However, as
VOs become dynamic (as it will do in the upcoming releases), For example, VOPS
could also take into account the dynamic aspects of VOs, including the dynamic
addition and removal of resource nodes through the duration of executing a job.
Such dynamism occurs when advanced job execution (such as job migration) is
required.

Therefore, in order to support dynamic VOs, the integration of VOPS with
other services will be completed: Scalable Resource Discovery System (SRDS),
VOLife Web Application, support for decisions based on AFW attributes, which
can be incorporated into JSDL (protocol, IP, port ranges) will also be available.
To support SRDS (WP3.2), filtered policies will be filtered out from policy stor-
age based on JSDL and user certificate (without information about resource). User
policy will be formed (with rules applying to user) and will be forwarded to SRDS
and help with resource discovery. This way static and dynamic attributes will al-
ready be taken into account when filtering resource nodes and constructing po-
tential list of resources, which will be eventually sent into VOPS PDP for final
policy enforcement. Final VO level decisions will be made, taking into account
accounting and monitoring services information (policies on resource usage will
be enforced via monitoring services).

61

Interaction with accounting service Since monitoring and auditing design will
be developed in close conjunction with WP3.3 AEM development, AEM services
will inform of the temporary and historical status of the jobs. This information
will be used to enable more general VO level decisions such as: user can not
consume more than specific amount of CPU time or consume more than specific
amount of disk usage in the VO he is part of.

Advanced Access Control Support There is also an issue with access control
in VOPS. In the current implementation access control is enforced in VOPS by
confining requestors to be VO owners and/or resource administrator roles (based
on their identity certificates). Users (administrators) with these roles are permitted
to execute PAP commands (if access control is enabled through configuration file,
after which VOPS must be restarted). However, in order for access control to be
more flexible and consistent throughout the system, it chould be done through the
use of native XVOMS access control mechanisms.

Dealing with Policy Conflicts Policy conflict detection tools in STFC (devel-
oped under EchoGrid project) could also be used to validate (new) policies and
rules when they are being added into the policy store.

3.3 RCA
3.3.1 Brief Introduction

Resource Certification Authority (RCA) is a security service that provides a
base to bootstrap the trust of resource nodes in XtreemOS. Organizations can
provide computational resources to allow users to exploit the computational capa-
bilities offered by their machines. In XtreemOS, the resource exploitation is facil-
itated by the Application Execution Management (AEM) services. The services
need a decentralised way to ensure that the target resource nodes are trustworthy.
RCA issues machine credentials that peer nodes and services can check.

3.3.2 Major Components

In logical terms, the RCA is a core-level service which issues machine certificates
upon request. However, the life cycle of a machine certificate and the whole mech-
anism of gaining the possibility to have a certificate issued lead to implementing
RCA as an RCA Server service, RCA database, and an RCA client service.

RCA Server. This is the service that provides the essential functionality of the
resource certification. The service runs core-level, and its main purpose is to

62

receive clients’ requests for issuing certificates, check the validity of the requestee,
and sign the certificates. The RCA Server comprises of the following:

e The RCA server logic.

e The front-end for both the RCA server logic and the RCA database imple-
mented for DIXI [5]].

e The service certificate signed by the organisation’s root certification author-
ity or another authority with the organisation’s root CA in the signature
chain.

RCA DB. This is an implementational unit which stores the list of the resources
and their states. The possible states of each resource is as follows:

e Unregistered. This is a record of a resource and its details as published by
the resource administrator.

e Registered. This record describes the resource and also lets the RCA Server
know that the resource is trustworthy and can be issued machine certificates.

e The membership of the resource in VO. A resource can take part in any
number of VOs, as long as it has a status Registered.

We exposed the RCA DB functionality using the RCA Server’ DIXI service
front-end.

RCA Client. The RCA Server is a stand-alone unit, and in principle the users
could interact with it manually or using small programs. We provide the RCA
Client as a DIXI service that runs on each node and eases the administration steps
required when using the RCA. Its functionality includes the following:

e Creation of unique private keys and certification requests.

e Obtaining the details of the node from AEM’s Resource Monitor service.
This saves the resource administrator the tedious collection and entering the
resource’s details.

e Communication with the RCA Server service to send the registration appli-
cation, registration confirmations, and reception of the sign certification.

e Saving, examining and installing the machine certificates.

63

3.3.3 Usage of RCA

The RCA issues machine certificates, encrypted using a so called machine pass-
word. This means that in principle the resource administrator is never prompted
for the password needed to access the private key part of the machine certificate.
However, if an admin would want a higher level of security, she would need to
enter the password at each boot time or service start-up. The cycle of the initial
sending the resource’s details, registring the resource, requesting for certificate
and storing it could therefore be done automatically. However, this would not
ensure trust and security in any way. Therefore we want to have people with au-
thority taking part within this loop. Figure[I3]shows a diagram with the interaction
between actors the components of the RCA, illustrating the usage of the RCA. As
we can see, this includes

e The resource administrator, who is the person in charge of a node (a ma-
chine) that is capable of providing services for job execution in the XtreemOS.
Before the node can take part in a VO, it needs to be registered with the
RCA and obtain the machine certificates. This actor decides whether a ma-
chine can be used for running jobs in any of the VOs the machine has been
included in.

e The administrator here is a person of an authority within the organisation
that runs the RCA. The administrator is in charge of checking the appli-
cations for including resources in any potential VOs, e.g., by checking the
resource administrator’s background and the resource’s usage within the or-
ganisation and outside XtreemOS’s VOs.

e The VO owner can browse the list of resources registered by the resource
administrators and approved by the administrator, and invite resources to
take part in the VOs. The VO administrator can also remove the resources
from VOs.

Figure [14] shows the usage timeline with the interaction between administra-
tors and the services. The figure shows that once the administrator confirms the
registration of a resource with the RCA DB, a VO administrator can find the re-

source on the list of the registered resources and use the entry to be added to a
VO.

Certificates. RCA issues two types of certificates:

e Resource identity certificate. This certificate is a standard X.509 V3 cer-
tificate. In its extensions it contains the resource attribute values. The cer-
tificate can be used for identifying the resource, to authenticate services

64

8. getRe secured machine

VO administrator RCA Server W

————————— I

| _RCADB ,"f‘ 4. confirmRegistration
. administrator
c
kel
T| L
5| ®
@ L
gl §
€3
2| %
> ©
gl 3
c| &
o| ©
machine |
i < ateDetails
7 get\\l\ach\neCert\f\ca
ificate
. 5. requestNewCert
RCA Client 1]
\—l« T !
OorRe istration resource

administrator

Figure 13: Interactions between resource admin and RCA server

running on the node, or to use for encryption, e.g., in an SSL. communi-
cation session. The duration of the certificate can be set to a short time to
ensure the security levels according to the policies of the organisation.

e Resource’s VO attribute certificate. This certificate contains the resource’s
identity descriptors and an identifier of one VO that the resource is a mem-
ber of. The resource’s services prove the resource’s trustworthiness within
a VO. Each resource can have multiple VO attribute certificates.

3.3.4 Interactions with Other Security Services

The focus of the RCA Server is to provide targeted nodes with the resource iden-
tity certificates and other attribute certificates, if the resource is eligible to obtain
the certificates. This means that in the current implementation there is no interac-
tion with any other security services.

65

resource
administrator

RCA Client
(machine)

RCA Server

RCA DB

applyForRegistration()

>

requestNewCertificate()

w_ _ applyForRegig

stration(res)

d create key
pair + cert
request

requestCertificatd
>

(signed cert,

attrib. cert)
————————

v

VO
administrator

administrator

getPendingResources|()

A

(collection of resourcep)

(request)

getResourceStaty

<

confirmRegistration(rep

_ getRegisteredResources()

(registered)

;

(collection of resources)
>

s(res)

Figure 14: Interactions between a machine and RCA server

In the process of resource discovery and selection, VOPS needs to check the
authenticity of the candidate resources as provided from ADS. To do this, the

VOPS service interacts with the RCA Client service, which has an access to the

66

node’s public key. In particular, the VOPS needs to check whether the node had
been certified for the use in the VO that the user has selected for running a job.
RCA Client passes the resource’s VO attribute certificate as credentials in the VO.

3.3.5 Supporting XtreemOS Application Execution

The AEM’s execution benefits from the RCA’s services because RCA provides
the following:

e Resource identity certificate can be used for encrypting DIXI communi-
cation and, indirectly, provides the AEM the means to secure sensitive data
sent in the service calls, and to authenticate peer node.

e Resource’s VO attribute cerificates, when placed in the RCA Client’s
search path, enable the node’s taking part in the job execution for the VO.
If the resource administrator would like to prevent further job execution for
a particular VO, she only needs to remove the respective certificate from its
installed path.

3.3.6 Supporting XtreemOS File Management

RCA and XtreemFS currently do not interact. However, XtreemFS can, however,
use the certificates issued by the RCA server, to encrypt the communication using
SSL and to authenticate nodes.

3.3.7 Supporting MD

Mobile devices, by design, are client nodes, while the RCA is targeted for the
worker nodes. We have therefore not forseen any support for the MD at this point.
3.3.8 Supporting WP3.2’s Services

RCA is currently a VO-level service which does not use any services from the
WP3.2.

3.3.9 Features for the Next Release

In the first release, there was no communication between RCA (DB) and X-
VOMS, partially because X-VOMS has not yet exposed its interfaces to other
services. Having the information on resources and their membership within RCA
DB was a good and quick solution which worked well for a proof-of-concept
prototype. However, as the development of X-VOMS progresses, we can forsee
merging of the RCA DB with the X-VOMS, or use ADS’s services.

67

4 Conclusions

This deliverable represents the outcome of an ongoing process of consolidating the
design decisions we have made for the first release, digesting the lessons we have
learned from delivering the first release, and presenting a preliminary roadmap
thinking we have done for the next release of XtreemOS security and VO services.
These ideas will be validated in the next phase of our implementation.

This work is still ongoing. In the time to come, we will also plan to continue
to revise the security architecture presented in the last edition of this specification,
especially by incoporating the design decisions we shall be making for the next
release.

68

References

[1] Andrea Ceccanti. The VOMS Architecture, 2008.
https://twiki.cnaf.infn.it/cgi-bin/twiki/view/VOMS/WebArchitecture.

[2] XtreemOS Consortium. D3.1.7 - The First Version of System Architecture.
Work Package 3.1, December 2007.

[3] XtreemOS Consortium. Design and implementation of node-level vo sup-
port. In XtreemOS public deliverables - D2.1.2. Work Package 2.1, Novem-
ber 2007.

[4] XtreemOS Consortium. Second specification of security services. In
XtreemOS public deliverables - D3.5.4. Work Package 3.5, November 2007.

[5] XtreemOS Consortium. Revised system architecture. In XtreemOS public
deliverables - D3.1.7. Work Package 3.1, Dec 2008.

[6] S. Farell and R. Housley. Rfc 3281 - an internet attribute certificate profile
for authorization. IETF, April 2002.

[7] L Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid Enabling
Scalable Virtual Organizations. In International J. Supercomputer Applica-
tions, 2001.

[8] A. Grimshaw, M. Lewis, A. Ferrari, and J. Karpovich. Architectural Support
for Extensibility and Autonomy in Wide-Area Distributed Object Systems,
1998. http://legion.virginia.edu/papers/CS-98-12.pdf.

[9] R. Housley, W. Polk, W. Ford, and D. Solo. Rfc 3280 - internet x.509 public
key infrastructure certificate and certificate revocation list (crl) profile, April
2002.

[10] John Linn. Trust Models and Management in Public-Key Infrastructures,
2000. http://citeseer.ist.psu.edu/386363.html.

[11] Wolfgang Meier. eXist - Open Source Native XML Database.
http://exist.sourceforge.net/.

[12] The EU DataGrid Project Partners. The EU DataGrid project website.
http://eu-datagrid.web.cern.ch/eu-datagrid/.

[13] The EU EGEE Project Partners. = The EU EGEE project website.
http://public.eu-egee.org.

69

[14] The people of linux admin@vger.rutgers.edu. Linux Administrators FAQ
List, Q 6.17. http://www.tigerteam.net/linuxgroup/linux-admin-FAQ/Linux-
Admin-FAQ-6.html.

[15] The Globus Team. Overview of the Grid Security Infrastructure, 2008.
http://www.globus.org/security/overview.html.

[16] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Rfc 3820
- internet X.509 public key infrastructure (pki) proxy certificate profile, June
2004.

[17] Wikipedia. The PKI Wiki Page. http://en.wikipedia.org/wiki/Public_key_infrastructure.

70

	Glossary
	Executive Summary
	Introduction
	Brief Recap of D3.5.4

	Basic Concepts
	Background
	Entities
	Credentials
	Actors
	Usage Scopes

	VO Management
	A XtreemOS System
	VOs in XtreemOS
	VO Software Layers
	VOHost: a VO Hosting System

	User Management
	Certificate Management
	Trust Model
	Root CA Certificates
	User and Machine Identity Certificates
	User Attribute Certificates
	Machine Attribute Certificates
	Delegation and Single Sign-On

	Services
	XVOMS
	Brief Introduction
	Major Components
	Interactions with Other Security Services
	Supporting XtreemOS Application Execution
	Supporting XtreemOS File Management
	Supporting MD
	Supporting WP3.2's Services
	Features for the Next Release

	VOPS server
	Brief Introduction
	Major Components
	Interactions with Other Security Services
	Supporting XtreemOS Application Execution
	Supporting XtreemOS File Management
	Supporting MD
	Supporting WP3.2's Services
	Features for the Next Release

	RCA
	Brief Introduction
	Major Components
	Usage of RCA
	Interactions with Other Security Services
	Supporting XtreemOS Application Execution
	Supporting XtreemOS File Management
	Supporting MD
	Supporting WP3.2's Services
	Features for the Next Release

	Conclusions

