
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Fourth Specification, Design and Architecture of the Security
and VO Management Services

D3.5.13
Due date of deliverable: November 30st, 2009
Actual submission date: December 9th, 2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.5
Task number: T3.5.2

Responsible institution: STFC
Editor & and editor’s address: Benjamin Aziz

Rutherford Appleton Laboratory
Science and Technology Facilities Council

Harwell Science and Innovation Campus
Didcot OX11 0QX

United Kingdom

Version 1.0 / Last edited by Benjamin Aziz / December 4th, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.0 20/08/09 Benjamin Aziz STFC Structure of the deliverable defined
0.1 02/10/09 Ian Johnson STFC Expansion of design and other comments
0.2 12/10/09 Benjamin Aziz STFC Added the sections on VO management and security

capabilities
0.3 19/10/09 Benjamin Aziz STFC Added the sections on description of VO management

and security services
0.4 23/10/09 Primož Hadalin XLAB Added the Monitoring and Auditing Capabilities
0.5 29/10/09 Benjamin Aziz STFC Added the Section on Trust Model
0.6 10/11/09 Matej Artač XLAB Added the RCA sequence diagrams and class dia-

grams.
0.7 12/11/09 Aleš Černivec XLAB Added the details in the VOPS sections.
0.8 12/11/09 Ian Johnson STFC Expanded description of use cases for Grid creation

and Grid population
0.9 12/11/09 Benjamin Aziz STFC Added the Class Diagrams for XVOMS and CDA
0.9 19/11/09 Ronald Fowler STFC Added description of XVOMS API
0.9 19/11/09 Ian Johnson STFC Expanded use cases for VO termination and user re-

moval. Added description of CDA API
0.9 19/11/09 Chengchun Shu ICT Added description of Web Front-end API
0.9 20/11/09 Benjamin Aziz STFC Added the Executive Summary and the Introduction

sections.
0.9 20/11/09 Benjamin Aziz STFC Added the Conclusion.
0.9 20/11/09 Alvaro Arenas STFC Revision before internal review.
1.0 20/11/09 Benjamin Aziz STFC Generating 1st version for internal review.
1.0 04/12/09 Benjamin Aziz STFC Consolidating improvements after internal review.
1.0 08/12/09 Alvaro Arenas STFC Final revision before submission.

Reviewers:
Thilo Kielmann (VUA), Santiago Prieto (TID)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T3.5.2 Specification, design and architecture of XtreemOS security
services

STFC∗,INRIA,SAP,ULM,XLAB,ICT

T3.5.3 Security policy management and enforcement XLAB∗,STFC,SAP
T3.5.8 VO Lifecycle Management Systems STFC∗,ICT,XLAB
T3.5.9 Security of Grid Level Services STFC∗,ULM,INRIA,SAP,XLAB
T3.5.12 Monitoring and Auditing Services XLAB∗,STFC,SAP

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Contents
Glossary 5

Executive Summary 8

1 Introduction 9
1.1 A Brief History of the Deliverable 9
1.2 New Features . 10
1.3 Structure of the D3.5.13 . 10
1.4 How the Deliverable Meets WP3.5 Tasks 10

2 The Structure of the Security and VO Management Services 12
2.1 Trust Domains . 12
2.2 Actors . 12
2.3 The Core Security and VO Management Services 13

2.3.1 XVOMS . 14
2.3.2 RCA . 15
2.3.3 VOPS . 16
2.3.4 Monitoring and Auditing 17

3 Security and VO Management Capabilities 20
3.1 Describing Use Cases . 20
3.2 Grid Management Capabilities 20

3.2.1 Configuring and Creating the Root CA 21
3.2.2 Creating the X-VOMS Database 23
3.2.3 Setting-up the Core Services 23
3.2.4 Configuring a single Core Service 24
3.2.5 Configuring the VO Web front-end 26
3.2.6 Processing Certificate Requests 26
3.2.7 Obtain Public Certificates 28
3.2.8 Sign up to Grid . 29
3.2.9 Approve User . 30
3.2.10 Sign in to VOWeb front-end 31
3.2.11 Remove User from Grid 31
3.2.12 Leave Grid . 32
3.2.13 System removes user . 33
3.2.14 Change Password . 33
3.2.15 Register RCA . 34
3.2.16 Approve RCA . 35
3.2.17 Confirm RCA Approval 35

1

3.2.18 Register Resource with RCA 36
3.2.19 Approve the Resource Registration 37
3.2.20 Obtain the resource identity certificate 37
3.2.21 Update Registered Resource information in RCA 38
3.2.22 Remove Resource from RCA 39

3.3 VO Creation . 39
3.3.1 Create VO . 39
3.3.2 Add VO Attributes . 40

3.4 VO Evolution . 41
3.4.1 User Management . 41
3.4.2 Request to Join VO . 42
3.4.3 Approve User Request to Join VO 42
3.4.4 Remove User from VO 43
3.4.5 Common steps for removing a user from a VO 43
3.4.6 User leaves VO . 44
3.4.7 Resource Management 45
3.4.8 VO Policy Management 51

3.5 VO Operation . 52
3.5.1 Users . 53
3.5.2 Obtain XOS Certificate for the User via VO Web Front-end 53
3.5.3 Obtain User XOS-Certificate from the CDA server 53
3.5.4 Resources . 54

3.6 VO Termination . 56
3.7 Monitoring and Auditing Capabilities 61

3.7.1 Monitoring capabilities 61
3.7.2 Auditing capabilities . 64

4 The XtreemOS Trust Model 68
4.1 Elements of the Trust Model . 68

4.1.1 Credentials . 69
4.1.2 Certification Authorities 69
4.1.3 Users . 70
4.1.4 Resources . 70
4.1.5 Protocols . 70

4.2 Setting-Up Trust . 72
4.2.1 The Registration Process 72
4.2.2 The Secure Communications Process 73
4.2.3 Certificate Distribution Process 73

2

5 Detailed Design of the Security and VO Management Services 74
5.1 XVOMS Design . 74

5.1.1 The XVOMS Classes . 74
5.1.2 The XVOMS Interactions 77

5.2 CDA Design . 80
5.2.1 The CDA Classes . 80
5.2.2 The CDA Interactions 81

5.3 RCA Design . 83
5.3.1 The RCA Classes . 83
5.3.2 The RCA Interactions 84

5.4 VOPS Design . 92
5.4.1 The VOPS Classes . 92
5.4.2 The VOPS Interactions 94

5.5 Monitoring Service Design . 98
5.5.1 The Monitoring Service Classes 98
5.5.2 The Monitoring Service Interactions 99

5.6 Auditing Service Design . 102
5.6.1 The Auditing Service Classes 102
5.6.2 The Auditing Service Interactions 102

6 Conclusions and Future Work 105

A Application Programming Interface of the Security and VO Manage-
ment Services 108
A.1 The XVOMS API . 108

A.1.1 User and VO Management Interfaces in XVOMS 108
A.1.2 User Management methods 109
A.1.3 System Management methods 112
A.1.4 Resource Management methods 113
A.1.5 VO Management APIs 115

A.2 CDA API . 125
A.2.1 The CDA Client/Server Protocol 126
A.2.2 CDA Client . 127
A.2.3 CDA Server . 132

A.3 The RCA API . 133
A.3.1 RCA Server . 133
A.3.2 RCA Client . 139
A.3.3 RCA Client Processor 142

A.4 The VOPS API . 145
A.4.1 Core site . 145
A.4.2 Resource site . 148

3

A.5 The Monitoring Service API . 149
A.6 The Auditing Service API . 151
A.7 The VOWeb and RCAWeb Front-end Interfaces 153

A.7.1 User login . 153
A.7.2 Create an account . 154
A.7.3 Create a VO . 154
A.7.4 Join/Leave a VO . 154
A.7.5 My Pending Requests 155
A.7.6 Approve/Decline A Request 155
A.7.7 Get an XOS-Cert . 155
A.7.8 Generate new Keypair 155
A.7.9 About me . 156
A.7.10 Change Password . 156
A.7.11 Logout . 156
A.7.12 My Owned VOs . 157
A.7.13 Delete a VO . 157
A.7.14 Manage groups/roles . 157
A.7.15 Add a RCA . 158
A.7.16 Delete a RCA . 158
A.7.17 Add a resource to RCA 158
A.7.18 Delete a resource . 159
A.7.19 Add a resource to VO . 159
A.7.20 Approve a resource . 159
A.7.21 Decline a resource . 160
A.7.22 Get Machine Certificates 160

4

Glossary
AEM Application Execution Management

CDA Credential Distribution Authority

CA Certification Authority

GUID Global User Identifier

GVID Global VO IDentifier

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PKI Public Key Infrastructure

RCA Resource Certification Authority

VOPS Virtual Organization Policy Service

VOLife Virtual Organization Lifecycle service

XtreemFS XtreemOS File System

XVOMS XtreemOS Virtual Organization Management Service

5

List of Figures
1 The Security and VO Management Trust Domains. 12
2 The Security and VO Management Actors. 13
3 The Security and VO Management Services. 14
4 The XtreemOS VO Management Service (XVOMS). 14
5 The Resource Certification Authority (RCA). 16
6 The VO Policy Service (VOPS). 17
7 Monitoring and auditing architecture. 18
8 Components of the monitoring and auditing. 19
9 The Grid Management Phase. 21
10 The VO Creation Phase. 40
11 VO Evolution - User Management. 41
12 VO Evolution - Resource Management. 45
13 VO Evolution - VO Policy Management. 51
14 The VO Operation Phase (Users). 53
15 The VO Operation Phase (RCAs). 55
16 The VO Termination Phase. 57
17 Monitoring overview. 61
18 The XtreemOS Trust Model. 68
19 The XVOMS Database Class Diagram. 74
20 The XVOMS Utility Class Diagram. 76
21 XVOMS registration. 77
22 XVOMS join VO. 78
23 XVOMS leave VO. 78
24 XVOMS delete VO. 79
25 The cdaclient package. 80
26 The cdaserver package. 80
27 CDA client program, “get-xos-cert”, obtains an XOS-Cert from

CDA server. 82
28 RCA server and RCA client class diagrams. 83
29 RCA registration. 84
30 Registering the RCA to a VO. 85
31 Querying for VOs the RCA is contributing to. 86
32 Removing the RCA from a VO. 87
33 Registering a resource. 88
34 A detailed sequence of registering a resource. 89
35 Adding a resource to the VO. 90
36 Removing a resource from the VO. 91
37 Removing a resource from the RCA. 92
38 VOPS server class diagram. 93

6

39 VOPS local decision point class diagram. 94
40 Modifying a resource policy from VOPS database. 95
41 Adding a resource policy into VOPS database. 96
42 Removing a resource policy from VOPS database. 97
43 Removing a resource policy from VOPS database. 98
44 Monitor Manager class diagram. 98
45 Monitoring initialization. 100
46 Monitoring rule conditions not met. 101
47 Monitoring rule conditions met. 102
48 Auditing Manager class diagram. 103
49 Auditing archiving data. 103
50 Auditing generates report. 104

7

Executive Summary
This deliverable aims at providing a complete and clear reference on the secu-
rity and virtual organisation management services in XtreemOS. These services
include the XtreemOS Virtual Organisation Service (XVOMS), the Resource Cer-
tification Authority (RCA), the Virtual Organisation Policy Service (VOPS), the
Monitoring Service and the Auditing Service.

The focus of the deliverable has been centred on describing these services
from three main perspectives; each targeting a different layer of system design
and architecture:

• High-level capabilities: these are high-level depictions of the possible ac-
tions that users of the XtreemOS system can perform using the security and
virtual organisation management services. Capabilities simply state what
goals can and cannot be achieved by means of the various use cases that the
services enable the users to carry out.

• Services design: these provides intermediate-level view of the services in
a manner capturing the logical components of each service by means of
class diagrams. The design also provides sequence diagrams to express
interactions among the different classes and their users.

• Services interfaces: these provide a low-level view of the services realised
through concrete application programming interfaces.

Apart from the above novelty in the presentation of the security and virtual or-
ganisation management services, the current deliverable also introduces two main
new features compared to the previous specifications:

• Termination capabilities for virtual organisations, which describe how vir-
tual organisations can be terminated and their state be dissolved.

• Monitoring and auditing, which allow for the monitoring of resources for
changes in their attributes such that auditing and non-repudiation features
can be supproted by XtreemOS applications.

8

1 Introduction

This deliverable defines the final specification of the security and Virtual Or-
ganisation (VO) management services. The deliverable has been written keep-
ing in mind readers who are not necessarily experts in XtreemOS as well as the
XtreemOS expert developers and end users. It also aims at giving as precise as
possible an idea of what will be available for the audience at the end of the project
regarding the security and VO management services and the capabilities enabled
by these services. As a result, the deliverable was designed to provide a high-level
view of the services in the form of capabilities and use cases, which state which
actions can and which cannot be done using the services, an intermediate-level
view of the design of the services useful for system engineers and low-level ap-
plication programming interfaces useful for system developers and programmers.

1.1 A Brief History of the Deliverable

This deliverable builds on the material that was presented in previous versions of
the specification of XtreemOS security and VO management services.

• D3.5.3: This deliverable introduced the first version of the specification of
the security and VO management services in XtreemOS [1]. This spec-
ification was based on the requirements arising from the case studies in
XtreemOS as well as the constraints of the underlying technology of Linux,
and it included the early design of the services as well use cases of how
the services can be used to achieve the requirements. The deliverable was
released in May 2007.

• D3.5.4: This was the second version of the services specification and it was
released in December 2007 [2]. The deliverable focused on demonstrat-
ing how the security and VO management services could be used to fulfil
the security requirements of the application execution management and the
XtreemFS file system services in XtreemOS.

• D3.5.11: The main focus of this deliverable was on the definition of the
XtreemOS trust model, and how the security and VO management services
contribute to establishing and managing this trust model. The deliverable
was released in January 2009 [3].

In its essence, the current deliverable constitutes a single standalone document,
which encompasses the research and development effort presented in all the above
previous versions.

9

1.2 New Features

The current deliverable introduces mainly two new features for the security and
VO management services:

• Termination capabilities for VOs: this is a new feature of the services, which
deals with the termination of VOs and the dissolution of VO state. Although
previous deliverables had already defined interfaces for performing certain
termination-related actions, such as the removal of users, there was no over-
all solution as to how to tackle the issue of VO terminations.

• Monitoring and Auditing: This is a new feature as well, which aims at
monitoring resources for changes in their attributes. Such capability can
then be used to carry out auditing capabilities for purposes of, for example,
billing and non-repudiation.

1.3 Structure of the D3.5.13

The structure of this deliverable is as follows. In Section 2, we describe briefly
the trust domains, actors and the logical structure of the various security and VO
management services in XtreemOS. In Section 3, we give a full description of the
security and VO management capabilities in XtreemOS, which include the differ-
ent use cases involving the actors and the services. In Section 4, we give a brief
description of the XtreemOS trust model. In Section 5, we outline the detailed
design of the XtreemOS security and VO management services. In Section A,
we provide a detail description of the security and VO management services API.
Finally, in Section 6, we conclude the deliverable.

1.4 How the Deliverable Meets WP3.5 Tasks

The deliverable represents the output frontend to research and development effort
in several tasks in WP3.5. The following represents the mapping of the tasks to
the corresponding sections in the deliverable:

• T3.5.2: Specification, design and architecture of XtreemOS security
services. This is the task coordinating the architectural work in WP3.5 and
guiding the production of this deliverable.

• T3.5.3: Security policy management and enforcement. This task con-
tributed to all issues related to policy management reported in this deliver-
able, in particular Section 4 and Subsections 5.4 and 6.4.

10

• T3.5.8: VO Lifecycle Management Systems. This task contributed to all
issues related to VO and credential management reported in this deliverable,
in particular Section 4 and Subsections 5.1, 5.2, 5.3, 6.1, 6.2, 6.3 and 6.7.

• T3.5.9: Security of Grid Level Services. This tasks aligns the security
work in WP3.5 with the work in other work packages in SP3. Main outputs
contributed to Section 3.

• T3.5.12: Monitoring and Auditing Services. This task contributed to all
issues related to the monitoring and auditing of security events reported in
this deliverable, in particular Subsections 5.5, 5.6, 6.5 and 6.6.

11

2 The Structure of the Security and VO Manage-
ment Services

This section gives an overview of the general structure of the security and Virtual
Organisation (VO) management services in XtreemOS, including a description
of the individual services and the actors involved in the interactions with these
services.

2.1 Trust Domains
The Security and VO Management services in XtreemOS are based on three main
trust domains, as shown in Figure 1.

Resource Site Core Site User Site

Figure 1: The Security and VO Management Trust Domains.

These domains are described as follows:

• The Resource Site domain: This includes sites that offer resources to the
Grid and any VOs formed out of the Grid.

• The User Site domain: This includes sites that provide users of VOs who
will submit jobs to the resources included in those VOs.

• The Core Site domain: This represents the core site in which the Security
and VO Management (and possibly other XtreemOS) services may be run-
ning. From the trust point of view, the Core Site represents the root of trust
for both the Resource and User Sites.

2.2 Actors
Having defined the main trust domains in the previous section, we now introduce
the main actors of the Security and VO Management services.

12

• The User: this actor is the user of VOs, who is also registered in the Grid
within which the VOs are created.

• The VO Administrator: this actor is a previous User who created a VO
and became the owner and administrator of that VO. Therefore, the VO
Administrator has full authority on managing the VO.

• Resource Administrator: this is the actor owning the resources offered to
VOs. The actor could be either a whole site administrator or the owner of a
single machine belonging to his site.

• The Grid Administrator: this actor is responsible for managing the core
XtreemOS security and VO management services.

These actors are shown in Figure 2.

Resource Site Core Site User Site

Grid AdministratorResource

Administrator
User

User Site

VO Administrator

Figure 2: The Security and VO Management Actors.

2.3 The Core Security and VO Management Services
The core XtreemOS security and VO Management services are shown in Figure 3
These services consist of the XtreemOS VO Management Service (XVOMS), the
Resource Certification Authority (RCA), the VO Policy Service (VOPS) and the

13

XVOMS

RCA VOPS

Resource Site Core Site User Site

Monitoring Auditing

Figure 3: The Security and VO Management Services.

Monitoring and Auditing services. This last service is one of the new features of
this specification. In the following sections, we give a brief overview of each of
these services.

2.3.1 XVOMS

The XVOMS (XtreemOS Virtual Organisation Service) is a VO and trust manage-
ment service whose architecture is illustrated in Figure 4. The XVOMS service

XVOMS

Registration

Manager

VO Manager

Root Certification

Authority

Credential

Distribution

Authority Server

XVOMS

Database

VO Web Frontend

Core Site User Site

Credential

Distribution

Authority Client

Figure 4: The XtreemOS VO Management Service (XVOMS).

14

consists of the following components:

The Root Certification Authority. This is a manual service that creates the
XtreemOS trust anchor, the root certificate, and uses it to certify the identity of
core services within XtreemOS. This service can be performed offline to avoid
compromise of the root private key. The certification of core services can option-
ally be performed by the CDA service, described next.

The Credential Distribution Authority Server. This component, also referred
to as the CDA Server, is responsible for distributing XtreemOS identity certificates
(“XOS-Certs”) to users. The XOS-Cert, an X.509 v3 public key certificate with
XtreemOS extensions, is defined in D3.5.5. The CDA may optionally be config-
ured to also provide service certificates, certifying the identity of XtreemOS core
services.

The Credential Distribution Authority Client. This is a client-side program
that interfaces with the CDA Server, in the case when it is not possible to use the
Web-based VO Web Frontend interface.

The Registration Manager. This component is responsible for managing the
initial registration of users and RCAs with the XtreemOS system.

The VO Manager. This component controls the lifecycle of the VO.

The XVOMS Database. This is the main database in XVOMS in which all
the information regarding the user and RCA registrations, VO membership and
lifecycle is stored.

The VO Web Frontend. This is a Web-based interface to the functionality of-
fered by XVOMS.

2.3.2 RCA

The Resource Certification Authority (RCA) is a certification authority at the level
of administrative sites offering resources to XtreemOS VOs. The RCA consists
of the following components, as shown in Figure 5. The RCA is responsible for
bootstrapping trust in the individual resource domains. This trust is used by other
XtreemOS components such as the Application Execution Management (AEM)
component to be able to submit jobs to resources.

15

RCA

Resource

Certification

Authority Server

RCA

Database

RCA Web

Frontend

Resource Site User Site

Resource

Certification

Authority Client

Figure 5: The Resource Certification Authority (RCA).

The following sections give an overview of the main logical components the
RCA is composed from.

The RCA Server. This is the main component, which provides the functionality
of the RCA. The server is responsible for issuing certificates to resources.

The RCA Client. The RCA Client is a DIXI-based client-side program that can
interact with the RCA. It can be installed on individual nodes and be used to ease
the interactions with the RCA server.

The RCA Web Frontend. The RCA Web Frontend is an alternative, Web-based
interface to the RCA Server instead of the RCA Client.

The RCA Database. The RCA Database stores the state of resources in each
administrative domain. This state could indicate that a resource is unregistered
with the Grid, registered with the Grid and if so, whether it is currently offered to
any VOs in the Grid. The main interface to the RCA Database is through the RCA
Server functionality.

2.3.3 VOPS

The VOPS (Virtual Organisation Policy Service) is used to manage and enforce
VO policies. The service consists of the following components, as shown in Fig-
ure 6.

16

VOPS

Policy Information

Point

Policy Store

Policy

Administration Point

Core Site

Policy Enforcement

Point

Policy Decision

Point

Figure 6: The VO Policy Service (VOPS).

The Policy Enforcement Point. The Policy Enforcement Point (PEP) is where
the users’ requests are intercepted in order for these requests to be checked and
appropriate decisions enforced on the requests. The users’ requests may carry
user credentials regarding their attributes and the attributes of the context.

The Policy Decision Point. The Policy Decision Point (PDP) is the component
which enforces the security policies on user requests. The PDP contains the logic
that is computed against the policies and the users requests.

The Policy Information Point. The Policy Information Point (PIP) is a compo-
nent of VOPS which queries information about the request arriving from a user,
additional user credentials and information about the context of the request and
the system.

The Policy Administration Point. The Policy Administration Point (PAP) al-
lows the site or resource administrator to add, delete and update policies in the
policy store.

The Policy Store. The Policy Store (PS) is a database containing all the policies
related to the different resources.

2.3.4 Monitoring and Auditing

Monitoring and auditing are responsible for receiving status, changes and events,
providing feedback on user behaviour and resource performance to interested par-

17

ties, as well as storing metrics and events to historical database. The Monitoring
described in this document and used for the security infrastructure purposes is a
super-set of the monitoring in the AEM. This means that while it leverages func-
tionality and metrics of the AEM’s monitoring, it also includes other services’
events and metrics. As a result, the monitored information spans a wider spec-
trum of information, which can be used for assessing the security status of the
distributed system and analysing past behaviour of both the system and the actors.
Another important aspect of the security auditing is the ability to record specific
actions, non-refutably proving potential accountability for harmful behaviour.

Figure 7 shows the abstract view of the monitoring and auditing system and
the domains it spans.

Resource Site Core Site

Core Monitor Manager

Auditing Manager

Resource Monitor Manager

Figure 7: Monitoring and auditing architecture.

Due to the complex nature of the monitoring system and both the domains and
the granularity it needs to cover, the monitoring system is made up of a set of
components, shown on Figure 8.

Resource Monitor Manager. Resource Monitor Manager is responsible for
monitoring resource related metrics and events. Such metrics include CPU utiliza-
tion, memory usage, jobs status and jobs exit code. These metrics are generally
gathered from node-level services, such as AEM, or RSS, as well as from standard
kernel or system-level services. Resource Monitor Manager provides means for
resource administrators to get feedback on resources behaviour.

Core Monitor Manager. Core Monitor Manager handles monitoring related to
grid and VO and provides means for grid administrators to get feedback on core
XtreemOS security. Core monitoring data is generally gathered from VO man-
agement and other core related services.

18

Monitor Manager

Resource Site

Core Site

Resource Monitor Manager

Pub/sub

rule-based

system

Pub/sub

rule-based

system
Monitor Manager

Core Monitor Manager

Event subscription

Archive

Auditing Manager

Archive data access

Figure 8: Components of the monitoring and auditing.

Auditing Manager. The purpose of Auditing Monitor Manager is the have a his-
tory of important monitored data. Auditing Monitor Manager uses other Monitor
Managers as a source and stores collected monitoring data in historical database
which can be later queried and analyzed.

19

3 Security and VO Management Capabilities
This section presents the different capabilities associated with the security and VO
management functionality in XtreemOS.

3.1 Describing Use Cases
We describe the use cases using the following terms:

• Goal The goal of the use case is a result that brings value to the user.

• Actors The entities involved in the use case.

• Success Scenario The indication that the use case has been carried out suc-
cessfully.

• Pre-conditions The conditions that must hold before the use case can be
executed.

• Post-conditions The conditions that must hold after the use case has been
executed.

• Interfaces used The nature of the interfaces utilised in this use case, either
a web front-end or command-line program.

• Basic Course of Action The steps that are performed to execute this use
case.

• Optional Course of Action The steps that may be performed instead of, or
in addition to, the Basic Course of Action.

• Execution Order (Optional) This indicates a loose ordering between use
cases.

• Sequence Point (Optional) For those use cases that need to be executed in
a strict order, this indicates the relative order of execution with reference to
the first use case in the sequence.

3.2 Grid Management Capabilities
This section contains the capabilities for managing the Grid infrastructure under-
lying VOs. It includes the registering and removal of users and RCAs with the
Grid, the registering of local resources with RCAs, the setting-up of the root CA
and the running of the various security and VO management services. The Grid

20

management capabilities are depicted in Figure 9, and below we describe each of
the use cases involved.

RCA Server
Root CA

Resource Site Core Site User Site

Grid

Administrator
Resource

Administrator

User

Register RCA

Confirm RCA Approval

R
e

g
is

te
r

R
e

s
o

u
rc

e

w
it
h

 R
C

A

R
e

m
o

v
e

 R
e

s
o

u
rc

e

fr
o

m
 R

C
A

A
pprove R

C
A

S
etting-U

p R
oot C

A

Registration

Manager
Approve

User

Register User

Remove User

O
bt

ai
n

P
ub

lic
 C

er
tif

ic
at

es

CDA Server

VOPS

VO Manager

R
u

n
n

in
g

C
o

re
 S

e
rv

ic
e

s

S
e

tt
in

g
-U

p

C
o

re
 S

e
rv

ic
e

s

Figure 9: The Grid Management Phase.

Setting up Grid Infrastructure The following steps, 3.2.1 to 3.2.7, are neces-
sary to set up the Grid infrastructure (database, certificates, services).

3.2.1 Configuring and Creating the Root CA

Goal
This use case sets-up a Root CA in the Core Site. This establishes the root
of trust for this Grid.

Actors
The Grid Admin.

Success Scenario
The Root CA private key is generated and secured. The Root CA public
key certificate is available for processing Certificate Signing Requests for
services.

21

Pre-conditions
The Grid Admin has access to a physically secure machine. Ideally, this is
not a networked machine. The Grid Admin has a description of the Grid
for which s/he is setting up this Root CA. The Grid Admin has a definition
of the Root CA public key certificate lifetime. (This determines when the
certificate expires.)

Post-conditions
The Root CA is configured and the Root CA private key is secured. The
Root CA public key certificate is available for distribution to other nodes in
this Grid.

Interface Used
Command-line programs.

Basic Course of Action
These need to be performed when a Grid is initially set up.

1. The Grid Admin edits the Root CA configuration file to provide a de-
scription of this Grid’s organisation/project name, and other details
such as the lifetime of the Root CA public key certificate.

2. The Grid Admin runs the command “create-rootca” to create the Root
CA private key and Root CA public key certificate. The Grid Admin
provides a passphrase for the private key and ensures that the key is
securely stored.

3. The Grid Admin places the Root CA public key certificate on a net-
worked core node, making it available for public distribution via use
case 3.2.7, “Obtaining public certificates”..

Optional course of action - Extending the operation of the Root CA
Before the Root CA certificate expires, a new one should be generated and
distributed.

1. The Grid Admin uses the existing Root CA private key to generate a
new Root CA public key certificate.

2. The Grid Admin places the Root CA public key certificate on a net-
worked core node.

Execution Order
This is an early step in configuring the Grid and must be executed before
any of the Core Services are configured and started running.

22

3.2.2 Creating the X-VOMS Database

Goal
Create and initialise the X-VOMS database.

Actors
The Grid Admin.

Interface Used
Command-line program.

Success Scenario
The X-VOMS database is initialised and ready for use.

Pre-conditions
The X-VOMS database hasn’t already been initialised.

Post-conditions
The X-VOMS database is initialised and ready for use. A password for the
database “root” user has been set. A username and password for the Grid
Admin have been set to their default values.

Execution Order
This is an early step in configuring the Grid and must be executed before
the CDA and VO Web Core Services are configured and started running.

Basic Course of Action

1. The Grid Admin executes the “xvoms_init.sh” command.

2. The Grid Admin enters a password for the database “root’ user and for
the “xtreemos-admin” user.

This completes the set up of the X-VOMS database. The X-VOMS database
is now available for use by other Core Services.

3.2.3 Setting-up the Core Services

Goal
Configure all the services needed in the core site and start them running.

Actors
The Grid Administrator, and (optionally) a node Administrator.

Success Scenario
The core services are running and ready for users.

23

Pre-conditions
The Root CA has been configured.

Post-conditions
The core services have security credentials created, consisting of private
keys and public key certificates. The operating characteristics of the core
services have been defined in configuration files. The core services are run-
ning.

Interface Used
Command-line programs.

Basic Course of Action
For each of the core services (CDA, RCA, VOPS, XtreemFS DIR, XtreemFS
MRC, XtreemFS OSD), security credentials are created and configuration
properties defined by carrying out the following steps:

1. The Node Admin executes “Configuring a single Core Service” use
case, 3.2.4.

2. The Grid Admin executes the “Processing Certificate Requests” use
case, 3.2.6.

The Root CA certificate and the CDA certificate are considered the “public
certificates” and are placed on a networked node for distribution. Addition-
ally, the Root CA certificate should be made available for downloading from
the home page of the VO Web front-end.

3.2.4 Configuring a single Core Service

Goal
This use case sets-up a Core Service and starts it running. NB The VO Web
front-end is handled separately, in the use case “Configuring the VO Web
front-end” below.

Actors
The Node Admin. (This role could be played by the Grid Admin operating
on the particular core node for a service.)

Interface Used
Command-line programs.

Success Scenario
Private key for this service installed and secured. Operating characteristics

24

of the service defined in appropriate properties file. Public key certificate
for this service installed.

Pre-conditions
The core service is not already running.

Post-conditions
The core service is configured and running.

Trigger for
This use case triggers 3.2.6 “Processing Certificate Requests”.

Basic Course of Action

1. The Node Admin creates a private key for a core service and a Certifi-
cate Signing Request by running the ’create-csr’ command, specifying
the type of the service.

2. The Node Admin sends the CSR to the operator of the Root CA. This
action triggers use case “Process-CSR”.

3. The Node Admin receives back a public key certificate for this service
from the operator of the Root CA, and installs the certificate in the
appropriate location.

4. The Node Admin configures the operation of the service by editing its
configuration file.

5. The Node Admin starts the service running.

Optional Course of Action - extending the operation of the core service

1. The Node Admin uses the existing private key for a core service to
generate another Certificate Signing Request by running the ’create-
csr’ command, specifying the type of the service.

2. The Node Admin sends the CSR to the Grid Admin. This triggers the
use case ’Process-CSR’.

3. The Node Admin receives back a public key certificate for this service
from the operator of the Root CA, and installs the certificate in the
appropriate location.

4. The Node Admin re-starts the service.

25

3.2.5 Configuring the VO Web front-end

Goal
This use case sets-up the VO Web front-end and starts it running.

Actors
The Grid Admin.

Interface Used
Command-line programs.

Success Scenario
The VO Web front-end is available for users.

Pre-conditions
The VO Web front-end is not already running. The X-VOMS database has
been initialised. The CDA service has been configured.

Post-conditions
The VO Web front-end is configured and running.

Basic Course of Action

1. The Grid Admin places the Root CA public key certificate in a location
where it can be downloaded from the VO Web home page.

2. The Grid Admin configures the VO Web front-end by specifying in
its configuration file the location of CDA private key and public key
certificate, and the passphrase for the CDA private key.

Optional step: securing the VO Web front-end using the SSL protocol

• The Grid Admin creates a private key and CSR for the VO Web
front-end. The Grid Admin converts the CSR into a public key
certificate, and creates a Java keystore file containing the private
key and public key certificate. The Grid Admin configures the
Tomcat web server to use the SSL protocol and specifies the loca-
tion of the keystore file.

3. The Grid Admin starts the Tomcat service to make the VO Web front-
end available to users.

3.2.6 Processing Certificate Requests

Goal
Generate a certificate verifying the identity of a Core Service.

26

Actors
The Grid Admin.

Interface Used
Command-line program to generate certificates. A communications channel
(e.g. email) for receiving a Certificate Signing Request and sending the
generated certificate back to the sender. If authentication of the sender is
required, an out-of-channel method (e.g. telephone) may be used.

Success Scenario
A CSR for a core service is converted into a public key certificate and sent
back to the originator of the request.

Pre-conditions
The root CA has been configured and created.

Post-conditions
A public key certificate for a service has been generated from the received
CSR.

Triggered by
This use case is triggered by The Node Admin in step 2 of the use case 3.2.4
“Configuring a Core Service”. The Grid Admin can choose to collect mul-
tiple Certificate Signing Requests (for a set of Core Services) and process
them as a batch, rather than processing each CSR as it is received.

Basic Course of Action

1. The Grid Admin receives a CSR for a core service

2. (Optional) The Grid Admin contacts the sender of the CSR to authen-
ticate this request.

3. The Grid Admin runs the “process-csr” command to convert the CSR
into a public key certificate.

4. The Grid Admin sends the certificate to the originator of the request.

Error Course of Action

1. If authentication fails in step 2 above, this use case ends. No certificate
is returned to the originator of the request.

27

3.2.7 Obtain Public Certificates

Goal
This use case allows the User to obtain the public key certificates of relevant
services from the root CA.

Actors
The User.

Interface Used
Command-line tool to access repository of service certificates. Need not
(should not) be on same machine as Root CA.

Success Scenario
The User has the public certificates of the trusted certification authorities
installed on the system, providing her a way for checking for trust in the
communication.

Pre-conditions
The certificates for the Core Services have been created by the use case
’Setting-up Core Services’.

Post-conditions
The User has the public certificates of all the security and VO Management
services.

Basic course of action

1. The User runs a command-line program to download the public cer-
tificates from the repository set up in step 3.2.3.

28

Populating the Grid With the Grid infrastructure in place, we can allow users
to register with the Grid, and add resources to the Grid. These use cases precede
the creation of VOs.

3.2.8 Sign up to Grid

Goal
Allow the user to sign up a Grid. Provide a means to request a Grid ac-
count by providing account details (username/password) and contact details
(Name, Organisation, and email address).

Actors
A prospective User.

Interface Used
VO Web Front-End.

Success Scenario
The User receives a message stating whether they have been allowed access
to this Grid or not.

Pre-conditions
The X-VOMS database must be set-up and running.

Post-conditions
The User’s account and contact details are registered in the XVOMS database.
The User and the Registration Manager share a password.

Trigger for
This use case triggers 3.2.9.

Basic course of action

1. The User provides account and contact details via the registration form
on this Grid’s VO Web page.

2. The User receives an email confirming that they have been approved
as a User of this Grid.

Alternative course of action - User is not approved

• The User receives an email stating that they have not been ap-
proved as a User of this Grid.

29

Special course of action for Grid Administrator
The Grid Admin does not need to register to join the Grid. The Grid Admin
is allowed to login with a pre-defined username and password.

3.2.9 Approve User

Goal
This use case allows the Grid Admin at the Core Site to approve a registra-
tion request by a prospective User.

Actors
Grid Admin.

Interface Used
VO Web Front-End.

Success Scenario
The Grid Admin either approves a prospective User application or rejects it.

Pre-conditions
The prospective User has submitted a requested to register in the Grid.

Post-conditions
The User’s request is approved, and their status is set to “Approved”. Alter-
natively, the User’s request is rejected,

Triggered by
This use case is triggered by 3.2.8.

Basic course of action
The Grid admin selects an applicant from the list of pending user registra-
tions. The Grid Admin uses the contact details for an applicant to get in
touch with them (e.g. by telephone or email) to confirm that they should
be allowed to join the Grid. If the Grid Admin satisfies themself that the
applicant should join the Grid, their status is set to “Approved”.

Optional course of action
If the Grid Admin recognizes a prospective User’s contact details etc, their
application can be approved immediately without any further communica-
tion. Alternatively, the Grid Admin may require a more elaborate proof
of identity, such as checking the applicant’s credentials in person, and/or
having them vouched for by someone trusted by the Grid Admin.

30

3.2.10 Sign in to VOWeb front-end

Goal
Allow a registered User to login to this Grid.

Actors
Any user (User, Grid Admin or Site/Resource Admin).

Interface Used
VO Web Front-End.

Success Scenario
The actor is logged-into this Grid.

Pre-conditions
The actor has been approved to use this Grid.

Post-conditions
The actor has access to the VO Web functionality which is described in the
following use cases.

Basic course of action
The actor enters their username and password. If these details match in the
X-VOMS database, and the actor’s has been approved, they are presented
with access to the VO Web functionality.

Execution Order
This use case needs to be executed successfully before an actor can execute
any of the following use cases. This use case has its inverse in §3.2.12.

3.2.11 Remove User from Grid

Goal
Allow a Grid Admin to remove a registered user from this Grid and stop all
of their running jobs.

Actors
Grid Admin

Interface Used
VO Web Front-End.

Success Scenario
The User can no longer login to the Grid. The User’s login is disabled.
User contact details are kept in the X-VOMS database for a time. The User

31

is removed from membership of any VOs they have joined. The User is
kept as the owner of any VOs they have created; this merely serves as a
placeholder.

Pre-conditions
The VO Web front-end must be running. The User must be registered and
approved.

Post-conditions
The User is no longer registered in this Grid. The X-VOMS database con-
tains no references to the User’s account or contact details.

Basic course of action
The Grid Admin selects a user from the list of approved users in the Grid.
There is an option to remove the user from the Grid. When the Grid Ad-
min performs this operation, the system performs the actions described in
§3.2.13

3.2.12 Leave Grid

Goal
This use case allows a registered User to remove themself from the X-
VOMS database.

Actors
User

Interface Used
VO Web Front-End.

Success Scenario
The User can no longer login to the Grid. The User’s account and contact
details have been removed from the X-VOMS database.

Pre-conditions
The X-VOMS database must be running within the domain and the User
must have already registered.

Post-conditions
The User is no longer registered with the X-VOMS database. The X-VOMS
database contains no references to the User’s account or contact details.

Basic course of action
The User goes to their Account Maintenance page on the VO Web interface

32

and selects the option ’Leave Grid’. They are prompted for their password;
if they supply the correct password, their account is disabled. An e-mail
is sent to the User confirming that their account has been removed. The
system then performs the actions described in §3.2.13.

3.2.13 System removes user

Goal
This use case provides the common steps needed for removing a user from
the Grid.

Actor
The X-VOMS system.

Basic course of action
The system performs the following steps:

1. The user’s status is changed to ’deleted’ in the X-VOMS database. The
user can no longer sign-in to the VOWeb front-end.

2. The system revokes all XOS-Certificates issued to the user. The user
can no longer assert their identity in the Grid, so they can no longer
submit jobs, login to nodes with the “xos-ssh” command, or start an
interactive job.

3. The AEM system stops all of the user’s running jobs, and cancels any
job reservations they have. The user can no longer use any CPU re-
sources in the Grid.

4. The system informs the XtreemFS system to delete all XtreemFS vol-
umes owned by the user. The user can longer use the XtreemFS
filesystem.

5. The user is removed from any VOs that they are a member of. See use
case 3.4.4.

3.2.14 Change Password

Goal
Allows a registered User to change their password.

Actors
Any actor.

Interface Used
VO Web Front-End.

33

Success Scenario
The Actor has changed their password.

Pre-conditions
The X-VOMS database must be running within the domain and the User
must have already registered.

Post-conditions
The User’s password for accessing the VO web front end is changed.

Basic course of action
The Actor goes to their Account Maintenance page on the VO Web inter-
face and selects the option ’Change Password’. They are prompted for their
existing password. If they supply this correctly, they are prompted to pro-
vide a new password, which is then requested a second time for verification.
If these two passwords match, the Actor’s password is changed to the new
one.

3.2.15 Register RCA

Goal
This use case registers RCAs with the underlying Grid infrastructure. It
precedes any VOs established later.

Actors
The Resource Admin (Site Admin).

Interface Used
Registration Manager API.

Success Scenario
The RCA is registered in the XVOMS database. The Resource Admin and
the X-VOMS database share a password for managing the RCA.

Pre-conditions
The Registration Manager must be set up and running already.

Post-conditions
A new entry on the registered RCA in the pending requests list.

Basic course of action
The Resource Admin uses the VO Web page to enter the details (description,
access point address) on the RCA to be registered.

34

3.2.16 Approve RCA

Goal
This use case allows the Grid Admin to approve a request by an RCA Admin
to join the Grid.

Actors
The Grid Admin.

Interface Used
Root CA API.

Success Scenario
The RCA Admin’s request is approved/rejected and the root CA is informed.

Pre-conditions
A request by the RCA Admin is pending.

Post-conditions
The RCA appears in the list of the available RCAs, and can be used by the
VO and Resouce Admins.

Basic course of action
The Grid Admin uses the VO Web page to see the list of currently pending
RCAs to be approved. The Grid Admin then selects the items on the list and
approves or rejects the RCA registration requests.

Alternative course of action
The Grid Admin processes the certificate request for the RCA as per 3.2.6
“Processing Certificate Requests”.

3.2.17 Confirm RCA Approval

Goal
In this use case, the Grid Admin informs the RCA Admin of the result of
the request to register the RCA in the Grid.

Actors
The Grid Admin and the Resource Admin (Site Admin).

Interface Used
The Web or command-line interface.

Success Scenario
The Site Admin at the RCA is informed of the result.

35

Pre-conditions
The request by the Resource Admin was approved/disapproved.

Post-conditions
The RCA Admin is aware that the RCA is usable by the VO and Resource
Admins.

Basic course of action
By the Grid Admin’s approval of the RCA in the VO Web page, the sys-
tem automatically sends an e-mail to the Resource Admin, notifying of the
registration approval decision.

Alternative course of action
The Grid Admin communicates the signed RCA certificate for the Resource
Admin.

3.2.18 Register Resource with RCA

Goal
This use case registers machines (resource nodes) with a RCA running
within the administrative domain of the machines. It precedes any VOs
established later.

Actors
The Resource Admin.

Interface Used
Web interface or RCA command-line interface.

Success Scenario
The machine is registered with the RCA including its details, such as the
services running on it and its computational characteristics (CPU, memory,
storage capacity etc.).

Pre-conditions
The RCA must be set up and running within the domain.

Post-conditions
The resource’s details have to appear on the list of the resources pending for
registration.

Basic course of action
The Resource Admin runs the “rca_apply” command from the command
line of the resource to be registered. The command collects the information
on the resource and sends them to the RCA.

36

3.2.19 Approve the Resource Registration

Goal
This use case allows the machine to obtain the machine certificates and thus
to be used within the grid. It precedes any VOs established later.

Actors
The Resource Admin (Site Admin).

Interface Used
Web interface and RCA command-line interface.

Success Scenario
The machine becomes available to be used as a resource in any VOs created
in the later phases.

Pre-conditions
A request for the resource must be pending at the RCA.

Post-conditions
The Resource Admin can obtain machine identity and machine attribute
certificates for the resource.

Basic course of action
The Site Admin uses the “rca_list_pending” command to obtain the
list of the resources currently pending for registration approval. For the
resources to be approved, the Site Admin then runs the “rca_confirm”,
providing the ID of the resource to be approved as a parameter.

3.2.20 Obtain the resource identity certificate

Goal
This use case provides with the machine identity certificate that the services
can use as trust credentials.

Actors
The Resource Admin.

Interface Used
RCA API.

Success Scenario
The machine obtains the machine identity certificate and the machine at-
tribute certificate to identify and describe the resource.

37

Pre-conditions
The resource must be registered and approved at the RCA.

Post-conditions
The resource must be able to identify itself towards other resources and
services.

Basic course of action
The Resource Admin issues the “rca_request” command, which cre-
ates the machine’s private key, has the machine identity certificate signed
by the RCA, and installs it.

Error Course of Action If the resource is still pending registration or has been
rejected in step 3.2.19, this use-case ends. The resource cannot obtain the
machine certificate.

3.2.21 Update Registered Resource information in RCA

Goal
This use case updates the information on the node in the RCA database.

Actors
The Resource Admin.

Interface Used
Web interface or RCA command-line interface.

Success Scenario
The RCA contains the up-to-date information on the services running on the
node and its computational characteristics (CPU, memory, storage capacity
etc.).

Pre-conditions
The resource is registered with the RCA, and caracteritistics of the resource
have changed.

Post-conditions
The resource will be able to obtain the resource attribute certificate with
up-to-date information.

Basic course of action
The Resource Admin runs the “rca_update” command from the com-
mand line of the resource to be registered. The command collects the infor-
mation on the resource and sends them to the RCA.

38

3.2.22 Remove Resource from RCA

Goal
This use case removes a machine (node) already registered with its domain
RCA from the RCA database.

Actors
The Resource Admin (Site Admin).

Interface Used
RCA API.

Success Scenario
The machine is no longer registered with the RCA and its details are re-
moved from the RCA.

Pre-conditions
The RCA must be set-up and running within the domain. The machine must
be registered with the RCA.

Post-conditions
Any request for obtaining machine identity or machine attribute certificates
must fail.

Basic course of action
The Resource Admin can use the “rca_list_registered” to obtain
the list and information on the currently registered resources. The Resource
Admin then uses the “rca_remove” command, providing the ID of the
resource to be removed as a parameter.

3.3 VO Creation

The VO creation capability facilitates the setting-up of VOs, their attributes and
their policies. It is not concerned with populating VOs with users and resources,
which is considered to be part of the VO evolution capabilities discussed later.
Figure 10 represents the VO creation capability, which consists of a single use
case described below.

3.3.1 Create VO

Goal
This use case creates a VO. It marks the starting point of the VO lifecycle.

39

Core Site User Site

User

Create VO

Add VO Attributes

VO

Manager

Figure 10: The VO Creation Phase.

Actors
A User.

Interface Used
VO Web Front-End or VO Manager native API.

Success Scenario
A new VO is created for the user.

Pre-conditions
The VO has not been created.

Post-conditions
The VO is created with a unique identifier (GVID). The user is recorded as
Owner and Admin of the VO.

Basic course of action
The User selects the ’Create VO’ option and is prompted to supply a name
for the VO and a description. Submitting these details will create the VO
and store its details in the X-VOMS database.

3.3.2 Add VO Attributes

Goal
This use case defines the various VO attributes, such as groups and roles
within those groups.

Actors
The VO owner.

40

Interface Used
VO Web Front-End.

Success Scenario
User has added some extra attributes to the VO.

Pre-conditions
The VO has been created.

Post-conditions
The VO has extra attributes defined, from the set comprising groups and
roles. (NB Attributes can be added/changed at any later point in the VO
lifecycle.)

Basic course of action
The VO owner adds groups and roles to a VO.

3.4 VO Evolution

The VO evolution capabilities facilitate the management of users, resources and
policies within VOs. The following sections describe the various capabilities
grouped by users, resources and policy management.

3.4.1 User Management

This capability is related to the management of users as shown in Figure 11. User
management includes the following use cases.

Core Site User Site

User

Look-Up VO List

Request to Join a VO

VO

Manager

User Site

VO Administrator
Request to Remove from VO

Approve User Request

Remove User from VO

Figure 11: VO Evolution - User Management.

41

3.4.2 Request to Join VO

Goal
Allow a User to request joining a VO.

Actors
The User.

Interface Used
VO Web Front-End.

Success Scenario
The user has submitted a request to join a VO.

Pre-conditions
The VO has been created, it has as a minimum a GVID.

Post-conditions
The User’s request is queued for approval by the VO Administrator.

Basic course of action
The User looks at the list VOs in the Grid. The User selects a VO and
submits a request to join that VO.

Triggers
This action triggers use case §3.4.3, “Approve User Request to Join VO”.

3.4.3 Approve User Request to Join VO

Goal
Allow a VO Administrator to approve/reject of a User’s request to join a
VO.

Actors
The VO Admin.

Interface Used
VO Web Front-End.

Success Scenario
The VO Admin has approved or rejected a User’s application to join one of
the VOs owned by the VO Admin.

Pre-conditions
The User’s request has been submitted and is part of the queue of requests
to join a VO waiting for approval.

42

Post-conditions
The User’s request is approved or denied. If approved, the User is added as
a member of the VO.

Triggered-by
This use case is triggered by §3.4.2.

Basic course of action
The VO Admin looks at the list of pending requests to join VOs that they
own. The VO selects a request and can either approve or reject it.

3.4.4 Remove User from VO

Goal
Allow the VO Admin to remove a User from a VO owned by the VO Admin.

Actors
The VO Admin.

Interface Used
VO Web Front-End.

Success Scenario
The User has been removed from the VO

Pre-conditions
The VO contains one or more users, in addition to the VO Admin.

Post-conditions
The User is no longer a member of the VO. The User’s association with the
VO has been removed from the X-VOMS database.

Basic course of action
The VO Admin selects a VO that they own from a list. This shows the VO
membership, i.e. the Users who are members of that VO. The VO Admin
selects one of the Users and selects an option to remove them from the VO.
The system then follows the steps in use case §3.4.5

3.4.5 Common steps for removing a user from a VO

Actors
The X-VOMS system

43

Basic course of action
The system performs the following actions:

1. The user is removed from the relevant VO structure in the X-VOMS
database. The user can no longer create an XOS-Certificate for this
VO.

2. The system revokes the user’s XOS-Certificate(s) which reference this
particular VO. The user can no longer assert their membership of this
VO.

3. The System informs the AEM to stop any jobs which the user has
submitted to this VO. The user stops using resources allocated to this
VO.

4. The system informs the AEM to cancel job reservations the user has
for this VO. The user can no longer reserve any resources allocated to
this VO.

3.4.6 User leaves VO

Goal
Allow a User to leave a VO they have joined.

Actors
The User.

Interface Used
VO Web Front-End.

Success Scenario
The User has left the VO and is no longer a member of it.

Pre-conditions
The User is a member of the VO.

Post-conditions
The User is no longer a member of the VO. The User’s association with the
VO has been removed from the X-VOMS database.

Basic course of action
The User selects a VO from the list of VOs that they have joined. The user
selects an option to remove themself from this VO.

The system then performs the actions in use case §3.4.5

44

3.4.7 Resource Management

This capability is related to the management of resources as shown in Figure 12.
Resource management includes the following use cases.

Core Site

VO

Manager

User Site

VO Administrator

Approve RCA Request to

Join a VO

Remove RCA from VO

RCA Server

Resource Site

Resource Administrator

A
d

d
 R

e
s
o

u
rc

e
 t
o

 V
O

R
e

m
o

v
e

 R
e

s
o

u
rc

e

fr
o

m
 V

O

Request to Add RCA to VO

Request to Remove RCA from VO

Look-Up VO List

S
p

e
c
if
y
 N

o
d

e
 P

o
lic

y
Node

 Figure 12: VO Evolution - Resource Management.

Request to Add RCA to VO

Goal
Allow a Site Administrator to join the RCA they control to an existing VO.

Actors
The Resource Admin (Site Admin).

Interface Used
VO Web Front-End or VO Manager native API.

Success Scenario
The Site Administrator’s request is queued for approval by the VO Admin-
istrator.

Pre-conditions
The VO exists, and the RCA has been registered and approved.

45

Post-conditions
The request must appear on the list of pending requests.

Basic course of action
The Site Administrator uses the Web interface to list known and active VOs.
Selecting certain VOs, the Site Administrator can choose to post a request
for the RCA joining a VO.

Approve RCA Request to Join VO

Goal
The Site Administrator’s request to join a RCA to a VO is approved or
rejected.

Actors
The VO Admin.

Interface Used
VO Web Front-End or VO Manager native API.

Success Scenario
The request is approved or denied. If the request is approved, RCA is noti-
fied of the change using RCA’s native API.

Pre-conditions
The RCA is registered with this Grid. A request to join a RCA to a VO is
queued waiting for approval.

Post-conditions
If approved, the RCA must allow the registered resources to join the VO.

Basic course of action
The VO Admin uses the Web interface to check for pending requests. Find-
ing the request for an RCA to join the VO, the VO Admin can approve the
request or reject it.

Remove RCA from VO

Goal
This use case represents the removal of a RCA from a VO.

Actors
The VO Admin.

46

Interface Used
VO Web Front-End or VO Manager native API.

Success Scenario
The RCA is removed from the VO, and RCA is notified of the change using
RCA’s native API. Any resources registered in the RCA that are members
of the VO will also be removed from the VO.

Pre-conditions
The RCA is a member of the VO.

Post-conditions
The resources must not be able to join the VO or renew their VO machine
attribute certificates.

Basic course of action
The VO Admin uses the Web interface to list the RCAs contributing re-
sources to the VO, and selects the RCA removal.

Request to Remove RCA from VO

Goal
In this use case, the Site Admin of the RCA request to remove their RCA
from a VO.

Actors
The Resource Admin (Site Admin).

Interface Used
VO Web Front-End or VO Manager native API.

Success Scenario
The RCA is removed from the VO.

Pre-conditions
The RCA is a member of the VO.

Post-conditions
The resources handled by the RCA must not be able to join the VO.

Basic course of action
The Resource Admin uses the Web interface to request the RCA’s removal
from the VO.

47

Approve RCA Request to Remove VO

Goal
The Site Administrator’s request to remove a RCA from a VO is approved
or rejected.

Actors
The VO Admin.

Interface Used
VO Web Front-End or VO Manager native API.

Success Scenario
The request is approved or denied. If the request is approved, RCA is noti-
fied of the change using RCA’s native API.

Pre-conditions
The RCA is registered with this Grid and is a member of the VO. A request
to remove a RCA from a VO is queued waiting for approval.

Post-conditions
If approved, the resources handled by the RCA must not be able to join the
VO or renew their VO machine attribute certificates.

Basic course of action
The VO Admin uses the Web interface to check for pending requests. Find-
ing the request for an RCA to remove the VO, the VO Admin can approve
the request or reject it.

Add Resource to VO

Goal
This use case allows a site administrator to offer a resource for use in a VO.

Actors
The Resource Admin (Site Admin).

Interface Used
RCA Web Front-End or RCA’s command-line front-end.

Success Scenario
The resource is registered with the VO and can obtain the machine attribute
certificate.

48

Pre-conditions
The RCA is a member of the VO and the resource is currently not registered
with the VO.

Post-conditions
The resource must be capable of obtaining the VO machine attribute certifi-
cate.

Basic Course of Actions
The Resource Admin who owns or maintains the node issues the rca_resource_vo
a console command, which uses the RCA Client API to obtain the machine
attribute certificate.

Obtain the resource’s VO credential

Goal
This use case allows a resource administrator to have the resource use in a
VO.

Actors
The Resource Admin.

Interface Used
RCA’s command-line front-end.

Success Scenario
The Resource Admin obtains the machine attribute certificate on the rele-
vant resource that can be installed and used as the credential for the resource
in the VO.

Pre-conditions
The RCA is a member of the VO and the resource is registered with the VO.

Post-conditions
The resource must be capable of providing the VO credential when needed
to contribute to the VO. Basic Course of Actions
The Resource Admin who owns or maintains the node issues the rca_resource_vo
c console command, which uses the RCA Client API to obtain the machine
attribute certificate.

49

Remove Resource from VO

Goal
This use case allows a site administrator to remove a resource from a VO.

Actors
The Resource Admin (Site Admin).

Interface Used
RCA Web Front-End or RCA’s command-line front-end.

Success Scenario
The resource is no longer registered with the VO.

Pre-conditions
The RCA is a member of the VO and the resource is currently registered
with the VO.

Post-conditions
Any request for obtaining the VO machine attribute certificate must fail.

Basic Course of Actions
The Resource Admin who owns or maintains the node issues the rca_resource_vo
r console command, which uses the RCA Client API to obtain the machine
attribute certificate.

Specify Node Policy

Goal
This use case allows a site administrator to specify the security policies
related to the VO at each of their resources.

Actors
The Resource Admin (Site Admin).

Interface Used
Resource Policy Management Tool.

Success Scenario
The resource policy is updated with the VO policy.

Pre-conditions
The resource is in the domain of the Site Admin.

Post-conditions
Any policy decisions must take into account the policy.

50

3.4.8 VO Policy Management

This capability is related to the management of VO Policies as shown in Figure
13. VO policy management includes the following use cases.

Core Site

VO

Manager

Resource Site

Resource Administrator

Add a Resource VO Policy

Remove a Resource VO Policy

Modify a Resource VO Policy

Figure 13: VO Evolution - VO Policy Management.

Modify VO Policy

Goal
This use case concerns the modification of VO policies already present in
the VOPS.

Actors
The Resource Admin (Site Admin).

Interface Used
VOPS PAP.

Success Scenario
Access to particular resource is changed (eihter approved by possibly re-
laxed rule) or denied (by adding new constraints) for some users.

Pre-conditions
The resource is in the domain of the Site Admin and a VO policy exists for
that resource.

Post-conditions
The VO policy is updated for the particular resource.

51

Add VO Policy

Goal
This use case concerns the addition of new of VO policies.

Actors
The Resource Admin (Site Admin).

Interface Used
VOPS PAP.

Success Scenario
Access to the resource is constrained for particular users.

Pre-conditions
The resource is in the domain of the Site Admin.

Post-conditions
The VO policy is created for the new resource.

Delete VO Policy

Goal
This use case concerns the deletion of a resource’s VO policy in the VOPS.

Actors
The Resource Admin (Site Admin).

Interface Used
VOPS PAP.

Success Scenario
Constraints on VO level are reduced enabling more users to contact partic-
ular resource.

Pre-conditions
The resource already has a VO policy in the VOPS.

Post-conditions
The resource VO policy is deleted from the VOPS.

3.5 VO Operation
Here, we discuss the capabilities preceding full VO operation, which we call VO
Operation capabilities. These are divided into user and resource capabilities.

52

3.5.1 Users

The VO Operation for users capabilities are shown in Figure 14. They consist of
the following cases.

Core Site User Site

User

VO

Manager Obtain XOS Certificate for the User Via CDA Client

VO Web

Frontend Obtain XOS Certificate for the User Via VO Web Front End

Figure 14: The VO Operation Phase (Users).

3.5.2 Obtain XOS Certificate for the User via VO Web Front-end

Goal
This use case allows a User to obtain an XOS certificate from the VO Web
Front-End of the CDA Server.

Actors
The User.

Interface Used
VO Web Front-End.

Success Scenario

Pre-conditions
The User is already registered in the Grid.

Post-conditions
The User has an XOS certificate.

3.5.3 Obtain User XOS-Certificate from the CDA server

Goal
This use case allows a User to obtain an XOS certificate from the native API
of the CDA Server and using a CDA Client.

53

Actors
The User.

Interface Used
CDA client command-line program. CDA server uses CDA Native API.

Success Scenario
The user receives an XOS Certificate containing their public key, Grid iden-
tity, and VO attributes.

Pre-conditions
The User is already registered in the Grid.

Post-conditions
The User has an XOS certificate. The CDA server has a record of the certifi-
cate’s serial number, expiry data, and the global identifier which requested
it.

Basic course of action
The user invokes the “get-xos-cert” command.

1. The user invokes the “get-xos-cert” command, specifying the VO and
primary VO Group.

2. The user inputs their Grid login details (username and password from
§3.2.8) to the CDA client, which authenticates with the CDA server.

3. The CDA client creates a new private key, unless the user has specified
the use of an existing private key. The CDA client sends a Certificate
Signing Request to the CDA server, containing their public key.

4. The CDA server returns to the user an XOS-Certificate containing the
user’s identity, their public key, and their VO attributes, all signed by
the CDA’s private key. The CDA server creates a record of this certifi-
cate, containing its serial number, expiry date, and user global identi-
fier (GUID).

5. The CDA client verifies the XOS-Certificate; if successful, it outputs
the XOS-Certificate.

3.5.4 Resources

The VO Operation for resources capabilities are shown in Figure 15. They consist
of the following cases.

54

RCA

Server

Resource Site

Resource Administrator

VO Web

Frontend

O
b

ta
in

 A
tt
ri
b

u
te

 C
e

rt
if
ic

a
te

 f
o

r
th

e

R
e

s
o

u
rc

e
 V

ia
 R

C
A

 W
e

b
 F

ro
n

t
E

n
d

O
b

ta
in

 A
tt
ri
b

u
te

 C
e

rt
if
ic

a
te

 f
o

r
th

e
R

e
s
o

u
rc

e
 V

ia
 R

C
A

 S
e

rv
e

r
A

P
I

Figure 15: The VO Operation Phase (RCAs).

Obtain Attribute Certificate for the Resource via RCA Web Front-end

Goal
This use case allows a Resource Admin to obtain an attribute certificate
from the RCA Web Front-End of the RCA Server.

Actors
The Resource Admin.

Interface Used
RCA Web Front-End.

Success Scenario
The resource has an attribute certificate.

Pre-conditions
The resource is already registered in the Grid.

Post-conditions
The Resource Admin must be capable of installing the up-to-date certifi-
cates.

55

Obtain Attribute Certificate for the Resource via console commands

Goal
This use case allows a Resource Admin to obtain an attribute certificate
from the RCA Server’s API.

Actors
The Resource Admin.

Interface Used
RCA command-line utilities

Success Scenario
The resource has an attribute certificate.

Pre-conditions
The resource is already registered in the Grid.

Post-conditions
The Resource Admin must be capable of installing the up-to-date certifi-
cates.

Basic Course of Actions
The Resource Admin who owns or maintains the node issues the rca_request
console command, which uses the RCA Client API to obtain the machine
attribute certificate.

3.6 VO Termination
The VO termination capability is concerned with the termination of VOs. This
capability is shown in Figure 16. The capability consists of the following use
cases.

Find and Delete VO Policies

Goal
In this use case, the VO Admin finds and deletes the VO policies for the VO
being terminated.

Actors
The VO Admin.

Interface Used
VOPS API.

56

Core Site

VO

Manager

User Site

VO

Administrator

Find and Delete VO Users
RCA Server

Resource Site

Inform Removal of RCA

from VO

D
e

le
te

 A
tt
ri
b

u
te

 C
e

rt
if
ic

a
te

Node

C
le

a
n
-U

p
 S

ta
te

VOPSFind and Delete VO Policies

Find and Delete VO RCAs

and Resources

Job Manager

Reservation

Manager

Find and Delete

VO Jobs

Find and Delete

VO Jobs

Figure 16: The VO Termination Phase.

Success Scenario
There are no policies for the VO. Jobs can not run in the deleted VO since
it does not exist any more.

Pre-conditions
The VO has policies associated with it in the VOPS.

Post-conditions
The relevant VO policies are deleted from the VOPS.

Find and Delete VO Users

Goal
In this use case, the VO Admin finds and deletes the VO users for the VO
being terminated.

Actors
The VO Admin.

Interface Used
VO Manager API or VO Web Front-End.

Success Scenario

57

Pre-conditions
The VO has some users.

Post-conditions
The relevant VO users are deleted from the VO Manager.

Find and Delete VO RCAs

Goal
In this use case, the VO Admin finds and deletes the VO RCAs for the VO
being terminated.

Actors
The VO Admin.

Interface Used
VO Manager API or VO Web Front-End.

Success Scenario

Pre-conditions
The VO has some RCAs registered.

Post-conditions
The relevant VO RCAs are deleted from the VO Manager.

Delete Attribute Certificate

Goal
In this use case, RCA deletes the attribute certificate of any resources be-
longing to the VO being terminated.

Actors
RCA

Interface Used

Success Scenario

Pre-conditions
The resource is in the VO and has an attribute certificate.

Post-conditions
The resource’s attribute certificate is deleted.

58

Inform Removal of RCA from VO

Goal
In this use case, the VO Manager informs the RCA that the RCA has been
removed from the VO being terminated.

Actors
VO Manager

Interface Used
RCA API

Success Scenario
The RCA is informed of its removal from the terminated VO.

Pre-conditions

The RCA is active in the VO. Post-conditions
The RCA should no longer be able to provide any activities in the VO.

Find and Delete VO Jobs

Goal
In this use case, the VO Admin finds and deletes all the active jobs in the
VO being terminated.

Actors
VO Admin

Interface Used
Job Manager API

Success Scenario
All jobs are terminated in the relevant VO.

Pre-conditions

Post-conditions
No job must exist in the VO.

59

Find and Delete VO Job Reservations

Goal
In this use case, the VO Admin finds and deletes all the active job reserva-
tions in the VO being terminated.

Actors
VO Admin

Interface Used
Job Reservation API

Success Scenario
All job reservations are deleted for the relevant VO.

Pre-conditions

Post-conditions
No reservation for the job must exist in the VO.

Clean-up State

Goal
In this use case, the RCA cleans-up the internal state relevant to the termi-
nated VO.

Actors
RCA

Interface Used
RCA API

Success Scenario

Pre-conditions

Post-conditions
The internal state related to the terminated is cleaned.

60

Figure 17: Monitoring overview.

3.7 Monitoring and Auditing Capabilities
Figure 17 illustrates the interactions between services, actors and the monitoring
system.

Monitoring provides a means for interested parties to get notified and act upon
via callback to different changes that can happen in e.g. infrastructure, services,
jobs, resources. In order for interested party to exploit Monitoring it must make
a monitoring request which describes what to monitor and when to trigger a call-
back. The description are basically monitoring rules which are interpreted by rules
engine Monitoring uses.

3.7.1 Monitoring capabilities

Monitoring resource metrics.

Goal. This use case allows administrator getting notified when particular re-
source metric value changes or reaches certain state. Examples of resource
metrics are CPU utilization, memory usage, network traffic.

Actors. Any type of administrator.

Interface Used. Monitoring API or command-line tools.

61

Success scenario. Administrator gets notified on metrics value changes.

Pre-conditions. The User is a member of the VO.

Post-conditions. Callback gets triggered on specified resource metric change.

Basic Course of Action.

• The administrator constructs monitoring rule which describes metrics
to monitor and uses monitoring API or admin_monitoring_rules
command-line tool.

• Services interested in consuming resource metrics use the Monitoring
API, passing a rule that describes the metrics to monitor.

Monitoring events.

Goal. This use case allows administrator to get notified when particular event
occurs. The user can determine how the occurrence of the event is detected
which includes parsing of log files and debug information or by notification
issued by other services.

Actors. Any type of administrator.

Interface Used. Monitoring API or command-line tools.

Success scenario. Administrator gets notified on events.

Pre-conditions. The User is a member of the VO.

Post-conditions. Callback gets triggered on specified event occurrence.

Basic Course of Action.

• The administrator constructs monitoring rule which describes events
to monitor, and uses monitoring API or admin_monitoring_rules
command-line tool.

• The administrator uses monitoring API in a custom client program to
subscribe to the events.

62

Monitoring jobs.

Goal. This use case allows administrator to monitor job related information. Dif-
ferent job metrics can be monitored e.g. status, submission time, exit status,
but also broader job information can be captured which includes number of
jobs currently running on a node or over several nodes.

Actors. Any type of administrator.

Interface Used. Monitoring API or command-line tools.

Success scenario. Administrator gets notified on job metrics changes.

Pre-conditions. The User is a member of the VO.

Post-conditions. Callback gets triggered on specified job metrics change.

Basic Course of Action.

• The administrator constructs monitoring rule which describes jobs and
job metrics to monitor, and uses monitoring API or admin_monitoring_rules
command-line tool.

• The administrator uses monitoring API to add monitoring rule.

Monitoring nodes.

Goal. This use case allows administrator to do monitoring of the nodes. Example
of what can be monitored on the node is state of the node and containers
running on the node.

Actors. Any type of administrator.

Interface Used. Monitoring API or command-line tools.

Success scenario. Administrator gets notified on node metrics changes.

Pre-conditions. The User is a member of the VO.

Post-conditions. Callback gets triggered on specified node metrics change.

Basic Course of Action.

• The administrator constructs monitoring rule which describes node
and node metrics to monitor and uses monitoring API or admin_monitoring_rules
command-line tool.

• Services interested in consuming resource metrics use the Monitoring
API, passing a rule that describes the metrics to monitor.

63

VO policy violation monitoring.

Goal. This use case enables the notification of policy violations. This is a pre-
requirement for enforcing certain policy types in the XtreemOS system ser-
vices.

Actors. Any type of administrator.

Success scenario. Administrator gets notified on VO policy violation.

Interface Used. Monitoring API or command-line tools.

Basic Course of Action.

• Monitoring reads VO policies from VOPS and construct monitoring
rules based on those policies.

• Interested components e.g. AEM or administrators subscribes to the
notification of VOPS policies violations using monitoring API or subscribe
command line tool.

Pre-conditions. The User is a member of the VO.

Post-conditions. Callback gets triggered when VO policy is violated.

3.7.2 Auditing capabilities

Archiving monitored data.

Goal. This use case allows that collected monitoring data is archived in historical
database.

Actors. Any type of administrator.

Interface Used. Auditing API or command line tools.

Success scenario. Monitoring data is archived in historical database.

Pre-conditions. Monitoring data is collected.

Post-conditions. Collected monitoring data is stored in historical database.

Basic Course of Action.

• The administrator constructs auditing rule which describes what mon-
itoring data to store, and uses auditing API or admin_auditing
command-line tool.

• The administrator uses auditing API to add auditing rule.

64

Securing monitored data.

Goal. This use case allows that collected monitoring data is secured using en-
cryption or is access protected.

Actors. Any type of administrator.

Interface Used. Auditing API.

Success scenario. Monitoring data is protected form unauthorized access.

Pre-conditions. The Auditing service and its archive are set up.

Post-conditions. Any events collected from the monitor is archived in a secure
database.

Basic Course of Action. The administrator edits the configuration files of the
Auditing Service to use the machine’s private key or the service’s private
key.

Identifying failed user logins.

Goal. This is a specific use case which allows that failed user logins such as user
attempting to submit a job with an invalid user certificate to be identified
and stored in security log.

Actors. Any type of administrator.

Interface Used. Any interface for user interaction.

Success scenario. Failed user login is identified and archived in historical database.

Pre-conditions. User attempted to login with invalid user certificate.

Post-conditions. Failed login event details are archived in historical database.

Querying historical database.

Goal. This use case allows querying historical database to retrieve information
that happened in the past.

Actors. Any type of administrator.

Interface Used. Auditing API or command-line tools.

Success scenario. Administrator gets queried records from historical database.

65

Pre-conditions. The administrator is a member of the VO.

Post-conditions. Historical data is retrieved.

Basic Course of Action. The administrator uses Auditing API or auditing_query
command-line tool to obtain the historical data.

VO state report generation.

Goal. This use case allows generation of detailed report about VO state in a
period of time.

Actors. Any type of administrator.

Interface Used. Auditing API or command-line tools.

Success scenario. Administrator gets VO state report.

Pre-conditions. The user is a member of the VO.

Post-conditions. VO state report is generated.

Basic Course of Action. The administrator issues generate_auditing_report
command-line tool to obtain the historical data output.

Node state report generation.

Goal. This use case allows generation of detailed report about state of a particular
node in a period of time.

Actors. Any type of administrator.

Interface Used. Auditing API or command-line tools.

Success scenario. Administrator gets node state report.

Pre-conditions. The user is a member of the VO.

Post-conditions. Node state report is generated.

Basic Course of Action. The administrator uses auditing API or generate_auditing_report
command-line tool to generate node state report.

66

User behaviour report generation.

Goal. This use case allows generation of detailed report about user behaviour a
period of time.

Actors. Any type of administrator.

Interface Used. Auditing API or command-line tools.

Success scenario. Administrator gets user behaviour report.

Pre-conditions. The user is a member of the VO.

Post-conditions. User behaviour report is generated.

Basic Course of Action. The administrator uses auditing API or generate_auditing_report
command-line tool to generate user behaviour report.

67

4 The XtreemOS Trust Model

This section gives a general and brief overview of the XtreemOS trust model, first
discussed in [3], and used to integrate the different security and VO management
services by setting-up trust between them. It also concerns the setting-up of trust
between these services and users and resource providers. The main elements of
this model are shown in Figure 18.

Resource

Certification

Authority
Credential

Distribution

Authority

Root Certification

Authority

Delegatio
n

D
e

le
g

a
ti
o

n

Node

C
e

rt
if
ic

a
ti
o

n

C
e

rt
if
ic

a
ti
o

n

Other Root

Certification

Authority

Tru
st

s

User

Trusts

…
Other Root

Certification

Authority

Figure 18: The XtreemOS Trust Model.

In the following sections, we describe briefly these elements. More detail of
the trust model and its machinery are presented in a dedicated Deliverable D3.5.9
[4].

4.1 Elements of the Trust Model

The XtreemOS trust model revolves essentially around these main concepts: cre-
dentials, certification authorities, users, resources and protocols.

68

4.1.1 Credentials

Credentials are pieces of data held by the different actors that provide some form
of information required by the capability that the actor requires to perform. Cre-
dentials may or may not have been created using cryptographic means. However,
most of the credentials used represent some form or another of digital certificates
based on the X-509 standard [5]. More detail of the description of these creden-
tials will be presented in the deliverable on trust model in XtreemOS [4].

Passwords. Passwords are the simplest form of credentials created by users and
RCA administrators during the initial request for registration phase (part of the
Grid Management Capabilities) in a Grid from the Administrator. These pass-
words will be used in a password-based authentication protocol, such as the Se-
cure Remote Password (SRP) [6], to establish secure (i.e. secretised and authenti-
cated) communication channels.

Root CA Certificates. The Root CA issues identity certificates to the different
XtreemOS security and VO management services. This includes issuing certifi-
cates to subordinate authorities such as CDAs and RCAs. The certificates will
delegate trust from the Root CA to the CDAs and the RCAs. Note that a CDA
may choose to trust other Root CAs belonging to other Grids.

User Certificates. User certificates are issued by CDAs and they bind the iden-
tity of a user to his public key within a specific Grid scope. Later on, when users
become members of VOs, they are issued with attribute certificates to certify that
they are members of those VOs.

Resource Certificates. Resource certificates are identity certificates binding the
identity of a resource to its public key.

4.1.2 Certification Authorities

Certification authorities represents trust roots and subordinate trust points in the
model. Their main task is to issue digital certificates to users and resources.

The Root Certification Authority. The Root Certification Authority (root CA)
is the trust anchor for any XtreemOS-based Grid. The root CA issues identity
certificates to the core services, such as XVOMS, RCA and VOPS services. Ide-
ally, a root CA should be running on the most secured machine in the Grid, which
may even be an offline machine not connected to any network. This is because

69

compromising the root CA will result in compromising the whole tree of trust in
an XtreemOS Grid.

The Certificate Distribution Authority. The Certificate Distribution Authority
(CDA) is a subordinate of the root CA to which the root of trust is delegated. The
CDA is responsible for certifying user identities and attributes.

The Resource Certification Authority. The Resource Certification Authority
(RCA) is a subordinate of the root CA to which the root of trust is delegated. The
RCA is responsible for certifying resource identities.

4.1.3 Users

These are the users of the XtreemOS system as discussed in 2.2.

4.1.4 Resources

These are the individual machines that offer resources to the XtreemOS Grid.

4.1.5 Protocols

The final concept in the trust model is the protocols that are used to carry cer-
tificates and other data messages among the certification authorities, users and
resources in the model. We discuss briefly these protocols next.

The Online Registration Protocol. In many online registration systems, users
access a web form to enter their account details (username/password) and contact
details. To guarantee the confidentiality of their account details, the web form
will use HTTPS. This entails the applicant having to trust and accept the SSL
certificate presented by their web browser upon initiating the connection, unless
the server certificate has been signed by one of the root certificates installed in
their browser. This is an unlikely scenario in using Grids, as the widely-recognised
root certificate authorities are commercial operations and getting a SSL certificate
signed by them is expensive. The options the user is faced with are:

• They trust without question the SSL server certificate. This is not an un-
common solution, but it doesn’t give much confidence in the registration
process;

• They can import the SSL server certificate (or the certificate used to sign the
SSL server certificate) into their browser. This raises the issue of how the
user can obtain the certificates in the first place.

70

We can achieve the aim of reducing the certificate set up overhead needed with
conventional PKI-based approaches by giving the user a certificate-less method of
securely registering their details.

Here, the idea is that the user/RCA administrator (the ‘requester’) can access
the registration manager over a confidential channel by using SRP [6], a secure
password-based protocol. At this stage, the authenticity of the entities involved
does not need to be guaranteed, as there is a conventional approval step following
registration whereby the identity of the requester can be established. The reg-
istration client and manager can share the username/password for a pre-defined
registration account to establish an SRP channel. The registration client can hide
the channel username/password from the requester by automatically establishing
an SRP connection when it is invoked, rather than the user needing to provide the
username and password for the channel account. Once the SRP channel has been
established, the requester can provide their account details (username and pass-
word), and their contact details. The registration manager stores this information
in the registration database for approval by conventional (manual) means, which
we do not describe here.

The Secure Communications Protocol At the end of the first use of the SRP
protocol above, the requester has registered a shared username and password with
the registration manager. In the next step, the requester will use SRP again to
establish a secret session key with the CDA. This time, SRP will use the shared
username and password to establish the authenticity of both entities involved in
the communication. From now on, we write [A −→ B] to denote a message sent
from A to B over an SRP-secured channel. This implies that A knows it is talking
to B and vice versa and they both share a secret session key. In the following
sections, we demonstrate the use of such a secure channel to build up certificate
distribution protocols among the users/RCAs and the CDAs.

The User Certificate Distribution Protocol In this first certificate distribution
protocol, a user U aims at obtaining a root certificate and an identity certificate
from the CDA service, C:

1. [U −→ C]: CSRU

2. [C −→ U]: (< certU >SKC
, < certC >SKC

)

where CSRU is a request from the user U for the certificate signing by CDA,
< certU >SKC

is the user’s identity certificate signed by the private key of C, and
< certC >SKC

is a self-signed root certificate issued and signed by C.

71

The Resource Certificate Distribution Protocol In the second protocol, the
RCA, R, aims at obtaining a root certificate and identity certificate from CDA, C:

1. [R −→ C]: CSRR

2. [C −→ R]: (< certR >SKC
, < certC >SKC

)

where CSRR is a request from the RCA for the certificate signing by the CDA,
< certR >SKC

is the RCA’s identity certificate signed by the private key of C, and
< certC >SKC

is a self-signed root certificate issued and signed by C.

The Protocol between Machines and RCAs In general, machines need to reg-
ister with at least one local RCA securely. Because machines are operated within
the same administrative (trust) domain as their RCA, the problem of establishing
a secure channel between a machine and its RCA is resolved locally within the
domain. We do not describe here how a secure channel is obtained between a
machine and its RCA.

4.2 Setting-Up Trust
An important advantage of the XtreemOS model as outlined thus far is that it
cleanly separates user credential management from resource credential manage-
ment through the use of the CDA and RCA services. Because of this separation of
concerns, the addition or removal of users will not impose significant performance
and configuration impact on resource management in VOs, and vice versa, with
the addition and removal of resources. It also implies that the CDAs and RCAs
can easily be maintained (e.g. upgraded or exchanged) in an independent manner
as long as the format of their certificates remains compatible with each other.

The key advantage however of the XtreemOS trust model is that it facilitates
the bootstrapping of trust through using a set of offline and online processes as
described in the following sections. These processes will be described in more
detail in Deliverable D3.5.9.

4.2.1 The Registration Process

This process represents in some sense a pre-authentication process. The user or
the RCA administrator register their details over a secret (but not authenticated)
channel with the online registration manager (see the Grid Management Capabil-
ities in Section 3.2). Their details are recorded in a special database waiting for
approval by the Grid administrator. In fact, this vetting step is the only step in
the model which requires the administrator’s intervention. We consider this to
be reasonable because of the trust bootstrapping problem. As part of the user’s

72

or RCA administrator’s details, they will be allowed to choose a username and a
password shared with the registration manager. As part of this phase, individual
resources (e.g. machines) in each administrative (trust) domain can be registered
by the RCA/resource administrators with their local RCA.

4.2.2 The Secure Communications Process

The user, who already has registered in the Grid through the process of the previ-
ous section and shares with the latter a username and a secret password, proceeds
to establish a secure (i.e. secretised and authenticated) channel with the CDA.
The RCA, on the other hand, can also establish a secure channel with the root CA.
These channels will ensure that communicating parties have been mutually au-
thenticated and that they share a secret session key, which can be used to encrypt
all messages exchanged over the channel.

4.2.3 Certificate Distribution Process

The secret session key established at the end of the previous phase is used by the
users to obtain from the CDA identity and attribute certificates, which will allow
the users to enter the operational mode of the VO. Similarly, the RCAs will obtain
identity certificates from the root CA. Once the RCA is certified, it can further
issue identity certificates to all the resources it manages in its administrative do-
main.

73

5 Detailed Design of the Security and VO Manage-
ment Services

5.1 XVOMS Design
5.1.1 The XVOMS Classes

In this section, we describe the different classes constituting the design of the
XVOMS component. These are divided into the XVOMS Database classes and
the XVOMS Utility classes. In both cases, the classes implement a general inter-
face called the UtilInterface class, which allows the management of an XVOMS
session context.

The XVOMS Database Classes The XVOMS Database structure is expressed
by the entity diagram of Figure 19.

User

Resource

VO

VOGroup

VORole

0..* 0..*

1..*

0..*

1..*

0..*

0..*

0..*

0..*

1

0..*

1

RCA

1 0..*

Request

0..* 1

1

1

Figure 19: The XVOMS Database Class Diagram.

The structure consists of the following classes:

• User: This class represents the XtreemOS actors, which are the shown in
Figure 2. It is worth mentioning that the user here, depending on their role,

74

could become Grid, Resource or VO Administrators. For example, when
the user is managing the RCA, it is then considered to be the Resource
Administrator in Figure 2.

• Request: This class represents requests that the users (actors) submit to the
XVOMS system. For example, this could represent the request from a User
to join a VO as in Figure 11.

• RCA: This class represents the datatype of the RCA entity in Figure 5.

• Resource: This class represents the datatype of the Resource entities.

• VO: This class represents the datatype of the VO entities.

• VOGroup: VOs may have groups, in which case this class represents the
datatype of such groups.

• VORole: a VO may have roles, in which case this class represents the
datatype of such roles.

The above classes are related via a number of relationships, as follows:

• User and VO: This is a many-to-many association with no minimum or
maximum constraints in either direction.

• User and VOGroup: This is a many-to-many association, where a user to at
least one VOGroup within a VO, and a VOGroup may have any number of
Users.

• User and VORole: This is a many-to-many association, where a user be-
longs to at least one VORole within a VOGroup, and a VORole can have
any number of Users.

• VO and VOGroup: This is a one-to-many association, where a VO can have
multiple VOGroups, but a VOgroup can only belong to one VO.

• VOGroup and VORole: This is a one-to-many association, where a VOGroup
can have multiple VORoles, but a VOrole can only belong to one VOGroup.
There is no relationship between VOs and VORole, however, a VO may
have one general group in which all VORoles are defined.

• VO and Resource: This is a many-to-many association, where a VO can
have multiple Resources and a Resource can belong to multiple VOs.

75

• Resource and RCA: This is a many-to-one association, where a Resource
can belong to one and only one RCA. However, a RCA can provide multiple
Resources.

• User and Request: This is a one-to-many association, where a User can
have several requests but a request always belongs to one user.

• User and RCA: This is a one-to-one association, where a RCA User (i.e. the
Resource Administrator) can manage one RCA and a RCA is managed by
one User.

The XVOMS Utility Classes Figure 20 represents the class diagram of the
XVOMS component, which consists of two main classes, UserUtil and VOUtil.

+addRCA(out rca, in name, in desc, in user)

+getRCA(out rca, in name)

+updateRCA(in name, in desc)

+addRCA2VO(in rca, in vo, in user)

+removeRCA(out rca, in rca, in user)

+addAction(out action, in name)

+addGroup2User(in user, in vogroup)

+addGroup2VO(out vogroup, in vo, in des)

+addRequest(out request, in desc, in type, in targetedVO)

+addResource(out resource, in vo, in des, in rca)

+addRole2Group(out vorole, in group, in des)

+addRole2User(in user, in vorole)

+addVO(out vo, in des, in name, in owner)

+addVO2User(in user, in vo)

+getRequests(in list_of_reqs)

+getRequests(out list_of_reqs, in vo)

+getObject(out object, in name, in aClass)

+getVO(out VO, in gvid)

+getVOAttributes(out list_of_attrs, in username)

+getVOAttributes(out list_of_attrs, in user)

+getVOAttributes(out list_of_attrs, in user, in vo)

+getVOGroups(out list_of_vo_grs, in vo)

+getVORoles(out list_of_vo_roles, in vogroup)

+getVOs(out list_of_vos)

+prettyPrint(in username)

+updateGroup(in group, in des)

+updateRole(in role, in des)

+updateVO(in gvid, in des)

VOUtil

+addUser(out user, in realname, in username, in pass, in des)

+addUser(out user, in realname, in username, in pass, in des, in vorole, in actor)

+getUser(out user, in username)

+getUsers(out list_of_users, in vo)

+getUsers(out list_of_users, in vogroup)

+getUsers(out list_of_users, in vorole)

+removeUser(in user, in vorole)

UserUtil

+setSessionContext(in context)

+getSessionContext(out context)

«interface»

UtilInterface

Figure 20: The XVOMS Utility Class Diagram.

Class UserUtil provides methods for the management of users in XtreemOS
whereas class VOUtil provides methods for the management of VOs. More de-
scription of these methods will be provided in Section A.1 under the XVOMS
API.

76

5.1.2 The XVOMS Interactions

This section illustrates the processes involved in use of XVOMS via the VO web
front end. In Figure 21 the registration process for a new user is shown (use
case 3.2.8). The user registers his/her details through the VO web interface. The
Grid Administrator then inspects the request and carries out the necessary checks
of identity and authorisation, as defined for the current grid (use case 3.2.9). If
these conditions are met the Grid Administrator approves the request, otherwise
it is denied. If approved the user can then login to the VO web front end as a grid
user with the username and password previously defined (use case 3.2.10).

Figure 21: XVOMS registration.

In Figure 22 the steps for a user to join an existing VO are shown (use case 3.4.2).
In this case the request is made to the VO Admin via the VO web front end. If the
VO owner approves the request the user becomes a member of the VO.

The procedure for a user to leave a VO they had previously joined is shown in
Figure 23 (use case 3.4.6). This assumes that the user is not the VO Admin.

The deletion of an existing VO is shown in Figure 24. The deletion of a VO
requires that all the users, jobs and reservations of the VO have already been
deleted.

77

Figure 22: XVOMS join VO.

Figure 23: XVOMS leave VO.

78

Figure 24: XVOMS delete VO.

79

5.2 CDA Design
5.2.1 The CDA Classes

The cdaclient package comprises two main classes, the CDAClient class and the
PeerChecker class, as shown in Figure 25.

Figure 25: The cdaclient package.

The CDAClient class is used by clients (users) to interact with the CDA server.
It has two main purposes; to authenticate a user and to allow that user then to
send certificate requests to a CDA server. The PeerChecker calss then is used to
allow the client to authenticate the CDA server it is connecting to. A more detail
description of the methods of these two classes is provided in the section on the
CDA Client API, A.2.2.

Figure 26: The cdaserver package.

The CDA Server Classes The CDA Server consists of two classes: the main
CDA engine class called Engine, and a helper class called VOService, as shown

80

in Figure 26.
The Engine class is the main CDA engine, which is responsible for issuing

XOS certificates, whereas the VOService class is used to authenticate users before
they can use the engine. More detail of both classes is provided in the section on
the CDA Server API, A.2.3.

5.2.2 The CDA Interactions

The diagram in Figure 27 shows the interactions between the CDA client and the
CDA server. It also shows the interactions between CDA server and the X-VOMS
database.

The user invokes the “get-xos-cert” command to start the CDA client. This
prompts the user for their username and password, which are sent to the CDA
server in the authenticate request. If the user is authenticated OK, the CDA client
program creates a Certificate Signing Request with the createCSR method. The
CDA client then sends the CSR, along with the chosen primary VO and primary
VO group, to the CDA server, and receives an XOS-Cert in return. The CDA
client program then verifies this certificate.

81

Figure 27: CDA client program, “get-xos-cert”, obtains an XOS-Cert from CDA
server.

82

5.3 RCA Design
5.3.1 The RCA Classes

+getRegisteredResources()

+getPendingResources()

+getVOList()

+applyForRegistration()

+confirmRegistration()

+unregisterResource()

+getResourceStatus()

+nofityVOMembershipChange()

+setVOMembership()

RCAServer

+requestNewCertificate()

+requestAttributeCertificate()

+applyForRegistration()

+getMachineCertificateDetails()

+getMachineAttributeCertificate()

RCAClient

+createCertRequest()

+generateKeyPair()

+saveCertificate()

+savePrivateKey()

+saveVOCertificate()

+verifyCertificate()

RCAClientProcessor

+requestResourceCertificates()

+requestVOResourceCertificates()

RCAServerProcessor

+applyForResourceRegistration()

+clear()

+confirmRegistration()

+getPendingResources()

+getRegisteredResources()

+getResourceStatus()

+isRCAMemberOfVO()

+registerResource()

+setRCAMemberOfVO()

+setVOMembership()

+unregisterResource()

ResourceRegistration

1

1

1

1

1

1

Figure 28: RCA server and RCA client class diagrams.

The design of the RCA components, as depicted on the Figure 28, followed the
philosophy of separating the service’s core functionality from the front-end that
uses a specific messaging bus. The reference front-end developed for XtreemOS
uses the DIXI framework and messaging bus.

RCAServer. This is the front-end of the RCA server. It encapsulates the meth-
ods for the RCA’s functionality, implemented by the depending classes RCAServer-
Processor and ResourceRegistration. Please refer to the API section (A.3.1) for
the detailed explanation of the exposed calls.

RCAServerProcessor. The class represents the functionality of storing and ma-
nipulating the resource registration entries and query result retrieval. It also main-
tains the list of VOs that the RCA is contributing to. This is reflected in the
methods of the class.

83

RCAServerProcessor. This class implements the RCA’s core functionality, i.e.,
the capability to compose certificates for the resources, and to sign them using the
RCA’s service private key. It provides a method for each type of the certificates
that might be requested for signing by the resource (machine identity, machine
and VO attribute certificates).

RCAClient. The front-end for the service that resides on each node and provides
an interface with the RCA server. The API section (A.3.2) explains the methods
exposed by this class.

RCAClientProcessor. This class implements the functionality of the RCA client.
This includes storing, installing and retrieving the appropriate machine’s certifi-
cates, generating the machine’s key pair, and saving the result obtained through
the front-end from the RCA.

5.3.2 The RCA Interactions

The diagrams in this section present the typical processes related to the usage of
the RCA. The first one, on Figure 29, shows how the Resource Administrator
in charge of the site uses the web interface to send the registration request for
the RCA (use-case 3.2.15). The Grid Admin then learns from the web interface
about the pending registration requests, and approves the one from the resource
admin (use-case 3.2.16), and the Resource Admin gets notified of the approval
(use-case 3.2.17).

Resource (Site) Admin VO Web Grid Admin

Register RCA

Pending RCAs

Approve RCA

Grid Admin uses the web

interface to list the RCAs

pending for approval.

Registration notification

Resource Admin

Figure 29: RCA registration.

The RCA can take part in any number of VOs, effectively enabling the nodes
registered with the RCA to offer their resources to these VOs. The process of reg-
istering a RCA in a VO is shown on Figure 30. In this sequence, the Resource Ad-
min in charge of the site uses the web interface to obtain a list of the available VOs
and decides on a VO to offer the RCA to, then posts a request (use-case 3.4.7). The

84

VO Admin then sees this request as pending, and decides to approve it, making
the web application to notify the RCA of the change (use-case 3.4.7).

Resource (Site) Admin VO Web Grid AdminResource Admin VO Admin

Get VO list

VO list

Add RCA to VO

Pending RCA list

RCA

Get pending RCAs

Approve RCA

Approve adding RCA to VO

Figure 30: Registering the RCA to a VO.

It is possible to obtain a list of VOs that an RCA is contributing to by querying
for the list either from the web interface or through command line directly at the
RCA’s API. Both cases are shown on Figure 31.

85

VO Web RCAAdmin

Resource Admin,

Site Admin or

VO Admin

Get RCA's VO list

Get RCA's VO list

VO list of the RCA

VO list of the RCA

RCAAdmin

Get RCA's VO list

VO list of the RCA

Resource Admin,

Site Admin or

VO Admin

Figure 31: Querying for VOs the RCA is contributing to.

To remove an RCA from a VO, the VO Admin can either use the web interface,
which then notifies RCA of the change, or use a command line interface. As the
RCA is notified of the change, it also sends the message to the RCA Clients of
all the resources registered within the RCA to remove the VO machine attribute
certificate. This process is shown on Figure 32.

During the RCA’s lifetime, new resources then get registered with the RCA.
This process is shown on the Figure 33. The Resource Admin sets up a resource,
and sends a registration to the RCA (use-case 3.2.18), effectively creating a re-
quest that is pending. The Resource Admin in charge of the site later uses RCA
to check the list of requests currently pending, and confirms the resource (use-
case 3.2.19). At this point, the Resource Admin owning the resource can request
the machine certificates to be signed by the RCA (use-case 3.2.20).

86

VO Web RCA ServerAdmin

Site Admin or

VO Admin

Remove RCA from VO

Remove RCA from VO

RCA ServerAdmin

Resource Admin,

Site Admin or

VO Admin

RCA Client

Remove from VO

Delete VO MAC

All resources

contributing

to the VO

Remove RCA from VO

RCA Client

Delete VO MAC

All resources

contributing

to the VO

Remove from VO

Figure 32: Removing the RCA from a VO.

87

Resource Admin RCA Resource (Site) Admin

Register resource

Query pending res. list

pending res. list

Request machine certificate

New certificate info

Confirm resource

Figure 33: Registering a resource.

In the actual implementation, certain steps from the sequence on Figure 33 are
more complex, and further details are shown on Figure 34. The process assumes
that the Resource Admin uses the RCA Client to act as a local proxy service
to the RCA Server in the process of applying for registration. The line marked
as “Resource confirmed” shows the point after which the Resource Admin can
successfully request a machine certification. The certification consists of locally
creating the public and private key pair, of which the public key is sent to the RCA
server in the form of a certification request. The RCA server then uses its private
key to sign the certificate.

88

Resource Admin RCA Client

Runs on the new

node

RCA Server

rca_apply

Apply for registration

Resource (Site) Admin

rca_list_pending

resource list

Contains the new resource

rca_confirm
Resource

confirmed

rca_request

create key pair

Sign certificate

signed identity cert + MAC

installed certs info

Figure 34: A detailed sequence of registering a resource.

Once the RCA is registered to contribute to a VO, it is possible to have the
underlying resources contribute to the VO. The process to achieve that is shown
on Figure 35. The VO Admin can use the web interface to ask for a resource to
be added to the VO. Similarly, the Resource Admin can use the command-line
interface to directly contact RCA (use-case 3.4.7). RCA Server then provides to
to the RCA Client the signed machine attribute certificate with the VO identified
in the extensions (use-case 3.4.7). The Resource Admin then needs to install the
VO MAC for the resource to be actively available to the VO.

89

VO Web RCA ServerVO Admin

Add resource to VO

Add resource to VO

RCA Client

Signed VO MAC

Resource Admin

Install VO MAC

RCA Server

Add resource to VO

RCA Client

Signed VO MAC

Resource Admin

Install VO MAC

Figure 35: Adding a resource to the VO.

A similar process is involved when the node needs to be removed from the
VO, and is shown on Figure 36. Using either the web interface or the command
line, the admin can ask the RCA to remove a resource from a VO. This in effect
causes the RCA Client to be notified about the removal, and deletes the machine
attribute certificate for the VO, if installed (use-case 3.4.7).

90

VO Web RCA ServerVO Admin

Remove resource from VO

Remove resource from VO

RCA Client

Delete VO MAC

RCA ServerVO Admin

Remove resource from VO

RCA Client

Delete VO MAC

Figure 36: Removing a resource from the VO.

When the resource needs to be removed as per use-case 3.2.22, the Resource
Admin or the VO Admin can follow the process shown on Figure 37. Using the
web interface, the admin selects a registered resource and requests its removal
from the list of the registered resources list. In the case of the command-line
interface, the admin can query a list of currently registered resources, and provides
the ID of the one to be removed as the console command parameter. This removes
the resource from the RCA db, and notifies the RCA Client of the node that has
been removed, so that it can clear any installed machine certificates.

91

VO Web RCA ServerAdmin

Resource Admin or

VO Admin

Remove resource from VO

Remove resource from VO

RCA Client

Remove from VO

Delete VO MAC

RCA ServerAdmin

Resource Admin or

VO Admin

Remove resource from VO

RCA Client

Remove from VO

Delete VO MAC

Figure 37: Removing a resource from the RCA.

5.4 VOPS Design

5.4.1 The VOPS Classes

Due to the need of having ability to check policies on different levels (VO level,
node level), we provide classes to comply with these requirements.

VOPSServer Main class containing server logic.

EXistsDB Policy storage maintained as an eXist XML database through API
provided by the eXist service. Database is organized in tree like structure root
(xmldbURI/db)

• system (administrative collections)

92

Figure 38: VOPS server class diagram.

• policies

vo

user

resources

On first start database structure is empty, except system is created by database,
polices (and sub collections) are created with constructor. Class PolicyType de-
termines type of the policy.

PolicyType Helper for holding collection and query service together.

PolicyFactoryExtConfig. Holds configuration of the PolicyFactory which con-
nects to eXist’s XML DB.

93

Figure 39: VOPS local decision point class diagram.

NodePDP Class provides method to create a decision based on input parame-
ters, such as job description, user and resource certificate, action and filtered pol-
icy. It also provides ability to take into account policies, which are stored locally
and besides provided filtered policy help with the decision process.

VopsPDP Provides implementation of the decision engine. It constructs Policy
Decision Point with different modules, provided by the Sun’s XACML implemen-
tation.

5.4.2 The VOPS Interactions

The diagrams in this section present the typical processes related to the usage of
the VOPS. In following diagrams only one actor is presented - Resource Admin-
istrator, but we can easily replace Resource Administrator with VO Administrator
or VO user. Each of these actors can manage policies belonging to a resource,
VO or VO user respectively. In figure 40 administrator modifies a resource pol-
icy which is first obtained from VOPS server using VO Web frontend. VO Web
frontend queries the VOPS server (internally querying Exist XML database) to
obtain a list of resource policies belonging to the administrator. Administrator
chooses which policy she will modify and afterwards modified (updated) policy
is submitted towards VOPS server.

94

Figure 40: Modifying a resource policy from VOPS database.

In figure 41 sequence of adding a new policy is presented. Administrator
chooses Add resource Policy action in the VO Web frontend, where she can spec-
ify new policy. After submitting the newly created policy, VO Web sends policy
towards VOPS server through Set Policy method where the policy is stored inter-
nally in the XML database (through setPolicy() method of the ExistsDB instance).

Removing a policy (figure 42) is very similar to modifying an existing policy
(figure 40). Administrator first chooses Delete Policy method in the VO Web fron-
tend, which gets the list of policies which fall in the domain of the administrator.
The chosen policy’s id is propagated back to the VOPS server and eventually to
ExistsDB which actually deletes the policy from the database.

95

Figure 41: Adding a resource policy into VOPS database.

96

Figure 42: Removing a resource policy from VOPS database.

In figure 43 deletion of the policies belonging to a domain of specific VO is
presented. VO administrator chooses which VO policy will be deleted. This kind
of policy deletion can be triggered automatically when VO is terminated. First
sequence as in figure 40 is made (not presented in the figure below), which gets
the policy belonging to a specific VO. Afterwards policy deletion in the XML
database is triggered.

97

Figure 43: Removing a resource policy from VOPS database.

5.5 Monitoring Service Design

5.5.1 The Monitoring Service Classes

Class shown on figure 44 represents interface to the monitoring service. More
detailed description of monitoring manager API is shown in section A.5.

Figure 44: Monitor Manager class diagram.

98

Monitoring rules. When interested party sends monitoring request Monitoring
uses monitoring rule engine to check metric values against collected data from the
sources and triggers a callback if conditions are met.

Monitoring rules are represented with a language that contains one or more
criteria. Basic expression constructed with single criterion is defined as

{<domain>=<domain_reference>}<metric_name><operator><reference_value>

and can be further extended.

Domain defines the granulation we are interested in e.g. resource, job, VO.

Metrics are represented as different types that include numeric values and
strings. Examples of metrics are CPU utilization, memory usage, job status, ser-
vice availability.

Operators perform equality and threshold (greater-than, less-than) compar-
isons. Not every operator is suitable for every metric value type.

To extend expressions several criteria can construct an expression using AND
and OR logical operators. Using aggregations is another way of extending expres-
sions which include average, sum and count.

5.5.2 The Monitoring Service Interactions

Diagram shown on figure 45 presents monitoring initialization phase. Interested
parties subscribe to different notifications to receive to them important informa-
tion. At some point administrator adds a new VOPS policy which gets translated
to monitoring rule. Monitoring rule is then sent to Monitoring service where mon-
itoring against it is performed.

99

Figure 45: Monitoring initialization.

Diagram shown on figure 46 presents case when monitoring rule conditions
are not met when performing monitoring rules check. AEM reports to Monitoring
that some job has started (or ended) and Monitoring checks if conditions of any
monitoring rules are satisfied. Because they are not, no notification is triggered.

100

Figure 46: Monitoring rule conditions not met.

Diagram shown on figure 47 presents case when monitoring rule conditions
are met when performing monitoring rules check. AEM reports to Monitoring
that some job has been started and Monitoring detects too many jobs are running
based on particular monitoring rule. Notification is therefore triggered which all
subscribers receive.

101

Figure 47: Monitoring rule conditions met.

5.6 Auditing Service Design

5.6.1 The Auditing Service Classes

Class shown on figure 48 represents interface to the auditing service. More de-
tailed description of auditing manager API is shown in section A.6.

5.6.2 The Auditing Service Interactions

Diagram shown on figure 49 presents auditing archiving data. First Auditing sub-
scribes to monitoring to receive monitoring data. When various XtreemOS ser-
vices report events to Monitoring, Auditing subsequently receives events from
Monitoring and stores them into historical database.

102

Figure 48: Auditing Manager class diagram.

Figure 49: Auditing archiving data.

Diagram shown on figure 50 presents auditing generating report. Administra-
tor requests Auditing to generate report of specified type. Auditing generates the
report and sends it to the Administrator.

103

Figure 50: Auditing generates report.

104

6 Conclusions and Future Work
This deliverable presented the final specification, design and architecture of the
security and VO management services in the XtreemOS operating system. The de-
liverable was based on previous specifications, D3.5.3 [1], D3.5.4 [2] and D3.5.11
[3], completed in the past two years of the lifetime of the project. The new deliv-
erable focused on multi-layer presentation of the services from the perspectives of
high-level capabilities, intermediate-level system design and low-level APIs.

The current deliverable defined additional new features of the services, which
included:

• VO termination capabilities and VO state dissolution, and

• monitoring and auditing capabilities for supporting billing and non-repudiation
applications.

Originally, it was planned to report in this deliverable the output of task T3.5.13
Isolation. However, we considered that the output of such a task could fit better
in deliverable D3.5.9, methodology and design alternatives for trust services in
XtreemOS [4], to be submitted in M45. We will be describing there the output of
T3.5.13, where isolation is seen as a mechanism for achieving non-intereference
and fine-grained control of resource usage.

105

References
[1] XtreemOS Consortium. First specification of security services. In XtreemOS

public deliverables - D3.5.3. Work Package 3.5, May 2007.

[2] XtreemOS Consortium. Second specification of security services. In
XtreemOS public deliverables - D3.5.4. Work Package 3.5, November 2007.

[3] XtreemOS Consortium. Third specification of security services. In XtreemOS
public deliverables - D3.5.11. Work Package 3.5, January 2009.

[4] XtreemOS Consortium. Methodology and design alternatives for trust ser-
vices in xtreemos. In XtreemOS public deliverables - D3.5.11. Work Package
3.5, February 2010.

[5] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Rfc 3820
- internet x.509 public key infrastructure (pki) proxy certificate profile, June
2004.

[6] Thomas D. Wu. The secure remote password protocol. In Proceedings of the
Network and Distributed System Security Symposium, San Diego, California,
USA, 1998. The Internet Society.

106

Appendix

107

A Application Programming Interface of the Secu-
rity and VO Management Services

A.1 The XVOMS API
XVOMS provides two types of interfaces to other XtreemOS components: UserUtil
- interfaces for managing users and VOUtil - interfaces for managing VOs.

A.1.1 User and VO Management Interfaces in XVOMS

Users access all the VO management facilities via the XvomsSession interface:

Name: XvomsSession()

Purpose: Empty constructor for object

Overview: This constructor is for testing and should not be called by a user.

Input: None

Output: Returns empty XvomsSession object

Throws: None

Name: XvomsSession(String username, String passMD5)

Purpose: Constructor for XVomsSession

Overview: This constructor takes the username and MD5 hash of the users pass-
word and checks with the XVOMS database that the user and password are
valid. If so the returned object has the property authenticated set as true,
otherwise this is false.

Input: username - string value of the user name. // passMD5 - the MD5 hash
of the users password.

Output: Returns initialised XvomsSession object

Throws: XVOMSException - if user expired or password invalid.
UserNotFoundException if user not found in XVOMS.

XvomsSession is associated with a XvomsSessionContext, which are described
as follows:

108

Name: XvomsSessionContext(XvomsSession xsession)

Purpose: Constructor for XVomsSessionContext

Overview: If the user in the given session is authenticated, the context (including
user, voUtil, and userUtil objects) will be properly populated. Otherwise,
all these objects will remain null.

Input: xsession - XvomsSession to create context for.

Output: Returns XvomsSessionContext object if user is authenticated.

A.1.2 User Management methods

The UserUtil interface allows managing users in XVOMS. The followings are a
list of methods that can be used to manage users via XVOMS:

Name: User addUser(String realname, String username, String
pass, String des)

Purpose: create new user.

Overview: creates a new user in the users table of the XVOMS database.

Input: realname - user’s full name
username - username within the grid
pass - password

Output: user - User object returned, XVOM database updated.

Throws: XVOMSException - if user already exists.

Name: User addUser(String realname, String username, String
pass, String des, VORole vorole, Actor actor)

Purpose: create new user.

Overview: creates a new user in the users table of the XVOMS database. This
version defines the vorole and actor of the new user.

Input: realname - user’s full name
username - username within the grid
pass - password
vorole - The vorole for the new user
actor - The actor for the new user

109

Output: user - User object returned, XVOM database updated.

Throws: XVOMSException - if user already exists.

Name: User getUser(String username)

Purpose: get user from username.

Overview: Look up username in XVOMS database and return user object.

Input: username - username to look up.

Output: Returns user object, null if username not found.

Throws: None

Name: List getUsers(Actor actor)

Purpose: Get users with property actor

Overview: This returns a list of all users with Actor type actor.

Input: actor - type of actor

Output: Returns List of user objects

Throws: None

Name: List getUsers(VO vo)

Purpose: Find users in a VO

Overview: Get a list of user objects who are in the given VO.

Input: vo - the VO of interest.

Output: Returns a List of user objects in the given VO.

Throws: None

110

Name: List getUsers(VOGroup vogroup)

Purpose: Find users in a VOGroup

Overview: Get a List of all the users in a VOGroup

Input: vogroup - the VOGroup of interest.

Output: Returns a List of user objects in the given VOGroup.

Throws: None

Name: List getUsers(VORole vorole)

Purpose: Find users with a particular VORole

Overview: Get a List of all the users with a given VORole

Input: vorole - the VORole of interest.

Output: Returns a List of user objects with the given VORole.

Throws: None

Name: void removeUser(User user,VORole vorole)

Purpose: Remove user from database

Overview: Remove a user from the XVOMS database, given their VORole

Input: user - the user to remove.
vorole - the VORole of the user to remove.

Output: None.

Throws: None

Name: void removeUser(User user)

Purpose: Remove user from database

Overview: Remove a user from the XVOMS database.

Input: user - the user to remove.

Output: None.

Throws: None

111

Name: void updateUserPass(User user, String pass)

Purpose: Update user password

Overview: Change password for the current user, if authenticated.

Input: user - the user to update the password for.
pass - the new password.

Output: None.

Throws: None

A.1.3 System Management methods

The following methods are defined in the VOUtil interface. They allow a system
administrator (of XVOMS) to manage user roles (also called actor) in the system.
Examples of a user role at the system level are system administrator, resource
administrator.

Name: Actor addActor(String name, String des)

Purpose: Add actor.

Overview: Add a new actor to the system.

Input: name - the name of the new actor.
des - a description of the new actor.

Output: returns Actor object.

Throws: None

Name: void addActor2User(User user, Actor actor)

Purpose: Add actor role to a user.

Overview: Assign the given actor role to the named user.

Input: user - the name of the user.
Actor - The actor role to add.

Output: None.

Throws: XVOMSException - if either input is null.

112

Name: Actor getActor(String name)

Purpose: Get Actor object from name.

Overview: Look up the name of the Actor in the XVOMS database and return
the object, if it exists otherwise throw an exception.

Input: name - the name of the Actor.

Output: Returns the associated Actor object.

Throws: XVOMSException - if name does not exist.

Name: void removeActor(Actor actor)

Purpose: Remove Actor object from database.

Overview: Remove the Actor from the XVOMS database. The Actor should not
have any associated users, otherwise an exception is thrown.

Input: actor - the Actor object to remove.

Output: None.

Throws: XVOMSException - if Actor is still associated with one or more users.

A.1.4 Resource Management methods

The following methods are defined in the VOUtil interface. The resource manage-
ment methods allow administrator (RCA owner and Grid administrator) to man-
age RCAs in the system.

Name: RCA addRCA(String name,String desc, User user)

Purpose: Add an RCA into the XVOMS database.

Overview: The named RCA will be added to the XVOMS database with user as
a resource Admin.

Input: name - name of the RCA resource to add.
desc - Description of the resource.
user - user object for resource Admin.

Output: Returns RCA object.

Throws: None.

113

Name: RCA getRCA(String name)

Purpose: Get an RCA from its name.

Overview: Look up the given name and return the RCA object, or null if not
found.

Input: name - name of the RCA resource to lookup.

Output: Returns RCA object.

Throws: None.

Name: void updateRCA(String name, String desc)

Purpose: Update the description of an RCA.

Overview: Look up the given RCA name and update its description.

Input: name - name of the RCA resource to update.
desc - updated description of RCA.

Output: None.

Throws: None.

Name: void addRCA2VO(RCA rca, VO vo, User user)

Purpose: Add rca to vo by user.

Overview: The user must have the VO Admin role for the given vo.

Input: rca - RCA resource to add.
vo - VO to add resource to.
user - User who is VO Admin for vo.

Output: None

Throws: XVOMSException - if user is not authorised.

114

Name: void removeRCA(RCA rca, User user)

Purpose: Remove an rca from the XVOMS database by user.

Overview: The user must have the RCA Admin role for the given vo. The RCA
must not be in any vo.

Input: rca - RCA resource to remove.
user - User who is RCA Admin for rca.

Output: None

Throws: XVOMSException - if user is not authorised or rca is a member of a
vo.

Name: void removeRCA2VO(RCA rca, VO vo, User user)

Purpose: Remove rca from vo by user.

Overview: The user must have the VO Admin role for the given vo.

Input: rca - RCA resource to remove from vo.
vo - VO to remove resource from.
user - User who is VO Admin for vo.

Output: None

Throws: XVOMSException - if user is not authorised.

A.1.5 VO Management APIs

The following methods are defined in the VOUtil interface. These methods can
be used to manage VOs via XVOMS:

Name: Action addAction(String name)

Purpose: Add action to XVOMS database

Overview: The action name (e.g. ADD,DELETE,GET,...) is added to the database.

Input: name - String for the action name.

Output: Action object.

Throws: None.

115

Name: void addGroup2User(User user, VOGroup vogroup)

Purpose: Add user to vogroup

Overview: Adds the user into the existing vogroup.

Input: vogroup - The vogroup to add.

Inout: user - The user who is updated with the new group.

Output: None.

Throws: None.

Name: VOGroup addGroup2VO(VO vo, String desc)

Purpose: Add a vogroup to a vo

Overview: Create a new group described by the desc string and add to given vo.

Input: vo - The vo that the new group will be in.

Inout: desc - The description of the new group.

Output: Returns a VOGroup object.

Throws: None.

Name: Request addRequest(String desc,String type, VO targetedVO)

Purpose: Adds a request to the user in the current context.

Overview: Record a request in the database for the current user.

Input: desc - Details of the request.
type - type of request.
targetedVO - the VO the request relates to.

Output: Returns a Request object.

Throws: None.

116

Name: Resource addResource(VO vo, String desc, RCA rca)

Purpose: Adds a resource to a vo.

Overview: The resource described by desc will be added to the vo from the given
rca.

Input: vo - The vo to add the resource to.
desc - Details of the resource to add.
rca - The RCA which the resource is registered with.

Output: Returns a Resource object.

Throws: None.

Name: VORole addRole2Group(VOGroup group, String desc)

Purpose: Adds a vorole to a vogroup.

Overview: The vorole described by desc is added to the group.

Input: group - The group to add the role to.
desc - Description of the role to add.

Output: Returns a VORole object.

Throws: None.

Name: void addRole2User(User user, VORole vorole)

Purpose: Adds a vorole to a user.

Overview: The vorole is added to the user.

Input: user - The user to add the role to.
vorole - The vorole to add.

Output: None.

Throws: None.

117

Name: AccessControlRule addRule(String desc, Actor actor,
Action action, String target)

Purpose: Adds an access control rule.

Overview: Create a new access control rule associated with a table.

Input: desc - Description of the rule.
actor - The actor the rule is related to.
action - The action the rule is related to.
target - The allowed target, defined by enum ALLOWEDTARGET

Output: Returns an accessControlRule.

Throws: InvalidActorException,
InvalidActionException,
InvalidTargetException

Name: VO addVO(String des, String name, User owner)

Purpose: Add a VO and set the owner.

Overview: The VO is added to the database and user is set as the owner.

Input: des - Description of the VO.
name - The name of the new VO.
owner - The user who will own the new VO.

Output: Returns a new VO object, null if name or owner is null.

Throws: None.

Name: void addVO2User(User user, VO vo)

Purpose: Add a VO to a user.

Overview: The user becomes a member of the existing VO.

Input: vo - The VO to join.

Inout: user - The user who will become a member of the VO.

Output: None.

Throws: None.

118

Name: List getRequests()

Purpose: Get a list of requests for the current user.

Overview: Find the set of requests pending for the current user.

Input: None (implicit use of current context).

Output: Returns a List object of current requests.

Throws: None.

Name: List getRequests(VO vo)

Purpose: Get a list of requests belonging to a VO.

Overview: Find all pending requests for the named VO as a List.

Input: vo - The VO of interest.

Output: Returns a List object of current requests for this VO.

Throws: None.

Name: Object getObject(String name, Class aClass)

Purpose: Generic method to get object by name.

Overview: This method is mainly intended for internal use. The object must be
cast to the actual class type.

Input: name - The object name.
aclass - The object class.

Output: Returns an object which must be cast correctly.

Throws: ObjectNotFoundException

Name: VO getVO(String gvid)

Purpose: Get VO from gvid.

Overview: Find the VO from the global VO ID.

Input: gvid - The gvid of interest.

Output: Returns a VO object for the corresponding VO, or null if not found.

Throws: None.

119

Name: List getVOAtrributes(String user)

Purpose: Get a list of VO attributes for user name.

Overview: Returns a List of VOattribute array where each array is an ordered set
of VO attributes for a user in their given VO. Arrays are such as [VOGroup,
VORole].

Input: String - The user of interest.

Output: Returns a List of attribute arrays.

Throws: UserNotFoundException

Name: List getVOAtrributes(User user)

Purpose: Get a list of VO attributes for user.

Overview: Returns a List of VOattribute array where each array is an ordered set
of VO attributes for a user in their given VO. Arrays are such as [VOGroup,
VORole].

Input: user - The user of interest.

Output: Returns a List of attribute arrays.

Throws: None.

Name: List getVOAtrributes(User user, VO vo)

Purpose: Get a list of VO attributes for user in a VO.

Overview: Returns a List of VOattribute arrays as in previous methods, but for
the user in the named VO.

Input: user - The user of interest.
vo - The vo of interest.

Output: Returns a List of attribute arrays.

Throws: None.

120

Name: List getVOGroups(VO vo)

Purpose: Get a list of groups in VO.

Overview: Returns a List of VOGroup for the VO.

Input: vo - The VO of interest.

Output: Returns a List of VOGroup.

Throws: None.

Name: List getVORoles(VOGroup vogroup)

Purpose: Get a list of VORole in VOGroup.

Overview: Returns a List of VORole for the VOGroup.

Input: vogroup - The VOGroup of interest.

Output: Returns a List of VORole.

Throws: None.

Name: List getVOs()

Purpose: Get a list of VOs in database.

Overview: Returns a List of all the VOs currently in the XVOMS database.

Output: Returns a List of VOs.

Throws: None.

Name: void prettyPrint(String username)

Purpose: Print user’s attributes

Overview: Print to stdout.

Input: username - The username of interest.

Output: None.

Throws: None.

121

Name: void updateGroup(VOGroup group, String des)

Purpose: Update an existing group.

Overview: Updates the description of the group in XVOMS.

Input: des - The new group description.

Inout: group - The group to update

Output: None.

Throws: None.

Name: void updateRole(VORole vorole, String des)

Purpose: Update an existing vorole.

Overview: Updates the description of the vorole in XVOMS.

Input: des - The new role description.

Inout: vorole - The vorole to update

Output: None.

Throws: None.

Name: void updateVO(String gvid, String des)

Purpose: Update an existing VO.

Overview: Updates the description of the VO in XVOMS for the given gvid.

Input: des - The new role description.
gvid - The global ID of the VO to update.

Output: None.

Throws: None.

122

Name: void removeGroup2User(User user, VOGroup vogroup)

Purpose: Remove user from VOGroup.

Overview: Updates XVOMS database to remove the membership of user in vogroup.

Input: user - The user to remove.
vogroup - The vogroup to remove the user from.

Output: None.

Throws: None.

Name: void removeGroup2VO(VO vo, VOGroup vogroup)

Purpose: Remove VOGroup from VO.

Overview: Updates XVOMS database to remove vogroup.

Input: user - The user to remove.
vogroup - The vogroup to remove from the VO.

Output: None.

Throws: None.

Name: void removeRequest(Request request)

Purpose: Remove request from database.

Overview: Updates XVOMS database to remove request.

Input: request - The request to remove.

Output: None.

Throws: None.

Name: void removeGroup2VO(VO vo, VOGroup vogroup)

Purpose: Remove VOGroup from VO.

Overview: Updates XVOMS database to remove vogroup.

Input: user - The user to remove.
vogroup - The vogroup to remove from the VO.

123

Output: None.

Throws: None.

Name: void removeRequest(Request request)

Purpose: Remove request.

Overview: Updates XVOMS database to remove request.

Input: request - The request to remove.

Output: None.

Throws: None.

Name: void removeResource(VO vo, Resource resource)

Purpose: Remove resource from VO.

Overview: Remove resource that has been added to a VO.

Input: vo - The VO to remove the resource from.
resource - The resource to remove.

Output: None.

Throws: None.

Name: void removeRole2Group(VOGroup group, VORolep vorole)

Purpose: Remove vorole from vogroup.

Overview: Updates XVOMS database to remove vorole.

Input: group - The vogroup.
vorole - The vorole to remove from the VOGroup.

Output: None.

Throws: None.

124

Name: void removeRole2User(User user, VORole vorole)

Purpose: Remove vorole from user.

Overview: Updates XVOMS database to remove vorole from user.

Input: user - The user.
vorole - The vorole to remove from the user.

Output: None.

Throws: None.

Name: void removeVO(VO vo)

Purpose: Remove vo from system.

Overview: Updates XVOMS database to remove the vo. The vo should be empty.

Input: vo - The vo to remove.

Output: None.

Throws: None.

Name: void removeVO2User(User user, VO vo)

Purpose: Remove user from vo.

Overview: Updates XVOMS database to remove the user from the vo.

Input: user - The user to remove from the vo.
vo - The vo to remove the user from.

Output: None.

Throws: None.

A.2 CDA API
The CDA (Certificate Distribution Authority) client is used to request an XOS-
Certificate from the CDA server. It can run on any client node, and does not use
any other XtreemOS services. This section describes the API of the CDA client
classes (CdaClient and PeerChecker), and how to use them in a CDA client
application.

125

A.2.1 The CDA Client/Server Protocol

The command-response protocol for obtaining an XOS-Certificate takes two steps:

1. An authentication step sends the username and password to the server.

AUTHENTICATE
username,password

If the string received in the response from the server is AUTHOK, the next
step, sending the certificate request, is taken. Otherwise, the string FAILED
is received from the server, followed by an error message. In this case, the
CDA client should present this error message to the user, close the client
connection, and exit.

2. The second step in the protocol sends a Certificate Signing Request (CSR)
to the server, along with the name of user’s primary VO and the name of
their primary VO group.

CERTREQUEST
voName, voGroup
<CSR>

The returned value is an X.509 v3 certificate containing the user’s identity,
public key, and VO attributes (their XOS-Certificate).

126

A.2.2 CDA Client

CdaClient Class The CDA client class is in the package
eu.xtreemos.security.cda.client. It is used to communicate with
the CDA server, authenticating the user and requesting an XOS-Certificate for
them.

Name: CdaClient (String host, int port,
X509Certificate trustedCert)

Purpose: Constructor to create an instance of the CdaClient class.

Overview: Make a connection to the CDA server on host at port port. Check for
the server sending an identity certificate signed by the root certificate for
this grid, trustedCert.

Input: The constructor takes the following inputs:

host The address of the host to connect to.

port The port number on the host to connect to.

trustedCert The root certificate for this XtreemOS Grid.

Output: A new instance of the CdaClient class.

The authenticate method of the CdaClient class sends the
AUTHENTICATE command to the CDA service:

Name: boolean authenticate (String username, char[] password)

Purpose: Authenticate the user to the CDA server.

Overview: Sends the user’s username and password to the CDA server.

Input: The authenticate method takes the following inputs:

username The name of the user.

password The user’s password.

Output: A boolean indicating whether the user has supplied the correct details
for a valid user account.

Throws: IOException, if the communication with the CDA server fails.

127

The method sendCertificateRequest command sends the
CERTREQUEST command to the CDA service:

Name: X509Certificate sendCertificateRequest (String voName,
String groupName,
PKCS10CertificationRequest userRequest)

Purpose: Request an XOS certificate from the CDA server.

Overview: Sends a Certificate Signing Request for the VO voName and the
group groupName

Input: The sendCertificateRequest method takes the following inputs:

voName The name of user’s primary VO.

groupName The user’s primary group.

userRequest A Certificate Signing Request containing the user’s public
key, signed with the user’s private key.

Output: An XOS-Certificate containing the user’s private key, their Global User
ID and their VO attributes. This information is signed by the CDA server’s
private key.

Throws: IOException, if the communication with the CDA server fails.

Throws: IllegalArgumentException, if the user’s CSR is malformed, or if the
voName or groupName do not exist.

128

PeerChecker Class The PeerChecker class is in the package
eu.xtreemos.security.cda.client. This class is used by the CDA
client to check the authenticity of the CDA service. The PeerChecker class and
its methods are used after the CdaClient object is constructed, and before the
CdaClient.authenticate method is called.

Name: PeerChecker (String host, PublicKey rootCAPublicKey,
TrustManager[] trustManagers, boolean carryOnRegardless)

Purpose: Set up framework to check the identify of the CDA server.

Overview: The CDA client requests SSL server authentication on the communi-
cations channel. This class is used to set up the trusted root which can be
used to check the autheticity of the CDA server.

Input: The PeerChecker constructor takes the following inputs:

host Name of host that the CDA client is connecting to. The PeerChecker
checks that the hostname in the CDA server certificate is the same as
this hostname.

rootCAPublicKey The public key of the Root CA for this XtreemOS Grid.
Used to check the signature on the host certificate sent by the CDA
server.

trustManagers TrustManager objects used to check the identity of the
CDA server.

carryOnRegardless If true, gives the option to carry on the protocol even
if the CDA server mis-identifies itself.

Output: A PeerChecker object.

The following method of the PeerChecker class is used for checking when the
CDA server has been authenticated.

Name: boolean isReady()

Purpose: Indicate when the CDA server has been authenticated, ensuring that the
communications channel between CDA client and CDA server is secure.

Output: A boolean indicating if the CDA server has been authenticated.

129

To allow the CDA client to control when the handshake on the SSL connection
takes place, the startHandshake() method of the CdaClient class needs
to be called. The following code fragment shows the loop needed to wait until the
SSL handshake has completed:

client.addHandshakeCompletedListener(peerChecker);
client.startHandshake();
while (!peerChecker.isReady()) {

try {
Thread.sleep(1);

}
catch (InterruptedException ex) {
;

}

}

The ’post-connection’ checking needs to performed before any application
data is written on the SSL connection. Processing the SSL handshake is done in
a separate thread, so the CDA client needs to execute the loop above while the
PeerChecker method handshakeCompleted authenticates the details sent by
the CDA server in its public key certificate.

The method boolean PeerChecker.isReady() indicates when the
checking the authenticity of the CDA server has been completed. The CDA client
code has to loop until isReady returns true. The CDA client is now ready
to start sending commands to the CDA service. It issues the AUTHENTICATE
command by calling the method described in A.2.2. If this method returns true,
the CDA client can proceed to send the CERTREQUEST command to the CDA
service by the method described in A.2.2.

This CDA client application can then verify the certificate with a call to the
method verifyCertificate in the class CertificateProcessor, con-
tained in package eu.xtreemos.security.cda.util.

Name: boolean verifyCertificate (X509Certificate cert, boolean
verbose, PublicKey issuerPublicKey)

Purpose: Verify an XOS-Certificate to check that it was issued by the holder of
the private key corresponding to the issuerPublicKey.

130

Input: The verifyCertificate method has the following inputs:

cert: The XOS-Certificate to verify.

verbose: Flag to set level of reporting messages.

issuerPublicKey: Public key of the issuer of the XOS-Certificate, i.e. the
CDA server public key. Obtained by a call to PeerChecker.getPeerKey().

Output: If the XOS-Certificate is verified as authentic and valid, the return value
is true. In this case, the CDA client application can save the XOS-Certificate
via Utils.writeCertificate and the associated private key via Utils.writeKey.

131

A.2.3 CDA Server

The core functionality to generate XOS-Certificates is contained in the class
eu.xtreemos.security.cda.server.engine.Engine. The first step
is to use the helper class eu.xtreemos.security.cda.server.engine.VOService
to authenticate a user before generating an XOS-Certificate.

Constructor for CDA Server Engine

Name: Engine (PrivateKey cdaKey, X509Certificate cdaCert,
X509Certificate rootCACert, String signatureAlgorithm,
VOService voService,
VerificationServiceInfo revokeInfo,
int days, int hours, int minutes)

Purpose: Create the CDA server engine.

Input: cdaKey Private key of the CDA, used to sign the user’s XOS-Certificate

cdaCert Public key certificate of the CDA

rootCACert Public key certificate of the Root CA (unused in first release)

signatureAlgorithm Name of the algorithm used to provide a signature on
this certificate

voService Provides an interface to the X-VOMS database

verificationServiceInfo Information on service addresses to perform on-
line verification of the certificate

days Number of days for the certificate validity

hours Number of hours for the certificate validity

minutes Number of minutes for the certificate validity

Output: An instance of the CDA server engine class.

Authenticating the user The following method is used to authenticate the user
with the X-VOMS database:

Name: public boolean authenticate (String username, char[]
password)

Purpose: Check the user’s details in the X-VOMS database.

Input: username The name of the user making the request

132

password The password of the user making the request

Output: The call returns true if the username and password are valid, false
otherwise.

Using the CDA Server Engine to Generate XOS-Certificates The following
method generates XOS-Certificates:

Name: tt public X509Certificate generateXOSCert (VOUser user, long serial,
PublicKey userKey, int days, int hours, int minutes)

Purpose: Create the user’s XOS-Certificate.

Input: user User object with the requested VO and group as primary VO and
primary group

serial A unique serial number for the new XOS-Certificate

userKey The user’s public key

days Number of days for the certificate validity

hours Number of hours for the certificate validity

minutes Number of minutes for the certificate validity

Output: The return value is the user’s XOS-Certificate, in the form of an X509
v3 certificate containing the user identity (the CN field contains the user’s
Global User Identifier), public key, and their VO attributes.

A.3 The RCA API
In this section we detail the APIs of the RCA’s components, as they are exposed
towards the message bus, e.g., for the DIXI services or the XATI clients.

A.3.1 RCA Server

The RCAServer class resides in the eu.xtreemos.xosd.vo.rca.server.RCAServer
package. It implements the service, which has the main purpose of signing the re-
source’s identity certificate public key, and provide a signed attribute certificates
to the resource. The service also provides access to the RCA database that keeps
the collections of the registered resources.

Name: ArrayList<ResourceDescriptorRecord> getPendingResources(
X509Certificate userCert)

133

Purpose: Returns a list of resource descriptions describing the resources listed in
the RCA DB as pending for registration.

Input: userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should use
their appropriate server certificates.

Output: A collection of resource descriptors of resources applied for registration
with the RCA.

Name: ArrayList<ResourceDescriptorRecord> getRegisteredResources(
X509Certificate userCert)

Purpose: Returns a list of resource descriptions describing the resources listed in
the RCA DB as registered.

Input: userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: A collection of resource descriptors of resources registered with the
RCA.

Name: public Integer confirmRegistration(X509Certificate userCert,
ResourceID id)

Purpose: Confirm the registration of a resource that has previously been applied
for the registration using applyForRegistration. After this call, the
RCA will sign certificates for the registered resource (requestCertificate).

Input: id The id of the resource record signifying the resource to be confirmed
for the registration.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: 0 if the call was successful.

134

Name: Integer getResourceStatus(ResourceID id, X509Certificate
userCert)

Retrieves the current status of the resource according to the RCA DB.

Input: id The identifier of the resource to check the status of.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: The status of the resource.

Name: public ResourceDescriptorRecord unregisterResource(ResourceID
id, X509Certificate userCert)

Purpose: Remove the resource from the list of registered resources. Once the re-
source has been unregistered, it cannot have the machine certificates signed
by the RCA.

Input: id The id of the resource record signifying the resource to be removed for
the list of registered resources.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: 0 if the call was successful.

Name: public Integer applyForRegistration(ResourceDescriptorRecord
resource, X509Certificate userCert)

Purpose: Put the resource on the list of resources that can be registered, but need
to wait for an authorised administrator to confirm the registration using the
confirmRegistration call before the resource can have its certificates signed
by the RCA.

If the resource is already on any of the lists, then their entry gets replaced
with the new value, thus updating the application or the registration.

Input: resource The descriptor of the resource applying for the registration.

135

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: 0 if the call was successful.

Name: public Integer updateResource(ResourceDescriptorRecord
resource, X509Certificate userCert) throws Exception

Purpose: For an already registered resource, update the resource description in
the RCA DB.

Input: resource The descriptor of the resource with the updated data. The de-
scriptor should contain the proper resource’s ID.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: 0 if the call was successful.

Throws: ResourceNotRegisteredException if the resource is not reg-
istered.

Name: RCASignedResponse requestCertificate(ResourceID id,
PKCS10CertificationRequest certRequest, X509Certificate
userCert) throws Exception

Purpose: Serves the client’s request for signing the certificate. The method re-
trieves the data on the resource from the RCA DB, and uses the descriptor
and the data in the config file to set up the attributes of the certificates that
will be returned signed. The resource has to be a member of the regis-
tered resources, i.e. successful calls to applyForRegistration and
confirmRegistration have to precede this call.

Input: id The id of the resource that requests the certificate signature.

certRequest The certificate signature request.

136

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: The signed certificates: identity certificate, attribute certificate, the type
of which depends on the configuration.

Throws: IllegalArgumentException Thrown when the certificate request is in-
valid.

Throws: ResourceNotRegisteredException if the resource is not reg-
istered.

Name: requestVOCertificate(ResourceID id,
X509Certificate certificate, String vo, X509Certificate
userCert) throws IllegalArgumentException,
BadResourceException

Purpose: Request the retrieval of the signed resource attribute certificate autho-
rizing the resource for the membership in the given VO.

Input: id The id of the resource that requests the certificate signature.

certificate The public machine certificate of the resource.

vo The ID of the VO the resource is requesting the certificate for.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: The signed resource certificate containing the attributes authorizing the
resource to be used within the VO.

Throws: BadResourceException The resource is not a member of the VO.

IllegalArgumentException Thrown when the certificate request is invalid.

Name: Integer setVOMembership(String vo, Boolean setMember,
X509Certificate userCert) throws ResourceNotRegisteredException

137

Purpose: Manipulates the membership of this RCA in the VO.

By adding the RCA into a VO, all the registered resources are also notified
about being added into the VO. Similarly, when the RCA is removed from
a VO, the registered resources are notified as well.

Input: vo The ID of the VO that is the object of the call.

setMember True for adding the RCA into the VO, or false otherwise.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: 0 if the call was successful.

Throws: ResourceNotRegisteredException if the resource is not reg-
istered.

Name: Integer notifyVOMembershipChange(ResourceID id, String
vo, Boolean addition, X509Certificate userCert) throws
ResourceNotRegisteredException

Purpose: Lets manipulate with the resource’s membership of a VO. The method
can set and unset the VO which the resource belongs to. The resource has
to be on a registered resources list.

Input: id The identification of the resource we are setting the membership in a
VO of.

vo The VO to set the membership in.

addition If true, the membership will be set, and if false, the VO will be
removed from the list of VOs the resource is a member of.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Throws: ResourceNotRegisteredException if the resource is not
registered.

Output: 0 if the call was successful.

138

A.3.2 RCA Client

The RCAClient class resides in the eu.xtreemos.xosd.vo.rca.client.RCAClient
package. It implements the service, which runs on each node that is capable of
providing services or resources to Virtual Organisations (VO). The service is the
node’s counterpart of the RCA server, providing a convenient way to store and ac-
cess the local machine certificates, gather information on the resource (e.g. from
the local ResourceMonitor service), and it also generates new public/private
key pair, the former of which it then sends to the RCAServer for signing.

Please note that the purpose of the service is to provide the information on the
context of the particular node that hosts the service. This means that the service
is not suitable to be run or used from RCA front-ends such as the RCA Web. Ser-
vices, such as VOPS, can use its API calls to obtain information on the certificates
installed on a particular remote node (resource).

If a service or a program (such as RCA Web) is implementing functionality
of the client to the RCA Server service that will be deployed outside the target
nodes, it is better to use the RCAClientProcessor class functionality, ex-
plained in A.3.3.

Name: public Integer applyForRegistration(X509Certificate userCert
)

Purpose: Collects the node’s resource data and submits them to RCA server to
apply for registration.

Output: 0 if the call was successful.

Input: userCert he user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Name: public Boolean requestNewCertificate(X509Certificate userCert
) throws Exception

Purpose: The method generates a new public and private key pair, then sends
the public key for certification to the RCA server and obtains the signed
attribute certificate. It stores the certificates into the local truststore.

Input: userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

139

Output: True if the request was successful, or false otherwise.

Input: userCert he user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Name: public Boolean requestAttributeCertificate (String vo, X509Certificate
userCert) throws Exception

Purpose: Requests the resource’s attribute certificate providing credentials for
the given VO from the RCA server. It also installs the new certificate if the
request succeeds.

Output: True if the request succeeded by obtaining the certificate from the RCA
server, and installing it.

Input: vo The ID of the VO the resource is requesting the certificate for.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Name: X509Certificate getMachineIdentityCertificate(X509Certificate
userCert)

Purpose: Retrieve the node’s machine identity certificate.

Input: userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: The certificate currently stored on the node and used by the machine to
represent its identity.

Name: RCASignedResponse getMachineAttributeCertificate(String vo,
X509Certificate userCert)

140

Purpose: Retrieve the machine’s attribute certificate. The caller can select whether
the attribute certificate to be retrieved is a general (non-VO) attribute cer-
tificate, or an attribute certificate related to the VO.

Input: vo The ID of the VO the call is to retrieve the attribute certificate of. Use
null or an empty string to obtain the non-VO certificate.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: The storage of attribute certificates. It contains only one of the attribute
certificates, depending on which one is currently installed on the node. If
both types are installed, then the method selects the one that expires later.
Returns null if the certificate is not available.

Name: Integer pushVOAttributeCertificate(RCASignedResponse certResponse,
X509Certificate userCert)

Purpose: Lets the RCA Server service push one or more machine’s VO attribute
certificates that can be installed and used on the local node.

Input: certResponse The object containing the pushed certificate(s).

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: 0 if the call was successful.

Name: Integer removeVOAttributeCertificate(String vo, X509Certificate
userCert)

Purpose: Lets the RCA Server remove an attribute VO certificate, notifying the
client about removal from the VO.

Input: vo The name of a VO that the resource has been removed from.

userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

141

Output: 0 if the call was successful.

Name: public String getMachineCertificateDetails(X509Certificate
userCert) throws Exception

Purpose: Opens the certificates currently stored locally and signed by RCA, and
returns a string containing the details on the certificate.

Input: userCert The user’s credential, used for limiting the access control to the
administrators. Clients such as the web interface server code should
use their appropriate server certificates.

Output: The details on the currently stored and used certificate.

A.3.3 RCA Client Processor

Name: RCAClientProcessor(String serviceCertFile) throws IOException,
FileNotFoundException

Purpose: Class constructor. It initialises the class.

Input: serviceCertFile The path to the file containing the RCA service certifi-
cate.

Output:

Name: void init(String serviceCertFile) throws IOException,
FileNotFoundException

Purpose: Initialises the class using the new service certificate. Not required if
the class is initialised with the constructor with the valid service certificate
file in the parameter.

Input: serviceCertFile The path to the file containing the RCA service certifi-
cate.

142

Name: KeyPair generateKeyPair(int keylen) throws NoSuchAlgorithmException

Purpose: Generates a new pair of private key and public key.

Input: keylen The length of the key (e.g., 1024).

Output: The representations of the newly generated key pair.

vspace1cm

Name: void savePrivateKey(PrivateKey key, char[] passphrase,
String keyFileName) throws IOException, FileNotFoundException

Purpose: Saves the contents of the private key to a file.

Input: key the keypair to save.

passphrase the password to use when encrypting the private key.

keyFileName the name of the target file.

vspace1cm

Name: PKCS10CertificationRequest createCertRequest(KeyPair
keyPair) throws InvalidKeyException, SignatureException,
Exception

Purpose: Create a request for signing the certificate containing the provided pub-
lic key.

Input: keyPair the key pair containing the public key that is to be used in the
certificate, and the private key the request will be signed with.

Output: The representation of the certification request.

vspace1cm

Name: boolean verifyCertificate(X509Certificate cert)

Purpose: Verify the certificate.

Input: cert the certificate to be verified.

Output: If the certificate verifies successfully, the method returns true, other-
wise it returns false

143

vspace1cm

Name: void saveCertificate(X509Certificate cert, String
fileName) throws FileNotFoundException, IOException

Purpose: Saves the certificate into a file on disk. Can be used for machine iden-
tity certificates and attribute certificates which use the v2 certificate, which
carries the attribute values in the certificate extensions.

Input: cert the certificate to be saved into the file.

fileName the name of the file that will contain the certificate.

vspace1cm

Name: void saveCertificate(X509AttributeCertificate cert,
String fileName) throws FileNotFoundException, IOException

Purpose: Saves the v3 attribute certificate into a file on disk.

Input: cert the attribute certificate to be saved into the file.

fileName the name of the file that will contain the certificate.

vspace1cm

Name: void saveVOCertificate(X509Certificate certificate, String
path) throws FileNotFoundException, IOException, BadAttributeCertificateException

Purpose: Saves the VO attribute certificate into the given folder. The file name
of the certificate file is generated depending on the VO information stored
within the certificate.

Input: certificate The certificate containing the attributes of the VO.

path The path to store the certificate into. The path needs to exist before
calling the method.

vspace1cm

Name: void saveServiceCertificate(X509Certificate certificate,
String path) throws BadAttributeCertificateException,
FileNotFoundException, IOException

Purpose: Save the service certificate.

144

Input: certificate The certificate to be saved

path Certificate’s target path.

vspace1cm

Name: String generateVOCertFileName(String vo, boolean v3cert)

Purpose: A helper method for generating the file name of the VO certificate.

Input: vo The ID of the VO.

v3cert Indicates whether the certificate to be saved is formatted as a v3
attribute certificate (true) or a v2 certificate with attributes in exten-
sions (false).

vspace1cm

A.4 The VOPS API
VO Policy Service executes policy decisions on two levels: core site and resource
site. On core site, VOPS serves to requests from other core level services, mean-
while on resource site it is used to serve request to resource selection mechanism
running on resource nodes.

VOPS API can be viewed also as three type of access points providing dif-
ferent functionalitites: Policy Administration Point (PAP), Policy Decision Point
(PDP) and Policy Information Point (PIP):

• PAP comprises of setPolicy(), delete(),

• PDP comprises of accessRequest() methods on core site and resource site,

• PIP comprises of listPolicies(), getPolicy(), getFilterPolicy().

A.4.1 Core site

List policy Lists all policies in the context of a VO user or VO administrator.
This method is called when specific user wants to list her policies, policies based
on GUID from userCtx are filtered from the database and only those are returned.

Vector<String> listPolicies(X509Certificate cert,
Vector<String> args) throws XMLDBException

Input parameters

145

cert user or VO administrator certificate

args which parameters will be in the XML returned as a result. Arguments are
passed as strings presenting xpaths to the fields in XACMLs, e.g. /Pol-
icy/Description.

Returns A vector of policies in XML format.
Throws Instance of XMLDBException

Modify policy Modifying policies consists of combination of getPolicy() and
setPolicy() methods. To modify policy, first get() method should be used to obtain
policy in consideration. After the policy is changed locally (with API provided
by class in package eu.xtreemos.security.vops.xacml.policy), setPolicy() method
should be used to update the changes.

Remove policy Remove policy from storage with id given as parameter.

void delete(String id) throws XMLDBException

Input parameters

id policy id obtained with listPolicies() command

Throws Instance of XMLDBException

Set policy and create new policy Replace policy with the new value. In case if
id equals to null, new policy in the database is created.

Throws Instance of XMLDBException

String setPolicy(String id,String value,X509Certificate cert)
throws XMLDBException

Input parameters

id policy id or null

value policy in XACML format

userCtx subject’s certificate

Throws Instance of XMLDBException.

146

Get Policy Return complete policy in XACML format. Gets policy from eXist’s
policy DB. Policy is defined by id which is unique in the entire set of policies. And
obtained with listPolicies() method.

String getPolicy (String id) throws XMLDBException

Input parameters

id policyId

Returns The policy in xacml format.
Throws Instance of XMLDBException.

Get Filter Policy Returns filter policy which can be simply used in a local de-
cision point (e.g. on a node). Policy filters can be cached (history of policies
used) to speed up decision process (feature not yet implemented). The search
through the database depends on type input parameter. If type equals to VOP-
SConstants.PolicyType.anyPolicyType, both user policy database and VO policy
database are searched for final filter policy. If type equals to VOPSConstants.-
PolicyType.voPolicyType only VO policy database is searched for final policy. If
type equals to VOPSConstants.PolicyType.userPolicyType only user policy database
is searched for final policy.

String getFilterPolicy(String jsdl, X509Certificate subjectCtx,
VOPSConstants.PolicyType type)

Input parameters

jsdl job description

subjectCtx subject’s certificate (VO user or VO admin)

type defines the type of the search through the database

Returns The filtered policy in xacml format.

Request policy decision Used by AEM framework to check if resources listed
in comply with policies stored in VO policy storage. This method can also be used
to check the access request based only on filtered policy passed as parameter.

ResponseCtx accessRequest(String jsdl, X509Certificate userCtx,
X509Certificate resourceCtx, String filteredPolicy)

Input parameters

147

jsdl job description

userCtx subject’s certificate (VO user or VO admin)

resourceCtx defines the type of the search through the database

filteredPolicy if the content is null, policies in the eXist policy storage is used to
check the access request.

Returns Instance of ResponseCtx which carries the information if the access
request is allowed or denied.

Throws Instance of XMLDBException.

A.4.2 Resource site

Request for access to specific node.

Result accessRequest(String jsdl, X509Certificate subjectCtx,
X509Certificate resourceCtx, ActionConstants action,
String filteredPolicy, boolean filteredPolicyOnly)
throws NodePDPException

Input parameters

jsdl job description

subjectCtx subject’s certificate (VO user or VO admin)

resourceCtx defines the type of the search through the database

action action which is taken by the user (e.g. submission). Can be one of AEM-
Create, JobAEMExit, or JobAEMSubmitJob

filteredPolicy filtered policy used in checking the access request, provided by the
VOPS.

filteredPolicyOnly true if usage of only filtered policy. When set to false, also lo-
cal storage is taken into account. Local storage resides where configuration
entry rsspdp.storage is set to.

Returns Sun’s implementation of the result when using Sun’s XACML PDP.
To obtain decision value, use result.getDecision(). It returns a value denoting the
decisions: Result.DECISION_PERMIT,Result.DECISION_DENY. It carries the
information if the access request is allowed or denied.

Throws Instance of XMLDBException.

148

A.5 The Monitoring Service API
Name: query

Purpose: Queries monitoring to retrieve various data about the system.

Overview: Hierarchy of nodes which represents monitoring rule is built and query
is performed on that tree of nodes.

Input: String monitoringRule - Monitoring rule describing what data to retrieve.

Input: X509Certificate userCert - The user’s credential.

Returns: Object - object which represents result of the query. Type of the result
depends on the monitoring rule which can be in various types e.g. float,
integer, string, etc.

Throws: Exception in case monitoring rule syntax is not correct.

Name: addTimedNotification

Purpose: Monitoring rule describing what data to retrieve.

Overview: CronDaemon is used to periodically perform querying.

Input: String monitoringRule - Monitoring rule describing what data to retrieve.

Input: Integer period - Delay between two queries in milliseconds.

Input: String monRuleName - Name of the monitoring rule which can be later
subscribed to for receiving notifications.

Input: X509Certificate userCert - The user’s credential.

Throws: Exception in case monitoring rule syntax is not correct.

Name: addNotification

Purpose: Adds monitoring rule. Callback is triggered when conditions in mon-
itoring rule are met. Monitoring rule must therefore be made up of condi-
tion(s) in order for monitoring rule to be accepted.

Overview: Hierarchy of nodes is built and notification is triggered when condi-
tions are met.

Input: String monitoringRule - Monitoring rule containing conditions when to
trigger callback.

149

Input: String monRuleName - Name of the monitoring rule which can be later
subscribed to for receiving notifications.

Input: X509Certificate userCert - The user’s credential.

Throws: Exception in case monitoring rule syntax is not correct or monitoring
rule is not made up of condition(s).

Name: existsMonRuleName

Purpose: Checks if monitoring rule name exists.

Overview: Searches for specified monitoring rule name.

Input: String monRuleName - Monitoring rule name

Input: X509Certificate userCert - The user’s credential.

Returns: Boolean - true if monitoring rule exists; otherwise false.

Name: cancelNotification

Purpose: Cancels notification.

Overview: Searches for specified notification identified by specified monitoring
rule name and removes it from the list.

Input: String monRuleName - Monitoring rule name identifying notification to
be canceled.

Input: X509Certificate userCert - The user’s credential.

Throws: Exception in case notification ID does not exist.

Name: subscribe

Purpose: Used for subscribing to the named monitoring rule to receive notifica-
tions.

Overview: Adds callback to the list of callbacks that are associated with specified
monitoring rule name.

Input: String monRuleName - Name of the monitoring rule to subscribe to and
receive notifications.

Input: ICallback result - Callback that is triggered when message to channel is
sent.

150

Input: X509Certificate userCert - The user’s credential.

Returns: String - ID of the subscription which can be later used to unsubscirbe.

Name: unsubscribe

Purpose: Used for unsubscribing from named monitoring rule to stop receiving
notifications.

Overview: Searches for specified subscription and removes it form the list.

Input: String subscriptionId - ID of the subscription to unsubscribe from.

Input: X509Certificate userCert - The user’s credential.

Throws: Exception in case subscription ID does not exist.

Name: provideMonData

Purpose: Used to send monitoring data to the monitoring. Used by other services
to provide monitoring with monitoring data.

Overview: Stores provided monitoring data to internal database.

Input: MonData monData - Object that represents monitoring data.

Input: X509Certificate userCert - The user’s credential.

A.6 The Auditing Service API
Name: addArchiveRule

Purpose: Adds archive rule which describes what and when to archive. To de-
scribe what to archive, monitoring rule is used. Specified monitoring rule
must be made up of condition(s) in order for monitoring rule to be accepted.
Data is archived when conditions in monitoring rule are met.

Overview: Creates hierarchy of nodes which represent monitoring rule and archives
specified metrics to the historical database.

Input: String monitoringRule - Monitoring rule describing what data to archive.

Input: List<Metric> metricsToArchive - List of metrics to be archived.

Input: X509Certificate userCert - The user’s credential.

151

Returns: String - archive rule ID which can be later used for archive rule cancel-
lation.

Throws: Exception in case monitoring rule syntax is not correct.

Name: addTimedArchiveRule

Purpose: Adds archive rule which describes what to archive in timed intervals.

Overview: CronDaemon is used to periodically perform archiving.

Input: String monitoringRule - Monitoring rule describing what data to archive.

Input: Integer period - Delay between two archiving occurrences.

Input: List<Metric> metricsToArchive - List of metrics to be archived.

Input: X509Certificate userCert - The user’s credential.

Returns: String - archive rule ID which can be later used for timed archive rule
cancellation.

Throws: Exception in case monitoring rule syntax is not correct.

Name: cancelArchiveRule

Purpose: Cancels archive rule meaning it is not being used anymore.

Overview: Searches for specified archive rule and removes it form the list.

Input: String archiveRuleId - ID of the archive rule.

Input: X509Certificate userCert - The user’s credential.

Throws: Exception is case archive rule ID does not exist.

Name: query

Purpose: Gets a list of records containing data archived by specified archive rule.

Overview: Queries historical database and retrieves records.

Input: String archiveRuleId - Archive rule ID to get database records from.

Input: X509Certificate userCert - The user’s credential.

Returns: List<Record> - list of database records containing archived data.

152

Throws: Exception in case archive rule ID does not exist.

Name: queryByTime

Purpose: Gets a list of records containing data archived by specified archive rule
in timed intervals.

Overview: Queries historical database and retrieves records.

Input: String archiveRuleId - Archive rule ID to get database records from.

Input: TimeInterval timeInterval - Time interval determining time scope of re-
turned records.

Input: X509Certificate userCert - The user’s credential.

Returns: List<Record> - list of database records containing archived data.

Throws: Exception in case archive rule ID does not exist.

Name: generateReport

Purpose: Generated report from archived data.

Overview: Queries historical database and generates report.

Input: ReportType reportType - Type of the report to be generated.

Input: TimeInterval timeInterval - Time interval determining time scope of the
report.

Input: X509Certificate userCert - The user’s credential.

Returns: String - generated report.

A.7 The VOWeb and RCAWeb Front-end Interfaces
A.7.1 User login

Description User logins with username and password before use the Web Front-
end

Input parameters user name, password
Returns: Print successful message if user is valid. Print failure message if

user has not been approved or expired.
Throws: VOException.
Dependent APIs:

153

• Database SQL: Check username and password from xvoms DB

• XVOMS.getActor: Retrieve the actor for the given user

A.7.2 Create an account

Description Create a new account in VOLife
Input parameters: user name, password, re-type password, first name, last

name, organization, email
Returns: Print successful message and a mail will be sent to the email address

given by user if user’s information has been checked and approved. Print failure
message if user’s information is wrong.

Throws: Exception.
Dependent APIs:

• XVOMS.addUser(realname,username,...): Add user to XVOMS

A.7.3 Create a VO

Description Create a VO
Input parameters: VO name, VO description
Returns: Print successful message if VO is created. Print failure message if

VO is not created.
Throws: VOException.
Dependent APIs:

• XVOMSUtil.createVO(name,desc,owner): create a VO to XVOMS

• XVOMSUtil.addUser(user,vo): add the user owner to the created
VO

A.7.4 Join/Leave a VO

Description create a vo join/leave request
Input parameters: VO selected by the user
Returns: Print successful message if user creates the join/leave request to the

VO successfully. Print failure message if user fails.
Throws: VOException.
Dependent APIs:

• XVOMS.addRequest(desc,type,vo): create a request in the given
VO

154

A.7.5 My Pending Requests

Description Listing all the requests in the vos owned by the current user in the
session.

Input parameters: N/A
Returns: Show the user’s requests in web interface
Throws: VOException.
Dependent APIs:

• XVOMS.getRequests(): gets a list of requests belonging to the current
user in the session

A.7.6 Approve/Decline A Request

Description Approve/Decline a pending request belonging to the current user in
the session.

Input parameters: reqid- the Id of the pending request
Returns: Refresh the list of pending requests
Throws: VOException.
Dependent APIs:

• XVOMS.approveRequests(request): Approve a pending request

• XVOMS.declineRequests(request): Decline a pending request

• XVOMS.removeRequests(request): remove a pending request

A.7.7 Get an XOS-Cert

Description Download the user certificate
Input parameters: N/A
Returns: Print successful message if XOS-Cert is downloaded successfully.

Print failure message if operation fails.
Throws: VOException.
Dependent APIs:

• N/A

A.7.8 Generate new Keypair

Description: Generate the XOS certificate
Input parameters: passphrase, retype-passphrase
Returns: Print successful message if new Keypair is generated successfully.

Print failure message if operation fails.

155

Throws: VOException.
Dependent APIs:

• CDA.newKey(file,passphrase):Create a new key pair and save it
in file for current user

A.7.9 About me

Description: Show basic information about the current user in the session.
Input parameters: N/A
Returns: Show username, guid, and volume information of the current user

in the session.
Throws: VOException.
Dependent APIs:

• XVOMS.getGUid(user): Get the global uid for the given user

• XVOMS.getUservolume(user): Get the xtreemfs volume informa-
tion for the user

A.7.10 Change Password

Description: Change the password of the current user in the session
Input parameters: old password, new password, confirmed password
Returns: Print successful message if password is changed successfully. Print

failure message if fail or old password is not correct or new password is not match
with confirmed password.

Throws: VOException.
Dependent APIs:

• User.setPassword(md5passwd): set the new password for the cur-
rent user

• XVOMS.getUser(user, passwd): return User object by giving the
username and password

A.7.11 Logout

Description: Logout volife and terminate the user session.
Input parameters: N/A
Returns: Set username and guid to null, return to main interface of VOlife
Throws: N/A
Dependent APIs:

• N/A

156

A.7.12 My Owned VOs

Description List all the vos owned by the current user in the session.
Input parameters: search keywords
Returns: List VOs which names contain search keyword. If no keywords,

then list all VOs owned by the current user.
Throws: VOException
Dependent APIs:

• XVOMS.getOwnedVOs(user): get all the VOS owned by the given user

A.7.13 Delete a VO

Description: Terminate a VO including the requests, resources, vogroups, users.
Input parameters: VO selected in the list of the user’s owned VOs.
Returns: Print successful message if selected VO is deleted successfully.

Print failure message if operation fails.
Throws: VOException.
Dependent APIs:

• N/A

A.7.14 Manage groups/roles

Description: Add/Delete VO groups and roles
Input parameters: vo– the vo to/from which the group/role is added/deleted

group – the group to add/del role – the role to add/del
Returns: Show the user’s VO list with group information and role information
Throws: VOException.
Dependent APIs:

• XVOMS.addGroup2User(user,vogroup): gives a user a particular
vogroup.

• XVOMS.addGroup2VO(vo, des): add a vogroup to a vo.

• XVOMS.addRole2Group(group, des, role): add a vorole to a
vogroup.

• XVOMS.addRole2User(user, vorole): gives a user a particular
voroleaddGroup2VO(vo, des).

• XVOMS.removeGroup2User(user, vogroup): removes user from
a particular vogroup.

157

• XVOMS.removeGroup2VO(vo, vogroup): removes vogroup from
vo.

• XVOMS.removeRequest(request): removes request from the sys-
tem.

• XVOMS.removeResource(vo,resource): removes resources from
an existing vo.

• XVOMS.removeRole2Group(group, vorole): removes vorole from
group.

• XVOMS.removeRole2User(user, vorole): removes vorole for a
particular user.

A.7.15 Add a RCA

Description Register a RCA server.
Input parameters: RCA name, RCA description, DIXI host, DIXI port
Returns: Print successful message if RCA is added successfully. Print failure

message if operation fails.
Throws: VOException.
Dependent APIs:

• XRCAServer.setVOMembership: Add a RCA to VO

A.7.16 Delete a RCA

Description Delete a RCA server.
Input parameters: the RCA server to delete
Returns: Print successful message if RCA is deleted successfully. Print fail-

ure message if operation fails.
Throws: VOException.
Dependent APIs:

• XRCAServer.setVOMembership: Delete a RCA from VO

A.7.17 Add a resource to RCA

Description Add a resource to the RCA.
Input parameters: user guid, resource name, RCA, host, port, architecture,

os, cpus, ram, speed
Returns: Print successful message if resource is added successfully. Print

failure message if operation fails.

158

Throws: VOException.
Dependent APIs:

• XRCAServer.getPendingResources: Get a list of resources

A.7.18 Delete a resource

Description Remove a resource from the RCA.
Input parameters: the resource to delete
Returns: Print successful message if resource is deleted successfully. Print

failure message if operation fails.
Throws: VOException.
Dependent APIs:

• XRCAServer.getPendingResources: Get a list of resources.

• XRCAServer.unregisterResource: Remove a resource from RCA.

A.7.19 Add a resource to VO

Description Request to add a resource to a VO.
Input parameters: the resource to add
Returns: Print successful message if request is generated successfully. Print

failure message if operation fails.
Throws: VOException.
Dependent APIs:

• N/A

A.7.20 Approve a resource

Description Approve the request of a resource to add to a VO.
Input parameters: the resource request
Returns: Print successful message if request is approved successfully. Print

failure message if operation fails.
Throws: VOException.
Dependent APIs:

• XRCAServer.getPendingResources: Get a list of resources

• XRCAServer.confirmRegistration: Confirm the resource request

159

A.7.21 Decline a resource

Description Decline the request of a resource to add to a VO.
Input parameters: the resource request
Returns: Print successful message if the request is declined successfully.

Print failure message if the operation fails.
Throws: VOException.
Dependent APIs:

• XRCAServer.getPendingResources: Get a list of resources

• XRCAServer.unregisterResource: Reject the resource

A.7.22 Get Machine Certificates

Description Retrieve the node’s machine identity certificate.
Input parameters: userCert- The user’s credential, used for limiting the ac-

cess control to the administrators
Returns: The certificate currently stored on the node and used by the machine

to represent its identity
Throws: N/A
Dependent APIs:

• RCA.getMachineIdentityCertificate(userCert):Retrieve the
node’s machine identity certificate

160

	Glossary
	Executive Summary
	Introduction
	A Brief History of the Deliverable
	New Features
	Structure of the D3.5.13
	How the Deliverable Meets WP3.5 Tasks

	The Structure of the Security and VO Management Services
	Trust Domains
	Actors
	The Core Security and VO Management Services
	XVOMS
	RCA
	VOPS
	Monitoring and Auditing

	Security and VO Management Capabilities
	Describing Use Cases
	Grid Management Capabilities
	Configuring and Creating the Root CA
	Creating the X-VOMS Database
	Setting-up the Core Services
	Configuring a single Core Service
	Configuring the VO Web front-end
	Processing Certificate Requests
	Obtain Public Certificates
	Sign up to Grid
	Approve User
	Sign in to VOWeb front-end
	Remove User from Grid
	Leave Grid
	System removes user
	Change Password
	Register RCA
	Approve RCA
	Confirm RCA Approval
	Register Resource with RCA
	Approve the Resource Registration
	Obtain the resource identity certificate
	Update Registered Resource information in RCA
	Remove Resource from RCA

	VO Creation
	Create VO
	Add VO Attributes

	VO Evolution
	User Management
	Request to Join VO
	Approve User Request to Join VO
	Remove User from VO
	Common steps for removing a user from a VO
	User leaves VO
	Resource Management
	VO Policy Management

	VO Operation
	Users
	Obtain XOS Certificate for the User via VO Web Front-end
	Obtain User XOS-Certificate from the CDA server
	Resources

	VO Termination
	Monitoring and Auditing Capabilities
	Monitoring capabilities
	Auditing capabilities

	The XtreemOS Trust Model
	Elements of the Trust Model
	Credentials
	Certification Authorities
	Users
	Resources
	Protocols

	Setting-Up Trust
	The Registration Process
	The Secure Communications Process
	Certificate Distribution Process

	Detailed Design of the Security and VO Management Services
	XVOMS Design
	The XVOMS Classes
	The XVOMS Interactions

	CDA Design
	The CDA Classes
	The CDA Interactions

	RCA Design
	The RCA Classes
	The RCA Interactions

	VOPS Design
	The VOPS Classes
	The VOPS Interactions

	Monitoring Service Design
	The Monitoring Service Classes
	The Monitoring Service Interactions

	Auditing Service Design
	The Auditing Service Classes
	The Auditing Service Interactions

	Conclusions and Future Work
	Application Programming Interface of the Security and VO Management Services
	The XVOMS API
	User and VO Management Interfaces in XVOMS
	User Management methods
	System Management methods
	Resource Management methods
	VO Management APIs

	CDA API
	The CDA Client/Server Protocol
	CDA Client
	CDA Server

	The RCA API
	RCA Server
	RCA Client
	RCA Client Processor

	The VOPS API
	Core site
	Resource site

	The Monitoring Service API
	The Auditing Service API
	The VOWeb and RCAWeb Front-end Interfaces
	User login
	Create an account
	Create a VO
	Join/Leave a VO
	My Pending Requests
	Approve/Decline A Request
	Get an XOS-Cert
	Generate new Keypair
	About me
	Change Password
	Logout
	My Owned VOs
	Delete a VO
	Manage groups/roles
	Add a RCA
	Delete a RCA
	Add a resource to RCA
	Delete a resource
	Add a resource to VO
	Approve a resource
	Decline a resource
	Get Machine Certificates

