
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

First Specification of Security Services
D3.5.3

Due date of deliverable: 31/05/2007
Actual submission date: 29/05/2007

Start date of project: June 1st 2006

Type: Deliverable
WP number: 3.5

Task number: 3.5.2

Responsible institution: Rutherford Appleton Laboratory,
Science & Technology Facilities Council,
Harwell Science and Innovation Campus,

Didcot, Oxon OX11 0QX, United Kingdom
Editor & and editor’s address: Erica Y. Yang and Amit D. Lakhani

Version 2.4 / Last edited by Erica Yang / 29/05/07

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
PP Restricted to other programme participants (including the Commission Services)

√

RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.0 27/03/07 Amit Lakhani CCLRC first draft
0.1 01/05/07 Philip Robinson SAP second draft
0.2 03/05/07 Erica Yang STFC (with Gregor Pipan)added 1st version of AEM use

cases and APIs - JobCreation, ResourceMatching and
JobExecution

0.3 04/05/07 Amit Lakhani STFC added 1st version of resource management use cases
and APIs

0.4 04/05/07 Gregor Pipan XLab added 1st version of AEM use cases and APIs - Re-
source Negotiation

0.5 09/05/07 Erica Yang STFC added 1st version of user management use cases and
APIs

0.6 09/05/07 Philip Robinson SAP included general use cases and those for XtreemFS
0.7 09/05/07 Erica Yang STFC added 1st version of security services, in particular,

mutual authentication
0.8 10/05/07 Ian Johnson STFC added use cases for VO Management
0.9 14/05/07 Amit Lakhani STFC Added Background-Federated Resource Management
1.0 14/05/07 Erica Yang STFC split and updated mutual authentication into two sec-

tions in chapter 4: introduction and mutual authentica-
tion

1.1 14/05/07 Philip Robinson SAP Added background section on data management and
architecture section on Authorization

1.2 15/05/07 Amit Lakhani STFC Added Secure Communications section in Specifica-
tions of Security Services

1.3 15/05/07 Philip Robinson SAP Added new section on Isolation and updated the Au-
thorization section

1.4 16/05/07 Amit Lakhani STFC Edited Specification of Security Services, Updated and
edited Use cases chapter, added bibliography file

1.5 17/05/07 Erica Yang STFC removed APIs and implementation notes, added open
issues chapter

1.6 17/05/07 Erica Yang STFC restructured introduction chapter, updated open issues
1.7 17/05/07 Amit Lakhani STFC Edited XFS Use Case section, Added package hyperref

for easier navigation
1.8 17/05/07 Erica Yang STFC Modified Open issue - authentication, executive sum-

mary
1.9 22/05/07 Erica Yang STFC removed diagram from background AEM section and

added address
2.0 24/05/07 Amit Lakhani STFC Updated Resource Management Use case diagrams,

included internal reviewer comments
2.1 29/05/07 Erica Yang STFC added citations, modified Spec-authN, Spec-Intro
2.2 29/05/07 Erica Yang STFC added appendix, incorporated reviewers’ comments

by amended BG-Isolation, updated spec-intro, spec-
authn, openissues-authn, usecase-VO Mng, use case -
User Mng

2.3 29/05/07 Erica Yang STFC slightly revised introduction chapter and added open
issues - resource sharing

2.4 29/05/07 Erica Yang STFC corrected a few typos

Contents
1 Executive Summary 6

2 Introduction 7
2.1 Security Concept and Model . 7
2.2 Structure . 8

3 Background 10
3.1 Linux Security Overview . 10

3.1.1 Fundamental Linux Security 10
3.1.2 Pluggable Authentication Module(PAM) 11
3.1.3 Linux Security Module (LSM) framework 11
3.1.4 Security Enhanced Linux (SELinux) 12

3.2 Overview of Kerrighed Security 13
3.3 Virtual Organization - Sharing under Isolation 17

3.3.1 Virtual Organization and Sharing of Data and Resources . 17
3.3.2 Virtual Organisation and Isolation 19

3.4 Application Checkpointing . 22
3.4.1 Functional Description 23
3.4.2 Overlap with Security Requirements 23

3.5 Federated Resource Management 24
3.5.1 Functional Description 24
3.5.2 Overlap with Security Requirements 27

3.6 Availability and Scalability of Grid Services 28
3.6.1 Functional Description 28
3.6.2 Overlap with Security Requirements 29

3.7 Application Execution Management 30
3.7.1 Functional Description 31
3.7.2 Overlap with Security Requirements 32

3.8 Data Management - XtreemFS 33
3.8.1 Functional Description 34
3.8.2 Overlap with Security Requirements 35

4 Specification of Security Services 37
4.1 Introduction . 37

4.1.1 What is new? . 38
4.1.2 An Overview of Security Services 38

4.2 Mutual Authentication . 40
4.2.1 Authentication Problems 41
4.2.2 The Model . 41

1

4.2.3 Trust Assumptions . 43
4.2.4 The Protocol . 44

4.3 XtreemOS Authorization . 47
4.3.1 Authorization Problem 47
4.3.2 Protocols and Mechanisms 49

4.4 Secure Communications . 53
4.4.1 Problem space . 53
4.4.2 Assumptions . 55
4.4.3 Mechanisms for secure communications 55

4.5 XtreemOS Isolation . 57
4.5.1 Isolation Problem . 58
4.5.2 Isolation Protocols and Mechanisms 60

5 Use Cases of Security Services 65
5.1 Assumptions and Use-Cases in the Architecture Derivation Method-

ology . 65
5.1.1 Trust Management Infrastructure 65
5.1.2 Secure Virtual Organization Management 67
5.1.3 Secure User Management 69
5.1.4 Secure Resource Management 70
5.1.5 Secure Application Management 71
5.1.6 Security Policy Management 72
5.1.7 Key and Credential Management 72

5.2 Use Cases for VO Management 73
5.2.1 VO Creation . 73
5.2.2 VO Destruction . 75

5.3 Use Cases for User Management 77
5.3.1 User Registration . 77
5.3.2 User Update . 79
5.3.3 User Removal . 80

5.4 Use Cases for Resource Management 82
5.4.1 Adding a Resource to a VO 83
5.4.2 Removing a Resource from a VO 87
5.4.3 Updating a resource in a VO. 90
5.4.4 Selection of Nodes. 94

5.5 XtreemOS Security support for XtreemFS 97
5.5.1 Static Modeling . 98
5.5.2 Secure Bootstrapping of XtreemFS 100
5.5.3 Initialization of ACLs based on VO policies 102
5.5.4 Secure File Operations 105

5.6 Use Cases for AEM . 107

2

5.6.1 Job Creation . 107
5.6.2 Resource Matching . 108
5.6.3 Resource Negotiation . 110
5.6.4 Job Execution . 112

6 Open Issues 114
6.1 Scalability of the Authentication System 114
6.2 Flexibility vs Complexity of Authorisation 115
6.3 Technicalities of using Virtualization for Isolation 115
6.4 Resource Sharing across Multiple VOs 116

7 Appendix - XtreemOS Certificate (XOS-Cert) 117
7.1 XOS-Cert - Format and the Certificate as a Whole 117
7.2 XOS-Cert - the Attribute Certificate Part 118

3

List of Figures
1 A general security model for XtreemOS, based on boundaries and

privileges surrounding VO membership 7
2 Kerrighed deployment scenario. 13
3 Scheduling Architecture . 26
4 Mutual Authentication in XtreemOS: Model and a Proposed Pro-

tocol . 42
5 The components of the XOS Container concept deployed on a

single operating system node . 60
6 Component relationship diagram for using the XOS security ar-

chitecture . 61
7 Trust Management infrastructure for XtreemOS Security Mecha-

nisms and Protocols . 66
8 Illustration of virtual domains being created that spans more than

one real domain . 68
9 The inclusion of users in both the real and virtual domains i.e. VOs 69
10 The inclusion of resources as instances of physical resources in VOs 70
11 Application being executed in a VO as a set of interactions be-

tween distributed components 71
12 The security associations created between users and resources in

the various VOs for the support of an application being executed . 72
13 The inclusion of resources as instances of physical resources in VOs 73
14 Sequence Diagram showing the user creating and using a VO . . . 74
15 Sequence Diagram showing the VO administrator destroying a VO 77
16 Sequence Diagram showing the interactions between a user who

has the role of VO manager and the X-VOMS service during user
registration process. 79

17 Sequence Diagram showing the interactions between a user with
the role of VO manager and the X-VOMS service during the up-
dating user process. 80

18 Sequence Diagram showing the interactions between a user with
the role of the VO manager and the X-VOMS service during the
user removal process. 82

19 Sequence Diagram for Adding a Resource to an existing VO . . . 84
20 APIs for Adding a new Resource to an existing VO 85
21 Sequence Diagram for Removing a Resource from an existing VO 88
22 APIs for removing a resource from a VO 89
23 Sequence Diagram for Updating a Resource in a VO 92
24 APIs for updating a resource in a VO 93

4

25 Sequence Diagram for selecting nodes matching job execution re-
quirements . 96

26 APIs for selecting nodes from a VO matching the given requirements 97
27 Component diagram showing trust relationships between XFS com-

ponents . 99
28 Sequence Diagram showing the interactions between security com-

ponents and XtFS for bootstrapping 102
29 Sequence Diagram showing the interactions between security ser-

vices and XtFS components for installing an ACL 104
30 Sequence Diagram showing the interactions between security ser-

vices and XtFS components during standard file operations 106
31 Sequence Diagram showing the interactions between security ser-

vices and AEM components during the AEM Job Creation Process 109
32 Sequence Diagram showing the interactions between security ser-

vices and AEM components in the AEM Resource Matching Process111
33 Sequence Diagram showing the interactions between security ser-

vices and AEM components during AEM Resource Negotiation
Process . 112

34 Sequence Diagram showing the interactions between security ser-
vices and AEM components in the AEM Job Execution Process . 114

5

1 Executive Summary
This document is the first specification of security services for XtreemOS. It first
presents the outcomes of an extensive investigation into the overall security re-
quirements of the XtreemOS system architecture, including both F-layer system
and G-layer Grid services. The presentation follows a bottom-up approach start-
ing from describing the F-layer security requirements and solutions of existing
Linux, and those of Kerrighed, the Single System Image (SSI) system, to those of
the XtreemOS G-layer Grid infrastructual services. The result of this study has
been successful as it consolidates our understandings on the XtreemOS security
requirements while giving us a platform to derive solid and tangible use cases
from the essential aspects of the XtreemOS system.

The core of this deliverable is the specification of a set of security services
for XtreemOS. They are designed to support the XtreemOS VO-centric approach
towards Grid computing and include: VO membership, identity, attribute, creden-
tial distribution, and policy services. Together, they offer a foundation to support a
range of key XtreemOS security functionalities, including mutual authentication,
authorization, secure communication, and isolation in a VO-centric Grid envi-
ronment. As XtreemOS is a Grid operating system, the major challenge for the
security design is to strive a fine balance between scalability and usability (e.g.
the realization of transparent Grid access to end users).

This deliverable is backed by a wide-range selection of XtreemOS use cases,
including management of VOs, users, resources, data, and application execution.
The aim is to illustrate how to secure an XtreemOS-based Grid system using the
set of foundation security services specified.

The essence of this deliverable captures a snapshot of the ongoing architectural
design and implementation work undertaken by work package 3.5. The document
itself is a milestone that records our understanding of the security challenges and
exploration of solutions. To the work package as a whole, this is still an ongoing
process. We would expect the incorporation of refinements and adjustment of our
design to reflect our on-going interactions with other work packages. Therefore,
this document ends with a brief discussion of the open issues that may produce an
impact on the future development of this work package.

6

2 Introduction
This section defines some fundamental concepts and models used in this deliver-
able and describes how we organize this document.

A working definition of Virtual Organization (VO), taken from D3.5.2 - Secu-
rity Requirements for a grid-based OS, is described as follows:

"A VO can be seen as a temporary or permanent coalition of geographically
dispersed entities (individuals, groups, organizational units or entire organiza-
tions) that pool resources, capabilities and information to achieve common objec-
tives. There usually will be legal or contractual arrangements between the entities.
The resources can be physical equipment such as computing or other facilities, or
other capabilities such as knowledge, information or data."

2.1 Security Concept and Model
The XtreemOS security concept and model follows four notions of entity (subject
or object) protection and policy enforcement, as depicted in figure and explained
below, based on the Virtual Organization (VO) concept established in the Grid
Computing community.

Figure 1: A general security model for XtreemOS, based on boundaries and priv-
ileges surrounding VO membership

1. Permissions of interactions between entities within a VO boundary are de-
cided based on authorized VO membership and roles issued

2. Interactions between entities internal to a VO and those outside the vir-
tual boundary (i.e. non-members) are restricted by default and require spe-
cial privileges to interact; otherwise the non-member must go through the
membership-joining process

3. The existence of a VO should not interfere with the mechanisms protect-
ing interactions between entities in the same domain that are not acting as
members of a particular VO

7

4. Policies governing established, non-VO cross-domain interactions should
still be supported and their security enforced according to authorizations
agreed on between the interacting domains

Note that this is technically a difficult model to enforce and is for the most part
theoretical, in that external parties cannot override the policies of a local admin-
istrator. Secondly, the virtual existence of a VO suggests that the interpretation
of the boundary may differ from domain to domain. For this reason the core
VO-related security enforcement mechanisms are to be implemented within the
operating system, assuming that installations of XtreemOS are obtained from re-
liable sources1. Core VO-related security enforcement mechanisms include those
concerned with enabling confidentiality of stored data, confidentiality of data
communicated over networks, integrity of stored data, integrity of communicated
data, identification and authentication of users, authorized access to resources and
services, guaranteed access to resources and services by authorized parties, ac-
countability of data access and service execution, isolation of data and services,
according to the model of boundaries and privileges surrounding VO membership.

2.2 Structure

The remaining of this document is organized as follows.

Chapter 3 presents outcomes of an extensive background research to this de-
liverable. It elaborates on the key functional description on and security require-
ments of both F-layer system and G-layer Grid services of XtreemOS. The F-layer
XtreemOS system services cover conventional Linux operating systems and Ker-
ridge, the Single System Image (SSI) system. The readers who are familiar with
the functional aspects of XtreemOS can jump straight into the elaboration on the
security requirements.

Chapter 4 is a specification of the security services for XtreemOS. This chap-
ter consists of two parts. The first presents a high level description of the overall
approach we are undertaking and elaborates the list of security services we define.
The second details how these services are used to support four key security func-
tionalities of XtreemOS, they are: mutual authentication, authorization, secure
communication, and isolation.

1Typically, this should be assured by XtreemOS system administrators.

8

Chapter 5 presents a range of use cases to explain how the set of security ser-
vices defined in Chapter 3 can be used to support management of VOs, users,
resources, data and application execution in XtreemOS.

Chapter 6 is a brief summary of a list of challenging open issues on the design
of the security services. The inclusion of this list is to demonstrate our awareness
of potential obstacles in the deployment, development and integration stages of
our project.

Chapter 7 is an appendix, which offers a preliminary overview of the format
and content of the major security credential used in XtreemOS.

9

3 Background
This chapter provides an overview of functional and non-functional requirements
of XtreemOS, which have influenced the security architecture presented in this
document. These surround the conceptual models, applications and technologies
that contribute to the overall features of XtreemOS.

3.1 Linux Security Overview
There are many facets of Linux security and we only focus on existing Linux
security mechanisms that could be leveraged or extended by VO security services
in WP3.5.

3.1.1 Fundamental Linux Security

Fundamental Linux security is achieved with user and group management, as well
as file permissions. Based on this, the Linux Kernel implements a Discretionary
Access Control (DAC) model. DAC means that users and programs have discre-
tion over the objects (e.g. files, directories, sockets) in their control. Owners of
objects could determine, modify, or grant the access rights of objects at their will.
DAC is a simple but powerful solution that is important for keeping the integrity
of each user’s data in a multi-user environment.

UID, root and file permissions A Linux user, identified by a unique number
(UID), can belong to one or more groups identified by group IDs (GIDs). Each
process is associated with UID and GID information (called process credentials)
when it is created. When a process accesses a file, the kernel checks the process
credentials to determine which set of permission bits (e.g. rwx for o/g/w) of the
file will be applied. Once a malicious process gains success to impersonate the
root (the super user with UID of 0), the kernel will bypass permission checks of
this process, thus, it has all privileges to perform system administration actions.
That is why traditional DAC model of Linux has been heavily criticized for its
vulnerability.

Capabilities The Linux Kernel also supports POSIX.1e capabilities that impose
granular access control on processes. A capability is a flag that manifests whether
the process can perform a specific operation. Comparing to traditional uid-root-
permission bits model in which a process can either do everything or do noth-
ing, the capabilities model provides more constrained access control as a program
could be only granted a limited number of operations. Unfortunately the current
capabilities support in Linux is limited and not applicable to file systems.

10

Access Control List (ACL) POSIX ACLs extends the traditional POSIX file
system object permission model (rwx permissions for user, group and others) and
allows to specify different read, write and execution permissions not only for one,
but for a list of users and groups. POSIC ACLs are defined in POSIX 1003.1e
draft 17 . Sponsorship for this family of standards was withdrawn, which means
that they are unfinished, even though they seem to be in quite mature a state.
Patches that implement draft 17’s ACLs have been available for various versions
of Linux for several years and they are now part of the 2.6 Linux kernel.

3.1.2 Pluggable Authentication Module(PAM)

PAM (Pluggable Authentication Modules) is a suite of shared libraries conforming
to a set of abstraction APIs, i.e. PAM APIs, which covers security-related tasks
including authentication, authorization, logging, accounting, and so on. PAM
allows the implementation of security schemes to be independent of Linux system
services and applications. All PAM-aware system services (i.e. those rely on
PAM APIs for authentication and authorization) could easily switch from using
one security mechanism to another, without the need of changing their source
codes. This is gernerally accomplished by configuring the use of PAM libraries in
external files, like config files in /etc/pam.d.

PAM deals with four separate types of management tasks: authentication man-
agement, account management, password management, and session management.
For each type of task, multiple PAM modules could be configured to form an in-
voking chain (or stack), which allows for a modular and flexible development of
PAM plugins. The Linux-PAM library consults the contents of the PAM config-
uration file and loads the modules that are appropriate for the requesting applica-
tion. Textual information, required from/or offered to the user, can be exchanged
through the use of the application-supplied conversation function.

As a de facto standard interface of authentication, PAM has been supported
by most Linux/Unix systems. Based on a generic framework, new PAM modules
keep on emerging to fit with different sort of applications needs.

3.1.3 Linux Security Module (LSM) framework

LSM provides a collection of hooks in kernel which make it possible for develop-
ers to custom special security check policies for various objects access. The LSM
framework is policy agnostic in itself and only provides interfaces between kernel
objects access and various secure policy check codes which are implemented in
different kernel modules.

Access control is nothing but a way to check whether a subject (for example a
process) can execute an operation (read/write/execute) on an object (for example

11

a file). To support this, the LSM provides a hook for every place in kernel which is
required to make such a check. In the LSM, each object and subject have a label
which is defined and interpreted by concrete policy modules. A policy module
utilizes the subject/object label pair to determine whether the required operation
can be done or not.

The LSM framework is not a replacement but an enhancement to traditional
DAC and ACL of Linux. The classical Linux DAC checking is performed before
running LSM hook code whenever the kernel is about to access internal objects
(tasks,inodes,etc.). Different secure policies can be implemented on top of LSM,
such as the SELinux implementation.

3.1.4 Security Enhanced Linux (SELinux)

There are a variety of projects that provide enhanced Mandatory Access Control
(MAC) by patching Linux kernels. The MAC model follows the principle of least
privilege. In a MAC-based environment, application capabilities and privileges
are set by pre-defined policies rather than owners of resources. The attacker is
limited to the actions allowed by the system’s security policy.

Among those MAC enhancements of Linux, SELinux may be the only one
that was accepted into the mainline Linux 2.6 kernel series, as well as some dis-
tributions like Fedora Core and Gentoo. SELinux-enabled kernel enforces MAC
policies that confine user programs to the minimum amount of privilege they re-
quire to do their jobs. Even being a root user, access to resources could also
be denied according to predefined rules. SELinux operates independently of the
traditional Linux access control mechanisms.

In SELinux every process or file has a context which is comprised of three
parts: an identity, a role, and a domain (also called type). The identity is the name
of the Unix account or system build-in default user names. The role determines
which domains are permitted and is used to restrict the transitions to other do-
mains. A domain is a sandbox-like combination of subjects (e.g. processes) and
objects (e.g. files) that may interact with each other. For example, someone who
logs in as a regular user, with a regular user role, can never enter into administra-
tion domain. This kind of access control is called Type Enforcement (TE). The
context of a file is stored within the file system as extended attributes, and the
process contexts are stored by the kernel.

The SELinux policy describes the access permissions for all subjects and ob-
jects, i.e., the entire system of users, programs, and processes and the files and
devices they act upon. Policies could be customized and configured for achieving
different levels of access control.

12

3.2 Overview of Kerrighed Security
In this section we overview the Kerrighed security issues. As the type of instal-
lation of the Kerrighed distribution also implies associated security risks, we first
present its three types:

• using NFSROOT and booting the disk-less nodes using the PXE mechanism.
• using NFSROOT and booting nodes with installed Kerrighed.
• manually installing Kerrighed on nodes and manually starting the Kerrighed

session.

Security risks associated with each of the installation types are specifically men-
tioned whenever they present a special kind of risk. In the following, we start with
assumptions about the environment and proceed with scenarios originating from
these assumptions.

Figure 2: Kerrighed deployment scenario.

Figure 2 shows the recommended deployment scenario for Kerrighed clusters.
It shows that the Kerrighed cluster should be deployed on a private network (VPN,
dedicated switch, VLAN, etc.), using one cluster node as the gateway — holding
the usernames for the cluster users. The whole cluster should be hidden behind
the firewall. Users should connect to the gateway through the firewall, using SSH2

2We are aware of the current SSH exploits – these cannot be avoided.

13

protocol, while any outbound (i.e., requests for web services that are not in the
private network) requests originating from the cluster should also go through the
firewall. In the following paragraphs we give a more in-depth explanation of the
Kerrighed deployment scenario and the associated security risks.

Use of private network: The Kerrighed distribution is currently not designed
to operate on the publicly accessible network – it currently does not implement
secure communications between internal nodes.

Cluster is hidden behind a firewall: The Kerrighed cluster should be located
behind a firewall that allows incoming connections only from well-known IPs.
The connections originating in the Kerrighed cluster should also be filtered and
allowed only if they are well-known, thus reducing the chance of compromising
the system by malicious services. Of course, if the user’s machine is already
compromised and he connects to the cluster, the chances are that the cluster will
be vulnerable, but this human factor cannot be solved only by IP filtering.

Users should SSH themselves to the Gateway: The gateway is part of the
cluster and has the information about all users that connect to the cluster. If the
firewall allows the connection (the user is trying to connect from a well-known IP),
the gateway will accept the connection only if presented with a valid certificate
and then spawn the corresponding user session.

Cluster is static in terms of adding new nodes: The Kerrighed distribu-
tion currently does not allow hot-plugging of new nodes. Currently NFSROOT
is most used, but support for hot-plugging is under development. If the nodes
are disk-less, i.e. ramdisk is used, then the absence of dynamicity in nodes addi-
tion/retraction (and also use of NFSROOT) results in absence of nodes with dif-
ferent set of installed software. In case where nodes have disks and NFSROOT is
used only for Kerrighed sessions (started manually by modprobe kerrighed
and krgadm cluster start), the software that is installed locally on nodes
should be verified or the administrator should not grant the installation permis-
sions to the users.

Kerrighed should be used on secure distribution of Linux: The fact that
Kerrighed consists of set of patches for the standard kernel, module and a set of
user tools serves the conclusion that Kerrighed is as secure as the base underlying
distribution. Currently we are not aware of any security issues with Kerrighed
patches and module.

The summed up assumptions and facts about the Kerrighed deployment envi-
ronment thus are:

• Internal communications security

– Kerrighed cluster is working on a private network (VPN/dedicated
switch/VLAN).

14

– There is no hot-plugging of new nodes - use of common NFSROOT on
disk-less nodes, but support for hot-plugging is under development.
The case where nodes have disks and thus locally installed software
should be closely monitored by the system administrator.

– Kerrighed is as secure as the underlying Linux.

• Inside/outside security

– Kerrighed cluster is behind a firewall.

– Firewall allows connections to/from well known IPs.

Installing Kerrighed and associated security risks The general use-case sce-
nario for installing Kerrighed is given in on the Kerrighed web site3. It describes
installation on one machine which then acts as a boot server for other nodes in
the cluster. Currently the Kerrighed distribution does not support hot-plugging,
hence the number and IP addresses of the nodes are hardcoded into the NFS-
ROOT initalization as shown below. It is evident that changes to the Kerrighed
cluster initialization require root privileges.

group {
filename "/pxegrub";
option grub-menu = concat("(nd)/grub/", host-decl-name);
option root-path "/NFSROOT/kerrighed";
host ssi1 { fixed-address 192.168.0.101;

hardware ethernet xx:xx:xx:xx:xx:xx; }
host ssi2 { fixed-address 192.168.0.102;

hardware ethernet xx:xx:xx:xx:xx:xx; }
host ssi3 { fixed-address 192.168.0.103;

hardware ethernet xx:xx:xx:xx:xx:xx; }
host ssi4 { fixed-address 192.168.0.104;

hardware ethernet xx:xx:xx:xx:xx:xx; }
}

Internal communications security If we assume that we’re running on a safe
internal network, we can reduce the threat of attacks on the internal Kerrighed
communications. Still, if the user connects from compromised machine he may
also compromise the cluster. Internal DOS attack (cluster nodes are sending pack-
ets to one node) is possible using properly forged raw packets. Using this approach

3http://www.kerrighed.org/wiki/index.php/Kerrighed_on_NFSROOT

15

http://www.kerrighed.org/wiki/index.php/Kerrighed_on_NFSROOT

the Kerrighed cluster can crash, but in order to do that, the user has to have cre-
dentials that allow him to send raw packets, which in turn means, that the user has
root rights, i.e., he can do anything he pleases.

We proceed with scenario where we add a compromised machine to the clus-
ter. As the current distribution does not support stable hot-plugging, we can con-
clude that there are no attack possibilities here4. Later on, when hot-plugging is
possible, the node being added will have to be checked against malicious software.
As setting up and adding a new machine to the cluster is usually administrator’s
work, the integrity of the new machine is up to him. If we now focus to the cur-
rent common and recommended use of the Kerrighed cluster by using common
file system tree (i.e. the NFSROOT), we can conlude that this is the only possible
attack point. If users introduce malicious software (either on the NFSROOT or
on nodes’ local disks, if they are present), they can crash the cluster, but in or-
der to do that, they have to have proper rights – thus it is critical that the system
administrator has granted proper rights (restrictions) on the users.

Finally, we observe that Kerrighed is a patch to the standard Linux kernel
along with kerrighed module and a set of user tools. Currently we’re not
aware of any exploits introduced by these changes, so we assume that Kerrighed
is as secure as the underlying Linux distribution – we recommend Debian, which
is considered to be one of the most stable and secure Linux distributions. Addi-
tionally, Debian also supports use of PAM and LSM.

Inside/outside security Integral part of the overall Kerrighed cluster security is
the firewall which controls the barrier between inside and outside of the cluster.
First and foremost, the users have to use well-known IPs in order to connect via
SSH to the gateway. If their jobs need services or data that is available outside
the cluster, then they need to provide the IPs of their services to the firewall and
also provide properly secure channels for communication. Still, the security of
the cluster is dependent on the human factor.

Security issues In this section we present the identified security risks and give
our assessment of their current status.

• If Kerrighed cluster is running on a exposed, public network, the messages
between nodes can be easily intercepted, as the communication between
nodes is currently unencrypted.

• When Kerrighed will support hot-plugging new nodes, it will be possible

4Please note that this conclusion will have to be revised with progress of Kerrighed develop-
ment.

16

that new nodes contain compromised software. Also, when nodes are not
disk-less, the software installed locally may be malicious.

Using clusters in business environments includes having good network and sys-
tem administrators. Network administrators are responsible for proper setup of
the private network and firewall, while system administrators must check (or bet-
ter set up) the new node. Proper set up of the network and firewall is of utmost
importance, as it prevents sending the data to third party services outside the clus-
ter network. The verification of the software installed on the new node software
is important in order to prevent malicious internal actions (e.g., cluster crashing,
etc.). We conclude that both threats are moderate or low.

Overall, the security risks associated with use of the Kerrighed cluster with
current Kerrighed distribution are scaled down to good system and network ad-
ministration and the underlying Linux distribution and kernel.

3.3 Virtual Organization - Sharing under Isolation
One of the major benefits of introducing the concept of Virtual Organization into
the IT world is the potential of transforming (existing or new) IT systems to fulfill
the requirements of project-oriented groups, which, in today’s world, typically
span across multiple physical organizations and administrative domains. However
the establishment of a VO has to be in accordance with local IT and data protection
policies. As a result only dedicated users or user groups are allowed to share
dedicated resources and data while company dependent security guidelines and
data protection policies apply for all other employees. Thus it is essential for a
VO framework to handle subjects and roles they can act in, data/resource objects
and the granted rights to.

3.3.1 Virtual Organization and Sharing of Data and Resources

Sharing within a Virtual Organization can take place on two different levels. On
one hand this is sharing of resources, e.g. computing power which has no con-
sequences to users data. On the other hand, data, objects and interfaces could be
shared which renders common shared data. Independent of the kind of sharing,
this has to be defined by a set of policies which only empower dedicated users.

Resource sharing - A lot of work has been done in order to make effective use
the resources of IT systems. Often, the experience of resource utilization is much
improved by giving users and applications the illusion that they have an exclusive
access to all the available resources. A resource manager, a piece of software, is
in place to handle the load of users and enable efficient operations. Typically, it

17

is very important to note that neither users nor their applications should deal with
the actual resource management at the system level. For example, the manage-
ment of concurrent access to data or resources should be managed by the resource
manager.

Technically, there are multiple ways to achieve a better resource utilization.
Storage can be, for example, reused by the use of copy-on-write technologies
which ensure that only the differences between the data belonging to different
users will be stored. Such technologies can also be used to execute multiple in-
stances of a program in a very memory efficient way. They can also improve the
startup time of applications or even that of virtual machines when being used in
that context.

On the other hand, data should still be possible to be shared between users
and their applications even users work in different projects. It is very important to
note that resource managers are no longer present to (1) mediates access to data,
objects or interfaces; or (2) ensure data/object consistency.

Data sharing - Exchanging information among entities in a VO is essential for
achieving a common goal. Typically, only a few entities in this construct have
the full access privileges, while some others have much restricted access rights.
This is very much an application-specific issue and operating systems cannot me-
diate access requests with a predefined set of strategies based on which a resource
manager has implemented.

Enabling such accesses depends on the subjects, objects and access rights in-
volved in the applications executed on the IT system. Since users in a Virtual
Organization are represented by their VO identifier, authorizations represented by
access rights and credentials can be bound to their identifier. Hence, it is essential
to identify the subjects, objects/resources in the context of a VO and a operating
system.

Subjects in an VO and operating system context

• Owner of physical infrastructure (hardware, network and storage).

• Administrators of physical infrastructure.

• Users:

– Local users

– Global users, VO user, VO initiator

• Roles: Depending if a rule based access control concept is used, rules can
be applied to:

18

– VO administrators and users

– Local administrator roles

Data objects and resources in an operating system context

• Filesystems, volumes, files

• IPC

– Pipes

– Shared memory

– Semaphores

• Service access points and network sockets

• Methods of objects/function calls

The above is a list of data objects that can be used for data sharing among Vir-
tual Organizations and the access to them is needed to be controlled. However, the
access rights which have to be controlled depend on the type and access methods
of the data objects and sources. Both VO users and their rights within a VO have
to be managed and be made available via a suitable infrastructure. Although these
issues are discussed in the remaining parts of this deliverable, they will be tackled
in greater detail in the next specification of security services.

3.3.2 Virtual Organisation and Isolation

One of the fundamental goals of XtreemOS is to provide an abstraction that makes
the complexities of distributed hardware and secure resource sharing between dif-
ferent sites transparent. The Virtual Organization concept provides such an ab-
straction, but in addition it also prevents unauthorized access and thus logically
isolate the Virtual Organization. This can also be seen as the counterpart to the
sharing aspect within a Virtual Organization by denying access to all other re-
sources and data. This becomes increasingly important for Grid systems that
handle critical data and have high integrity requirements for data and processes.
Isolation therefore presents relatively hard security requirements for XtreemOS.

Functional Description The resources of a VO may be physically dispersed
and under the governance of different administrators. A VO defines a logical
boundary around a set of specified resources, which indicates some default ac-
cess constraints. That is, a resource r1 accessible in VO1 is not accessible in VO2.

19

Each physical resource in a VO is therefore assigned a VO-specific reference iden-
tifier, which may differ from their global identifier when outside of the boundary.
Any member and resource in a VO has the following elements:

• Entity attributes that describe their identities, capabilities and functionalities
• Objects that hold computational data and state information, which change

as they interact
• Interfaces that allow for them to interact
• Services (or processes) that are executed as a result of interaction; services

perform operations on local objects or invoke local or remote interfaces

A VO is also considered to be an entity with unique attributes, such that these
attributes are inherited by its members and resources. This VO-wide attribute set
is referred to as the VO Context. The above elements can however be used in
none or more VO contexts; Elements used in 0 contexts are referred to as root ele-
ments, such that they are the attributes, objects, interfaces and services in the real
world. Within a VO they may be created as pointers, aliases or special instances
of these root elements. The goals of isolation are also defined with respect to this
categorization of elements:

• Attribute Isolation ensures that selected attributes used to identify a resource
in a particular VO context are the only set of attributes that can reference
that resource, such that the resource cannot be referenced outside of the VO
context (e.g. machinex <– VO1)

• Object Isolation ensures that application, computational and state data as-
signed to VO context vo cannot be viewed or altered by processes in vo′. In
addition, any memory allocated for these objects cannot be used for objects
outside of the VO context.

• Interface Isolation ensures that invocations of resources in one VO context
cannot be used externally or to leak information outside contexts.

• Service/Process Isolation ensures that the execution of services or processes
outside of the VO context do not interfere with the execution of those inter-
nal, even when failure occurs5.

A VO that requires all of these isolation types to be satisfied is known as
hard-isolation. Isolation in a distributed system is nevertheless a hard problem.
Isolation in an inter-domain system, such as in a Grid environment, is even more

5Could also argue that mutual isolation is perhaps necessary, to ensure that internal processes
and services do not interfere with external services and processes.

20

difficult for reasons beyond technical. XtreemOS should be capable of achieving
this level of isolation, as a fundamental objective, yet capable of flexibly adjusting
the level of isolation based on the requirements of the application.

Overlap with Security Requirements The security services implemented in
XtreemOS should provide functionalities to support different levels of isolation as
well as the enforcement of the logical VO boundary and context. However, these
requirements are not exclusive from each other, such that the same mechanisms
can be used together with other mechanisms for different types of isolation.

1. Security requirements for VO context creation and boundary enforce-
ment: A VO context requires a unique name attribute that is a universally
unique identifier (UUID). There are already three UUID generation func-
tions in standard Linux available in the uuid/uuid.h header library, using
different algorithms for determining randomness and uniqueness. These
may be part of e.g. a create-vo-context method.

void uuid-generate(uuid-t out);
void uuid-generate-random(uuid-t out);
void uuid-generate-time(uuid-t out);

Secondly, the authenticity of the context must be verifiable as created and
issued by an authorized node in the XtreemOS. We would therefore require
flexible authenticity stamp and check functions that take the inputs of target
(e.g. ‘vo-context’), method (e.g. ‘md5’) and reference (e.g. ‘key’).

2. Security requirements for attribute isolation: In order to achieve attribute
isolation, any attribute must be appended with that of the vo-context. There-
fore, this has to be enforced when attributes are assigned to or registered by
resources when joining a VO. These are actually two different protocols and
functions:

(a) issue-attributes: based on the identity, VO context and requirements
of a subject (i.e. a resource user or process), a trusted attribute-issuing
component should provide the relevant attributes required by the sub-
ject.

(b) check-attributes: there needs to be a fully trusted component available
on each node, acting as a reference monitor, which can inspect claimed
attributes and validate that they belong to a given VO.

3. Security requirements for object isolation: the security mechanisms should
ensure that actions performed on objects and their memory conform to a set

21

of isolation policies. A sandbox is therefore required that performs the fol-
lowing checks on operations: (i) object-create, (ii) object-write, (iii) object-
read, (iv) object-copy and (v) object-delete.

4. Security requirements for interface isolation: the mechanisms for inter-
face isolation are related to the read and write checks for object isolation at
a finer granularity. The same protection mechanism can be used or a sec-
ond level of defense can be set up that checks for finer-grained attributes of
calling processes and the parameters of the call related to the VO context
within which the resource runs6.

5. Security requirements for service/process isolation: this adds require-
ments for failure handling to the above set of isolation protection mecha-
nisms. Firstly, services and processes of one VO context should execute
within an independent physical address space. Secondly, provisions should
be made for secure7 checkpointing and rollback during their execution.

In terms of achieving isolation across domains, it must be initially assumed
that the administrators of each domain, members and resource of a VO act
trustworthily with respect to the isolation policies. Issues with maintain-
ing trust and reputations may be beyond the technical scope of XtreemOS.
Note that virtualization technologies such as VMWare and OpenVC provide
different means of logically yet robustly isolating execution environments.
These should be explored as implementations for proving transparency of
the functions requested above.

3.4 Application Checkpointing
Using application checkpointing, one can write to stable storage an image of the
state of an application and restart the application at a later time or on a different
set of nodes.

Saving the state of an application to stable storage might involve different
strategies as requested by the user. The most simple strategy simply writes the
state to a disk accessible locally, whereas more complex constraints might send
the state of the application to another node of the grid, either for storage on a
remote disk or in remote memory. Moreover, disks accessible locally might be
disks attached to the local node as well as remote filesystems mounted locally.

6recall that a physical resource may be running in multiple VO contexts
7note that checkpointing and rollback require possibly sensitive data from memory state to

be transmitted over a network to a storage location. This must be securely done and stored i.e.
encrypted

22

3.4.1 Functional Description

In XtreemOS, application checkpointing involves:

• The Kernel Checkpointer, that deals with taking the snapshot and restart for
an individual process

• The System Checkpointer, that deals with providing checkpoint manage-
ment at the application unit level, and

• The Grid Checkpointer, that deals with providing checkpoint management
at the application (or job) level.

Since Kernel and system checkpointing is performed in XtreemOS-F layer, we
will consider the description of Grid Checkpointer in this section.

In XtreemOS, the need to checkpoint a job can arise in two instances 1) Due
to a scheduling decision from Application Execution Management, or 2) Due to a
Fault Tolerance policy defined by the user and given in the job description.

The service responsible for checkpointing a job is the jController service.
The jController includes two internal services for managing job migration
(jMigration) and checkpointing (jCheckpointing). The jCheckpointing
service applies the checkpointing strategy to all the running processes. It regis-
ters the processes with the checkpointing services on the local nodes, it provides
resources to store the checkpoints, it then launches jobs in the checkpoint context
and it co-ordinates the checkpoints of a job running on different nodes. It is also
worth noting that checkpointing a job is optional during migration of a job and is
determined by policy set by the user.

In case of a fault, a jRecovery service will apply the fault tolerance pol-
icy as given by the user and restart the job based on a checkpoint. Both the
jRecovery and jCheckpointing interact with the System Checkpointer on
Grid nodes.

3.4.2 Overlap with Security Requirements

The security requirements defined by application checkpointing can be categorised
into two broad types:

1. Requirements for secure storage of checkpoints: When an application
is checkpointed, the checkpoints can either be stored in local storage or in
complex multiple Object Sharing Services (OSS) as defined in XtreemOS
file system (XtreemFS). Nevertheless, the secure storage of these check-
points is of prime importance, since recovery from failures will be instan-
tiated from these checkpoints. In addition to secure storage, checkpoints

23

should be accessible easily and quickly. Checkpointing should at least store
the threads, Inter-Process Communications, network communications and
opened files by the job being checkpointed. Also, replicas of the check-
point files are required to preserve availability of checkpoints. However,
this can be specified by the user. Such a provision is considered for scenar-
ios where replicas are not cost-effective or if the user does not want to have
checkpoint replicas.

In essence, confidentiality, integrity and availability of checkpoint files need
to be maintained.

2. Requirements for secure context switch at restart: When an application
is restarted after failure, it inherits the security context (for e.g. policies) as
defined during restart and looses the security context it had upon checkpoint.
Therefore, it will abide to the security policies at the time of restart and
not necessary to those that prevailed at the time it was running. For such a
requirement, VO policies should be embedded within the checkpoints stored
either locally or in OSS.

3.5 Federated Resource Management
3.5.1 Functional Description

From the “Description of Work” it becomes clear that the XtreemOS operat-
ing system is intended to be executed on all computers, making resources from
such computers as part of virtual organizations. There will be three flavors of
XtreemOS - for single PCs, for clusters and for mobile platforms. On top of
XtreemOS, runs a Grid application on one or several Grid nodes. Such an ap-
plication can be divided into application units, where each of these application
units are executed on a single node. Federated resource management deals with
LinuxSSI-XOS, the SSI (Single System Image) cluster version of XtreemOS’s
foundation layer. In a cluster all nodes work closely so they can be viewed as a
single multiprocessor computer. A Linux SSI operating system does exactly that.
It provides an illusion that a cluster is a highly robust, virtual multiprocessor com-
puter running Linux. Thus, Linux SSI-XOS is a standard Linux kernel modified
in two ways – firstly, to include the modifications for VO support, and secondly,
to integrate distributed resource management services to provide a single system
image.

Five main directions are identified for design and implementation of LinuxSSI:

• Building scalable SSI mechanisms: The goals here are common to other
HPC cluster technology development. It is foreseen then during the tenure
of the project, clusters will reach petaflops range. So, the XtreemOS-SSI

24

needs to support clusters with hundreds and even thousands of nodes. These
nodes should be able to use 64-bit multicore processors. With such large
number of nodes the mean time between failures will decrease dramatically
and XtreemOS-SSI should be able to handle such failures. To enable fulfill-
ment of such goals, WP2.2 is working on six core functionalities – dynamic
reconfigurability (dynamic node addition and removal, survival under sin-
gle node failure and clean shutdown of SSI cluster), SMP nodes support
(add support for shared memory parallel nodes and multicore CPUs), 64-
bit processor support, removing hard-wired parameters (increase number of
containers in system), support for high-speed interconnects (add support for
OpenIB infiniband stack) and functional stability (benchmarking methods
for detecting issues in this area).

• Checkpoint/Restart Mechanisms: Refer to Section 3.4 for a complete de-
scription of this functionality.

• Reconfiguration: In LinuxSSI, (i) new nodes are added, (ii) nodes are re-
moved from the cluster and (ii) nodes fail. LinuxSSI has to adapt to these
reconfigurations to ensure that they will not compromise application execu-
tion on a cluster. While handling of node addition and removal are charac-
terized as basic features, handling node failures is thought of as advanced
feature for LinuxSSI. Hotplug is the component in LinuxSSI that deals with
reconfigurations. It informs other components of the reconfiguratons and it
coordinates the actions taken by the other components to adapt to the re-
configuration. WP2.2 have built the Hotplug component and are testing it
against basic and advanced features.

• High Performance Disk I/O: The most common approach in cluster tech-
nology is to use dedicated nodes to provide distributed/parallel file sys-
tems. Thus, the cluster is divided into compute nodes and I/O nodes. In
XtreemOS, however, our view is that all nodes could potentially provide
both CPU and storage resources.

• Customizable Scheduler: Each resource owner strives for high utilization
and optimal resource usage. A predictable system keeps the user satisfac-
tion high. User satisfaction can be achieved by resistance to failures. For
developing an adaptable scheduler XtreemOS scheduling services consist
of three levels. At XtreemOS-G level the jScheduler service finds re-
sources through a discovery process and assigns them tasks. It is also re-
sponsible for job optimization based on various optimization criteria. There-
after, a Service Level Agreement (SLA) is negotiated with rAllocation

25

service. The cluster level optimization goals are optimal resource utiliza-
tion. This can be achieved by having reduced overhead on the resources,
which results in better efficiency.

The architecture is presented in Figure 3. The rAllocation and jScheduler
are Grid services whereas LBScheduler is a site level service. rAllo-
cation service negotiates use of resources, and puts jobs in LBScheduler
queue. The Load Balancing Scheduler- LBScheduler, performs load bal-
ancing in order to level the load on a cluster. LBScheduler is executed on
each site.

N
od

e-
le

ve
l s

er
vi

ce
s

Si
te

-le
ve

l s
er

vi
ce

s
G

rid
-le

ve
l s

er
vi

ce
s

rAllocation jScheduler

LBScheduler

Cluster
Node

Cluster
Node

Figure 3: Scheduling Architecture

• Virtual Organization Support: For integration of LinuxSSI with the XtreemOS
Grid services there is a need to add support for VO management services
and infrastructures as defined in WP2.1. The first step is the addition of Ker-
nel Key Retention Service (KRS) in Kerrighed. KRS is needed for trans-
porting and attaching Grid certificates and proxies to processes. On single
Grid nodes, there is mapping between the Global User ID and VO ID to
local UID and GID. The local UID and GID is also used by XtreemFS for
defining ownership and permissions on files. LinuxSSI will let a SSI cluster
to appear in the Grid as a big SMP machine. Grid-related services which
usually run on each node will run on one instance for LinuxSSI cluster. This
is important for WP2.1 which is designing the mapping between local and
global IDs, as the entire LinuxSSI will have a single local UID/GID.

26

3.5.2 Overlap with Security Requirements

It is to be noted that most of the functionalities provided by federated resource
management mechanisms are at kernel level or more so for managing nodes within
a cluster. In lieu of this, many of the security requirements for federated resource
management concur with security requirements for highly available and scalable
nodes, since both of them deal with optimal node management and maximum
resource utilization. Security issues in this section deals with robustness against
failures, quality of service and secure communication. Many of these are already
covered in Section 3.2. However, following security requirements can be derived
from the above functional description:

• Specification of node Service Quality: It must be possible to specify the
service qualities (e.g. maximum network delay, availability of resources)
for certain applications. Nodes that do not fulfill such requirements should
not be selected for application execution.

• Node properties in federations: It must be possible to specify some required
properties of federation nodes. For example, node architecture, installed
web services, node libraries etc. can be specified by the user intending to
submit a job. In addition, it must be possible to mount certain constraints on
federation nodes. The XtreemOS API must provide mechanisms to specify
such constraints.

• Checkpointing and restart: It must be possible to detect failures automat-
ically, checkpoint and restart nodes. The policies governing such restarts
should be applied once the node is restarted.

• Robustness:It must be possible to change the number of nodes that the ap-
plication uses during runtime. If the number of available federation nodes
changes, XtreemOS must notify the running applications. The application
then decides whether it can adapt to the change. If the application can adapt
to the change, it is its responsibility to rearrange any variables and computa-
tions going on. If an application cannot adapt on-the-fly to fewer nodes be-
ing available, perhaps it can be checkpointed and restarted on fewer nodes.
The notification mechanism can be decided on later. It must also be pos-
sible that the running application requests a change of the number of fed-
eration nodes. A running application can request additional nodes to start
processes. These additional resources have to be provided by XtreemOS (if
nodes are available). Furthermore, a running application may release cer-
tain resources after terminating calculations on these nodes. These nodes
are then available for the execution of other applications. XtreemOS must

27

be able to dynamically consider these released nodes in resource manage-
ment and to provide them to other applications.

3.6 Availability and Scalability of Grid Services
This document is intended to summarize security requirements from the perspec-
tive of WP3.2. It shall enhance the information that was already stated in Deliv-
erable D3.5.2. [3, section 7].

3.6.1 Functional Description

Before understanding the functionality of highly available services, it is impor-
tant to understand the deployment of applications in XtreemOS. This section first
describes the general concepts of applications/services running on the XtreemOS
grid and then goes into details regarding the availability aspects.

At the core of the grid, WP3.2 provides a lightweight epidemic algorithm
that runs on all XtreemOS nodes. This algorithm serves two purposes. Firstly,
it establishes a robust overlay covering all nodes that are part of the XtreemOS
grid. Secondly, it groups the nodes according to their parameters enabling easy
searching of nodes with specific properties.

For deploying an application, the deployer/administrator has to specify the
number of nodes she requires for the application. Furthermore, it is possible to
provide additional static parameters that describe the attributes nodes must have
in order to run the application, in addition, it is also possible to specify different
attributes for different nodes. These criteria are passed to the Grid (as an input
to the routing functionality of the epidemic algorithm) which, in turn, finds a set
of nodes that fulfill the requirements. The number of nodes is higher than the
one required, if possible. Application Execution Management is responsible for
selecting the best nodes out of the whole set (considering dynamic parameters e.g.
load, throughput etc.). The nodes finally selected are grouped by the system and
provided with an overlay allowing the communication of any node with any other
node.

An entry point to that group of nodes is returned to the administrator as a result
of the search request. Now the deployer is able to deploy application code to the
nodes of her application group. Furthermore, it is possible for her to build up
other, application specific overlays such as a Chord ring or an MPI on top of the
first, application-wide overlay. This process is supported by the WP3.2 toolbox.

Deliverable D3.2.1 [1] describes a set of independent abstractions that can be
used by application developers to enable high-availability for their applications.
Implementations of these abstractions are part of the WP3.2 toolbox. Application
developers can plug-in tools into their applications.

28

During application bootstrapping the system groups all nodes, an applica-
tion/job runs on, into a logical entity. Depending on the requirements the ap-
plications has, it may use different tools out of the WP3.2 toolbox. Consequently,
there exist at least two kinds of overlays. A grid wide overlay and an application
wide overlay. Additionally, every application may instantiate other overlays on
top of the previous ones.

An application with a server-like interaction pattern may benefit from the “dis-
tributed server” abstraction. That is all nodes the application runs on are accessible
with a single IP address. To enable fault-tolerance this approach does not use a
proxy pattern like many other systems, but relies on the mobile extension to the
IPv6 instead. Thus, the reliability of the service depends on the reliability of the
network infrastructure. However, this is not a drawback, as a working network is
mandatory for the service to be reachable.

Applications with critical parts may want to use the “virtual node” abstraction
that allows increasing the fault-tolerance of these parts by using replication tech-
niques that are known from object replication systems. In general it is assumed
that the critical parts follow a client-server interaction scheme, that is, clients send
requests that are processed by the servers, and are answered with a reply message.
Internally, the requests are forwarded to all replicas, processed by all of them, and
one or several replies are returned to the client depending on the error model. It is
assumed, that clients accessing a virtual node are part of the same application as
the virtual node i.e. it is not planned to support external access to virtual nodes.
If such is required, we plan to use a setup of both distributed servers and virtual
nodes.

For applications that require events to be passed from one of their nodes to
another one, WP3.2 offers a publish-subscribe system. In such a system, parts
of an application can register to be informed for certain events that are published
by either other parts of the application, the runtime infrastructure (such as the
scheduler or job monitors), the grid infrastructure (joining of new nodes, failure
of existing nodes) or application external entities (other grid applications).

3.6.2 Overlap with Security Requirements

Following the above functional description multiple security issues are raised.
Most of them are already covered in D3.5.2 [3] and will only be summarized
here in short. Just as in the deliverable we will distinguish three security layers:
grid level, application level, and host level.

At the grid level, the epidemic algorithm chooses hosts for an application ac-
cording to properties hosts have and which application deployers specify during
the deployment process. It is required that hosts cannot fake the properties they
offer as this would enable DoS attacks.

29

At the application layer, it is required that external nodes can communicate
with an application by predefined communication structures. Furthermore, when
application nodes open a connection to an external party, this communication must
appear to come from the official application interface and thus hide the node’s
identity. This is necessary not only to provide anonymity, but also to tolerate
node failures and the movement of parts of the application to other nodes for load
balancing purposes.

Similarly, arbitrary communication with nodes participating in a virtual node
shall not be possible, as the request has to be forwarded to all nodes, i.e., logi-
cal 1:1 connections must be mapped to a physical 1:N connection. Accordingly,
connections from replicas to other nodes must be coordinated to avoid multiple
physical requests for one logical request. All these demands may be handled in
the application itself or in the replication framework. However, as they are manda-
tory for application integrity, it seems reasonable to put the solution in OS level.
Furthermore, the mechanisms to handle application communication and virtual
node communication might be quite similar.

At the host level WP3.2 requires that communication integrity and confiden-
tiality be granted.

Additional security requirements Epidemic algorithms have proved to be very
resistant to non-benign failures, as they can tolerate contemporary failure of a high
portion of nodes. However, they are also known to be very vulnerable to non-
benign failures, as all nodes are considered equal. Since the basic algorithm of the
XtreemOS grid system will be some sort of epidemic algorithm and a grid system
will definitely be subject to attacks, securing the algorithm without introducing
too much overhead will have to be a major concern. A first step in this direction
is to find a way that allows the algorithm to distinguish between nodes that are
allowed to participate in the grid, since they belong to a valid virtual organization.
In a second step the challenges of an open grid system, which allows arbitrary
nodes to join, is to be faced.

For virtual nodes the requirements for secure communication can be con-
cretized. Not only communication between clients and virtual node members
must be secured, but also communication between the members themselves. Es-
pecially, it must be ensured that former members that were excluded from the
group for whatever reason can not follow group messages after their exclusion.

3.7 Application Execution Management
In XtreemOS, application execution is managed by Application Execution Man-
agement (AEM) services [2]. Depending on the amount of interactivity required

30

during application execution, applications can be classified into two categories:
simple and complex applications. Simple applications do not require further in-
teractions with users once they start execution, whilst complex applications need
to support interactivity between users and runtime applications. Complex appli-
cations require session management on top of application execution management
of simple applications. AEM provides a general architecture to accommodate the
functional requirements of both types of applications.

3.7.1 Functional Description

AEM services can be logically grouped into three types: Job Management Ser-
vices (JMSs), Resource Management Services (RMSs), Execution Management
Services (EMSs) and AEM global services.

JMSs cover all the job related tasks, including job scheduling, job controlling,
job monitoring, event handling, and execution management. JMSs are mostly
operated on an individual job basis, that is, these services do not have a global
view of the system. Once an application starts executing, JMSs become interme-
diates between users and runtime applications by allowing the users to monitor
the runtime application information and control application execution. When a
job requires multiple resources, JMSs also cover dynamic application execution
management in a distributed manner.

RMSs cover all the resources related tasks, including resource monitoring,
negotiation (i.e. checking with local policies and reservation), and allocation.
RMSs contact node management services 8 to obtain a list of candidate nodes and
perform resource selection and matching based on the static resource information
(e.g. number of CPUs). Once resources are selected, RMSs further reserve the
resources and perform resource allocation so that applications can execute with
a guaranteed level of resource provision. In the presence of addition and release
of resources, RMSs also cover the re-negotiation and re-allocation of resources to
ensure the agreed level of guarantee is held.

On nodes, a submitted job will be managed by EMSs, which are responsible
for executing jobs on resources.

There are two AEM global services, namely JobDirectory and
jResourceMatching. By global, we mean these services are operated within
the context of a VO. JobDirectory maintains the reference to running jobs
whilst jResourceMatching provides resource selection and matching. Once
an application starts execution, the control of the job is entirely handed over to
another AEM service, jController. JobDirectory is the only way that
users can get access to jController.

8Node management services are provided by WP3.2.

31

3.7.2 Overlap with Security Requirements

AEM services are operated in the context of a VO with the support of VO manage-
ment services (aka. VOM). VOM is a logical representation of a collection of VO
infrastructure services, which include, but not limited to, membership, identity,
attribute, and policy management services. We will start by the general security
requirements and then move on to the specific security requirements.

General security requirements for AEM services: There are two fundamental
security requirements for all AEM services: 1) only registered users are allowed
to access AEM services. A registered user means that the user is registered with
a VO membership service; and 2) fine-grained and scalable access control should
be in place to ensure AEM services are available to authorized users and they can
perform efficiently even in the presence of a large number (e.g. thousands) of VO
users. There are two levels of controls: one is the control to AEM services them-
selves (e.g. jController and JobDirectory), and the other is the control
to the information provided by AEM services (e.g. accounting or monitoring in-
formation).

Security requirements for job submission: The security services should en-
sure that: 1) only authenticated VO users are allowed to submit jobs so that the
use of VO resources is accountable; 2) the selection of VO policies should be
context-aware. That is, VO policies should be associated with the context of job
submission. Contextual information may include users attributes (e.g. role, lo-
cation, origin organization); and 3) cross-VO job submission should be possible.
This last requirement is probably the most complicated because it requires fed-
eration of security services (e.g. identity and policy) from multiple VOs across
multiple administrative domains.

Security requirements for resource matching: One of the most important as-
pects of AEM resource matching is its incorporation of VO policies for resource
selection. The security mechanisms for resource matching should ensure that re-
sources selected for application execution conform to VO policies throughout the
entire lifespan of the execution. The major challenge here is to ensure such con-
formance in the presence of dynamic resources or application execution across
multiple resources.

Security requirements for job accessing: The security services for accessing
remote jobs are mainly for applications that require interactions during application
execution. They should ensure that: 1) users are attached to the correct sessions

32

of application execution; and 2) users are given the same level of privileges in all
the sessions; and 3) once a job is complete, users’ credentials should be safely
revoked and their privileges be removed across the entire VO 9.

Security requirements for interactive sessions: The security services for ac-
cessing remote jobs are mainly for applications that require interactions during
application execution. They should ensure that: 1) users are attached to the cor-
rect sessions of application execution; and 2) users are given the same level of
privileges in all the sessions.

Security requirements for job execution: A job executing on resource providers
should be granted appropriate access rights to access the resources it needs. These
resources can locate locally on one or across more than one resource providers, or
remotely (e.g. under the governance of GFS). The access rights should be guaran-
teed consistently even in the presence of dynamic resource changes or engaging of
multiple concurrent resources through the entire lifespan of job execution. Once
a job is complete, users’ credentials should be safely revoked and their privileges
be removed across the entire VO 10.

Security requirements for accounting: In the context of AEM, the security
services for job resource accounting should ensure that resource usage is recorded
with accuracy so that resource consumption is accountable. By accountability, we
mean that the accounting information should associate with individual VO users
11. The recorded information should also be made available to authorized VO
entities so that they can run follow-on services (e.g. reputation or billing) after a
job is finished.

3.8 Data Management - XtreemFS
In XtreemOS, data management is primarily a feature provided by XtreemFS, a
distributed file system designed for Grid environments. As a result of this exten-
sion of traditional filesystem concepts, there are new security requirements that

9Upon job completion, users should still be able to access to the results with appropriate rights
and should even possibly grant these rights to other users. However, this is a grey area which may
involve the interactions among AEM, XtreemFS and security.

10Upon job completion, users should still be able to access to the results with appropriate rights
and should even possibly grant these rights to other users. However, this is a grey area which may
involve the interactions among AEM, GFS and security. Hence, we will not discuss the security
requirements for job result accessing here.

11In the context of XtreemOS, accounting should be based on VO users rather than purely users
with Distinguished Name (DN)

33

arise. This section provides an overview of XtreemFS and then a description of
the security requirements that have been considered in the security architecture.

3.8.1 Functional Description

A reliable file system and effective data management are integral parts of any op-
erating system. XtreemFS supports data management in XtreemOS by facilitating
the following characteristics:

• Object-based: separates pure content from meta data. Object Storage De-
vices (OSDs) store objects and provide read/write interfaces to them, while
the Metadata and Replica Catalogue (MRC) maintain the meta-data sur-
rounding objects including replica locations. Both of these data repositories
are targets for attack, such that a reference monitor mechanism that protects
both object and meta-data is required. Compromise of meta-data as well as
the links between meta-data and objects destroys the integrity of the system.

• Fault tolerant: there is an attempt to reduce the effect of host failures such
that these can be automatically handled and not propagated. The security
challenge here is maintaining the fault tolerance mechanisms and ensuring
that it is not used as a means of attacking the XFS.

• Scalability-objective: i.e. increased performance demands can be matched
with proportionally adding more machines - should run on standard hard-
ware with the assumption that the data loads and requests will exceed the
capacity of a single machine.

• Organization, administrator and user autonomy: organisations are inde-
pendent, i.e. can join and leave at will, and they can work without connec-
tivity (referred to as federation). Federations allows institutions and users
to use their local system with their local data when disconnected from the
Grid, while having a global data view when connected.

• Loose coupling and asynchronous interaction: it is loosely coupled and
asynchronous, so that failures and temporary performance issues don’t spread
over the whole system.

There are other important assumptions of XtreemFS made with respect to its
integration in a UNIX/Linux-like operating environment. These include compli-
ance with POSIX libraries and library calls, extended meta-data, portable imple-
mentation on commodity PC hardware (i.e. no assumptions of specialized, large
scale memory or processors), flexible data hiding and storage, group mechanisms
and legacy support for UNIX-based applications.

34

3.8.2 Overlap with Security Requirements

As distributed filesystem consist of up to several thousand nodes, management
becomes a greater issue. Distributed systems can become very complex, yet com-
pliance with a specification is important. Due to the distributed nature, if some-
thing fails it is hard to figure out the responsibility and who caused it. Security
mechanisms therefore seek to reduce possibility of failure by preventing against
different types of malicious attackers.

Assumptions about attackers It is assumed that a cluster of OSDs of the XtreemOS
filesystem is present and stores data. All participating OSDs behave as specified
in respect to the OSD service and software it depends on. The users as well as the
administrators do not attempt to interfere the operation. The participating OSD
nodes share the same codebase or implement the same functionality in a different
way. In contrast, the OSD of an attacker does not adhere to the specification and is
thereby not trustworthy. It can behave in a different/unspecified way than the other
OSDs in the cluster. It is assumed that an attacker can benefit from integrating a
non-conformant OSD into the cluster.

Internal Attackers This section focuses on an attacker joining the set of OSDs
and when successfully joined, to perform an internal attack on the operation of
the cluster of OSDs, the data integrity and confidentiality. An internal attacker is
much more powerful than an external one since it can perform all attacks of an
external attacker locally too. In addition all the network attacks can be performed
in more sophisticated way since an internal attacker may know encryption keys
and can decipher the payload of the network traffic in case it is encrypted.

Uncompliant Object Storage Device This section focuses on an attacker with
the aim to interfere the execution of an OSD. The attacker can also be interested
to get confidential data stored on his OSD or render data integrity. The aim of the
attacker is to get his malicious OSDs joined into a XtreemOS storage cluster.

Aims of an Attacker The attacker can have several aims and can perform dif-
ferent kinds of attacks to the OSD cluster he managed to join it. The aims are:

• Perform a denial of service attack: The attacker may have the goal to inter-
fere the quality of service of the cluster or federation. Once he managed to
join the cluster he is able to control the communication. He can act in a lots
of different ways, from interrupting the communication and thereby letting
other nodes wait to send malicious packets as external attackers can. If the

35

communication is encrypted the attacker is able to decipher the communi-
cation and read the information in plain. To endure his actions, the attacker
may apply different strategies to remain undetected.

• Render the integrity of data useless: The attacker may have the goal to have
access to sensitive data and modify it in a way he prefers. Therefore the
attacker disobeys the policies for access control by having access to data
without the mediating reference monitor. He may also be able to render the
set of policies to achieve this. Especially logging and accounting data is a
major goal for attacks to the integrity of the data. This also includes data
parts influencing this data such as time information.

• Accessing confidential data: The attacker may have the goal to have access
to confidential data such as business information, personal profiles, license
information, etc. available in the XtreemOS OSD cluster.

Point in time of the attack The attacker can be seen as an external attacker
when he tries to join the OSD cluster. Therefore some might argue that this is an
external attack. However when the attacker achieves his goals he operates from
an internal standpoint.

Security Functions of the MRC The MRC is a major component in the secu-
rity of XtreemFS. The core interface between an MRC and the OSDs is the file
access capability. When a client wants to access a file, it requests access from the
metadata server, which hands out a capability to the client. The client presents that
capability to a storage server as both an authentication and authorisation means
and gets granted the proper access. File access capabilities are secured by en-
crypting them with a key that is shared between the MRC and an OSDs. They
contain: the object that the client is allowed to access, the operations that the
client is allowed to perform, some means for revocation (expiration time or object
id versions) and some means of client authentication (its IP address for example).

36

4 Specification of Security Services

4.1 Introduction
One of the fundamental security requirements of XtreemOS is to provide a Grid
operating system that has a security infrastructure to support single sign-on (SSO).
In an XtreemOS Grid environment, a user should be granted appropriate access
rights and privileges to access Grid-wide resources in a consistent and efficient
manner. In this context, the consistency should be ensured throughout the lifetime
of user sessions and the efficiency should be achieved regardless of the scale of
the system and the geographical locations of users and resources.

This is, however, a non-trivial research as well as engineering challenge be-
cause the scale (e.g. up to thousands of concurrent users and resource nodes) that
XtreemOS sets out to target. It is also inherently challenging because XtreemOS
also allows the concurrent presence of multiple VOs, each of which may span
cross multiple organizational boundaries. And commonly, each organization has
their own established security infrastructure and practice.

However, the authentication system adopted by Grid middleware is typically
independent from those in the existing security infrastructure used by operating
systems. In the present design, the user needs to explicitly acquire and manage
two independent sets of security credentials:

• Local credential for authenticating to the operating system 12 where the user
initiates a Grid request; and

• Grid credential for authenticating to the Grid.

Typically, the former one is based on password and the latter one is based on
PKI. Effectively, this design means that users need to cope with two completely
different types of authentication systems. This can be inconvenient for users.

On the one hand, when a user is part of an organizational computer network, a
local credential is typically a Kerberos username/password. Or, in a more general
case, a local credential is a username/password pair issued by his own machine.
On the other hand, Grid credential is a public/private key pair issued by a Cer-
tification Authority (CA). Managing two independent sets of credentials can be
daunting for majority of non-technical users who often have limited experience of
PKI.

Hence, this leads to the demand of a scalable SSO solution that should max-
imize the possibility of integrating with existing organizational security infras-
tructures and minimize the demand on users coping with two different types of
authentication systems.

12This OS can be either networked or stand-alone.

37

Since XtreemOS is a Grid OS, we have an distinct advantage of integrating
such a solution well into system-level services. The motivation is that this ap-
proach can lead to a better integrated security solution that demand minimum
interactions with users, and be able to provide transparent access to resources.

The remaining of this section is divided into two parts. The first part describes
what sets our solution apart from the existing ones offered by Grid middleware.
The second gives a general overview of the security services offered by this first
edition of specification of security services of XtreemOS.

4.1.1 What is new?

In XtreemOS, we take an integrated approach towards credential management by
better integrating the Grid level authentication with system level authentication.
To users, the end result will be an integrated Grid operating system that provides
Single Sign On (SSO) access to Grid resources. The goal of this approach is to
realize such a vision that

Once a user logs on to a Linux terminal, this user should be able to easily
access Grid resources by invoking XtreemOS commands with minimum degree of
awareness of the Grid.

The aim of our design is to shift the complexity of secure Grid resource access
from users to XtreemOS. However, the typical security requirements (e.g. mutual
authentication) for accessing Grid resources should still be satisfied.

In line with the fundamental approach taken by XtreemOS, our security solu-
tion is VO-centric. The essence of our approach is to cleanly separate user man-
agement from resource management in a VO through a set of carefully designed
infrastructural security services within the scope of VO Management (VOM). The
challenge is to achieve our goal without compromising scalability and efficiency.
Because of the separation, the changes (i.e. addition or removal) of VO users
will not impose significant impact on resource management in a VO, and, vice
versa. In the end, XtreemOS should allow independent management of users and
resources from multiple administrative domains.

Each VOM has an associated role, called a VO manager, who is in charge of
running all the VOM services and is issued a public key certificate by a recognized
CA. The certificate permits the VO manager to issue VO credentials to users for
them to access Grid resources.

4.1.2 An Overview of Security Services

In XtreemOS, a VO user is uniquely identified by his global ID and has a selection
of VO attributes. The user often affiliates with an real organization (we call it
home organization), who runs a set of VOM services. A user can concurrently

38

possess multiple global identities (global IDs) within a VO. In the current design
of VOM, global IDs are managed by VOM on a VO basis.

The approach we have adopted is top-down, starting from user and system
spaces down to the kernel space of the Linux OS. In the user space, there are
five fundamental security services managed by a VO manager under the VOM
umbrella on a per-VO basis 13:

• Credential Distribution Authority (CDA) issues users with VO security
credential for accessing Grid-wide services and resources. In XtreemOS,
we use X.509 v.3 certificate [6] as our credential format and refer such cre-
dential as XOS-Cert. CDA holds the public/private key pair of the VO man-
ager so that they can issue signed XOS-Certs. Before obtaining an XOS-
Cert, a user needs to prove its VO membership.

• Identity service generates and manages globally unique VO IDs and user
IDs. These IDs have to be globally unique across the entire Grid regardless
of the number of VOs, users, and resources. In XtreemOS, we assume
each VO has a globally unique ID, called VO ID 14 The global uniqueness
of user IDs is managed by VOM. Their authenticity is guaranteed by the
signature of the VO manager in a XOS-Cert. The underlying assumption is
that resource nodes trust the VOM manager and have pre-installed the root
CA certificate of the VO manager. Based on a XOS-Cert, nodes can verify
users’ authenticity.

Comparing with the scale of user population, the number of VOs is normally
negligible. It is much easier and simpler to ensure the global uniqueness of
VO IDs than that of user IDs. Hence, one way is to generate globally unique
user IDs is to concatenate a VO ID with a VO-unique user ID. Herein, by
global ID, unless specifically spelt out, we mean global user ID. In order
not to be confused with the DN field in a typical X.509 certificate, the user

13It is very important to note that these are logical separation of security services. When these
services are implemented, they may be implemented as a single component or a set of separated
components. When they are implemented separately, one has to consider the mutual authentica-
tion between each pair of these components. For the initial implementation, these services should
be implemented as one single component to reduce the operation complexity. Due to the high
availability and scalability requirements of such a VO component, we plan to investigate the pos-
sibilities of using the highly available and scalable services currently being developed in WP3.2
in the near future.

14There are many ways to ensure the global uniqueness of an identity, be it numerical or al-
phanumeric. For some, please see [4]. Some of candidate approaches rely on the availability of
a global (across all VOs) directory service to check the uniqueness of IDs. Others don’t. For the
moment, we tend to favor on those approaches who can provide uniqueness assurance without
online interactions, although this may mean some compromise on the quality of the IDs.

39

ID in a XOS-Cert embedded as an attribute of the certificate 15.

• Attribute service provides users with VO attributes. In XtreemOS, these
attributes are used in a variety of ways, including:

– to allow nodes to perform access control to their resources; and

– to allow nodes to map global IDs to system UIDs/GIDs. In XtreemOS,
there are proposals from WP2.1, to use attributes in XOS-Cert, such
as PrimaryGroup and SecondaryGroup, to map global IDs to system
UIDs/GIDs to enforce some level of isolation between Grid users.

• VO Membership Service (X-VOMS) provides VO membership checking
service that would allows systems to validate the VO membership of a user
who initiates a Grid request from a Linux terminal. X-VOMS connects to a
database which stores VO information, such as identity and attributes, about
a user.

• VO Policy Service (VoPS) provides policy related services, such as policy
information and decision points to VOM so that VO level access control can
not only be enforced at nodes but also by VOM. One benefit of integrating
policy decisions in VOM is to accommodate the flexibility of incorporating
VO policies in job scheduling and resource negotiation processes.

In the system space, we provide interfaces to these security services to system
level daemon services. This is to allow seamless integration of our services into
OS level services that will be run as daemon. A typical example of such OS level
services is Application Execution Management (AEM) services, being developed
in WP3.3. In the kernel space, PAM modules are used to transparently interpret
XOS-Certs for authentication and authorization.

4.2 Mutual Authentication
To be self-contained, this section starts from describing the principle of authenti-
cation, mutual authentication, and Single Sign On (SSO). The elaboration on this
topics sets the foundation for the description of mutual authentication between a
user and a resource node in XtreemOS. We will then explain the trust assumptions
of the three authentication methods: Kerberos, PKI, and password, that XtreemOS

15Putting user ID in the DN field of a XOS-Cert is possible. This can be achieved by requiring
users to put their Grid user ID in the certificate they send to the VO manager. If the ID is verified,
the VO manager signs it and sends back an endorsed XOS-Cert. Otherwise, the XOS-Cert request
is refused.

40

security architecture can be based upon. In the following, we refer these authen-
tication methods as Kerberos, PKI and password, respectively. This section ends
by describing how mutual authentication works using each type of authentication
method.

4.2.1 Authentication Problems

Authentication is concerned with proving the identity of an entity in a network. In
public key cryptography, the knowledge of a private key equals proof of identity16.
In symmetric key cryptography, if A shares a secret with B, when A talks to
another entity in a network, if the other entity can be convinced A that it has the
knowledge of the secret, A is convinced that the other party is B17.

Mutual authentication is the process of mutually authenticating two entities
in a network. Each entity needs to be certain about the identity of the other. In
XtreemOS, because a user’s global ID is described in a XOS-Cert signed by VOM,
mutual authentication becomes a problem of verifying the authenticity of the ID
that a user claims to have and of verifying the ID of the other end (typically, a
resource node).

Traditionally, Single Sign On (SSO) means that a user only needs to authenti-
cate once and gain access to resource nodes owned by different organizations.

In XtreemOS, SSO has the following meaning. SSO should provide users with
a seamless access to remote resources with minimized amount of awareness of the
Grid environment. From a security point of view, that means that secure access to
resources should demand a minimized amount of operations from users. To them,
accessing remote resources should be the same as accessing networked resources
in their own organization. SSO should enable direct access to Grid resources
once a user has authenticated themselves to organizational network through an
organization’s existing security infrastructure, if they exist.

4.2.2 The Model

This section describes a generic authentication model for XtreemOS. This model
consists of two parts: a home organization, from which users originally register
their VO membership, and a foreign organization, where mutual authentication
(between users and resources) takes place. This model is designed to be flexible
to accommodate a wide range of authentication methods to allow users to authen-
ticate themselves to a VO.

16This is assuming the holder does not share this private key with anybody else. The public key,
as its name suggests, is a piece of public knowledge, i.e. anybody can know about it.

17This is assuming neither A nor B shares the secret with anybody else.

41

Figure 4 shows the model and a proposed protocol to facilitate mutual authen-
tication between a client, who runs a service on behalf of a user, and a node, who
runs a Grid service, in XtreemOS. The authentication within a home organization
is handled by Home Authentication Authority (HAA). In the diagram, X-VOMS
and CDA are presented as one single component (refer to Section 4.1.2 for more
information).

The components on the left hand side of the vertical dash line are with the
home organization. The node on the right hand side is with the foreign organi-
zation. The client represents a service running on a XtreemOS Linux terminal.
This service understands XtreemOS commands (e.g. XSub) and is configured to
interact with other XtreemOS components, such as X-VOMS/CDA.

XOS - Mutual Authentication (between user and resource node)

A. Home

Authentication

B. Membership Checking &

C. XOS-Cert Issuing

D. Mutual

Authentication

Client (C)

X-VOMS/CDA

(XC)

HAA

Node (N)

The proposed protocol:

1. C to XC : C, g, n, gRc, XOS-Cert request through a secure and authenticated channel
2. XC : check with HAA and validate VO membership

3. XC to C : <C, g, n, gRc>Kr
XC (ticket in a XOS-Cert, which has an valid period.)

4. C to N : {<C, g, n, gRc>Kr
XC, RndMsgc}K

u
N

5. N : if the ticket is valid, generate gRn

6. N to C : gRn, {RndMsgc}g
Rc*Rn , {RndMsgn}g

Rc*Rn

7. C : check whether RndMsgc is the original one. If yes, N is authenticated.

8. C to N : {RndMsgn}g
Rc*Rn

9. N : check whether RndMsgn corresponds to the one generated earlier. If yes, C is authenticated.

Within the validation period of XOS-Cert, the session key agreed between C and N: gRc*Rn

Home Organization Foreign Organization

Grid: PKI

(everybody knows
other entities’ public key.)

HAA: can use any kind of

authentication methods
so long as C and XC

can exchange authenticated

and secure messages.

A -> C

D

Figure 4: Mutual Authentication in XtreemOS: Model and a Proposed Protocol

The mutual authentication process consists of four sequential steps:

• Step A (Home authentication): authenticate with the home organization,
this is handled by HAA;

• Step B (VO membership checking): obtain confirmation from X-VOMS
that he is a registered VO user;

42

• Step C (Requesting XOS-Cert): obtain a XOS-Cert from CDA, if the VO
membership is confirmed; and

• Step D (Mutual Authentication): perform mutual authentication between
the user and an entity in the foreign organization.

It is important to note that not all these steps have to be performed every time
a Grid request is issued. Steps A to C are performed the first time Grid requests
are issued. An XOS-Cert can be reused within its validation period and be stored
in the a temporary directory belonging to a user. So long as it is still valid, steps
A to C can be skipped.

In this model, HAA is designed to serve two purposes:

• To separate authentication in a home organization from that in a foreign
organization so that VO user management can independently evolve from
the actual Grid environment within which resources are hosted; and

• To accommodate the need of integrating with existing authentication infras-
tructure (be it Kerberos, PKI, or any other kinds of authentication methods)
that an organization may already operate.

Note that the definition of a home organization is the organization that a user
originally registers his VO membership with. A special case of this setting is
that a user does not have any home organization to authenticate with. The flexible
nature of this model gives XtreemOS the opportunity to cope with such a situation
as well. In this case, X-VOMS provides a password based authentication system
to allow users to register with.

Typically, the authentication methods employed by the home and foreign or-
ganizations are different. As shown in the figure, the Grid side, including the
X-VOMS/CDA(XC), are under the governance of PKI. That is, the XC and every
node have issued a public key certificate. This is because majority of existing Grid
infrastructure is based on PKI.

The authentication system at the home side is not restricted. That is, we make
no assumption on which type of authentication method that the home organization
adopts. The challenge here is to bridge the trust between the home organization
and the foreign organization.

4.2.3 Trust Assumptions

This section describes the trust assumptions on which mutual authentication in
XtreemOS is based upon.

It is important to note that different authentication methods built upon different
trust assumptions. In this specification, XtreemOS aims to provide the support of
three authentication methods that can be used in a home organization, they are:

43

1. Kerberos, a popular network based authentication system already employed
by many organizations;

2. PKI, a common authentication system used by Grid middleware; and
3. A password based authentication system provided by X-VOMS.

In methods 1 and 3 above, users are identified by their registered username. In
method 2, users are identified by their DN.

In our model, the VO manager, governing both X-VOMS and CDA, acts as a
trusted arbitrator to bridge the trust between two worlds: the home and the foreign
organizations. To facilitate such bridging, resources in the Grid environment need
to trust the XOS-Certs issued by the VO manager. In practice, the VO manager’s
root CA certificate and its public key certificate need to be installed on resource
nodes so that nodes can verify the authenticity of XOS-Certs. Similarly, users
should be able to verify the authenticity of nodes. However, this is the mutual
authentication after users obtain their XOS-Cert. The trust assumptions on the
authentication in the home organization is different.

In a typical setting of XtreemOS, the user, HAA, X-VOMS, and CDA are as-
sociated with a home organization. Let us say, the home organization has its own
security infrastructure, for example, Kerberos. In this case, X-VOMS needs to
be configured as a Kerberized service that understands Kerberos tickets so that
it is capable of verifying the authenticity of users without needing to know the
password of users. The presentation of a valid Kerberos ticket is a proof of iden-
tity. Here, the example Kerberos server, i.e. krealm.ac.uk, is the HAA. Because
Kerberos is a network service, it has to be online to serve as a HAA.

In the second case, where the home organization uses public key certificate to
verify users, X-VOMS needs to install the root CA certificate of the user and other
CA certificates in the certificate chain. To X-VOMS, the proof of knowledge of the
user’s private key is equivalent to the proof of identity. Here, there is no physical
and separate server that users need to authenticate with. However, indirectly, the
CA who issues certificates to users and X-VOMS is viewed as a HAA.

In the third case, a user is authenticated by X-VOMS because he shares a
secret (i.e. password) with the X-VOMS. To X-VOMS, the proof of knowledge of
the password is equal to the proof of identity. Similar to the PKI case, there is no
physical and separate server that users need to authenticate with. here, X-VOMS
acts as a HAA. Hence, in the third case, HAA is simply a logical entity that does
not physically exist.

4.2.4 The Protocol

This section describes a protocol for facilitating mutual authentication in XtreemOS.
This protocol is based on the classic Diffie-Hellman key agreement protocol[5].

44

At the end of our protocol, a shared secret key is agreed between communicat-
ing parties who (a) previously are unknown to each other; and (b) are under two
different administrative domains, who may or may not use the same kind of au-
thentication methods.

The following is a list of notations being used in the protocol.

• C: the client service running on behalf of a user

• N : a resource node in the Grid18

• XC: the component implementing the services X-VOMS and CDA

• g, n: the Diffie-Hellman (DH) parameters19

• Rc: a random number generated by C

• Rn: a random number generated by N

• Kr
Y : the private key of Y

• Ku
Y : the public key of Y

• <M>Ku
Y : a message M signed by Y ’s public key

• {M}Kr
Y : a message M encrypted by Y ’s private key

• RndMsgy: a random message generated by Y

The steps described below are identical to those shown in Figure 4. Here, we
provide detailed elaboration of the mutual authentication protocol.

1. C → XC: C, g, n, gRc , XOS-Cert request through a secure and authenti-
cated channel

2. XC: check with HAA and validate VO membership

3. XC → C: <C, g, n, gRc> Kr
XC (ticket in a XOS-Cert, which has an valid

period.)

4. C → N : { <C, g, n, gRc>Kr
XC , RndMsgc }Ku

N

5. N : if the ticket is valid, generate gRn .
18Examples of a node are a normal resource node and a MRC or OSD node in XtreemFS. In

fact, any service that has a public key certificate can be such a node.
19g is the DH exponent and n is the DH field.

45

6. N → C: gRn , {RndMsgc}gRc*Rn , {RndMsgn}gRc*Rn

7. C: check whether RndMsgc is the original one. If yes, N is authenticated.

8. C → N : {RndMsgn}gRc*Rn

9. N : check whether RndMsgn corresponds to the one generated earlier. If
yes, C is authenticated.

Steps 1 to 3 are done within the home organization. As stated earlier, HAA can
validate the authenticity of users. Hence, this protocol relies on the authentication
methods offered in the home organization to establish the secure and authenti-
cated channel between C and XC. In the case of HAA using Kerberos, XC is
configured as a Kerberos service and, thus, the channel is established based on
the shared secret (given by Kerberos) between XC and the user. In the case of
HAA using PKI, the traffic towards XC will be encrypted using XC’s public
key; whilst the traffic towards C will be encrypted using C’s public key. Finally,
in the case of HAA using X-VOMS password based authentication, this key is the
shared password hash between the user and XC.

Note that Rc is kept privately by the user to perform steps 7 & 8. According
to the discrete logarithm problem based on which the Diffie-Hellman protocol is
derived, it is computationally hard to obtain Rc from gRc . This applies to any
other discrete logarithm computation involved in this protocol. Similarly, Rn is
kept privately by N to perform steps 6 & 8.

The ticket <C, g, n, gRc>Kr
XC is embedded in a time-bounded XOS-Cert. It

can be reused again and again by the user until it expires.
Step 4 onwards shows how the ticket can be used by C to authenticate with

any other entities, represented by a Node (N), in the Grid environment.
After the last step, a session key gRc*Rn is agreed between C and N and is

valid within the validation period of XOS-Cert.
The user registration process is done through out-of-band means, hence it is

also not included in these online interactions.
This protocol assumes the user knows the location of X-VOMS/CDA20. This

is to accommodate the genericity of the mutual authentication model described
earlier. For example, when Kerberos is used, a Kerberos ticket is attached to the
step 1 to demonstrate the endorsement of a Kerberos server. When X-VOMS
password based authentication is used, a username/password is sent along with
step 1 and the home authentication is actually performed by X-VOMS itself.

20This can be either statically configured by local workstation administrator. Alternatively, it
may be possible to use a directory service, such as that currently being developed in WP3.2, to
enhance the availability of the X-VOMS/CDA.

46

4.3 XtreemOS Authorization
This section describes how the components of the XtreemOS security architecture
are used to support authorization of entities in a Grid environment.

4.3.1 Authorization Problem

The authorization problem is stated as a question: can a subject s with claimed
identities su = (su1, ..., sun), attributes sa = (sa1, .., san), and credentials sc =
(sc1, ..., scn) perform an action a, where the action has a name an and a set
of parameters ap = (ap1, ..., apn), on a target object o, where o is a resource
locator that can be resolved to a concrete end point, typically with an IP ad-
dress, port number and url o = (ip : port : url), given a set of constraints
q = (q1, ..., qn). Any incoming request by a subject therefore has the format
(s, o, a) = ((su, sa, sc), (an, ap), (ip : port : url)). An object may be a file, di-
rectory, application service, process, database table/field or memory location. In
distributed systems these requests are typically messages that are asynchronously
exchanged and either request access to data, invoke functions, notify or respond
to previous requests. Permitting a subject to perform an action that harms the
target object, its owner, other users or the system is therefore the challenge of
authorization, often known as safety. In order to determine if the performance
of an action is safe, constraints and policies need to be described. A policy can
either be mandatory, discretionary or inferred. Mandatory policies are enforced
by the operating system regardless of the application or users. For example, an
object currently being written by one subject should not be written by another.
These are therefore based on a predetermined model of safety with default con-
straints that need to be checked and verified. Such a model for VOs has already
been described in the introduction, but will be further described with respect to
authorization. Discretionary policies allow the users and owners of objects to de-
fine authorization policies based on their own rules and decisions concerning what
work needs to be done. The operating system may still enforce these but allows
the users and owners to describe what is legal according to their discretion. Fi-
nally. In any event, any policy decision is done by retrieving a set of policies of
the form (s, o, a, q)1, ..., (s, o, a, q)n that correspond to the request (s, o, a). It is
possible that there are general, default policies of form (∗, o, a, q), (∗, ∗, a, q) or
even (∗, ∗, ∗, q), where (∗, ∗, ∗, ∗) should resolve to ‘DENY’ by default - this is
however a decision of the administrator. The tasks of authorization are therefore
as follows:

1. Identity, Credential and Attribute Selection: if the subject needs to perform
an action, then it needs to use the relevant identity (or alias known to the

47

target), select the appropriate attributes that will be checked and acquire the
correct credentials to gain.

2. Policy specification: determine, define and store rules that govern autho-
rization decisions

3. Message Interception: provide a mechanism that listens and intercepts mes-
sages targeted at particular objects (or responses to subjects) in order to
make authorization decisions

4. Policy Retrieval: based on the contents of the intercepted message, gather
the set of policies that need to be applied in the authorization decision

5. Information Gathering: in addition to the policies, there is a need to gather
additional context information needed to make the decision. This includes
parsing ((su, sa, sc), (an, ap), (ip : port : url)), but also may include de-
termining the state of the object, the relevant VO etc.

6. Policy-based Authorization Decision: execute an authorization decision logic
based on the parsed message contents, relevant policies and additional in-
formation; the decision must be a ‘PERMIT’ or ‘DENY’. Anything else is
considered as a conflict, which should by default be treated as a ‘DENY’.

7. Deny or Permit: once a decision to ‘DENY’ or ‘PERMIT’ has been made,
it must be possible to block and send a negative response to the subject,
forward the message to the target object respectively.

8. Assertions: in addition or alternative to forwarding the permitted message,
the subject may be issued with a so-called ‘ASSERTION’ or ‘CAPABIL-
ITY’, which acts as a proof that the subject is authorized to perform the
action. This is again based on the requirements and distribution of the sys-
tem: in some cases the authorization decision may be made at a different
node or in a different domain to the object.

9. Post Authorization Actions: after each authorization decision, there may
be a need to update a history, notify other interested parties or cache the
decision according to the performance and other application requirements.

In order to achieve some of the application-dependent requirements for au-
thorization, the authorization mechanisms need to be configurable and support
integration with different types of mechanisms. A model and protocols for using
the XtreemOS security services have been developed to support the above autho-
rization functionalities.

48

4.3.2 Protocols and Mechanisms

The protocols and mechanisms for authorization in XtreemOS are described in the
following paragraphs. Before describing these, there are two further components
that are assumed to be present in any system that implements an authorization
mechanism, taken from RFC 2753 [?] on Policy-Based Admission Control:

• Policy Enforcement Point (PEP): intercepts incoming and outgoing mes-
sages to and from a security domain, allowing only valid one to proceed, in
order to protect the objects of the domain

• Policy Decision Point (PDP): makes policy-based decisions about the ad-
mission of messages intercepted by the PEP

XtreemOS provides the specification and mechanisms for configuring PEPs
and PDPs so that they can decide and enforce authorization decisions. These are
however not part of the XtreemOS security architecture, but considered to be part
of the operating system, node or domain. The implementation and location of a
PEP or PDP differs based on the distribution of the system and location of parties
involved in the intercepted message.

Each of the numbered interaction points are described in a paragraph below:

(1) Identity, Credential and Attribute Selection A subject’s identity can vary
across different VOs. For example, in VO-1 a subject s may be identified as "bob",
while in VO-2 the same subject s is identified as "bobs-machine". Secondly, in
a very dynamic environment, the qualified identity of a subject may change due
to migration or a necessity for multiple connections. A subject may maintain
its own repository of alternative identities or may use an identity management
service such as X-IS. Attributes are used by both subjects and objects to make
claims about their properties, such as role=‘scientific-analyst’ or capacity=‘100
users’. Credentials qualification statements that are relevant for gaining access
to a resource, such as is-member-VO1, is-manager-VO2, not-blacklisted etc. An
outgoing PEP should be configured in order to intercept subject requests and ap-
pend them with the relevant identities, credentials and attributes, according to the
message format and communications protocol used. Similarly, the PEP should be
configured to know how to validate credentials and attributes of incoming mes-
sages; however, in most cases, the guidelines for validation are encoded in the
message, such that the PEP knows which validation keys and algorithms to ap-
ply. Nevertheless, errors are created if these are invalid or unavailable to the PEP.
For example, if the PEP does not know the authority that has issued an attribute
claimed by the subject.

49

(2) Policy specification There are three types of authorization policies sup-
ported in XtreemOS, each having the format (s, o, a, q), as discussed above. These
three types of authorization policies vary with respect to how they are (i) moti-
vated, (ii) encoded, (iii) retrieved and (iv) decided during the making of an autho-
rization decision:

• Mandatory

– motivation: default logic for protecting the correctness and consis-
tency of the system; they cannot be changed by an administrator unless
the source code is altered and recompiled

– encoding: policies are programmed into the application or operating
system logic (e.g. in file system changing access mode to a file)

– retrieval: no retrieval method; are executed inline with the application
or operating system

– decision: no decision point component required

• Discretionary

– motivation: logic determined from application and systems analysis,
where different roles are required for application users and compo-
nents.

– encoding: specified in a specialized authorization policy language and
can be changed by an administrator without recompiling the source
code

– retrieval: a search is required on the fields of subject, object and action
in order to find a policy-set per request; may be encoded in a matrix
for some implementations

– processing: a specific component is required to make decisions; in
some cases it is the reference monitoring mechanisms of the operating
system. Otherwise, highly trusted components

• Inferred

– motivation: logic is derived when different application and system
components are composed. Rules of composition may exists: example
IFworth(A) > worth(B)THENdo− policy(A)

– encoding: may be specified as inference rules in code (in the manda-
tory style) or as interpreted extensions (in the discretionary style)

50

– retrieval: performed when key event occur such as composition of two
different components

– processing: the decision point is dependent on the result of the infer-
ence

By distinguishing between these three types of policies, developers of the se-
curity architecture or its extensions can make decisions regarding the necessity
and implementation of policy decision points.

(3) Message Interception Messages are intercepted depending on the layer at
which the PEP has been implemented. Message interception requires a basic
mechanism of communications mediation, caching and redirection. In the XtreemOS
security architecture, messages may be intercepted at the following layers, starting
from top to bottom:

• Grid Layer

– mediation: a PEP at the grid layer has access to communications that
have been broadcasted across a Grid network or directed towards any
node in a VO

– caching: the messages may be cached at any node in the Grid network

– redirection: messages can then be appended and forwarded to a con-
crete end point at the application layer

• Application/User Layer

– mediation: a PEP at the application layer listens for messages for-
warded from the Grid Layer as well as from applications

– caching: it only caches messages that have originated or directed at its
domain

– redirection: messages are then stripped/appended and forwarded to
the intended recipient objects and subjects

• OS Kernel Layer

– mediation: a PEP at the kernel layer mediates all messages on a single
physical node (or within a container)

– caching: only messages on the node or container are cached

– redirection: forwards to a concrete address and port

51

(4) Policy Retrieval Policy retrieval is done based on the properties of attributes,
credentials, actions and objects stated in requests.

(5) Information Gathering Additional information to be gathered is done by
inspecting the requirements for making a policy decision. That is, if a policy
states (s,o,a,‘time>09:00’), then the PDP needs to gather information regarding
the current time. Therefore, the semantics of constraints need to be well spec-
ified and established among a set of cooperating PDPs and context information
providers.

(6) Policy-based Authorization Decision PDPs act autonomously based on the
knowledge provided to them. A simple policy-based decision is IF (all constraints
are true) THEN ‘PERMIT’ ELSE ‘DENY’. However, logic can become more com-
plex as subjects will present different types of attributes and credentials within
different contexts that are all valid. PDPs therefore require the use of Pluggable
Decision Modules (PDMs) that are created for making decisions given a request
signature. In the case of purely mandatory decisions, there are no PDMs expected.

(7) Deny or Permit A denial results in a request being ignored or an explicit
‘NACK’ (Negative ACKnowledgement) being returned to the requesting subject.
A Permit generally forwards the request to the intended object, such that it can
be handled. However, it is possible for attackers to take advantage of ‘NACK’
messages by initiating a denial of service attack that keeps the PEP and PDP
busy. There should therefore be some means of numbering attempts (see para-
graph 4.3.2) or recognizing patterns of malicious behavior.

(8) Assertions Assertions are indicators that a subject has been successfully
authorized, having presented a set of attributes and credentials. An assertion is
signed by the authorizing party (i.e. within the domain of the PEP and PDP that
make and enforce the authorization decision). The subject may produce the asser-
tion as an additional claim to other parties that trust the authorizing party. This is
then part of a single-sign-on (SSO) mechanism that uses the proof of authorization
as an attribute for authentication and credential for further authorization.

(9) Post Authorization Actions These are specified as obligations following an
authorization decision, where there is either a mandatory, discretionary or inferred
directive to perform a subsequent action to the authorization enforcement. These
actions may include but are not limited to:

52

• Issue Assertion: the subject may receive a signed assertion from the autho-
rizing party showing that it was successfully authorized

• Count Attempts and Expiration: there may be a counter associated with the
number of times that a subject can perform an action

• Notify and Log: if all requests or certain types of requests are to be logged

• Compensation: in case there was an exception or

• Promotion or Demotion: once a subject is authorized it may gain additional
or less privileges in the domain

• Adaptation: an authorization decision may be followed by a reconfiguration
of the system such as customization of the interface

4.4 Secure Communications
In a previous deliverable, D3.5.1, we identified various security requirements for
XtreemOS. In priority, we identified the need for secure communication and secu-
rity of data in XtreemOS. While security of stored data is examined in XtreemFS,
in this section we describe security of communication between various compo-
nents of the XtreemOS system, especially the confidentiality and integrity of com-
munication data. The data, being communicated, can either be User generated (for
e.g. authentication credential), process generated or can be operating system spe-
cific data (for e.g. synchronization information).

4.4.1 Problem space

The underlying problem of securing communication between XtreemOS compo-
nents stems from the presence of open networks in accessing resources, commu-
nicating with nodes and other operating system communications in XtreemOS. It
is rightly assumed that data is transmitted over insecure channels such as Internet,
so that there is a need to protect data and responses in-transit.

Such a problem of securing communication can be further disintegrated into
hiding data so as to hide its presence, or actual semantics of the data (confidential-
ity) and preventing modification to the data by unauthorized users (integrity). In
addition to these broad security requirements can be further divided into follow-
ing.

• Confidentiality of communicated data

– Connection Confidentiality: Such a service provides confidentiality of
data transmitted using a continuous connection (for e.g. in a session).

53

– Connectionless Confidentiality: Such a service provides confidential-
ity of a single unit of data transmitted (for e.g. in a packet).

– Traffic flow confidentiality: A service offering confidentiality of data
which might be derived from observation of traffic flows. For exam-
ple, in a challenge response protocol an eavesdropper can examine the
reply to a challenge by observing traffic flow to a particular node.

• Integrity of communicated data

– Connection integrity with and without recovery: In such a service in-
tegrity of user data is secured over a continuous connection and data
can be recovered from the integrity providing mechanism (with recov-
ery) or can not be recovered from the mechanism (without recovery)

– Connectionless integrity: A service providing integrity of a single unit
of communicated data.

– Selective field integrity: In such a service integrity of only certain
fields within the entire communicated data is provided.

In addition to the above services, the following points must be noted to ensure
communication between various components are secure.

• It should be possible to send messages of arbitrary lengths in the protocol
setup to ensure confidentiality and integrity of communicated data.

• The mechanisms used to secure communication between participating en-
tities should incur lower network latency and should use as less computa-
tional power as possible.

• The management of services providing confidentiality and integrity should
not be cumbersome.

While the above are rather generic security requirements, we specify here the
problems in the case of XtreemOS. As is examined in Section 4.2.4, at the very top
there are five distinct XtreemOS security services, namely, the X-VOMS, VoPS,
CDA, Identity Service and attribute service. The other entity of importance for
secure communications is the VO user. While it is specified that CDA and X-
VOMS are included in VO Management, the VO user and VO Manager are roles
assigned to members of a VO. Figure 4 ensures mutual authentication between
a VO user and a resource. However, it is a high-level description of the mutual
authentication process where certain intermediate steps are deliberately missed
out to be specified in this section. Such communications become prime target for
security in this section.

54

4.4.2 Assumptions

Before specifying the actual confidentiality and integrity mechanisms, we need
to examine various assumptions between components of the XtreemOS system.
However, such a listing is meant to be non-exhaustive and can be refined later to
ensure satisfactory provision of several security services and to resolve conflicts,
if any, between them.

Firstly, it is fair to assume that an entity, for e.g. VO user, a resource etc.,
wishing to communicate securely with another entity in XtreemOS has access to
genuine public credentials (for e.g. public key) of that entity. It is imperative
that such information can either be held in a database or can be provided by a
Certificate Authority (CA) included in a certificate. In the case of XtreemOS,
we consider CDA as the CA for such parameters. Therefore, in the following
discussion the use of a PKI certificate would indicate a certificate issued by the
CDA for authentication. The CDA, as mentioned in Section. 4.2.4, is responsible
for registering a User. In essence, the presence of a trusted third party to guarantee
authenticity of public parameters is assumed. Secondly, communicating entities
have knowledge about a wide variety of commonly used algorithms, for e.g. DES,
3DES, AES, RSA etc. This is to ensure that at a given time entities may decide to
secure communication using a mutually agreed algorithm from such a set.

4.4.3 Mechanisms for secure communications

In the case of XtreemOS, we decided to use Secure Socket Layer (SSL) protocol
to mutually authenticate communicating entities. While being a de facto stan-
dard, SSL also provides for establishing keys between communicating entities for
confidentiality and integrity of application data. Thus, to ensure confidentiality
and integrity of communicated data we use keys derived from the SSL protocol.
While description of the overall SSL protocol is strictly out of scope of this deliv-
erable, we elaborate on several steps of the protocol in the following description
for securing communication between XtreemOS entities.

Securing User-initiated Communications

If we consider a normal VO user, we can examine communications between:

1. User and X-VOMS for obtaining the XOS-Cert,
2. User and XJobMng, and
3. User and VO Manager

It is to be noted from Figure ?? that the XJobMng, communicates with the in-
dividual nodes (or the daemon running on them) on the user’s behalf. So the
communication between the user and the node is not included in this discussion.

55

The communication between User and X-VOMS is bilateral and the security
requirements therein are for mutual authentication, confidentiality (as local au-
thentication parameters or a PKI certificate will be passed) and integrity. Specif-
ically, connection confidentiality, traffic flow confidentiality, connection integrity
and mutual authentication are required for this communication. Assuming that
both the user and the X-VOMS server have their own PKI certificates in place,
the first step as described for any SSL transaction is the User_hello to the
X-VOMS server. The server is passed on the user’s PKI certificate for authentica-
tion, a set of cipher suite (algorithms) are prescribed for the consequent operations
and the X-VOMS server certificate is requested. The X-VOMS server sends the
server_hello, change_cipher_suite request, the X-VOMS PKI cer-
tificate and the key exchange material. The user and X-VOMS server on suc-
cessful certificate verification mutually generate a master_secret from the
exchanged key material and keys for confidentiality and integrity are generated
from this master_secret.On establishing the master_secret the keys are
derived based on standard SSL specifications. Once these mutually agreed keys
are generated, these can be used either to share a session key and encrypt the data
till the validity of the session keys or these keys can be directly used as long-term
keys to encrypt data between the User and the X-VOMS server. For integrity, we
plan to use standard HMAC or MD5 libraries. The keys for such integrity mech-
anisms are the same keys as derived from the SSL protocol between the User and
X-VOMS server above. For preserving traffic-flow confidentiality we use padding
techniques based on standard SSL libraries.

For the communication between the User and the XJobMng, only unilateral
authentication of the user is required, since the XOS-Cert is a public credential.
The XOS-Cert suffices the requirement of such unilateral authentication require-
ment. This is because the XJobMng trusts the X-VOMS server and can vali-
date the certificate signed by X-VOMS. The XOS-Cert will contain the Global
identity of the User and the signature of the X-VOMS server (or the VO Man-
ager). XJobMng can verify this information and submit job on the user’s behalf.
Since XOS-Cert have a validity period on them replay attacks are unlikely by
masquerading users.

The communication between the User and the VO Manager is similar to the
one between the User and the X-VOMS server. It will be bilateral and mutual
authentication, along with confidentiality and integrity are essential. A similar
SSL protocol will be initiated between the User and the VO Manager in such a
setting.

56

Securing VO Manager initiated Communications

The VO Manager may need to communicate with several other entities including
resources, users or Resource Owners etc. in various transactions. In fact, the VO
Manager’s root key is given to every user and resource whilst joining the VO (i.e.
while adding a user and resource to the VO). The following VO Manager initiated
communication need security i.e. the communication between:

1. the VO Manager and a User, and
2. the VO Manager and a node (or something like LocalNodeMng service on

the node), and
3. the VO Manager and X-VOMS

The communication between VO Manager is described in the previous section.
The communication between the VO Manager and a node usually features

when adding, removing or updating a resource (in this case only nodes). The
use cases in the next chapter show detailed operations in these scenarios. The
security requirements in this case are mutual authentication, connection and con-
nectionless confidentiality and integrity. We design to use the same SSL pro-
tocol for securing communication between the VO Manager and a node. The
VO Manager sends a client_hello request and initiates the communication.
It then provides the VO Manager’s certificate (signed by the CDA), the cipher
suite request, and the certificate request to the node. The node, in return, sends
the server_hello, verifies the VO Manager’s certificate, prescribes a cipher
suite to use, sends its own certificate and sends the key exchange material. In
accordance with SSL specification both the VO Manager and the node share a
master_secret and keys for securing subsequent communications are derived
from this master secret.

The VO Manager could be in the same administrative domain as the X-VOMS
server in many deployment cases. However, we need to consider cases where they
both are in different domains. In such cases, we need to secure transactions, which
are of prime importance. We plan to use the same SSL protocol for securing such
communications.

4.5 XtreemOS Isolation
This section describes how the components of the XtreemOS security architecture
are used to support different forms of isolation in a Grid environment. Isolation is
more concerned with management of a single, shared resource in a Grid environ-
ment, as opposed to considering the overall network of resources in the Grid. In
addition, the architecture is designed to handle the four aspects of isolation iden-
tified in the background: attribute, object, interface and service/process isolation.

57

4.5.1 Isolation Problem

The isolation problem in a resource sharing environment is based on resource
usage. Mechanisms used as solution to the isolation problem ensure that resource-
reservations made for one client remain unaffected by those made for another.
That is, should the resources reserved for one client fail, this should not cause
the resources reserved for any other clients to consequently become unavailable.
Secondly, the set of observations, outputs and views that one client has on the
shared resource should not be causally affected by interactions that the shared
resource has with other clients, although there are some exceptional cases. These
two properties are known as fail-safety and non-interference respectively. These
are formerly stated as follows: if a single resource O is being shared by a fully-
ordered set of unique subjects S = (s1, ..., sn), where for any pair (si, sj) ∈
S, si &= sj given that 0 < i, j ≤ n;, and there are a set of resource allocations for
each subject, such that O = (o1, ...on) and isReserved(oi, si), 0 < i ≤ n then:

1. ∀si ∈ S, fail(si) ! (fail(sj) ∨ unavailable(O, sj)); if any subject fails
during its execution, this does not cause any other subject to fail nor does it
cause the shared resource to be unavailable to other live subjects.

2. ∀oi ∈ O, fail(oi)⇒ unavailable(O, si) ! (fail(oj)∨unavailable(O, sj));
if any resource allocation fails, the shared resource becomes unavailable to
the subject owner of the allocation but not for any other subject

3. execute(si, O, xi)|execute(sj, O, xj)⇒ (execute(si, oi, xi)∧execute(sj, oj, xj));
even if multiple subjects perform concurrent executions on the shared re-
source, the results should appear as though they were using their allocated
resources individually

4. fail(O) ⇒ ∀si, oi : fail(si) ∧ unavailable(oi, si); if the entire shared
resource fails, such as a hardware problem, then the resource allocations for
each subject can no longer be available

Isolation therefore extends authorization by adding the requirements of fail-
safety and non-interference. The four aspects of isolation can also be described
according to these two additional requirements, as shown in table 1:

From the perspective of the VO model, isolation of a shared resource is de-
termined by the VOs to which it is assigned. The local representation of a VO is
referred to as a XOS-Container, which ‘contains’ a set of subjects and objects to
be isolated for a given VO, as shown in figure 5.

As seen in figure 5, in order to support management of containers and commu-
nication with their subjects and objects, there are a set of additional components
introduced into the security architecture, as described below:

58

Isolation fail-safety Non-interference
Attribute Invalid attributes of a re-

source allocation oi or
its subject si do not in-
validate the attributes of
any other resource allo-
cation oj or subject sj

The attributes used to
describe a resource allo-
cation oi are not known
to any non-owning sub-
ject sj unless explicitly
permitted by a policy of
the container manager
or hypervisor

Object The failure of a resource
allocation oi cannot be
responsible for the fail-
ure of any other resource
allocation oj

Observation of the ac-
cess and execution prop-
erties of a resource al-
location oi cannot reveal
knowledge about the ac-
cess and execution prop-
erties of any other re-
source allocation oj

Interface The availability or un-
availability of an inter-
face between si : oi

has no influence on the
availability or unavail-
ability of an interface
sj : oj

The specification and
knowledge of an inter-
face between si : oi has
no influence on the spec-
ification and knowledge
of an interface sj : oj

Service/Process The failure of a subject
si cannot cause the fail-
ure sj

The behavior of a sub-
ject si does not causally
influence the behavior of
a subject sj

Table 1: Categorization of system isolation properties

59

Figure 5: The components of the XOS Container concept deployed on a single
operating system node

1. XOS-CM: the XOS Container Manager is responsible for scheduling and
maintaining the lifetime of containers, as resources are shared in different
VOs

2. XOS-Hv: the XOS Hypervisor is a component that has privileged access to
the operating system on behalf of multiple containers

3. C-PEP: the container policy enforcement point is the supervisor for a single
container and intercepts all incoming and outgoing messages to and from
the container, in order to enforce access control decisions

4. D-PEP: the domain policy enforcement point (e.g. firewall) is the super-
visor for a domain of containers and intercepts all incoming and outgoing
messages to and from the domain in order to enforce domain-wide access
control decisions

With these components, it is then possible to realize the four types of iso-
lation mentioned in the background section. The protocols and mechanisms for
communication and management of containers are described in the next section.

4.5.2 Isolation Protocols and Mechanisms

Seven protocols have been identified for container management and communi-
cation in order to implement isolation using the XOS security architecture. The
component relationships involved in each protocol are indicated in figure 6 and
described in the subsequent paragraphs.

60

Figure 6: Component relationship diagram for using the XOS security architecture

(1) Create Container When isolation is defined as a definite requirement for
collaboration in a VO, containers are created within domains (networks or ma-
chines) to partition their resource allocations and usages. Creating a container is
done as follows:

1. X-VOMS → XOS-CM: include domain as member in VO and request re-
quirements for resource allocation in VO

2. XOS-CM → new C-PEP: create new instance of container with given re-
quirements as policies

3. XOS-CM → XOS-Hv: register address of C-PEP with a hypervisor on the
domain where the container is created

4. XOS-Hv ↔ C-PEP: ensure established secure channel between hypervisor
and container

5. XOS-CM ← XOS-Hv: confirm that container is set up and prepared for
resource allocation in VO

6. X-VOMS← XOS-CM: confirm availability in VO

(2) Add Object to Container Once a container is set up, then finer-grained
resources can be allocated for the VO. This is a deployment and initialization
action where objects such as files, databases, services or storage locations are
made available to specific roles in the VO.

61

1. XOS-CM→ C-PEP: object description

2. C-PEP→ OBJ: object allocation

3. XOS-CM← C-PEP: confirm object availability

(3) Add Subject to Container Different services or processes in a domain may
be assigned the responsibility of performing given tasks at given times or due to
specific events. These too have to be made available and aware of their participa-
tion in the VO.

1. XOS-CM→ C-PEP: task assignment and initialisation

2. C-PEP→ SBJ: assign tasks to selected subjects (process/service)

3. XOS-CM← C-PEP: confirm task assignment complete

(4) Initialize Domain PEP :
In order for any interaction to be possible, the relevant permissions have to be

set up on the domain’s access control interface in addition to that of the container.
This is still the first level of defence. Secondly, this is the interface made visible
to the outside world and within the VO.

1. XOS-CM→ C-PEP: task assignment and initialisation

2. C-PEP→ SBJ: assign tasks to selected subjects (process/service)

3. XOS-CM← C-PEP: confirm task assignment complete

(5) Handle Incoming Request to Contained Object Incoming requests to an
object in a container from an external node goes through 3 levels of defence:
domain, hypervisor and container. At each level, different attributes of the request
are checked against different policies. The object only receives the request once
each of these checkpoints have been successfully passed.

1. Node→ D-PEP: request with appropriate attributes and credentials

2. D-PEP↔ X-IS: validate node identity

3. D-PEP↔ X-AS: validate attributes

4. D-PEP↔ XOS-CM: validate VO existence

5. D-PEP↔ X-VOMS: validate VO membership

62

6. D-PEP↔ CDA: validate credentials

7. IF valid(request) THEN

(a) D-PEP→ XOS-HV: forward request

(b) XOS-HV→ C-PEP: check container availability and forward request

(c) C-PEP→ OBJ: check object availability and forward request to object

(d) C-PEP← OBJ: response

(e) XOS-HV← C-PEP: response

(f) D-PEP← XOS-HV: response

8. Node← D-PEP: response (recall that the default response is ’DENY’)

(6) Handle Outgoing Request from Contained Subject Similarly to incoming
requests, outgoing requests go through three levels of defence, where the correct
attributes and credentials are attached on the way out. Secondly, information that
need not be exposed externally is removed from the request, cached locally and
the stripped request forwarded to the next level.

1. SBJ→ C-PEP: request or response

2. C-PEP→ XOS-HV: place request on the XOS-HV queue for scheduling

3. XOS-HV→ D-PEP: once the request can be scheduled, forward to the out-
going interface of the D-PEP

4. D-PEP↔ XOS-CM: check existence of VO for which request is intended

5. D-PEP↔ X-VOMS: if new membership credential is required

6. D-PEP ↔ CDA, X-AS, X-IS: get signatures for credentials, attributes and
identity to perform the task

7. D-PEP→ Node: forward request

(7) Remove Container Once a VO is no longer operational or in existence, the
container is removed from domain.

1. X-VOMS→ XOS-CM: VO is no longer active

2. X-VOMS→ C-PEP: remove event

3. C-PEP↔ OBJ, SBJ: check if all activities are completed

63

4. XOS-CM ← C-PEP: once activities of objects and subjects are complete,
respond to the container manager

5. X-VOMS ← XOS-CM: perform any clean up actions that need to be per-
formed e.g. accounting

64

5 Use Cases of Security Services

5.1 Assumptions and Use-Cases in the Architecture Derivation
Methodology

The derivation of the security architecture has followed a use-case driven ap-
proach, in order to support the functional aspects of XtreemOS as effectively as
possible, without introducing or assuming additional features that overload the fi-
nal specification and code-base. On one hand it provides another level of security
analysis for XtreemOS, while, on the other hand, it allows to validate the com-
ponents that are included in the architecture. The methodology followed was to
consider how to effectively enforce the general VO security model presented in 2.1
given that there are a set of functional requirements existing for XtreemOS. The
realization of this model however varies per subsystem of XtreeemOS, where vari-
ous aspects such as file-systems, application execution, node management and net-
working are focused on. This section therefore identifies and groups the set of use
cases used to derive the security architecture and service specifications. Any set
of activities that will lead to a use-case failing, or breaching the security rules em-
bedded in the model, is considered as a misuse21 of the XtreemOS functionalities.
The use cases have been grouped according to specific management scenarios that
arise in real and virtual organizations, as we seek to make the distinction between
the two as transparent as possible. For example, it is envisioned that a user log-
ging into a XtreemOS workstation should have the same operational experience
when logging into a traditional networked workstation. This has resulted in 6 use
case groupings (user, virtual organization, resource, application, policy and cre-
dential management), which have then emerged as the logical blocks/subsystems
of the XtreemOS security architecture. These are also supported by existing lit-
erature and related frameworks for Grid Security and VO Management, such that
we do not deviate tremendously from established concepts. Before outlining these
use cases, we also state some assumptions concerning the technical and organiza-
tional aspects of the management infrastructure required for supporting multiple
VO boundaries to be established and operate in parallel to real, physical organiza-
tions.

5.1.1 Trust Management Infrastructure

In that Grids and VOs span multiple organizational boundaries, there is always the
need for trusted authorities to become involved in establishing and, in some cases,
mediating interactions that cross organizational boundaries. In other cases the

21we did not gather a full listing of misuse cases but identified them interactively during the
elicitation of security requirements

65

need for such authorities is subsumed by the existence of strong, trusted, ongoing
links between the organizations, such that there is an agreed means of validating
identity and exchanging secrets for encapsulating information22.

Secondly, although we attempt to make limited conceptual distinction between
the administration of virtual and real organization domains, there are great dif-
ferences from a technical perspective. Therefore, this distinction cannot remain
transparent from a technical, architectural perspective, although it remains a guid-
ing principle for realizations of the architecture. From a technical perspective,
the management infrastructure makes a clear distinction between a real and vir-
tual organization boundary. Having made these observations, seven entities were
identified in the management infrastructure, as well as their relationships, as de-
picted in figure 7 and described below:

Figure 7: Trust Management infrastructure for XtreemOS Security Mechanisms
and Protocols

Each entity in any instance of the management infrastructure has a particular
responsibility and relationship to other entities. Relationships between entities in-
dicate that they have particular knowledge about other entities and control over
how that knowledge is used in making decisions that affect the operational in-
tegrity23 of the infrastructure. In order for the management infrastructure to main-
tain its operational integrity, the entities must be trusted to perform these functions
and not abuse their relationships.

• Global Authority: has a responsibility for issuing and validating proof that
other entities possess certain attributes, such as identity, function and capa-
bility. Global authorities are trusted by various organizational domains to

22One example is that the organizations have an established private network connection between
them, making a third-party certificate authority irrelevant for establishing the link

23operational integrity

66

perform this role, such that their compromise breaks the ability for previ-
ously unknown organizations to establish and re-establish relationships. As
there is no single global authority, this typically refers to multiple authori-
ties that trust or have agreements with each other concerning the issuing and
validation of proving attributes. One common example of a global author-
ity is a Certificate Authority (CA) in public key infrastructure (PKI), which
issues and validates mainly identity certificates, using methods from public
key cryptography.

• Local Administrator: is responsible for establishing and ensuring that se-
curity policies of a single, real domain are correctly enforced. This entails
specifying boundary protection rules, regulating information flow, defining
how the organization’s entities are identified, determining particular con-
straints on internal and external interactions, and determining the global
authorities to which the organization subscribes.

• VO Manager: plays the role of a "local administrator" within a VO. That
is, the VO Manager determines the rules of interaction and resource shar-
ing within the VO domain. However, the VO Manager does not have the
overall power of enforcement as a local administrator does, in that the VO
is comprised of multiple real domains, each which continue to function au-
tonomously.

• Local User:is limited to access resources in a physical domain for which
they have received privileges from its local administrator.

• VO Member: is limited to access resources in a VO for which they have
received privileges from a VO manager.

• Local Resource: are available only within a local domain and are under the
control of a local administrator

• VO Resource: are mapped to physical resources and are provisionally
available within a VO

The remaining sub-sections now provide an overview of the use cases that
build on this management infrastructure towards a comprehensive security archi-
tecture.

5.1.2 Secure Virtual Organization Management

Secure VO management is fundamental to XtreemOS, as the ability to create and
manipulate the properties of VOs must be restricted, else access rights granted

67

on the basis of a VO’s existence and membership can be exploited. A VO is
essentially setting up a logical administrative boundary around multiple users and
resources, such that they can be identified as a collective within a given operational
context.

Figure 8: Illustration of virtual domains being created that spans more than one
real domain

Figure 8 shows a set of physical domains (D1, D2, D3), 2 VOs V O1 and
V O2, with memberships V O1 = (D1, D2) and V O1 = (D2, D3). It is therefore
seen that D2 maintains mappings of local group ids to V O1 and V O2. However,
the domains will only share partial access to their resources with the other do-
mains involved in the respective VOs. VOs can be created, deleted (also known
as ’dissolved’), modified and queried by a system user or administrator with suffi-
cient privileges, using lighter weight procedures as a physical, real-world domain,
although achieving similar organizational features. Privileges to perform admin-
istrative tasks in a VO are associated with the role ’VO-MANAGER’. However,
the possession of the ’VO-MANAGER’ role does not give its holder any spe-
cial, super privileges within real, physical member domains, such that the policies
specified by their local administrators still hold. As membership within a VO is
a prerequisite for gaining access to resources specified within the VO, it is secu-
rity critical that the lifetime and constraints surrounding the operation of the VO
are well managed. A VO that extends its lifetime may leave dangling capabilities
and authorizations to resources that should no longer be available. VO Manage-
ment and maintaining the logical boundary is in this sense a cooperative task by
all members involved. That is, while consistency is not easy to enforce across
domains, members act autonomously by issuing and acting on trusted events that
are propagated throughout the lifetime of the VO. It is hoped that advantages for
maintaining such consistency can nevertheless be gained when the resource and
process hosts involved in VOs are running instances of XtreemOS.

68

5.1.3 Secure User Management

Having established a VO as a logical domain, it is then necessary to have a means
of facilitating membership in this domain. Secure user management is concerned
with ensuring that users that become members in a VO can be identified and au-
thenticated without losing these properties in their local, home domains. One
example is that users log into their networked computers and can choose from a
list of VOs that they want to work in, which are available to them, in addition to
the traditional network domains that their machines are allowed to join once they
are authenticated to a domain server.

Figure 9: The inclusion of users in both the real and virtual domains i.e. VOs

Figure 9 shows the existence of 4 users with UIDs 1, 2, 3 and 4 distributed
across the domains. A user is a human and a set of processes they own, which
claim a need to consume or provide certain types of resources and operations in a
domain or VO. User 2 is not part of VO1 and therefore has no access to objects
in GID = VO1,VO2. User’s 3 and 4 are in domain 2 and 3 respectively, and
are both members of VO2. The figure also shows user 3 explicitly logging into
domain VO2 in order to gain access to its set of shared resource objects. User
management is fundamentally concerned with the addition, deletion and update
of user profiles in a domain or VO, where a profile defines the attributes and
privileges held by a human and its set of client processes. Secure user management
in XtreemOS is aimed at preventing spoofs of identity, privileges and affiliation,
as well as non-privileged access to resources due to leaked or falsely acquired
access rights. Maintaining user identities, privileges and profiles distributed across
multiple domains has the difficulty of uniformity and consistency. That is, a user
may be restricted access to a resource in one domain but permitted access to e.g.
a replica of that resource hosted in another domain, making user management in

69

XtreemOS a complex but critical security feature.

5.1.4 Secure Resource Management

Once users have been included in a VO, they will need access to resources in a
similar manner to they have some access to resources in the home domain with
which they can achieve particular objectives. However, the offering of resources
for collaboration beyond a single domain is always associated with a set of new se-
curity risks. Secure resource management is concerned with the addition, removal
and modification of nodes, services, data and operations in a VO or domain.

Figure 10: The inclusion of resources as instances of physical resources in VOs

Figure 10 shows now the inclusion of resource objects 1 and 2, offered by
domain’s 1 and 2 respectively are made available to VO1. This implies that three
should be an ACL at D2 that allows uid = guid(d1, 1) → object2 . Nodes, ser-
vices, data and operations may be contained and hosted in various ways, such that
the term "resource" is an abstraction analogous to "process", where a process is
said to consume a resource. Nodes are special cases of resources as they represent
a full machine (which could be a virtual machine) as opposed to just an interface
to storage, processing or other specialized operations. The addition of a resource
to a VO or domain is a prerequisite for it being available for usage. Physical re-
sources in a VO remain under the full control of their local administrators and
physical users, but have to be shared in a controlled manner in order to maintain
some agreed access rights and usage in the VO context. One means of attaining
this separation of a resource into physical and virtual usage is referred to as ’vir-
tualization’, where a customized image of the physical resource is emulated for
the purposes of its agreed contributions to the VO. Isolation as a security property
has been discussed in an earlier section of the architecture document, where the
main challenges for security are to ensure that partial access to resources can be
granted to members of a VO to which the resource is assigned, while also pro-

70

viding a means of shielding partial failures within a VO context from propagating
beyond that context. From another perspective, there is also the need for users of
resources that may be virtualized to have a means of validating that these resources
can really deliver the types of functionalities that they claim. This is known as ac-
creditation, which is again similar to the authentication and trust attestation of
users, but is done according to the functionality claims of resources.

5.1.5 Secure Application Management

Once there are users and resources included in a VO, there is some effective work
that they will want to do in order to achieve the objectives for which the VO was
created.

Figure 11: Application being executed in a VO as a set of interactions between
distributed components

However, the way in which these tasks or jobs are performed must be regulated
according to resource sharing policies that are agreed amongst the members of the
particular VO. Secure application management provides the means for creating,
allocating resources, starting, monitoring, checkpointing, migrating and destroy-
ing instances of applications and application components, within the constraints
of the security policies specified by both resource and application owners. Re-
calling that access control is discretionary, it may still be possible to grant access
to users for a specific task. Figure 11 shows an application being executed as
different interactions between user processes and objects in the VOs. The appro-
priate policies need to be in place to facilitate the cross-domain interactions. The
need to satisfy various sources of security policies is in itself a challenge. An
instance of an application may be distributed amongst multiple resources, such
that their interdependencies need to be maintained and conflicts between different
policies resolved. In addition, as an application instance has both a management
and service interface, it can also be treated as a resource, such that similar se-

71

curity mechanisms may be applied to protecting the confidentiality, integrity and
availability of the instance.

5.1.6 Security Policy Management

Policies are means of specifying change in the behavior of a system at runtime.
They allow a system developer to omit commitments to how the system will be-
have, by including a call to a policy decision point (PDP) that has a means of
accepting inputs, checking policies and responding with a decision about what
the system should do next. Importantly, in a VO, security policies are means of
specifying which interactions should be allowed between users and resources, ac-
cording to the roles and relationships.

Figure 12: The security associations created between users and resources in the
various VOs for the support of an application being executed

Figure 12 shows the new security associations that must be expressed in se-
curity policies to enable an application to execute across a set of processes and
shared resource objects. Security policies change the behavior of a system, as
they specify how to ensure that the system maintains its security requirements.
Other reliable system components are therefore required in order to listen and
respond appropriately to occurrences of such events, such that the policies can
be enforced. In addition, the information required to detect such events is also
typically distributed within the system environment.

5.1.7 Key and Credential Management

In most cases, the first step in enforcing a security policy is by checking the at-
tributes, relationships and contexts of the users and resources involved in creating
an event. As users and resources will claim these different properties, in order
that interactions may proceed, they are referred to as credentials. Secondly, prov-
ing these credentials are actually associated with the claimant (user or resource),

72

cryptographic keys are used to attest their authenticity and that of their issuer. Key
and credential management are therefore part of the foundation of the security ar-
chitecture necessary in XtreemOS. Furthermore, once users and resources need
to interact or communicate with each other, the authenticity and confidentiality
properties of their communication must also be enforced. The ability to gener-
ate, negotiate and exchange keys in order to build up secure channels between
communicating parties is also supported in the architecture.

Figure 13: The inclusion of resources as instances of physical resources in VOs

Figure 13 shows a set of session keys that may be used to provide secrecy
of channels between users and resources within a given context, and as specified
by a set of security associations. Key and credential management includes the
generation, issuing, validating and revocation of these different security elements,
where the compromise of the host performing these operations breaks the overall
security of the system. There are other fundamental security functions and primi-
tives required for the security architecture to be operational, such as cryptographic
algorithms and firewall support, but these have been omitted from this description
as the XtreemOS is based on a standard operating system that is expected to have
these fundamental mechanisms already included in its code-base. There are how-
ever cases, for the reason of performance and storage constraints, where these
standard mechanisms will have to be extended or replaced.

5.2 Use Cases for VO Management
5.2.1 VO Creation

Virtual Organizations in XtreemOS can be created by any trusted user. This trust
is represented by a VO certificate that the user has to obtain from the Certificate
Authority before creating a VO. This signifies an agreement between the user and
some physical entitiy. A user does not have to be a member of an existing VO

73

before creating a VO. We do not currently have the notion of VOs containing
other VOs.

If VO creation is successful, the user gains the role of VO administrator in the
new VO. This role is required for the user to invoke operations such as:

• adding users to a VO, updating users and removing them from a VO
• adding resources to a VO, updating resources and removing them from a

VO
• destroying a VO.

Purpose: Create a VO

Actors: XtreemOS user

Figure 14: Sequence Diagram showing the user creating and using a VO

Pre-conditions:
• User has obtained a VO certificate from the Certificate Authority. This sig-

nifies some agreement between real entities taking place, allow the user to
gain an indication of trust (the VO certificate)

• A VO with the supplied name doesn’t already exist

74

Post-conditions:

• A VO with a given name now exists.

Invariants:

• None identified so far.

Security related functionalities:

• Authentication of user by checking the supplied credentials

Relationship to use cases/components in other work packages

• Use case provides services to: User needing to create a VO
• Use case requires services from:

– WP3.5 - HAA to check user authentication

– X-VOMS (VO check for pre-existence, VO creation)

Test:

• Unauthenticated user: If the user hasn’t authenticated with a recognized
HAA, the creation fails, and results in an InvalidUserException

• VO name already exists: This could arise because the user has already
created a VO with the same name. Creation fails and results in a VOExist-
sException

• Other reason prevents VO creation: Call returns a VOCreationFailedEx-
ception

5.2.2 VO Destruction

Purpose: Destroy a VO

Actors: Administrator of this VO

75

Pre-conditions:

• The invoking user performing the VO deletion must have authenticated with
a Home Authentication Authority that XtreemOS will recognize. The cre-
dentials thus obtained are used to authenticate the user for this operation.

• The invoking user is the administrator of this VO

• There must be no jobs still running in this VO. The condition that no valid
XOS-Certificates signed by this VO exist will indicate this.

Post-conditions:

• The VO no longer exists.

• The list of roles for the invoking user no longer contains an administrator
role for this VO.

• All users and resources are removed from the VO.

Invariants:

• None identified so far.

Security related functionalities:

• Authentication of user by checking the supplied credentials

Relationship to use cases/components in other work packages

• Use case provides services to: VO administrator

• Use case requires services from:

– WP3.5 - HAA to check user authentication
– X-VOMS (VO check for existence, deletion of VO, release of VO re-

sources, removal of VO users)

Test:

• Unauthenticated user: If the user hasn’t authenticated with a recognize
HAA, the deletion fails ’user not authenticated’

• Unauthorized user: If the user doesn’t have VO administrator role in this
VO, the deletion fails ’user not authorized’.

76

Figure 15: Sequence Diagram showing the VO administrator destroying a VO

5.3 Use Cases for User Management
5.3.1 User Registration

In XtreemOS, the user registration process turns a user into a VO user by adding
entries in the X-VOMS tables. We provide two methods to allow a VO manager
to introduce users into a VO.

The access control to X-VOMS is role-based. In the initial implementation,
only users with the role of VO manager can add new VO users. However, the exact
setting can be adapted to reflect the actual administrative policy of an organization.

Purpose: Register a VO user

Actors: A user who has the role of VO manager

Input: A user registration request

Output: Message indicating whether the registration is successful or not

Pre-conditions:

• (1) A VO has been created before the user sends in user registration requests.

77

• (2) A X-VOMS database has been created for this VO.

• (3) The very first user who registers new VO users should satisfy two pre-
conditions: 1) this user has been added to the X-VOMS database; and 2)
this user has an appropriate role 24 that would allow him to add new users.

• (4) There is a live X-VOMS server which accepts registration requests.

Conditions (1) to (3) are ensured by the VO lifecycle management process.

Post-conditions:

• If the return message is successful, entries about the user should be added
to the appropriate tables of the X-VOMS database.

Security related functionalities:

• none.

Relationship to use cases/components in other work packages Use case pro-
vides services to: the overall XtreemOS system

Use case requires services from: WP3.5 X-VOMS

Test:

• VO doesn’t exist: The VO that the VO manager wants to add users to does
not exist.

• Invalid user role: The user is rejected during the registration process be-
cause he doesn’t have an appropriate role.

• Invalid user entry: A new user entry is rejected because some information
is wrong or missing.

Sequence Diagram: Figure 16 shows the interactions between a user who has
the role of VO manager and the X-VOMS service during user registration process.

24In the initial implementation, this role will be restricted to any users with the role of VO
manager.

78

User Management - user registration (I)

X-VOMS

2. Check whether the

request is from a user who

has an appropriate role (e.g.
VO manager)

User

1. registerUser

3. Add the user into

corresponding X-VOMS

tables after validating the

user’ information
4. Registration successful

Figure 16: Sequence Diagram showing the interactions between a user who has
the role of VO manager and the X-VOMS service during user registration process.

5.3.2 User Update

When a VO user’s details change, his X-VOMS records need to be updated. Since
X-VOMS manages back-end data with database, this process has to be transac-
tional. That is, the X-VOMS server should ensure that the updating operation will
not interfere with jobs or files that are under the old VO credential related to this
user. One way to ensure that is to perform user update operations after a user’
current VO credentials expire.

Purpose: Ensure correct update of user details.

Actors: User

Input: A user update request

Output: Message indicating whether the update is successful or not

Assumption: There is a live X-VOMS service which accepts update requests.

Pre-conditions:

• A user who updates his record should already has appropriate entries in the
X-VOMS database.

• There are two possibilities that a user can update X-VOMS records. Either
he is updating his own record; or he is updating other users’ records because
he has been given appropriate role(s), such as VO manager.

79

Post-conditions:

• none.

Security related functionalities:

• none.

Relationship to use cases/components in other work packages Use case pro-
vides services to: the overall XtreemOS system

Use case requires services from: WP3.5 X-VOMS

Test:

• Insufficient user privileges: The user’s request is rejected because he doesn’t
have an appropriate role, e.g. VO manager.

• Invalid user entry: The user’s request is rejected because essential infor-
mation (e.g. VO role) is wrong or missing.

Sequence Diagram: Figure 17 shows the interactions between a user with the
role of VO manager and the X-VOMS service during the updating user process.

User Management - user update

X-VOMS

2. Check whether the

request is from a legitimate

user

User

1. updateUser

3. Update user records

after validating the

user’s information4. update successful

Figure 17: Sequence Diagram showing the interactions between a user with the
role of VO manager and the X-VOMS service during the updating user process.

5.3.3 User Removal

When a user is no longer allowed to use VO resources, all entries related to this
user should be removed from the corresponding tables of the X-VOMS database.

Purpose: Remove a user’ entries from all relevant X-VOMS tables.

80

Actors: User

Input: the username of the user whose entries should be removed from the X-
VOMS tables

Output: a message indicating whether the removal operation is successful

Pre-conditions:

• A user cannot be removed as long as there are still valid XOS-certificates
associated with this user. This operation has to wait until all XOS-certficates
associated with a user expire25.

Post-conditions:

• None.

Security related functionalities:

• none.

Relationship to use cases/components in other work packages Use case pro-
vides services to: the overall XtreemOS system

Use case requires services from: WP3.5 X-VOMS

Test:

• Invalid user: the user issuing the request does not have appropriate rights
to delete users.

• User does not exist: the user whose entries being deleted does not exist in
the X-VOMS database.

Sequence Diagram: Figure 18 shows the interactions between a user with the
role of the VO manager and the X-VOMS service during the user removal process.

25This is to guarantee that there is no more jobs running in the Grid environment and there are
no more files remained on a resource node. Note that, at the time of writing, it is unclear how this
operation should be handled regarding the user’s files under XtreemFS. The major reason is that it
is unclear how users are managed in XtreemFS and how does that relates to the user management
in a VO. We plan to conduct further interactions with WP3.4 (i.e. XtreemFS) to clarify this point.

81

User Management - user removal

X-VOMS

2. Check whether the

request is from a legitimate

user

User

1. removeUser

3. Delete this user’s

entries from

corresponding X-VOMS

tables
4. remove successful

Figure 18: Sequence Diagram showing the interactions between a user with the
role of the VO manager and the X-VOMS service during the user removal process.

5.4 Use Cases for Resource Management

In this set of use cases, we consider the issues related to security in management
of resources in XtreemOS. We will state various assumptions and give description
of the respective use cases below.

In the context of XtreemOS, resources could be defined as various entities.
They could be system services, nodes, files, software licenses and in some cases
even entire networks (for e.g. a cluster). Thus, we consider management of re-
sources (adding, removing, updating), node management (selection of nodes) and
the XtreemOS File System (XtreemFS).

Management of such resources is inherently a problem in Grid architectures.
Such problems can be lessened by introduction of Virtual Organizations (VOs). A
VO has its own VO Manager or Administrator who is responsible for management
of users, resources and other functions. Thus, the problem of large-scale resource
management is disintegrated and handled by each VO Manager for its own VO.

On top on all the managerial functions on resources, lies our assumption of
an independent Trusted Third Party (TTP) for resources. We call such a TTP as
Resource Certification Authority (ResourceCA). This entity is trusted to provide a
certificate validating the claims provided by a resource. Examples of such claims
could be provision of a particular service, limited memory, storage space etc. by
a resource. In XtreemOS, we call this combined set of claims as Resource Con-
tribution Expectation (RCE). The certificate from the ResourceCA would include
the RCE, the ResourceCA’s signature and the public key of the resource. By pre-
senting such a certificate and on successful validation, the resource is trusted to
deliver the claims it makes while joining a VO.

82

5.4.1 Adding a Resource to a VO

Name: Add-Resource.
Purpose: Such an operation adds a resource to a VO.
Actors: A User and a VO Manager

In this use case, a new resource is added to an existing VO. The call to add
a resource is initiated by a User of XtreemOS. As is covered earlier, Users have
roles in XtreemOS and a User can have a role as a VO Manager. In such a case,
a VO Manager is adding a resource to the VO. For abstraction, we assume that a
User adds a resource to the VO. If all the conditions are met, then a resource is
successfully added to the existing VO.

Assumptions:

1. It is assumed that some form of resource specification is already in place.
By this we mean that a resource should have a name, resource owner should
be known, a reference to the resource is available (usually in the form of IP
address of the resource), the type of the resource is known (whether it is a
file, node etc.) and the resource should have obtained a certificate from the
ResourceCA. We call this complete specification as RDesc. So,
RDesc = ResourceName, ResourceOwner, EPR,ResourceType, Krca

where, ResourceName = Name of the resource, ResourceOwner=UserID of
the resource Owner if the Owner is a user, if not then it is just a canonical
name of the resource owner, EPR = end point reference of the resource
(usually the IP Address of the resource), ResourceType = type of resource,
Krca = Certificate from ResourceCA.

2. Since addition of resources takes place through a VO Manager, the VO
Manager is assumed to be robust. The VO Manager is a bottleneck but
is assumed that the VO Manager is fault-tolerant.

3. The users have the EPR of the resource being added. Since it is assumed
that a user makes the call to add a resource, it is also safe to assume that the
user also has the end point reference to the new resource being added to the
VO.

4. The root certificate of the ResourceCA is stored in every VO (specifically
in the VO Manager).

Relationship to other Work Packages

This use case provides services to WP3.2. WP3.2. includes node management
and adding resource is a primary part of node management. Also, such a use
case provides services to WP3.3 and WP3.4. This is because once the resource
is added, some daemons need to be started for WP3.3 (resource matching) and

83

WP3.4 functions. The use case uses services of VO management which is an
integral part of WP3.5.

Use Case Modelling

In this section, we present the use case modelling of the add resource scenario.
The figure below explains various steps carried out between actors to add a new
resource to a VO.

User
VO

Manager
VO

Database
Resource

1. Add Resource
2. Validate Resource

3. Add Resource Mapping

4. Add VO Certificate
5. Notify Local

Admin6. Successfully Added Certificate7. Resource Added
Successfully

Figure 19: Sequence Diagram for Adding a Resource to an existing VO

From Fig. 19, the User first invokes a method to notify the VO Manager that
he intends to add a new resource to the VO. This call would include passing the
RDesc defined above to the VO Manager. The VO Manager would consequently
validate the certificate given by the ResourceCA. On successful validation, the VO
Manager contacts the VO Manager database and adds a mapping of the User to
the RDesc provided. The VO Manager then contacts the VO and provides it with
the VO Manager’s certificate and asks the resource to install the VO Manager
certificate. The resource notifies the local administrator to allow access to the
resource from outside its local domain as it is a part of a VO. The VO Manager
on receiving approval from the Resource, notifies the User that the new resource
is now added to the VO.

APIs for Adding a Resource to an Existing VO

From the above use case, we can derive various method calls. Figure 20 shows
the complete method calls with arguments required to fulfill the add resource use
case.

So, the various method calls in this use case are:

84

User
VO

Manager
VO

Database
Resource

addResource
validateRes

addResToVO

installVOCert emailLocalAdmin

“Success”

“Resource Added”

Figure 20: APIs for Adding a new Resource to an existing VO

• addResource(VO_ID,RDesc,POLICY26)
Input: ID of the VO, Resource specification in the form of RDesc and any
policies defined for adding resource.
Output: A bool value stating whether the resource was added to the VO or
not.
The user invokes the above method and supplies the VO manager with the
VO_ID so that the VO Manager can verify which VO the resource is to
be added and the RDesc specifying the resource. The policy part is left
as an optional argument because currently we have not defined what poli-
cies should be used when adding a resource. In the future, we will include
possibly an array specifying the policies to be used when adding a resource.

• validateRes(Krca,RCE)
Input: The ResourceCA certificate for the resource and the RCE as given
by the User for the resource.
Output: A bool value stating whether the certificate is valid or not.
This function is internally called within the VO Manager. The VO Manager
invokes his function to verify the certificate provided by the resource. As
mentioned earlier, the certificate contains the RCE, the signature of the Re-
sourceCA and the public key of the resource. The arguments to the above
function are the certificate and the RCE supplied by the resource. The VO
Manager uses the root ResourceCA stored within it to verify the signature
and outputs whether the certificate supplied by the User (for the resource)
is valid.

26This is optional at this stage

85

• addResToVO(VO_ID,RDesc)
Input: The ID of the VO and the resource specification RDesc.
Output: Void.
The VO Manager makes such an internal method call to add the mapping
between the VO ID and the Resource Description for accounting purposes.
In the later stage if the user wishes to add or remove functionality from the
resource, he can issue an update command to the VO Manager.

• installVOCert(Kvom)
Input: The VO Manager’s certificate.
Output: Void.
This function is called by the VO Manager on the Resource Object to notify
the Resource to install the VO Manager’s certificate. Later, when a user
tries to communicate with the resource for job submission the resource can
then validate the user based on the certificate provided to the user by the VO
Manager.

• emailLocalAdmin(RDesc)
Input: Resource specification in the form of RDesc.
Output: Void.
The resource object calls this method to email the Local Administrator to al-
low access to VO members on the resource. Such a provision is to facilitate
VO members from different domains to access the resources.

Additional notes

With regards to security the following notes need to be considered when imple-
menting the above APIs:

• The method call addResource from the User to the VO Manager needs
to be authenticated, since the VO Manager otherwise is vulnerable to Denial
of Service (DoS) attacks.

• Policies for adding resources are not currently defined. However, once de-
fined they need to be stored in the VO Manager’s database. There should
also be a mapping between RDesc and policies.

Tests

To verify whether the above APIs are correctly implemented, below are a list of
tests:

86

• Reject resource: If the resource certificate is invalid, reject addition of re-
source to the VO. Similarly in case of conflict between specifications given
by ResourceCA’s certificate against RCE given by the resource, reject re-
source addition to the VO.

5.4.2 Removing a Resource from a VO

Name: Remove-Resource.
Purpose: Such an operation removes a resource from a VO.
Actors: A Resource Owner, the VO Manager and ResourceCA

A request for removing a resource can come from either the Resource Owner
or the VO Manager may decide to remove a resource from an existing VO. The
reason for removing a resource by the VO Manager may be motivated by the
resource acting maliciously or not delivering as per its RCE. In the later stages of
the project we will consider using resource reputation to keep track of the behavior
of the resource in a VO. Another important issue is also the fact that if jobs are
running on the resource then removing the resource does not make sense. In
this case, an exception should be thrown to alert the Resource Owner or the VO
Manager.

On successful execution of this operation, the resource is removed from the
VO.

Assumptions: In this use case, assumptions identical to the add resource use case
applies.

Relationship to other Work Packages

This use case provides services to WP3.2. The removal of node is also of con-
sideration for WP3.3. The primary reason for this is when resources are being
removed, if there are jobs running on the resources, the jController component
need to be updated. If later we use resource reputation than the Job Directory
which falls under WP3.2 needs to be updated after successful completion of this
operation.

Use Case Modelling

The modelling of removing a resource is similar to the adding resource use case.
The figure below explains various steps carried out between actors to remove a
resource from a VO.

87

VO Manager or
Resource Owner

VO
Manager

VO
Database

Resource

1. Remove Resource
2. Validate ResourceID

3. Remove Resource
Mapping

4. Remove VO Certificate 5. Notify Local
Admin6. VO Certificate Removed7. Resource Removed

From VO

Figure 21: Sequence Diagram for Removing a Resource from an existing VO

As described above, the VO Manager (VO Admin) or the Resource Owner
initiates the request to remove a resource from the VO. Such a method is invoked
and the ResourceID is provided to the VO Manager for removing the resource.
It is to be noted that RDesc can also be used instead of ResourceID. However,
for removal by simply providing the ResourceID, rather than the whole RDesc is
satisfactory. Later if there are policies defined for removing resources than the
need to supply the full RDesc may arise, but it would mean minor modification
to the overall API for this use case. The VO Manager then notifies its database
to remove the mapping between the VO and the Resource, since the resource is
being removed from the VO. On success, the VO Manager informs the resource
to remove the VO Manager certificate. In this process, the resource also notifies
its local administrator to remove access to the resource for this particular VO. The
Local administrator then updates its access controls (possibly firewall, IDS etc)
for disallowing access to the resource for the VO. On successful completion of
all these tasks the Resource Owner or VO Manager receives a success message,
stating the removal of resource has been accomplished.

APIs for Removing a Resource from a VO

Having generalized the use case in the above section, we will derive various func-
tion calls in this section for removing a resource from a VO.

Figure 22 shows the complete method calls with arguments required to remove
a resource from a VO.

The details and description of the functions are below.

• removeRes(ResourceID,VO_ID)
Input: ID of the VO from which the resource is to be removed and the ID

88

VO Manager or
Resource Owner

VO
Manager

VO
Database

Resource

removeRes
validateRes

removeResFromVO

removeVOCert emailLocalAdmin

“VO Certificate Removed”

“Resource Removed”

Figure 22: APIs for removing a resource from a VO

of the resource to be removed.
Output: A "Resource Removed Successfully" message.
The VO Manager or a Resource Owner calls this message by providing the
ID of the resource and ID of the VO as arguments. As described earlier, at
this stage ResourceID is enough rather than providing the full RDesc.

• removeResFromVO(ResourceID,VO_ID)
Input: The ID of the resource to be removed and the ID of the VO from
which the resource is to be removed.
Output: A "Mapping Removed".
By calling this function, the VO Manager notifies the VO Manager’s database
to remove the mapping between the VO and resource being removed. The
arguments supplied in this call are the ID of the resource and the ID of the
VO. The VO Manager’s database has to search within various RDesc for the
ResourceID provided and consequently remove the mapping between such
RDesc and the VO. Once finished, the function should return a message to
the VO Manager stating the mapping has been removed from the database.

• removeVOCert(VO_ID)
Input: The ID of the VO.
Output: A "Success" message.
This method is called by the VO Manager to notify the resource to remove
the VO Manager’s certificate it possesses. This will disallow any VO users
to use the resource in consideration in the future. The resource removes the
VO Manager’s certificate from its store and will return a "Success" message
back to the VO Manager.

89

• emailLocalAdmin(VO_ID,ResourceID)
Input: The ID of the VO and the ID of the resource.
Output: Void.
The resource object while executing the removal of VO certificate calls this
method to notify the local administrator to restrict users access to itself since
it is now removed from the VO. It is left to the discretion of the local ad-
ministrator how the access control is established after such a call.

Once all these above operations are successful, it is guaranteed that the re-
source is removed from the VO.

Additional notes

With regards to security the following notes need to be considered when imple-
menting the above APIs:

• The method call removeRes from the Resource Owner or the VO Man-
ager or the Resource Owner to the VO Manager needs to be authenticated,
since the VO Manager otherwise is vulnerable to Denial of Service (DoS)
attacks.

• Policies for removing resources are not currently defined. However, once
defined they need to be stored in the VO Manager’s database. There should
also be a mapping between RDesc and policies in the VO Manager’s database.

• For the removeRes method, there should be validation of the ResourceID
sent as otherwise VO Manager would be vulnerable to Denial of Service
attacks.

Tests

To verify whether the above APIs are correctly implemented, below are a list of
tests:

• Check the identity of the entity requesting resource removal. If the entity is
not authorized to remove the resource, reject resource removal call.

• Check whether the resource received the remove certificate call and has
successfully removed the certificate.

5.4.3 Updating a resource in a VO.

Name: Update-Resource.
Purpose: Such an operation updates the description of a resource in a given VO.

90

Actors: User (this could be the resource owner), the VO Manager and the Re-
source to be updated.

During XtreemOS operation in a production environment, it might happen
that certain description of the resource might change. Common examples of these
operations are a resource adding more memory, more storage space etc. for the
VO. In such cases, we need to have an API that performs such functions. It is to
be noted that updates are only successful when the resource at least provides the
contribution it guaranteed when it joined the VO. There should be policy manage-
ment in place to notify the VO Manager if there are conflicts between the update
operation and the RCE specified by the resource when it was added to the VO. The
VO Manager can then take suitable steps to manage such conflicts or disallow the
update operation completely.

On successful execution of this operation, the description of a resource is up-
dated for a particular VO.

Assumptions: The assumptions for this use case remain the same as for the Add-
Resource and Remove-Resource use case.

Relationship to other Work Packages

This use case provides services to WP3.2. If resource reputation is considered and
it depends on the resource’s contribution to a VO, the reputation of the resource
should also be updated on completion of this use case.

Use Case Modelling

Interactions between various entities for the Update-Resource use case are de-
picted below.

Figure 23 describes various steps to be followed for the update operation. The
User, who can be also a resource owner, initiates a call to the VO Manager to
update the resource. The new description is provided with this call. The VO Man-
ager first validates the resource based on the certificate from the ResourceCA. It
then checks any conflicts that the update operation might have with the RCE pro-
vided by the resource when the resource was first added to the VO. If there are
no conflicts, the VO Manager updates its database to reflect the mapping between
the updated RDesc for the resource and the VO_ID. The next step is to notify
the resource to update its status. On success of all the above calls, the VO Man-
ager returns a success message to the User stating that the new description of the
resource was successfully noted.

91

User
VO

Manager
VO

Database
Resource

1. Update Resource in
VO with new data 2. Validate Resource

4. Modify Resource with new data in VO

5. Update your description

6. Successfully updated

7. Resource Successfully
Updated

3. Check for Conflicts

Figure 23: Sequence Diagram for Updating a Resource in a VO

APIs for Updating a Resource of a VO

Having identified the various steps in updating a resource for a particular VO, the
next step is to derive concrete function calls and APIs. We provide these function
calls below.

The details and description of the functions are below.

• updateRes(VO_ID,ResourceID,newRDesc)
Input: ID of the VO in which the resource is to be updated, ID of the re-
source, new description of the resource in form of RDesc.
Output: A "Successfully Updated" message (String).
A User (or the resource owner) calls this message. The user specifies which
VO the resource belongs to, the ID of the resource and the new specifica-
tions of the resource in the form of new RDesc. On successful completion
of this operation, a string "successfully updated" is returned back to the user.

• validateRes(ResourceID,Krca,RCE)
Input: The ID of the resource, the certificate from the ResourceCA and the
RCE.
Output: An OK or successful message (String).
This function call is initiated by the VO Manager. The VO Manager vali-
dates the ResourceID and verifies the signature on the ResourceCA’s certifi-
cate. The purpose of this function is also to verify whether the ResourceID

92

User
VO

Manager
VO

Database
Resource

updateRes

validateRes

modifyRes

updateStatus

“Successfully updated”

“Resource Updated
Successfully”

checkConflict

Figure 24: APIs for updating a resource in a VO

supplied is identical to the one in the ResourceCA’s certificate. The VO
Manager gains the ResourceCA’s certificate from the newRDesc. Once the
ResourceID and the certificate are verified, the VO Manager is returned an
OK message.

• checkConflict(newRDesc)
Input: The newRDesc supplied by the User.
Output: An "OK" message (String)
The purpose of this function, as discussed earlier, is to find any conflicts
that might occur if the newRDesc does not satisfy the RCE supplied by the
resource when it was added to the VO. The VO Manager checks its database
by supplying the newRDesc given by the User. The function parses the
ResourceID from the newRDesc and checks the RCE for this ResourceID
from the database. A check is then made between the newRDesc and the
RCE of the resource. Only when the specifications in the newRDesc are
more than the RCE is the function successful. On successful checking the
function returns an OK message to notify the VO Manager that no conflicts
exist.

• modifyRes(VO_ID,newRDesc)
Input: The ID of the VO and the newRDesc.
Output: Void.
The VO Manager initiates this call and updates its own database to reflect

93

the updates resource. The newRDesc is mapped to the VO_ID. Thus, when
specification about the resource is inquired upon the newRDesc is returned
instead of the old specifications.

• updateStatus(newRDesc)
Input: the newRDesc.
Output: Void.
As the last step, the VO Manager informs the resource to update its own
status. The newRDesc is supplied to the resource in this function. The
resource updates itself by storing the newRDesc.

On successful completion of all the above operations the new resource speci-
fications are establishes throughout the VO.

Additional notes

With regards to security the following notes need to be considered when imple-
menting the above APIs:

• The method call updateRes from the User (Resource Owner) to the VO
Manager needs to be authenticated, since the VO Manager otherwise is vul-
nerable to Denial of Service (DoS) attacks.

• Policies for updating resources are not currently defined. However, once
defined they need to be stored in the VO Manager’s database.

Tests

To verify whether the above APIs are correctly implemented, below are a list of
tests:

• Check conflicts between newRDesc and RCE supplied by the resource while
joining the VO. If conflicts found reject update of the resource.

• Check that the resource has updated its specifications to newRDesc from
RDesc.

• Check that the return value to the user is a string.

5.4.4 Selection of Nodes.

Name: Node-Selection
Purpose: The purpose of this use case is to select nodes based on certain require-
ments.
Actors: A User, the Resource Matcher and the Node Manager.

94

An XtreemOS user would like to execute jobs on nodes. For optimizing exe-
cution of such jobs, there is a need for selecting the nodes available at that instance
of time and to select the best nodes that can handle the particular job under con-
sideration. This use case tackles operation of such scenarios where the best nodes
are to be selected.

It becomes apparent to understand the underlying node overlay network for
such an operation. The nodes (resources) of a VO are connected by an overlay
network. The VO Manager acts as an entry point for this overlay network. By
this we mean that if any component wants to interact with resources of a VO
the VO Manager has the end point reference (usually the IP Address) of a set of
resources. The resources are assumed to keep references for their neighbours in
the overlay network. Thus, by contacting a resource through the VO Manager and
iterating through the neighbours of the resource, it is possible to "walk" the entire
overlay network. Information retrieval from the entire overlay network is enables
optimally using such a scheme.

On successful completion of the Node-Selection use case a set of nodes are
provided to the User, that match the requirements provided while submitting the
job.

Assumptions:

• The VO Manager keeps a record of end point references of a set of nodes.
These nodes act as entry point to the underlying node overlay network for a
particular VO. Also, such a record is updated when a resource or resources
within the record leave the VO.

• Nodes have record of end-point references of at least two of their neigh-
bours. The overlay can be structured for e.g. using a Chord ring or can be
semi-structured network for e.g. as in a DHT.

• The entity who queries for the selection of nodes already possesses the
XtreemOS certificate (XOS-cert) of the user requesting the execution of
the job.

Relationship to other Work Packages

This use case provides services to WP3.2 specifically. Also, services are provided
to WP3.3 for obtaining resources, specifically nodes, that match the job require-
ments.

Use Case Modelling

The main actors in this use cases are the entities Resource Matcher and the Node
Manager. The figure below shows the interactions between these entities and the

95

user who submits the job.

User Resource
Matcher

Node
Manager

1. Select nodes
(provide requirements) 2. Select nodes

(provide requirements)
3. Iterate nodes by

checking neighbours

4. Send Set of nodes
fulfilling the criteria5. Set of nodes

Figure 25: Sequence Diagram for selecting nodes matching job execution require-
ments

As can be seen in Figure 25 the user requesting a job execution first comes
in contact with the Resource Matcher. It submits the job and during job execu-
tion a call to select nodes is initiated. The requirements are given in the job file
submitted previously. The Resource Matcher makes a call to the Node Manager
which can retrieve information about nodes by iterating through the entire node
overlay network of a particular VO. It is to be assumed that the Resource Matcher
already has the XOS-cert for the user, so it knows which VO the user belongs to.
The Node Manager is returned a list of nodes satisfying the requirements provided
which it passes to the Resource Matcher and ultimately to the User.

APIs for Selection of Nodes Satisfying a set of Requirements

From the sequence of steps above it is easier to extract exact functions that handle
the selection of nodes use case. Figure 26 describes the concrete function calls
required to implement the node selection scenario.

The details of the function calls are given below:

• SelectNodes(XOS-Cert,Requirements[...])
Input: XtreemOS Certificate of the user and the requirements as given in
the job file.
Output: An array of nodes satisfying the requirements.
While job execution a call is invoked for this method to select nodes satis-
fying the requirements. The user also sends its XtreemOS certificate for the
Resource Matcher. Requirements are sent in the form of a string array spec-
ifying what is needed for each of the nodes. In return the function returns
an array of Nodes satisfying the given requirements.

96

User Resource
Matcher

Node
Manager

SelectNodes
selectNodes

iterateNodes

Node[...]
Node[...]

Figure 26: APIs for selecting nodes from a VO matching the given requirements

• SelectNodes(Requirements[...])
Input: The requirements array as provided by the user.
Output: An array of Nodes satisfying the requirements.
The Resource Matcher, in turn, calls the Node Manager to select nodes that
satisfy the requirements given in the job file by this message. In return a set
of nodes are sent back to the resource matcher.

• IterateNodes(Requirements[...])
Input: The requirements array as provided by the user.
Output: An array of Nodes.
The Node Manager iterates through all the nodes for the VO using the node
overlay network for the VO and checks RDesc of all the nodes. If RDesc
are greater than the Requirements than the node is selected and added in the
set of nodes to be returned to the user.

On successful completion of the above method calls a set of nodes are returned
to the user, who can then initiate the job.

5.5 XtreemOS Security support for XtreemFS
This section describes how the security services support XtreemFS (also referred
to as XtFS for short) by showing the interrelationships with security components,
and how the interactions between the components of XtFS are protected. As a re-
sult of XtFS being an extension of traditional file-systems, established filesystem
security concepts and mechanisms have been included in its architecture and pro-
tocol specification. Nevertheless, there are technical challenges associated with
realizing these mechanisms in a filesystem distributed across multiple organi-
zational boundaries. The two main security aspects are facilitated by using the
XtreemOS Security:

97

1. Security bootstrapping and deployment of XtreemFS using X-VOMS

• installation of root XOS certificates for authentication

• authentication of components

• initialization of ACLs

• issuing of identity certificates

2. Authentication and access control per request

• authentication of users with clients

• file and directory operation requests including read, write, copy and
delete

These are described first as component relationships and secondly as sequence
interactions.

5.5.1 Static Modeling

This section gives an overview of the interrelationships between the XtFS and
XtreemOS Security components, for support of the security requirements deter-
mined for XtFS. For more information on the protocols of XtFS and how each
component functions, refer to the relevant specification documents; however a
brief overview is included here for comprehension of the security architecture
(taken from architecture deliverable):

• Object Storage Device (OSD): store complete or portions of objects and
implement a read/write interface to them.

• Metadata and Replica Catalogue (MRC): These two components store
metadata (extended and POSIX) and replica locations of files. Note that
from a security perspective the MRC is very critical; part of the Metadata
includes the access rights to files and directories on OSDs.

• Replica Management Service (RMS): This component will cooperate with
the rest of services to take decisions on when and where replicas are created
and will also decide when replicas should be removed from the system.

• Directory Service (DS): a central instance for registering and querying in-
formation about file system services and volumes.

• Client: a client-side library that allows access to all XtreemOS features, but
also allows mounting the file system as a normal UNIX file system

98

The most critical security component in XtFS is the MRC (Metadata and
Replica Catalogue), which issues capabilities to clients requesting access to a file
or directory, which is located on an OSD (Object Storage Devices) or any other
their replicas. The authentication of Clients is critical before issuing them with
capabilities. The authenticity, freshness and validity of capabilities needs to be
assured by the MRC when issuing them to Clients, as access control to files and
directories in a filesystem is the most fundamental security requirement.

Before clients can be issued with capabilities the MRC requires a means of
authenticating their identities and attributes claimed. Similarly, OSDs require the
means to authenticate that these clients have really been issued with the capabili-
ties that they declare. Secondly, OSDs must also be authenticated with the MRC,
otherwise rogue OSDs could provide false data to Clients or maliciously lead them
to writing confidential data. Similarly, as the RMS is responsible for managing
and initiating replicas, this must also be authenticated before these decisions to
strip data can be made. The task of the security components is hence to maintain
a set of trust relationships between the XtreemFS components in order to facilitate
this.

Figure 27: Component diagram showing trust relationships between XFS compo-
nents

X-VOMS may again act as a trust anchor for all XtreemFS components and
users. There may be multiple authorities that are trusted but that is not included
here. Using X-VOMS as a trust anchor, authentication between components is
possible, as well as between the clients and users. Furthermore, once components
have been issued with a certificate from X-VOMS, this could be registered in the
directory service in order to support discovery within XtreemFS.

However, XtreemFS requests must be handled quickly, such that the distri-
bution of the file system components remains transparent. The MRC may cache
capabilities in order to remove the need to regenerate capabilities for the same

99

client every time they make a request, in order to address performance problems
introduced by the inclusion of additional protection and cryptographic operations
in every request. Capabilities must therefore be unforgeable and have a means of
proving their freshness, even if cached. It is therefore expected that a shared-secret
is established between the MRC, Client and OSD involved in different requests,
assuring that the capability remains unforgeable. It is noted that this introduces
performance problems on requests, but these are not discussed explicitly in this
document.

5.5.2 Secure Bootstrapping of XtreemFS

As XtreemFS is a distributed file system, the authenticity of components is critical
for every operation. Bootstrapping is the process of ensuring that this authenticity
can be determined when the components are interconnected and operations are
requested. Bootstrapping is only necessary the first time a particular deployment
instance is done, a problem occurs that requires redistribution and, partially, when
central components such as the Directories or MRCs need to be removed.

Purpose: to bring a deployment of XtreemFS to an operational state and to
ensure that each component can be authenticated during requests.

Actors: All XtFS Components, X-VOMS, Users or Applications

Input: XOS-Certs with public-keys and attributes

Output: Successful, interconnection of authenticated XtFS Components, as
well as registration of attributes with the Directory Service (DS)

Implementation Note: The Directory Service could be used for storage and
registration of component certificates. Performing signatures on every subsequent
request could be too expensive. Initial authentication should be followed by ex-
change of shared secret between the components.

Pre-conditions:

• All XtFS components have been issued with XOS-Certs from a trusted X-
VOMS certificate issuer

• Potential users and administrators also have a user version of XOS-Cert
issued

100

Post-conditions:

• All component interactions can be authenticated

• It is possible for the user or application to be authenticated before receiving
a capability to perform operations

Invariants:

• Components that cannot be authenticated are not allowed to be registered
with the directory

• Clients with unsuccessful authentication cannot find registered components

Security related functionalities:

• Authentication: this is supplied by the mutual trust that the components,
users and applications have in X-VOMS

• VO membership checking: X-VOMS could check some membership or
other policies before issuing a XOS-Cert

Relationship to use cases/components in other work packages Use case pro-
vides services to: WP3.4

Test:

• will need to test that the authentication mechanisms do not break the
performance of the protocols

• using rogue components should not be allowed in XtFS operations

Sequence Diagram: Figure 28 shows the interactions between the security com-
ponents and XFS components during secure addition of replicas to files or direc-
tories.

It is assumed that all components have a similar trust anchor in X-VOMS, from
which they have been issued with XOS-Certs. Every component also installs the
root XOS-Cert of X-VOMS in order that they can validate all other XOS-Certs
that have been issued.

1. All components must

2. All Clients

101

Figure 28: Sequence Diagram showing the interactions between security compo-
nents and XtFS for bootstrapping

3. Application or user requests to perform a file, directory or administrative
operation on XtreemFS

4. Client must be capable of authenticating the user or application

5. Once authentication is possible, the Client retrieves the information for the
required entities from the DS, only if the user is authorized to retrieve this
information (implies that ACLs must also be set up on the DS)

6. The Client then performs the operation according to the established proto-
col, and returns the results to the user

5.5.3 Initialization of ACLs based on VO policies

Although the MRC and Ds are the access controllers of the XtreemFS, there is a
need for a higher-level framework for specifying and installing access control lists
(ACLs). This section specifies a means of installing these ACLs, given that groups
in XtreemFs can be resolved to VOs maintained by X-VOMS, using a specialized

102

method on the VOPS (VO Policy Server) for generating these POSIX-compliant
ACLs.

Purpose: to create a group/VO and install ACLs for that group or for addition
of components to groups

Actors: Client and User (with admin privileges), MRC, X-VOMS, VOPS

Input: group/VO or member parameters

Output: ACLs installed on MRC

Pre-conditions:

• All components can be authenticated using a common trust anchor
• Only administrators should be able to perform ACL and group creation op-

erations

Post-conditions:

• ACL is created to reflect change in group and group membership

Invariants:

•

Security related functionalities:

• Authorisation:

Relationship to use cases/components in other work packages Use case pro-
vides services to: WP3.4 adding and removing ACLs

Test:

• ensure that only users in a group can perform operations permitted by
the group

103

Figure 29: Sequence Diagram showing the interactions between security services
and XtFS components for installing an ACL

Sequence Diagram: Figure 29 shows the interactions between the security com-
ponents and XFS components during the initialisation of an ACL.

1. creation of a local group may be elevated to creation of a global VO; this
returns a globally-unique VO-ID, which has a specified format

2. adding of a user to a global group entails sending the public-key of the target
user to X-VOMS; internally to a Client in XtFS, the public-key would be
mapped to a local uid

(a) Before a user can be added, the group policy needs to be checked to
see if their attributes are valid for the group/VO

(b) this is a method for transforming a set of policies specified for users in
a VO to POSIX-compliant ACLs

3. user as administrator requests that ACL entry be created for the MRC

(a) Client sends ACL entry request to MRC

104

5.5.4 Secure File Operations

The standard protocol for performing any operation on a file is (i) Client makes
request to MRC, (ii) MRC checks if request is valid and issues capabilities, as well
as list of replica OSDs involved and (iii) Client uses the capabilities to perform
operations on set of OSDs. These operations need to be secure between the Client
and User as well as between the Client and OSDs. Integrity checks are particularly
important, as segments of striped files can easily be altered without easy detection.

Purpose: to ensure authentication and integrity of file operations

Actors: Client, MRC, OSDs

Input: request from Client to do read, write, delete, copy and other file opera-
tions

Output: operation performed

Implementation Note: There is currently no specification for how exactly a
shared secret is established between the Client and OSDs, nor the generation of a
session key between the Client and User, but such mechanisms are required.

Pre-conditions:

• The Client, MRC and OSDs can be authenticated using the same trust an-
chor

Post-conditions:

•

Invariants:

•

Security related functionalities:

• Authentication:

• Integrity:

105

Relationship to use cases/components in other work packages Use case pro-
vides services to: WP3.4 reading, writing, copying files

Test:

• non-authenticated operations are always denied; no capability can be
issued

Sequence Diagram: Figure 30 shows the interactions between the security com-
ponents and XtFS components during standard file operations.

Figure 30: Sequence Diagram showing the interactions between security services
and XtFS components during standard file operations

The above is the standard protocol for XtreemFS operations. The challenge
of the security mechanisms are to ensure that they are not too expensive for the
frequency and size of requests/responses to be made.

106

5.6 Use Cases for AEM
This section describes how AEM makes use of our security services by detailing
the interactions between the AEM components and the security services described
in 4.1.2.

5.6.1 Job Creation

The AEM job creation process is typically triggered by a user typing the command
XSub to a XtreemOS Linux terminal. This process involves three types of security
components: HAA, X-VOMS, and CDA.

Purpose: Ensure only registered VO user can create jobs on VO resources and
only jobs from validated (i.e. having a valid XOS-Cert) users can have a job entry
on JobDirectory.

Actors: User

Input: XSub command and parameters, including a choice of attributes, such
as VO role and group.

Output: A valid JobID

Implementation Note: Authenticating against HAA should only need to be
performed once. The security tokens (e.g. Kerberos tickets) issued by HAA can
be reused within its lifetime.

Pre-conditions:

• The user has pre-registered with a X-VOMS recognized HAA.

Post-conditions:

• A valid job entry is created on the JobDirectory. 27

27A job with a valid JobID is not necessarily a job that has been successfully launched and/or
executed on a Grid resource node. There are other factors that may influence whether a job is exe-
cuted successfully or not. For example, a node can deny the execution of a successfully submitted
job based upon the VO attributes in a XOS-Cert.

107

Invariants:

• When the authentication against HAA has been done, the job creation pro-
cess can reuse an existing security token, if it is still valid, to access X-
VOMS directly and bypass the HAA.

Security related functionalities:

• User validation: Validating user’s home authenticity using security cre-
dentials (e.g. Kerberos ticket, X.509 certificate, X-VOMS based password)
with HAA;

• VO membership checking: Checking whether a user is registered with a
VO by validating this with X-VOMS; and

• Credential requesting: Obtaining a XOS-Cert for job creation via contact-
ing CDA.

Relationship to use cases/components in other work packages Use case pro-
vides services to: WP3.3

Use case requires services from: WP3.5 HAA, X-VOMS, CDA

Test:

• non-registered user

Sequence Diagram: Figure 31 shows the interactions between the security com-
ponents and AEM components during security services during the AEM job cre-
ation process.

5.6.2 Resource Matching

Resource matching provides functionality of matching resources against require-
ments and user credentials, retrieved from XOS-cert. The selection process is
performed in two steps. In the first step resources are matched based on static in-
formation, which functionality is provided by Node management service (WP3.2).
At the second step, dynamic information is matched, and only the resources,
which satisfy both matching criteria, are returned to scheduling module.

Purpose: Find resources, which match specific criteria, defined in the JSDL.

Actors: Grid level service on behalf of the user

108

Security services for AEM job creation

1. User

authentication

X-VOMS

4. Check VO membership

HAAUser

User registration (out-of-band)

CDA XJobMng JobDirectory

2. Validate user

3. Authentication

successful

5.Evaluate user’

VO membership

7. Get resources

and generate

XOS-Cert

6. Request credential

8. Return XOS-Cert

9. Create job with XOS-Cert

10. Create job

11. Register JobID

with XOS-Cert

12. Return JobID

Figure 31: Sequence Diagram showing the interactions between security services
and AEM components during the AEM Job Creation Process

Input: XOS-cert, VO name, JSDL

Output: List of matched resources

Pre-conditions:

• XOS-cert has been created and passed to the resource matching procedure

Post-conditions:

• None.

Invariants:

• None.

Security related functionalities:

109

• Static information resource matching is based on functionality, which
does not allow complex interaction during the matching process, which re-
sults, that at this step the only user specific information checked is VO re-
source membership.

• Dynamic information resource matching on other hand contacts each
candidate resource, and checks any remaining resource property, which has
to be satisfied. At this step the XOS-cert is presented to the resource, so that
the resource can authenticate the legitimacy of the access.

Relationship to use cases/components in other work packages Use case pro-
vides services to: WP3.3 jResMatching

Use case requires services from: WP3.2 Node management

Test:

• Empty VO. jResMatching service should return empty set of resources,
when VO provided by XOS-cert does not contain any resource

• Invalid ticket XOS-cert. jResMatching service is presented with invalid
ticket. Function should return empty set of resources.

Sequence Diagram: Figure 32 shows the interactions between the security com-
ponents and AEM components during the AEM Resource Matching process.

5.6.3 Resource Negotiation

Resource negotiation is a protocol performed by jScheduler when submitting a job
to a resource. When a suitable resource for a job is found, there is no guaranty, that
the resource will be able to perform a job inside the parameters required by user
(i.e. SLA level, QoS). Therefore a protocol is envisioned, where the resource and
job controller can negotiate the use of resources. After the resource has accepted
a job into execution, it holds i.e. in job queue, until the job start time. At this
time the job is then send to the execution manager, who will perform the actual
job execution (i.e. creating a process)

Purpose: Process of submitting a job to a resource.

Actors: Grid level service on behalf of the user in communication with Re-
source manager

110

AEM Resource Matching

VO

Policy service
XResMng

jResMatching
XJobMng

getResources

XResMng

localMatching

Node

management

getTrustedCertificate

getResources

doResourceMatch

X-VOMS

checkVOPolicy

Figure 32: Sequence Diagram showing the interactions between security services
and AEM components in the AEM Resource Matching Process

Input: XOS-cert, JSDL

Output: confirmation of success

Pre-conditions:

• XOS-cert has been created and passed to the resource negotiation procedure

Post-conditions:

• None.

Security related functionalities:

• User authentication and authorization: with the XOS-cert the negotiation
process receives all the user related credentials, which are first checked with
the trusted certificate the request validity, and then based on any local policy
a resource can deny access to them.

• SLA: during the negotiation period a service level agreement - SLA can
be reached, which binds both User (job owner), and the Resource owner to
honour the agreement reached.

Relationship to use cases/components in other work packages: N/A.

111

Test:

• SLA with finish time in past: Allocation service must not accept such job
in execution.

• Invalid ticket - XOS-cert: Allocation service is presented with invalid
ticket. Negotiation should not get accepted.

Sequence Diagram: Figure 33 shows the interactions between the security com-
ponents and AEM components during security services for AEM resource nego-
tiation process.

AEM Resource Negotiation

XResMng

Allocation
XJobMng

NegotiationAccepted

reqNegotiation(XOS-cert)

In a case of overload (DOS prevention),

process does not guaranty any answer.

reqResponce(JSDL’, SLA’, JobID)

JSDL, SLA is acceptable

Addapt SLA,

JSDL

submissionReq(XOS-cert, JSDL, SLA,

JobID)

submissionACK(JobID)

authenticateUser

Local

NodeMng

userAuthenticated
validateUser

Trust

Anchor

A trust anchor specifies the key stores that contain trusted root certificates. In the above, the trust anchor stores VOM’s root certifciate and VOM.’s certificate

These certificates are used to validate XOS-Cert.

Figure 33: Sequence Diagram showing the interactions between security services
and AEM components during AEM Resource Negotiation Process

5.6.4 Job Execution

The AEM job execution starts after resource has been allocated on a node. The
local job execution component (i.e. XExecMng) of AEM executes fork com-
mand to start a new proces, sets its UID/GID, and runs the command exec to start
executing this process. While the process is running on a node, the node-level
VO support modules (from WP2.1) monitor and record its resource consumption.
When the process is finished, a message will be sent back to XExecMng to signal
it to relay the accounting record back to the VO manager. This is to ensure the
accountability of resource usage on nodes.

Purpose: Ensure resource consumption on each node is accountable by relay-
ing accounting information back to an appropriate VO manager (VOM).

Actors: XResMng

112

Input: A message from XResMng triggering the spawn of a new job process

Output: Accounting record of a job execution process being relayed back to
VOM

Assumption: The communication channel between a node and VOM is mutu-
ally authenticated and secure, for example, via SSL. This is to ensure that account-
ing information is relayed back to the VOM that the job request is originated from
and the node is not bogus (i.e. faking the accounting record to charge users who
haven’t submitted a job).

Pre-conditions:

• Node resource has been allocated to a valid user.

Post-conditions:

• The accounting information of a job execution process is correctly relayed
to VOM

Security related functionalities:

• VO accounting: ensure that an accounting record is correctly associated
with a user

Relationship to use cases/components in other work packages Use case pro-
vides services to: WP3.3

Use case requires services from: WP3.5 VO accounting server

Test:

• Invalid user: The VO accounting service rejects an accounting record be-
cause of the global ID presented by the XExecMng is invalid.

Sequence Diagram: Figure 34 shows the interactions between the security com-
ponents and AEM components during security services for AEM job execution
process.

113

Security services for AEM job execution

1. Start job

2. Fork/setuid/exec

4. Process

 execution & record

resource consumption

6. Update VO

accounting store

5. Process complete

3. Process started

7. Accounting record

NodeVOMngXExecMngXResMng
VO Accounting

Server

NODE VOM

Figure 34: Sequence Diagram showing the interactions between security services
and AEM components in the AEM Job Execution Process

6 Open Issues

6.1 Scalability of the Authentication System
One of the major challenges of developing an authentication system for a large-
scale Grid environment is its scalability. To XtreemOS, there is no exception.
The authentication system presented in 4.2.4 is designed with the aim of easy
integration with the existing security infrastructure that has been well operated in
large corporate organizations. The model that the system is based upon is flexible
in that it can still accommodate the more general situation that there isn’t any
existing infrastructure to bootstrap the trust from.

The protocol presented in Section 4.2.4 basically generating a short-lived pub-
lic key for a user and then using that key to establish a shared secret between the
user and each online service. The classic Diffie-Hellman protocol is leveraged to
achieved both goals in one single protocol. Because of this reason, no additional
key agreement protocol is needed after the mutual authentication process is per-
formed. One of the alternative is to give users the flexibility of choosing any public
key cryptography algorithms (e.g. RSA). But with this alternative approach, there
would be extra key establishment steps involved. Therefore, it seems that our pro-
posed protocol should have advantage over other types of public key algorithms.
However, the exact advantage (i.e. capable of coping more concurrent clients) of
our protocol is yet to quantify.

On the other hand, our protocol relies on an online CDA service (operating
on a per-VO basis). In contrast to conventional PKI who is typically offline, the
benefit of making credential services online is evident. It offers the advantage of
providing short-lived certificates, which effectively reduce the impact of compro-

114

mised certificates. Thus, the classic certificate revocation problem is mitigated.
The downside of this approach is that the online availability of this service be-
comes crucial to the success of VO operations. Because of this reason, we plan
to explore the possibilities of using the highly available and scalable services cur-
rently being developed in WP3.2 to improve the robustness of our services.

There are open questions remaining, they are:

• is the proposed model a complete new VO model to the existing ones (e.g.
VOMS) using in Grid middleware? If so, what are the key differences?
Does our solution provide a satisfactory solution to the new model?

• does this strategy really gives us the better scalability than its a pure PKI
based authentication system? Note that the proposed model itself can cope
with both symmetric key based and public key based authentication proto-
cols.

• will it imply significant changes to the current practice of Grid authentica-
tion? If so, will this strategy be worthwhile for XtreemOS as a whole?

6.2 Flexibility vs Complexity of Authorisation
The major open question for any authorisation system is always: how open should
the policy and attribute types be? On one hand, especially in a dynamic, het-
erogenous environment like Grid Computing, there is a need for flexibility and
configurability, which leads to requirements for specifying generic policies and
attributes. However, a flexibility and a highly generic architectural specification
shift complexities to implementation and management. There is therefore a need
to agree on the appropriate level of flexibility with respect to the types of attributes
and constraints used to make policy-based authorisation decisions.

6.3 Technicalities of using Virtualization for Isolation
Isolation has been included as a security requirement since the days of large-
scale, timesharing computer architectures, where traditional multiprogramming
techniques appeared to have their limitations. The theory of virtualization for
isolation has been proposed since the late 1960’s, but there was never sufficient
computational resources available for it to be realized on the scale that it is be-
ing realized today. In any event there are still some major decisions to be made
concerning if to use this as our sole isolation strategy:

1. will the platforms supporting XtreemOS have the capacity to handle virtu-
alization?

115

2. if selected, what approach to virtualization is most suitable - full vs. par-
avirtualization?

3. do the range of applications support making it a core service offered by
XtreemOS security, or should this be left as an extension?

4. is it necessary to support all 4 aspects of isolation - attribute, object, in-
terface and process? Note that if there is no need for object and process
isolation, virtualization techniques could be an overkill as a solution for
isolation.

6.4 Resource Sharing across Multiple VOs
As briefly discussed in Section 3.3, resource sharing across VOs is of vital impor-
tance to the XtreemOS project as a whole. The key challenges are to (a) ensure
efficient resource management and utilization; and (b) deliver a certain level of
quality assurance despite the concurrent presence of users who may or may not
belong to the same VO. Effectively, this can be treated as an isolation problem. In
a Grid OS, such as XtreemOS, isolations can coexist on many different levels.

The very basic level of isolation can be achieved by the use of UIDs/GIDs for
different users28. However, WP3.5 only provides the necessary information, such
as VO attributes of a user, to allow other aspects of the system to deal with the
handling of basic isolation in XtreemOS. Currently, this functionality is currently
being provided by WP2.1, who uses the VO attributes29, to create UIDs/GIDs for
users.

An more advanced level of isolation can possibly be achieved by using virtual-
ization techniques. Due to the time constraint, such techniques and in-depth inves-
tigation of the implications of sharing under isolation have just been marginally
mentioned in the current deliverable. We plan to explore them in the next edition
of this specification.

28Fundamentally, Linux has three basic elements: processes, files, and I/O channels. All these
elements are associated with UIDs/GIDs. That is, the creation, modification, deletion of all of
these are based on UIDs/GIDs. So long as two users are under different UIDs, their processes,
files, I/O channels are isolated. Well, they may be able to see the files etc. of the others, but
they cannot access/modify/delete the files/processes/I/Os of each other. And, files/directories are
somehow special because it has 9-bit access control associated with them.

29Currently, we are still in a process of finalizing a list of VO attributes that will be embedded in
a XOS-Cert. We believe, this is a cross-WPs issue that may have a great impact on many aspects
of the design of XtreemOS.

116

7 Appendix - XtreemOS Certificate (XOS-Cert)
This appendix describes the format and content of a XOS Certificate (XOS-Cert).
To the best of our knowledge, this information is correct at the time of writing.
However, the exact content that goes into the certificate is subject to changes. To
a large extend, we perceive such changes be necessary and healthy as they would
allow us room to accommodate future extensions to our protocol. Meanwhile,
these changes may also be necessary to reflect our ongoing active interactions
with other WPs.

Overall, in comparison, the format of XOS-Cert is expected to be much stable
than its content.

7.1 XOS-Cert - Format and the Certificate as a Whole
As pointed out in Section 4.1, the format of a XOS-Cert is that of a X.509 v.3
public key infrastructure certificate [6]. XOS-Certs are short-lived. Compared
with long-term public key certificates, the lifetime of XOS-Cert is much shorter.
Typically, the validation period of XOS-Certs is in the matter of days, rather than
years. The XOS-Cert is signed by a VO manager.

As with VOMS certificates, XOS-Cert also contains VO attributes, which are
defined in a X-VOMS database. In XtreemOS, VO attributes are issued by the VO
manager and signed by the VO manager as well. For compatibility reasons, signed
VO attributes are embedded in the an attribute certificate [7] as VOMS attribute
certificates. However, it should be pointed out that the attributes in a XOS-Cert
is potentially much richer than those in a VOMS certificate. Similar to VOMS,
the XOS-Cert’s attribute certificate is stored in the standard extension part of a
XOS-Cert.

Here is the format of a XOS-Cert:

• version (v3)

• serial number

• signature (signing algorithm using the VO manager)

– algorithm identifier

– parameters

• issuer’s name (i.e. the VO manager’s DN)

• validity period

– not before date/time

117

– not after date/time

• subject’s name (i.e. the user’s globally unique ID)

• subject’s public key info

– algorithm identifier (aDH - authentication using Diffie-Hellman algo-
rithm)

– parameters (i.e. g, and n)

– public key value

• issuer unique identifier (optional)

• subject unique identifier (optional)

• extensions (XtreemOS attribute certificate)

• signature (of the entire certificate, including extensions)

7.2 XOS-Cert - the Attribute Certificate Part
Since some parts of XOS-Cert have been described in the previous section, this
section focuses on describing the content of the XOS attribute certificate. Here is
the format and the attribute certificate part of the XOS-Cert.

• version

• holder (corresponding to the subject name in the XOS-Cert)

• issuer (corresponding to the issuer name in the XOS-Cert)

• signature (signing algorithm using the VO manager)

• serial number

• validity period

• authorization attributes

• extensions (XtreemOS VO attributes)

Here is a list of VO attributes that may go into the extension part of the XOS
attribute certificate.

• GlobalPrimaryUserName

118

• GlobalPrimaryVOName

• GlobalPrimaryGroupName

• GlobalPrimaryRoleName

• a list of GlobalSecondaryUserNames

• a list of GlobalSecondaryVONames

• a list of GlobalSecondaryGroupNames

• a list of GlobalSecondaryRoleNames

• a list of extra GlobalUserNames, GlobalVONames, GlobalGroupNames,
and GlobalRoleNames

119

References
[1] XtreemOS Consortium. D3.2.1 - Design of an Infrastructure for highly-

available and scalable Grid services, December 2006.

[2] XtreemOS Consortium. D3.3.1 - Requirements and specification of XtreemOS
services for application execution management, December 2006.

[3] XtreemOS Consortium. D3.5.2 - Security Requirements for a Grid-based OS,
December 2006.

[4] D. Engert, L. Pearlman, M. Thompson, S. Tuecke, and V. Welch. Rfc 3820 -
internet x.509 public key infrastructure (pki) proxy certificate profile. 2004.

[5] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Trans-
actions on Information Theory IT-22 (6): 644-654 Nov. 1976.

[6] R. Housley, W. Polk, W. Ford, and D. Solo, Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile, RFC
3280, April 2002.

[7] S. Farrell and R. Housley, RFC 3281: An Internet Attribute Certificate
Profile for Authorization. April 2002.

120

