XtreemOS BNHE

Information Society

Enabling Linux <
for the Grid \"4/ Technologies

Project no. IST-033576

XtreemOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Second Specification of Security Services
D3.5.4

Due date of deliverable: 30/11/2007
Actual submission date: 14/11/2007

Start date of project: June 1% 2006

Type: Deliverable
WP number: 3.5
Task number: T3.5.2/T3.5.3

Responsible institution: Rutherford Appleton Laboratory,
Science & Technology Facilities Council,

Harwell Science and Innovation Campus,

Didcot, Oxon OX11 0QX, United Kingdom

Editor & and editor’s address: Erica Y. Yang

Version 1.0 / Last edited by Erica Yang / 14/12/07

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU | Public

PP | Restricted to other programme participants (including the Commission Services) N

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services)

Revision history:

Version Date Authors Institution Section affected, comments
0.0 07/09/07 | Erica Yang STFC first outline
0.1 25/09/07 | Erica Yang STFC incorporated updates from telco
0.2 01/10/07 | Daniel Vladusic XLAB first version of Accounting Service
0.3 08/10/07 | Erica Yang STFC moved federation to future work, move APIs to D3.5.5
0.4 10/10/07 | Erica Yang STFC added glossary and 1st draft of security
0.5 02/11/07 | Erica Yang STFC first version of security services and security architec-
ture for AEM
0.6 10/25/07 | Gregor Pipan XLAB added policy management AEM use case
0.7 19/10/07 | Adolf Hohl SAP added initial version of evaluation
0.8 10/25/07 | Philip Robinson SAP added design principles and integrated the Trust Model
with the System Model
0.9 03/11/07 | Haiyan Yu ICT added node level policy service
0.9.1 03/11/07 | Erica Yang STFC total reorganization and final checking for internal re-
view
0.9.2 12/11/07 | Erica Yang STFC revisions based on 1st internal review
0.9.3 16/11/07 | Erica Yang STFC restructuring for final submission, incorporating
Philip’s and Adolf’s comments and suggestions
0.9.4 20/11/07 | Erica Yang STFC added functional overview of XtreemFS and AEM,
0.9.5 26/11/07 | Erica Yang STFC nearly final structure and revised security architecture
for AEM and XtreemFS
0.9.6 30/11/07 | Erica Yang STFC revised concepts and VO management chapter
0.9.7 05/12/07 | Erica Yang STFC conclusion, executive summary
0.9.8 05/12/07 | Philip Robinson SAP revised architectural discussion
0.9.9 07/12/07 | Philip Robinson SAP revised the entire Evaluation
0.9.11 07/12/07 | Erica Yang STFC nearly final security architecture for XtreemFS
0.9.12 07/12/07 | Erica Yang STFC removal of accounting
0.9.13 07/12/07 | Julian Gallop STFC Restructured the evaluation/techincal discussion Chap-
ter
0.9.14 10/12/07 | Yvon Jégou INRIA enhancements and clarifications on concepts and secu-
rity architecture
0.9.15 14/12/07 | Erica Yang STFC final revision on executive summary, conclusion and
revisions based on Julita’s comments
1.0 14/12/07 | Erica Yang STFC final version with small corrections and proofreading
Reviewers:

Luis Pablo Prieto (TID) and Julita Corbalan (BSC)

Tasks related to this deliverable:

Task No. | Task description Partners involved®
T3.5.2 Specification of XtreemOS Security Services STFC*, SAP, XLAB, ICT, ULM, INRIA
T3.5.3 Autonomic Security Policy Management and Enforcement STFC*, SAP, XLAB, ICT, ULM, INRIA

°This task list may not be equivalent to the list of partners contributing as authors to the deliverable

*Task leader

Executive Summary

This is a second draft specification of security services for XtreemOS. The main
objective of this document is to describe a security architecture that makes use
of the security services to secure application execution and file management in
XtreemOS.

To set the context, we first present the background to this deliverable. This
consists of two parts: (1) the basic functional overview of AEM and XtreemFS;
and (2) the security challenges arising from application execution and file man-
agement in XtreemOS and those arising from deploying, managing and running
legacy applications in XtreemOS. Based on this understanding, we describe the
key concepts involved in a XtreemOS VO environment. The notion of global en-
tities is introduced to describe the entities persisting in a global namespace. Three
kinds of global entities are described, they are: VOs, users and resources(e.g. ma-
chines/nodes) in a VO. The conventional Linux operating system is not aware of
any of them. Therefore, we describe in details the management issues (e.g. iden-
tity, attribute, membership, and policy) of these entities in XtreemOS, and, more
specifically, how a standard X.509 certificate is extended as a vehicle to carry the
global identifiers and attributes of global entities to allow the operating system
to interpret them in the operating system’s local namespace. Once the link be-
tween the global namespace and the local (i.e. operating system) namespace is
established, a security architecture is presented to demonstrate how the security
services, being developed and refined in this specification, can be used to provide
three basic security mechanisms (i.e. authentication, authorization, and delega-
tion) to achieve secure application execution and file management in XtreemOS,
a Grid operating system with native support for VOs.

The last part of this document presents a range of insights which we have
gained along the way of producing this deliverable. Such insights are grouped
into two categories of discussions. First of all, we present a discussion on the se-
curity architecture principles that have been derived by considering requirements
from both business and scientific applications and the management of the infras-
tructure supporting them. It is expected that this discussion can evolve into a
set of useful design guidelines for the future edition of the security architecture
and could give an early indication of the pros and cons of the the ongoing secu-
rity design. Next, the discussion on the new requirements and challenging issues
arising from enabling (i.e. installing, running, and managing) complex legacy
applications in XtreemOS is presented. It captures our still developing under-
standings and knowledge of the role played by and the functionalities provided by
various WPs (i.e. WP 2.1, 3.3, and 3.5) to realise such advanced applications in
XtreemOS. The aim of this discussion is to provide useful inputs to the next stage
of the work that our WP will undertake.

Contents

[Executive Summary|

(I Introduction|

M1

Brief Recapof D3.5.3.

T2

Document Organization|.

[2

Background|

n2

Security Challenges|o

[2.2.1 'The AEM and XtreemFS Perspective|
[2.2.2 The Application Perspective|

Entities for Secure VO Management|

B3

Identity, Attributes, and Membership|

[3.3.1 Identity of Global Entities|

(4

XtreemOS Security Architecture|

A1

SECUTItY SETVICES| . . v v v v v v v e e e e e e e e e

@.1.1 Credential Distribution Authority]
“.1.2 VO Policy Service|,
@4.1.3 Node-level Policy Servicel

A2

The Security Architecture|.

4.2.1 Securng AEM|,
4.2.2 Securing XtreemES|.o

i3

Discussion: Ongoing Security Challenges from Other WPs|

B Technical Di onl

[5.1.1 Scalability]
[5.1.2 Flexibility|. oo oL
[5.1.3 Autonomy|

14
14
16

22
22
22
24
24
25
26
28
28
32

34
34
35
38
39
42
42
45
48

[5.2 Legacy Application Runtime and Management| 55
[5.2.1 The Application Installation Process| 55

[5.2.2 User Management, 57

[5.2.3 Group Management| 59

[5.2.4 Summary and Outlook| 61

6 Conclusions| 64

Glossary

AEM
CDA
CA
GGID
GUID
GVID
NLP
PDP
PKI
TCB
VOM
VOPS
XtreemF'S
XOSD

Application Execution Management
Credential Distribution Authority
Certification Authority

Global Group IDentifier

Global User IDentifier

Global VO IDentifier

Node Level Policy

Policy Decision Point

Public Key Infrastructure

Trust Computing Base

Virtual Organization Management
Virtual Organization Policy Service
XtreemOS File System

XtreemOS Daemon

List of Figures

L An Overview of Interactions within AEM| 11
2 An Overview of Interactions within XtreemFES|. 13
3 Interactions between AEM and XtreemFES in XtreemOS|. 14
4 Relationship between Security Services| 35
5 A Secure Application Execution Environment in XtreemOS|. . . . 46
6 A Secure Data Access Environment in XtreemOS| 48
[/ The application installation process|. 56
(8 A hypothetical XOS-cert for the application installation example| . 60
List of Tables

(1 Who Creates the Attributes and the Usage Scope of the Attributes. |

(*: the availability of these attributes depends on the VO model. |

7. decistonpending)[.o oL oL 27
2 Identifier and Attributes for Global Entiies] 27

1 Introduction

This deliverable is a second draft edition of XtreemOS security services. It is a
refinement and revision of its previous edition with an emphasis on presenting an
overall security architecture for XtreemOS. In many senses, the work undertaking
by the WP3.5 partners is very demanding as it requires not only technical knowl-
edge and expertise of security and VO management in Grids, but also a good
understanding of the entire XtreemOS system, not to mention that the former is
such a vast research area and XtreemOS, itself, is a large project still in active
development and evolvement.

1.1 Brief Recap of D3.5.3

We have shown our awareness and understanding of the technical aspects of XtreemOS
and their security requirements in D3.5.3 [S] by describing the technical back-
ground to WP3.5, including:

e Linux security,

e [solation and sharing issues in VOs, and

e Function description and security requirements of various aspects of the
XtreemOS system, including:

Kerrighed,

Application checkpointing,

Federated resource management,

Highly available and scalable services,
Application Execution Management (AEM), and
Data management (XtreemFS)

Also in D3.5.3, an initial list of the security services was presented along with
a selective range of XtreemOS use cases. Supported by the security services, an
initial list of security mechanisms (i.e. mutual authentication, authorisation, se-
cure communication, and isolation) were examined. However, what has been lack-
ing is a big picture - a big picture of the XtreemOS security architecture that brings
all the security services together to secure the workflow of the entire XtreemOS
system.

In XtreemOS, jobs and files are the first-class citizens. Two technical work
packages, Application Execution Management (AEM) and Data Management (XtreemFS)
are designated to deal with these entities. Thus, the main aim of the current deliv-
erable is to deliver an in-depth and focussed presentation of a security architecture
for application execution and file management.

6

1.2 Document Organization

The rest of the document is organized as follows.

Chapter 2 describes the technical background to this deliverable. It starts with
a functional overview of AEM and XtreemFS. This is followed by the presentation
of a list of security requirements from their perspective and those from (complex
legacy) applications’ perspective.

Chapter 3 introduces a set of concepts (e.g. entities, identity, attributes, mem-
bership, policies) in a XtreemOS VO environment to lay the foundation for pre-
senting the security architecture.

Chapter 4 presents the XtreemOS security architecture for application execu-
tion and file management. This chapter consists of a detailed description of the
security services and how they are used to secure AEM and XtreemFS.

Chapter 5 first presents a set of security architecture design principles that
have developed to give us early understanding of the limitation of the current
security design. It then describes the new security requirements and issues arising
from deploying, running and managing legacy applications in XtreemOS.

Chapter 6 concludes this deliverable and outlines the future directions for the
next edition of this specification.

Priorities of this deliverable A range of tasks (i.e. T3.5.2!, T3.5.3%, and T3.5.4°)
are being undertaken by WP3.5 partners between month 13 and 30. Some areas of

work, such as T3.5.3 and T3.5.4, are being studied on a longer timescale and there-

fore will have a less complete treatment in this document. Thus, in the following,

we present a detailed list of work with their priorities in the current deliverable to

capture the ongoing progress made in our WP:

e Top priority: specification of security services, security architecture, policy
management, VO creation

e Medium priority: federation of security domains

e Low priority: virtualization and levels of isolation. XtreemOS should
provide the possibilities to incorporate various virtualization technologies,
such as VMware, Xen, KVM (Kernel-based Virtual Machine), rather than
develop its own virtualization support. We can analyze and evaluate, but
not develop the support for strong isolation technologies.

Material Relocation and Sister Deliverables We have presented a lightweight
mutual authentication protocol for mobile devices in the previous specification -

ISpecification of XtreemOS security services
2 Autonomic security policy management and enforcement
3Federation of distinct and autonomous security/administrative domains

7

D3.5.3. This protocol has been refined and strengthened since. Specifically, we
have produced the formal proof for this protocol, which has been verified with
well known security protocol checker to ensure its security properties (integrity,
confidentiality, availability) against a range of security attacks, such as man-in-
the-middle attacks and masquerading attacks. The revised protocol, with its proof
and verification, are now part of the formal analysis document (D3.5.6).

Apart from D3.5.6, there is another deliverable D3.5.5 from WP3.5 which is
submitted as a companion to the current deliverable. D3.5.5 presents a up-to-date
view on the current prototype implementation.

2 Background

The purpose of this deliverable is to specify security services for XtreemOS. In
this chapter, we first present the outcome of our ongoing study into the function-
alities of AEM and XtreemFS. As XtreemOS is still being actively designed and
implemented, we have tried all our best to reflect on what is being made available
through existing deliverables and our active and in fact, still ongoing, interactions
with other WPs.

We begin with showing how they work independently. Then, we describe how
they interact with each other to create a complete picture of the basic functionality
of XtreemOS: from job submission to accessing files. The security mechanisms
are purposefully left out from the function description. To avoid dealing with the
internal details of AEM and XtreemFS, we have concentrated on: (1) identify key
components in the subsystems; and (2) understanding the interactions between the
node level services and the global services.

The second part of this chapter looks at the security challenges introduced by
the design of AEM and XtreemFS subsystems. We also present a list of security
challenges arising form studying legacy applications in the context of XtreemOS.

Next, we will start by explaining briefly the functional overview of AEM and
XtreemFS, and, the interactions between them.

2.1 Functional Overview of AEM and XtreemFS

This section is divided into three parts: how AEM works, how XtreemFS works,
and how AEM can interact with XtreemFS. We should emphasis that this deliver-
able is not the ultimate source to grab the details of the internal working of these
systems because:

e Their internal details have been abstracted away to serve the purpose of our
deliverable, i.e. presenting an overall security architecture for XtreemOS
without getting into the detailed interactions inside these systems; also

e Some interesting features (e.g. replication management in XtreemFS) have
been omitted to keep the focus of the current deliverable.

Interested readers should refer to the respective deliverables (e.g. [31, [1], [7])
for an in-depth description of them.

The diagrams in this section follows the same pattern. Services have been
grouped into two categories: node and global services.

e Node services run on each XtreemOS node, be it client or resource node.

¢ Global services run on a global scale (i.e. a VO-wide scale) serving all the
nodes in a VO.

How AEM Works?

According to [3], AEM components are divided into two parts: client side (inter-
face) and server side (service). Depending on their location, AEM services are
further divided into two sorts: node (level) services and external (global) services.
In the context of AEM*, global means VO-wide.

Figure/[l|illustrates the interactions between the AEM components. In this dia-
gram, the client side is represented by the XtreemOS console, which is (currently)
a command line interface to allow users to type in AEM commands, such as Xsub
for job submission, and Xps for querying current jobs.

XOSD is a server-side daemon service running on each XtreemOS node for
managing jobs (e.g. submission, execution, monitoring), and resources (e.g. al-
location and negotiation). In Figure (1| it is shown running on a client node as
XOSDc and a resource node as XOSDr. XtreemOS console and XOSD are node
(level) services.

AEM has two distributed services (classified as external services in the fig-
ure): JobDirectory and ResMat (ResourceMatching). JobDirectory provides job
query services to users to allow them retrieve the JobManger’s address for their
jobs. ResMat is responsible for finding resources (machines) that can satisfy the
criteria in the job specification and have spare resources (e.g. CPU and memory)
to provide at the time of job submission.

In the following, the AEM job submission process is selected to illustrate the
interactions between AEM components as it is the most typical AEM functional-
ity. Figure[I] shows that there are 12 steps involved in a job submission process.

1. A user types the Xsub command to the XtreemOS console. A simplified
example is shown below:

Xsub -vo esvo —-group testing -role programmer —-f Jjob.jsdl

It means that the user who is a programmer in the testing group wants to

submit a job, with the job specification job.jsdl, to a VO called esvo.

XOSDc generates a jobID and creates a job with the jobID

XOSDc registers the job to the JobDirectory with jobID, @JobMng address

registration: success or failure

once the job has been registered, XOSDc starts scheduling the job by con-

tacting ResMat with a list of requirements

ResMatching returns a list of resource nodes to XOSDc.

7. XOSDc performs a resource selection algorithm to decide which (set of)
nodes to be used.

Nk v

a

“In XtreemFS, global has to be truly global, i.e. within a VO and across VOs.

10

8. XOSDc negotiates resources with XOSDr on the selected nodes until all the
required resources (e.g CPU, memory, queue ...) are reserved.
9. The reservation confirmation is then sent back from XOSDr to XOSDc.
10. Once all resources are reserved, XOSDc submits the job to the correspond-
ing (set of) XOSDr.
11. XOSDr forks a user process UP for the job. The job will then start its
execution on the node. This completes the job submission process.
12. The confirmation of job submission is sent back to XOSDc.

Glob.al ‘ JobDirectory ‘ ‘ ResMat ‘
services
5. Fin 6. List of
resourcegs | resource
nodes
3. Register [4. Success
jop |or error
,,,,,,,,,,,,,,,,,,,,, eeeeceooo-J--L--8 Resource, o e
: negotiation 1
XOSDc ! " | XOSDr
«——
Xireemod 2. Create job gér';\’fierr;‘t’iitri]bn 1 11. Forklexee
: ' rocess
G 7. Select nodes ! 3 P User process
10. Submitjop
i —_—>
1 Client node < i i
77777777777777777777777777777777777777 137 Job stbmission: Resource node
confirmation
NOd? 1. Xsub -vo esvo -group testing -role programmer
services

Figure 1: An Overview of Interactions within AEM

How XtreemFS Works?

XtreemFS is an object-based distributed file system. In addition to distributed
file accessing, it also offers advanced file management features, such as facilities
to enable inter-process communication for applications (Object Sharing Service),
and fault-tolerant file replication service (Replica Management Service). Like
the previous section, we will concentrate on the most typical use of XtreemFS -
accessing XtreemFS files (without the additional features).

Three components are typically involved in accessing (i.e. create, delete, read,
write) a XtreemFS file. They are:

e Metadata and Replica Catalog (MRC)

11

e Object Storage Device (OSD)
o XtreemFS client (XFS client)

To be self-contained, we have included the description of MRC, OSD and XFS
client from the WP3.4’s deliverable - D3.4.1 [1]].

The MRC is responsible for maintaining all file system metadata, extended
(user defined) metadata as well as information on replica locations. It also hosts
access control policies and makes authorisation decisions.

The task of the OSD is to provide functionality for data access in the file sys-
tem. It offers an object-based storage interface to hide the complexity associated
with underlying block-based storage mechanisms. Capabilities of the component
include read and write access, concurrency control and communication with re-
mote storage hosts.

(XtreemF'S) Clients are hosts running components of the access layer; i.e. the
file system adapter or the XtreemFS library. Applications and user processes use
the access layer to communicate with XtreemFS components. This can be done
transparently to the application through the traditional Linux file system inter-
face. XtreemOS aware applications can take advantage of the native XtreemFS
interface through a library provided by the access layer.

Figure [2] illustrates the interactions among MRC, OSD, and XFS client (aka.
XFSc). The following interactions between XtreemFS components are origi-
nated from our discussion with WP3.4. Specifically, it was first presented in an
XtreemOS internal workshop between WP3.5 (security) and XtreemFS [9]. In the
figure, we have abstracted away the internal details of XtreemFS, such as how
XtreemFS makes use of the Virtual File System (VFS) to implement a uniform
file access interface. Instead, we continue to use XFSc to represent all these in-
ternal complexity of XtreemFS. Therefore, from the perspective of WP3.5, the
following steps are involved in a typical file operation with XtreemFS:

1. A file (operation) request (e.g. create, open, delete, read, write a file), ini-
tiated by a user (application) process, comes into the XFSc via the Linux
kernel’.

1.1 The XFSc requests local credentials from the FUSE daemon by pass-
ing in the PID of the calling process
1.2 The XFSc receives UID/GIDs back

2. The XFSc asks the MRC whether the operation is permitted.
3. If the operation is allowed, the MRC returns with a set of capabilities. Oth-
erwise, the operation is deemed as denied.

>This kernel must be compiled with the Filesystems in Userspace (FUSE) kernel module and
support the Virtual File System. See the deliverable D3.4.1 [1] and D3.4.2 [7]] for more details

12

4. With the capabilities, the XFSc contacts the appropriate OSD(s). (Only one
OSD is contacted in the diagram to illustrate the scenario. But in reality, a
file may be stored in multiple OSDs.)

5. The OSD(s) transfers the file to the XFSc. If this process fails, errors will
be reported.

6. XFSc presents the file back to the user process.

Global

A MRC H 0sD, ‘ ’ 0sD,
services

2.F 3. Allowed 4. Contact| |5. Data
oepration | with capabilities OSD| |transfer
or denied or error

o

XFSc

1. File i 6. File 1
Operation Access 4 4 pip | | 1.2UID/GIDs

granted
A
User process FUSE Daemon

Node

Node
services

Figure 2: An Overview of Interactions within XtreemFS

How AEM Interacts with XtreemFS?

What has been shown in the previous section is the interactions among XtreemFS
components for processing file operations. As with any other distributed file sys-
tems (e.g. NFS), XtreemFS can also be used to support application execution.
This section presents how AEM interacts with XtreemFS during a job submission
process in an XtreemOS envionment.

Figure [3]is a figure composed from Figures [I] and 2] To our understanding,
the link between AEM and XtreemFS is via user processes®. Such processes can
be interactive processes that connect to a terminal or batch processes run without
a terminal. Also, how such a process is running (foreground or background) is
irrelevant to XtreemFS.

User processes are typically associated a user’s (real) UID, which is given by
the local operating system where the user is logged into. However, when a user
logs in to a client node (as shown on the left hand side of Figure [3)), the process’s

®Qther interactions between these two are still being studied in the project.

13

UID (shown on the right hand side of the figure) is irrelevant to the login process
on the left hand side. There comes a question how a resource node associates
the correct credential to a user who logins from a client node, when there is no
existing account created for the user on the resource node?

Before exploring the solutions (in Chapter[)), the next section shall summarise
the security challenges that arise in facilitating the internal interactions within
AEM and XtreemFS respectively, and the interactions between them.

Global services

JobDirectory ’ ResMat ‘ ' MRC ‘ ’ 0SsD, ‘ o ’ osD, ‘
Node services 5. Find 6.Listof 14. Openfile| | 15. Allowed 16. Contact | [17. Data
resources resource with capabilities 0oSsD transfer
nodes or denied or error
3. Register job 4. Success : A Y

or error

e R ---,8. Resource
inegotiation 1 18. File
! e XOSDr pened
11. Fork/exec
process

<€
<€

19. Reservation |

2. Create job ‘confirmation

7. Select nodes | | :
{0. Submitjob

i S EEE—

i Client node < :

12. Job submission’
confirmation

XtreemOS

User process
Console p

Resource node

l 1. Xsub -vo esvo -group testing -role programmer ‘ '

Figure 3: Interactions between AEM and XtreemFS in XtreemOS

2.2 Security Challenges
2.2.1 The AEM and XtreemFS Perspective

In the last specification, we have elaborated a number of security requirements
for AEM and XtreemFS. This section is intended as a replacement for these re-
quirements based on our current (already evolved) understanding of AEM and
XtreemFS, which has advanced since the last deliverable.

AEM and XtreemFS are supported by VO management (aka. VOM) services.
VOM is a logical representation of a collection of VO infrastructure services,
which include identity, attribute, membership and policy management services
for VO users and resources. Here, we focus on three key categories of security
requirements: authentication, authorisation, and accounting.

Authentication Users need to be authenticated to access the global services. In
the context of AEM, it means that only a user with valid VO credentials can access

14

JobDirectory and ResMatching services. In XtreemFS, it means that such users
need to be authenticated while accessing the MRC and OSDs.

The authentication to the local node services, including the XtreemOS con-
sole and XOSD of AEM, and the XtreemFS client, relies on the local mechanisms
available on the node from which a user’s request (e.g. job submission or file
accessing) is initiated’. Typically, this can be either the Linux account login pro-
cedure of a Linux box. Or, if the node is part of an organizational network, it can
be a network-based authentication system, such as Kerberos. Regardless how a
user gets access to a XtreemOS node, the node authentication procedure should
ensure that a user has a valid UID/GID(s) on the node.

Node services, specifically XOSD, can be accessed remotely, for example, to
support job execution. The authentication with remote node services needs to be
supported by mutual authentication, where entities on both ends should be authen-
ticated. However, in a large scale distributed environment (consisting thousands
of nodes) that XtreemOS targets, it is unrealistic to assume that users have ex-
isting accounts on remote nodes. Therefore, the challenge is to manage such a
trust relationship without compromising the scalability (the number of users and
resources in the system) of the system.

Meanwhile, as XtreemOS jobs can be interactive and batch, it is essential to
ensure that (1) users’ jobs do not interfere with each other; (2) users’ files are
protected with sufficient access control mechanisms; (3) users are attached to the
correct sessions of application execution; (4) users are given the same level of
privileges in all the sessions; and (5) once a job is complete, users’ credentials
should be safely revoked and their privileges be removed across the entire VO.
However, upon job completion, users should still be able to access to the results
(e.g. the files) with appropriate rights and should even possibly grant these rights
to other users.

Authorisation Fine-grained access control mechanisms should be in place to
ensure AEM and XtreemFS services are available to authorized users and they
can perform efficiently even in the presence of a large number (e.g. thousands) of
users and resources.

Users need to be authorised to gain access to VO resources (nodes and files).
At the VO level, this means that VO resources should be coordinately managed
by the VOM services and be shared among a large number of users. It should be
possible to allow VO owners and managers to specify how they would like to see
their resources be used. However, the ultimate control to machine resources (e.g.
CPU, memory, file space) should be with the hands of resource owners who rely
on local operating system level access control mechanisms (e.g. UID/GIDs and

"This has been referred as the Home Authentication Authority in D3.5.3.

15

the Discretionary Access Control model) for files and processes.

Accounting In the context of AEM, the security services for job resource ac-
counting should ensure that resource usage is recorded with accuracy so that
resource consumption is accountable. By accountability, we mean that the ac-
counting information should associate with individual VO users. The recorded
information should also be made available to authorized VO entities so that they
can run follow-on services (e.g. reputation or billing) after a job is finished.

2.2.2 The Application Perspective

This section looks at security challenges considered in the XtreemOS security ar-
chitecture from an applications perspective, extending those identified specifically
for AEM and XtreemFS. We define applications as a collection of interconnected
software and data for a specific purpose and set of transactions, distributed over
a network of compute nodes. We also assume that the nodes are connected by an
insecure network and that each node is a machine running XtreemOS. Secondly,
each node is trusted for local security by their organizations, users and applica-
tions, meaning:

e any node is computationally capable of performing sufficiently strong cryp-
tographic procedures for authentication, privilege assignment, authoriza-
tion, encryption/decryption of data and maintaining integrity of transaction
logs;

¢ if only local administrators and users of an organization have accessed the
node directly, then all users and applications are expected to be trusted and
legitimately using resources; and

e the node has a reliable mechanism that ensures that users can only access
and processes data to which they have locally specified rights, including
ownership and membership in an organization.

The above are not assumed when nodes are accessed over a non-trusted net-
work, moreover across organizational boundaries, but must be enforced by the ap-
propriate security mechanisms. Even if the nodes are running in a single, physical
organizational domain, for example a data-center, the cross-organization network
is treated as non-trusted, as the executables and data objects hosted on each node
(and even the same node) could be from different users and even organizations
(such as in the case of a data center). Furthermore, future Grid environments will
need to offer additional services that expose some data for monitoring, billing and
accounting of the resources allocated to them. The security architecture needs to

16

provide the assurance that privileged users or administrators can only view the
collective resource usage of the set of nodes currently and potentially available
to host their application elements and data objects. These problems will be in-
creasingly significant for business and scientific applications in a Grid execution
environment. We identify application-related security challenges as dealing with
a differing application security requirements, complex user management and se-
curing the local and distributed runtime of applications.

Securing different Applications of different Organizations The XtreemOS
security architecture is designed to secure applications with different types of
needs, ranging from scientific to business. The goal from a scientific perspec-
tive is to aggregate compute power for simulations, while from a business ap-
plication perspective the goal is to make data and applications more available as
the user base (employees, customers or partners) is more distributed and increas-
ing in size. The aggregation of compute power means that simulation data will
be split in parts and distributed across several nodes possibly in several different
organizations. Similarly, in order for a business organization to maintain better
response times for its employees, customers and partners, it may contract third-
parties to host different data processing services and applications. These parties
are then liable for ensuring the security properties required by the application and
data owners. Data should only be read and written by legitimate parties and be
available to relevant, external parties.

Within a Grid execution environment, trust and networking relationships will
be formed and destroyed dynamically and continuously over time. Relationships
will also be created between the members of these physical organizations. The se-
curity challenge here for XtreemOS is to provide distributed OS components and
mechanisms to ensure that organizational relationships, represented by communi-
cating processes or machines, are correctly represented and maintained. That is,
data exchanged during the creation and maintenance of these relationships should
only be accessed, modified and read by the participants involved. Moreover, the
computational resources used to support and maintain an organization’s relation-
ships with different partners should not impact on the maintenance of others.

Each organization will also have different users, who may act on behalf of the
organization. XtreemOS needs to provide security components and mechanisms
that can assert and validate the affiliations of different users, such that policies
based on organizational affiliation can be enforced. For example, employees of
an institute can only access information stored on a remote machine (e.g. OSD)
if they have the requisite credentials to prove their employee status. In addition,
users may also be registered as members of VOs, such that there also needs to be
mechanisms to prove these cross-organization affiliations.

17

Each organization will also use and provide individual machines, storage facil-
ities and, in some cases, personnel in order to support collaboration and resource
sharing. In order to avoid rogue nodes being introduced into a shared utility or net-
work of compute resources, XtreemOS will have to provide security mechanisms
that can verify that a node has been offered by an organization for sharing as well
as to assure users that they are accessing valid target resources. In a network of
possibly 10s of 1000s of nodes, this validation of organizational authenticity will
still have to occur quickly but assuredly. Even in cases where complex, virtual
overlays or a distributed file system (XtreemFS) are used, organizations will still
want to avoid their sensitive data being stored on physical machines of competi-
tors. Even if a malicious competitor cannot read the data, but is aware that their
resource is being used for a transaction by a competitor, they can easily interfere
with or corrupt the transaction and/or data.

In addition to machines, the software owned and licensed by organizations
will also be considered to be valued resources in the network of services enabled
by XtreemOS. Organizations will want to have mechanisms for proving the own-
ership or origin of application software or jobs running on distributed resources.
From an organizational perspective, this is critical for performing effective ac-
counting. XtreemOS must therefore provide adequate security mechanisms that
enable this form of binding applications to their respective owning organizations,
such that the accounting procedures can be easily implemented and executed.

Secure user management for applications User management is a second chal-
lenge for the XtreemOS security architecture. For AEM, it is important that re-
mote users can be authenticated as well as tracked with respect to their resource
usage. For XtreemFS, there are several challenges for representing and authenti-
cating globally distributed users sharing a distributed filesystem resource. Unlike
AEM, the filesystem is considered to be part of the so-called F-Layer, for the most
part, such that it needs to consider the constraints of this layer. These include the
constraint on valid user names and user-ids (UIDs) in Unix-based operating sys-
tems. Users also need to be globally and uniquely distinguishable, either at the
application or OS layer. The security mechanisms of XtreemOS will have the
responsibility of supporting this uniqueness at both layers, as applications will
depend on this functionality being in place.

Users of resources will only be able to access them after being able to prove
membership or affiliation with trusted organizations contributing to a set of dis-
tributed compute resources. Users will login to different client machines that will
inevitably be responsible for maintaining some of their local data and credentials.
The management of a large set of users is hence a challenge. A reason for this is
scalability and availability of an identity management infrastructure and also the

18

management of user identities and rights in systems among different user man-
agement concepts. E.g. Unix uses the notion of users and groups to describe right
and thus access control to files. This was appropriate for the context it was made
for. However it cannot cope easily with today’s needs. More recent derivatives
provide the concept of roles and flat access control lists as the Windows operating
system does.

However most legacy applications rely on the user/group notion to achieve
security by the concept of delegation of duties. Attackers have multiple barriers
to break in order to reach their goal. This also helps to prevent the propagation of
errors. Even if application security does not rely on the user concept solely it is

used as an additional barrier.

Regarding business applications, this concept is used to execute different parts
of the application, e.g. the database in the context of a different user. The fol-
lowing figure shows eight default application users of a standard SAP business
application.

sdb:x:1000:1001:Database Software Owner:/home/sdb:/bin/bash
lcaadm:x:1001:1001:0wner of Database..:/home/lcaadm:/bin/csh
pvdadm:x:1002:1002:System Administrator:/home/pvdadm:/bin/csh
db2pv4:x:1003:1003:Database Administrator:/db2/db2pv4:/bin/csh
apppv4:x:1004:1005:Database Connect User:/home/sappvé4:/bin/csh
apppv4db:x:1005:1005:Java Database..:/home/sappviddb:/bin/csh
appadm:x:1006:1002:System Administrator:/home/sapadm:/bin/csh
trxadm:x:1007:1002:System Administrator:/home/trxadm:/bin/bash

The set of users are created during the interactive installation procedure. It has
to be pointed out here, that most Unixes do not support fine grained authorization
in order to enable a non-fully-privileged user but root to perform the management
setup of additional users. During that phase, consider that some 200.000 files need
to be put into place. A set of characteristic system parameters have to be set and
very often databases are connected directly to raw devices. Most of these actions
also require the interaction of the privileged root user. This also has implications
for the success of the overall application runtime.

Securing the Application runtime Emerging Grid applications for business
and science are not simple software bundles, but they are typically composed of
various components and stand-alone utilities for user interface rendering (i.e. pre-
sentation/web servers), execution of workflows and solution logic (i.e. application
servers) and maintaining queries and persistence of the critical data that continues
to grow with every transaction.

Each server would then have a different configuration based on the types of
data, processes and connections they need to handle. Configurations of the op-
erating system may be complex, such that doing them incorrectly may lead to

19

operational conflicts, inconsistencies and undesirable application downtime. An-
other consideration is if there is a need to move applications from one node to
another as a result of failure, predicted load increases, test-to-live transition, new
hardware or changing partnerships. Being able to migrate operating system in-
stances across distinct physical nodes is a useful tool for administrators of data
centers, clusters and even distributed Grid nodes: It allows a clean separation be-
tween hardware and software, and facilitates fault management, load balancing,
and low-level system maintenance

Application management is a process that starts from installation of an appli-
cation and proceeds to its execution, monitoring, adaptation and eventual termi-
nation. Adaptation may include resource configuration setting, checkpointing and
migration. The security challenges for each of these steps are discussed below:

Application installers require privileged root access to target hosts in order to
customize and tune the machine for interoperability and efficient support of the
applications and data management solutions being installed. They need to query,
set, disable and enable certain variables in the registry, according to the setting
stored for the operating system in the system library (syslib). These include access
to the following:

e accounts: creation of users and groups, and manipulating access control
lists

e local filesystem: creating installation files and directories, copying and delet-
ing them as well as working with mount points and shares.

e network: retrieving the IP address of the network card, registering services
(e.g.in the /etc/services file) and altering the IP tables in the /etc/hosts file.

e process: manipulating context of current process of external programs from
which information is required

e system: retrieval of hardware information including RAM, storage, num
processors, processor speed, storage type, BIOS

e timer: use of time functions for logging, timing and scheduling installation
events

Furthermore, in order to perform these actions, the installer needs to assume a
standard interface to the OS for performing these actions. In the case of a UNIX-
like OS, this interface would need to be POSIX compliant. POSIX-compliance
also places some constraints on the way in which users, groups and access con-
trols are organized. Granting privileged root access to installers of enterprise so-
lutions on various machines must be done within introducing security holes in the

20

systems. However, the intention of using a Grid-like infrastructure is to have this
done dynamically, for many different customers, relatively fast and over the wire,
such that configuring authorizations and performing installation with too much
overhead and manual administrator intervention is undesirable. Furthermore, in-
stallation is not a one-off batch job but includes ongoing monitoring and updates
of the installation. Solutions for user management need to be scalable, usable
and persistent without exposing the target host and its local network to significant
risks. Even if the installer were to be malicious, while having privileged access to
the host, the impact and propagation of its attacks need to be contained.

21

3 Entities for Secure VO Management

This chapter describes a set of entities involved in an XtreemOS system environ-
ment and how the identity, attributes, and policies of these entities are managed by
the system. In the next chapter, we shall describe how they are used by the secu-
rity services to provide authenticated and secure interactions between entities and
a cascading and scalable access control framework to create a secure application
execution environment for AEM and enable a secure file accessing infrastructure
for XtreemFS.

3.1 Global vs. OS Entities

In an XtreemOS Grid environment, there are two types of entities: global entities
and OS entities. Global entities include VOs, users and (resource) nodes in a VO.
They persist in a global namespace and are identified by a public key certificate.

In the operating system, there are two types of OS level entities: OS users and
OS resources (files and processes). They exist in a OS (local) namespace. In the
OS, users are identified by a U(ser)ID, files are identified by an inode number?®;
and processes are identified by a P(rocess)ID.

Conventional operating systems do not provide native support for the global
entities. Thus, the key challenge is to enable the operating system to recognize
the global entities by providing a mapping between these two, in particular, the
mapping between global users and OS users.

3.2 Actorsina VO

In an XtreemOS VO, there are a number of actors involved in a VO’s lifecycle:

e VO creator: A VO creator, a person or a service, is the one who creates a
VO. It has the following responsibilities:

— specifying the followings, called a VO specification, to set up a VO
* VO attributes (e.g. a list of group names, role names, subgroup
names, capabilities) - compulsory
x (the private key and public key certificate of) the VO manager -
compulsory
* a set of VO policies - optional
* a set of VO members -optional

— managing the lifecycle of the VO

8inode is a data structure which contains information about a file in a Linux/Unix operating
system.

22

e VO manager: A VO manager is an entity (either a person or an organiza-
tion) liable for the authenticity of identity and attributes (stored in a public
key certificate) of global entities. A VO manager is identified by its pub-
lic key certificate and its private key is used to sign certificates for global
entities. A VO manager can issue user certificates for multiple VOs.

¢ VO administrator (a.k.a. VO admin): A VO admin, operating on behalf
of the VO manager, is an abstraction of a set of software programs/services
responsible for administrative tasks in a VO, including

— running XtreemOS security and VO related services, as described in
Section .1} which entails
* installing the VO manager’s private and public keys to the correct
location
x generating the structure of VO databases
* signing user certificates using the VO manager’s private key
— managing a VO, which entails
x generating and managing attributes for users and resources of the
VO, upon registration
* generating a certificate for users
x specifying policies for the VO
x removing users and resources from the VO

e VO member: VO members are users (consuming resources) and resources
(providing resources) in the VO. VO members can have identifiers and at-
tributes allocated by the VO admin.

e Resource Administrator (a.k.a. resource admin): A resource admin has
the final control over the resource provision on its node and and its trust
relationship with VOs. Specifically, a resource admin is responsible for

— installing the node’s private and public keys to the correct location

— configuring the node appropriately (such as admitting the VO man-
ager’s public key certificate into its trust anchor), once being admitted
into a VO

— running node services

— specifying policies for the resource

— ensuring the authenticity of resource usage information it supplies

— registering the resource to a VO

These actors are logical groupings by their responsibilities. In practice, one,
be it a person or a software service, can take up the responsibilities of one or
more actors. For example, a person can simultaneously become a VO creator, a
VO member, a VO administrator, and a VO manager. In the very extreme case, a

23

person can have the responsibilities of all these roles. The person (or a service)
who creates a VO can become a VO member, a VO administrator, a VO manager,
and a resource administrator, given that he also provides resources to the VO.

3.3 Identity, Attributes, and Membership

This section specifically describes the identity, attributes, VO membership associ-
ations, and policies that global entities can have.

3.3.1 Identity of Global Entities

In XtreemOS, each global entity is identified by a X.509 v3 public key certifi-
cate [10] which certifies the binding between its identity and its public key. The
structure of a X.509 v3 public key certificate is shown as follows:

e version (v3)
e serial number
e signature algorithm

— identifier
— parameters

e issuer’s DN
o validity period

— not before date/time
— not after date/time

e subject’s DN
e subject’s public key

— algorithm identifier
— parameters
— public key value

issuer unique identifier (optional)
subject unique identifier (optional)
extensions

certificate signature (of the entire certificate, including the extensions)

The subject’s Distinguish Name (DN) of a global entity’s public key certificate
can uniquely identify the subject in a PKI world, thus becoming the identity of the
subject. Once the DN is assigned to a global entity, the association should remain
the same throughout its lifetime.

24

This unique association between a global entity and the DN field in its cer-
tificate applies to all global entities. For instance, when the identity of a VO
is generated, it should be maintained throughout the VO lifecylce. Similarly, the
DN of a user’s or a node’s certificate should remain the same regardless how many
VOs they register with and how many different attributes they may have in each
VO.

3.3.2 Attributes of Global Entities

All global entities can have attributes associated with them. An attribute is a
property that an entity has. In XtreemOS, attributes are stored as extensions in a
X.509 certificate, called XtreemOS extensions.

Each global entity can have a list of attributes associated with them. Except
resources, all global entities have a global identifier - a special type of attribute,
associated with them.

Although the DN field in a certificate is a useful source of information about
an entity, it is too long to be used as a unique identifier in the operating system. In
a X.509 certificate, the DN field consists of the following information:

e Country

Locality (or city)

State (or province)

Organization

Organization Unit

Common Name (including email)

In the traditional Linux, the POSIX compliant identifier (local Linux names)
is only 8-byte long. In the recent versions of Linux, the length of Linux identifiers
(names) has been extended to 32-byte.

Thus, instead of using the full DN field, the XtreemOS mapping process (see
[2] for details) uses a 32-byte identifier, called global identifier to identify users
and map them into operating system level users. Table[2] summarizes the attributes
for all global entities. Users can have the following attributes:

Global Vo IDentifier (GVID): a user’s VO association

Global User IDentifier (GUID): a user’s Global User IDentifier
Global Group IDentifier (GGID): a user’s global group association
Group: a user’s group association within a VO

Subgroup: a user’s subgroup association within a group

Role: a user’s role in a group

Capability: a list of capabilities that a user has over certain objects

25

The exact list of attributes that a user is allowed to have depends on the VO model.
It is possible to introduce additional attributes or to just use a selection of them
from the above list.

A user can simultaneously hold multiple attributes. For example, when a user
registers with multiple VOs, he will be associated with multiple GVIDs. Simi-
larly, a user can register with multiple global groups, and associate with multiple
GGIDs. Within a VO, a user can concurrently join different groups and process
multiple roles.

There is no global identifier defined for nodes as there is no need to map nodes’
identifier to a operating system (local) namespace.

3.3.3 Allocation of Identifiers and Attributes

In XtreemOS, there are three scopes (or contexts) where the identifiers and at-
tributes of global entities can be used. They are:

e XtreemFS scope: only meaningful within the scope of XtreemFS
e node scope: only meaningful within the resource’s operating system
e VO scope: only meaningful within the VO

Note that these scopes are only valid within the defined context. The identifiers
and attributes become meaningless when the context is changed. For example,
even if two VOs, VO; and V O,, both have the concept of groups, the groups in
V'O, are invalid in V' O,, and vice versa. Similarly, if a concept is only valid within
the XtreemFS scope, it will not be meaningful outside XtreemFS.

To understand how the identifiers and attributes are allocated in a VO, it is
essential to understand who manages them and the scope within which they are
used. This is summarized in Table[Il

The GVID for a VO is generated by the VO creator upon the creation of the
VO. A GUID is a user’s global identifier, allocated by the VO admin, when a user
is registered with a VO. Within one VO, it is possible that a user has multiple
GUIDs. For example, when a user is associated with multiple groups, subgroups,
and roles within one VO, each tuple

<group, subgroup, role>

uniquely corresponds to a GUID. With different VOs, a user is always associ-
ated with different GUIDs. A GGID can be created by a user who has sufficient
privileges to perform such operations.

A user and a node can be associated with more than one VO. When more than
one GVIDs are associated with a user or a node, the first of such is the primary
GVID and the subsequent ones are the secondary GVIDs. Similarly, a user can

26

Attribute Created/managed by(when) Used in scope

GVID VO creator (when a VO is created) XtreemFS+node

GUID VO admin (when a user registers) XtreemFS+node

GGID VO user? (when a privileged user re- | XtreemFS
quests)

Group(s) in a VO* VO creator and admin node+VO

Subgroup(s) in a group | VO creator and admin node+VO

within a VO*

Role in a group of a | VO creator and admin node+VO

VO*

Capability in a VO* VO creator and admin node+VO

Table 1: Who Creates the Attributes and the Usage Scope of the Attributes. (*:
the availability of these attributes depends on the VO model. ?: decision pending)

Global Entities Attributes

VO GVID

User GUID, GVID(s), GGID(s), Role, Group, Sub-
group, Capability

(Resource) Node GVID(s)

Table 2: Identifier and Attributes for Global Entities

associate with multiple GGIDs. The first GGID is the primiary GGID, and the
subsequent ones will be treated as secondary GGIDs.
Upon registering with a VO, a user specifies the following information:

e attribute values (as shown in Table

e user policies regarding their preferences of job submission (where to or not
to submit their jobs) and file location (where to or not to store their files).
Such policies will become part of the VO policies (see Section [3.4)).

The VO admin then generates GUID(s) and register the user with other attributes,
as appropriate.

Global Uniqueness The uniqueness of GVIDs, GUIDs and GGIDs should be
guaranteed globally. The global uniqueness of GVIDs is guaranteed by the VO
creator via probabilistic means. A GUID is a concatenation of a GVID and a VO-
wide unique user ID (managed by the VO admin). Hence, the global uniqueness of
GUIDs depends on that of GVIDs. GGIDs should also be globally unique, which

27

can be guaranteed by the VO user via probabilistic means, like generating the
GVIDs. However, as GGIDs are independent of VOs, it is a bit more complicated
to ensure their global uniqueness.

Open Issues There are other alternatives (e.g. managed by a VO admin or man-
aged by XtreemFS) regarding who can create GGIDs. Like GVIDs, GGIDs need
to be globally unique. However, unlike GVIDs, GGIDs do not relate to VOs. As
its name suggests, it is global group names, so, it is above all the VOs. Hence,
it may not be appropriate to associate them with GVIDs to guarantee its global
uniqueness. Thus, we may need to explore the alternatives.

Because GGIDs are only used by XtreemFS, one alternative is to let XtreemFS
to create it and feed it back to VOs. This is an open issue that will be resolved in
the next edition of this specification.

3.3.4 VO Membership of Users and Resource Nodes

Users and nodes can register with one or more VO(s), thus, having VO member-
ship association(s).

Being a VO member has different implications for users and nodes. The fact
that a user is a member in a VO implies that the user has been allocated attributes
appropriately in the VO databases. Being a member of a VO, to a node, means that
the resource admin of the node, in addition to its normal responsibilities, needs to
configure the local policies and the local trust anchor appropriately for this VO.

3.3.5 Certificates for Global Entities

It should be noted that the attributes for all global entities are stored in the VO
databases. However, not all of them go into the certificates. The certificates for a
VO manager and a node are standard (i.e. without XtreemOS specific extensions)
X.509 certificate. The certificates for a VO and a user are X.509 certificates with
XtreemOS specific extensions. Hence, to avoid ambiguity, we shall now describe
the certificate structure for a VO manager, a node, a VO, and a user.

The Structure of a VO manager’s Certificate The structure of a public key
certificate for a VO manager is described as follows:

e version (v3)
e serial number
e signature algorithm

— identifier
— parameters

28

e the issuer’s DN
e validity period

— not before date/time
— not after date/time

e the VO manager’s DN
e the VO manager’s public key

— algorithm identifier
— parameters
— public key value

e issuer unique identifier (optional)
e subject unique identifier (optional)
e certificate signature signed by a known CA

The Structure of a Node Certificate The structure of a public key certificate
for a node is described as follows:

e version (v3)
e serial number
e signature algorithm

— identifier
— parameters

e the issuer’s DN
e validity period

— not before date/time
— not after date/time

e the node’s DN
e the node’s public key

— algorithm identifier
— parameters
— public key value

e issuer unique identifier (optional)
e subject unique identifier (optional)
e certificate signature signed by a known CA

29

The Structure of a VO Certificate
a VO is described as follows:

version (v3)
serial number
signature algorithm

— identifier

— parameters

e the issuer’s DN

validity period
— not before date/time
— not after date/time
the VO’s DN

e the VO’s public key

— algorithm identifier
— parameters

— public key value

The structure of a public key certificate for

e issuer unique identifier (optional)
subject unique identifier (optional)
extensions (XtreemOS specific extensions)

- GVID

certificate signature signed by a VO manager (of the entire certificate, in-

cluding the extensions)

The Structure of a User’ Certificate Given our VO model, a user’s certificate
has the following features:

e regardless how many GUIDs a user has, the DN field in the user’s certificate

should remain the same;

e regardless what VO attributes are stored in the XtreemOS extensions in the
certificate, the public key of the user and the public key of the VO manager

should remain the same; and

e the VO manager’s signature varies depending on the information going into

the extensions.

The structure of a public key certificate for a user is described as follows:

30

e version (v3)
e serial number
e signature algorithm
— identifier
— parameters
e the VO manager’s DN
e validity period
— not before date/time
— not after date/time

e the user’s DN
e the user’s public key

— algorithm identifier
— parameters
— public key value

e issuer unique identifier (optional)
e subject unique identifier (optional)
e extensions (XtreemOS specific extensions)

- GUID
GVID(s)
GGID(s)
- Role

— Group
Subgroup
— Capability

e certificate signature signed by a VO manager (of the entire certificate, in-
cluding the extensions)

An Example of VO Attributes in a User Certificate

Meaning of the VO Attributes

esvo: escience vo

phvo: physics vo

chemvo: chemistry vo
esvou001: escience vo user 001
esvog(001: escience vo group 001

31

e esvog(002: escience vo group 002
e esvog003: escience vo group 003

Samples of VO Attribute Values The following is an list of "mocked" VO
attributes that can be embedded in a user’s certificate as XtreemOS specific ex-
tensions. The string before the semi-column is the human-readable VO attribute
name and the string after the semi-column is an sample attribute value.

GUID: esvou001

GlobalPrimary VOName: esvo

GlobalPrimaryGroupName: esvog001

A list of GlobalSecondaryGroupNames : esvog002, esvog003
A list of GlobalSecondaryVONames: phvo, chemvo

Group: Testing

Role: Programmer

Subgroup: FacilityTesting

Capability: empty

A S ARl i

3.4 Policies

Policy is a widely used term in the distributed systems and networking community.
Policies are used to describe how an organization or an individual wants to manage
their properties (machines, personal data or how their data is being processed).

A policy is, therefore, defined as a statement describing what actions a subject
(or a group of subjects sharing the same characteristics) is allowed to perform
on an object (or a group of objects sharing the same characteristics) with certain
constrains (e.g. time, location, limit).

Types of Policies In XtreemOS, there are three types of policies: user policies,
VO policies, and node policies, one for each global entity.

Individually, users can define user policies about their preferences on how
their jobs/files are being treated by VOs. Examples are "I don’t want my jobs to
be run on the machines belonging to Organization A" or "I don’t want my files to
be stored on the storage belonging to Organization A".

VO polices, defined by a VO admin, have a VO-wide impact on how resources
(e.g. nodes and file storage) being utilized by jobs and files, for example, during
the process of resource selection and file location/relocation. An example of such
is: "Programmers from organization A can only use resources from organization
B between 9am and 5pm."

32

Node polices only have a local (operating system) impact on how the local
resources (e.g. CPUs, memory, local file quota) being used by jobs.

Relationship between Policies There is no relationship between three types of
policies. They can be specified independently by different global entities and
be checked at different levels of job execution and file accessing. Users supply
policies to VO administrators so that their policies can be taken into account while
VO resources are being allocated for their jobs. During a job submission, their
policies will be checked and enforced alongside with the VO policies. Once the
VO level policy check is passed, jobs are subjected to node level policies. Hence,
in order to get access to a node, a job needs to satisfy the user’s, the VO’s and the
node’s policies. If a job fails any of these, it will not be executed on the node.

33

4 XtreemOS Security Architecture

In the previous chapter, we have presented the key concepts in an XtreemOS VO
and discussed how to manage the global entities with the VO model. Based on
this model, the present chapter describes a security architecture for supporting
application execution and data management in XtreemOS.

This chapter consists of two parts. The first part presents the detailed design
of the security services: Credential Distribution Authority (CDA), VO Policy
Service (VOPS), and NQOde-level Policy Service (NOPS). CDA is a service re-
sponsible for delivering certified VO attributes to users in the form of a X.509
public key certificate, called a XOS-Cert. VOPS is a VO level policy manage-
ment service to allow a VO admin and users to enforce their policies. NOPS is a
node level policy management service to enable resource admins to enforce local
policies on their machine.

The second part of this chapter presents an overall security architecture that
has been designed to provide a secure operational environment for AEM and
XtreemFS. We shall describe in detail how the security services are used to ad-
dress the security challenges outlined in Section [2.2.1] Specifically, the presenta-
tion details how they are used to enable the authentication among global entities,
and, that between global entities and AEM/XtreemFS services, and to facilitate
coordinated access control in a VO.

4.1 Security Services

In the previous specification, five security services, Identity Service (IDS), At-
tribute Service (AttrS), VO Policy Service (VOPS), VO membership Service (X-
VOMS), and Credential Distribution Service (CDA) are described to support se-
cure VO management. However, not all these services expose interface to other
non-security XtreemOS services during application runtime. For example, three
security services, including IDS, AttrS, and X-VOMS services sit behind CDA
to assist CDA to issue credentials to VO users. This section shall refine these
security services

In this section, we shall focus on the detailed description of the global security
services, which are defined as security services exposing external interface to non-
security services in the XtreemOS system. They are:

e Credential Distribution Authority (CDA)
e VO Policy Service (VOPS)
e NOde Policy Service (NOPS)

The relationship between these services are shown Figure[d CDA and VOPS
offer interfaces to external (non-VOM) components, such as AEM and XtreemFS.

34

VO Management . tegend
Internal interface
IDS AttrS X-VOMS - External interace
T T T :] Service
M C E)A M - VOPS D Daemon service
T T Logical grouping of services
X ﬁ N i — Direct interaction between services
’ XtreemOS Grid-Level System Services: AEM and XtreemFS > ! o
I Indirect one-way communication
T between services

Figure 4: Relationship between Security Services

IDS, AttrS, and X-VOMS communicate with CDA through internal interfaces.
There is an indirect one-way interaction from CDA to VOPS through a persistent
credential store which contains a list of currently valid VO credentials for each
active VO user. Thus, as well as enforcing VO policies for resource selection,
VOPS can also enforce VO-wide resource usage control based on the information
from the store.

4.1.1 Credential Distribution Authority

Motivations - Why dynamic distribution of credentials? Credential Distri-
bution Authority (CDA) provides dynamic (on-the-fly) distribution of credentials
(identity and attributes) to users so that

1. users do not need to rely on PKI to access XtreemOS services. Instead,
users and applications, who do not have an established PKI infrastructure,
can use their existing security technologies to access XtreemOS. Therefore,
the difficulty of managing such an infrastructure is hidden away from end
users and applications.

2. as credentials are dynamically distributed, our system can better cope with
dynamism in a Grid environment, such as on-the-fly creation of new VOs,
introduction and removal of users and resources from a VO.

Point (1) is appealing as existing applications need not to re-factor their code
to make use of XtreemOS services. All they need to do is to configure their
applications to access XtreemOS as the existing security infrastructure can be
reused. From end user perspective, this is also useful as they do not need to be
aware of new type of authentication methods and techniques. From security point

35

of view, the introduction of CDA can enhance the transparency of using Grids and
reduce the complexity of integrating existing applications with Grids.

Point (2) is important for commercial applications that demand highly dy-
namic collaborations due to the nature of business interactions which are inher-
ently dynamic. In contrast to existing static credential (mostly identity) distribu-
tion approach, our approach allows XtreemOS better flexibility and dynamism. It
is flexible as this approach removes the need to force users to use certificates to
access our system. As detailed in the first specification, a range of authentication
methods to authenticate to XtreemOS will be supported. Most likely, users can
rely on their existing security infrastructure to access our services without needing
to master another type of authentication method. The philosophy is that without
demanding additional security knowledge and expertise, it will be easier to allow
existing users and computer systems to make use of Grid capabilities, at least from
a security perspective.

Functional Description In XtreemOS, user credentials are embedded in a X.509
v.3 public key certificate. That is, a user’s identity is the subject’s DN field and
attributes are extensions of a certificate. As such certificates contain XtreemOS
specific extensions (such as GVID, GUID, GGID, see Section @]), we call them
XOS-Cert. XOS-Cred is the pair of an XOS-Cert with the corresponding private
key.

CDA can issue credentials to all three Global entities: VOs, users, resources.
When CDA issues credentials to VO resources, it is also referred as Resource
Certification Authority (RCA). As its critical nature, CDA has to be boostrapped
from a trusted source and runs in a trusted environment.

CDA uses the private key of the VO manager to sign users’ and resources’
certificate. When more than one GVIDs are included in the extension fields of a
certificate, the private key of the first VO manager, if there are more than one VO
managers involved, will be used to sign the certificate.

As mentioned at the beginning, CDA relies on three other security services,
IDS, AttrS, and X-VOMS, to issue credentials. In the remaining of this section,
we shall take a closer look at them.

Identity Service Identity service serves two purposes:

e generate and allocate global unique IDs: GVIDs, GUIDs, and GGIDs.

e provide an interface allowing integration of third-party identity infrastruc-
ture (e.g. Shibboleth) into XtreemOS

There are many ways to ensure the global uniqueness of an identity, be it
numeric or alphanumeric. For some of these mechanisms, please, for example,

36

see [13]. Some of candidate approaches rely on the availability of a global (across
all CDAs) online directory service to check the uniqueness of IDs. We tend to
favor on those approaches who can provide uniqueness assurance without online
interactions (as they scale better), although this may mean some compromise on
the quality of the IDs in the sense that IDs generated could have a small probability
to clash.

Validity of an identity In contrast to the short-liveness of the users’ certifi-
cates, VO and resource certificates should have longer validity period.

Usage of identity In XtreemOS, IDs are used in two different ways:

e The identity of an entity is checked by authentication protocols to verify the
authenticity of an entity.

e The global IDs are used by nodes to map into local UID/GIDs to provide
user account level isolation.

Attribute Service The purpose of attribute service is to provide global entities
with attributes. Section @] has presented attributes for VO users. In XtreemOS,
they are used:

e to assist identity service to generate GGIDs as for different combinations of
attributes,

e to allow nodes to perform access control to their resources based on non-
global attributes; and

e to allow nodes to generate local OS level GIDs.

Membership Service XtreemOS Virtual Organization Membership Service (X-
VOMS) provides VO membership checking service that would allows systems to
validate the VO membership of a user who initiates a Grid request from a Linux
terminal. X-VOMS connects to a database which stores VO information, such as
identity and attributes, about a user.

Interfaces X-VOMS has two interfaces: management interface and online check-
ing interface. The management interface that allows VO administrator to add,
remove, and modify users and their information. The online checking interface
acts as a backend of the CDA service for checking users’ VO membership, global
IDs, and attributes. This procedure is to ensure the credentials issued by CDA is
authentic and valid in the up-to-date membership database.

37

4.1.2 VO Policy Service

VO Policy Service (VOPS) mainly provides policy decision points to VO admin-
istrator so that VO level access control can not only be enforced at nodes but also
at VO level. The aims is to ensure coordinated resource usage, including sharing
and isolation.

One benefit of integrating policy decisions at the VO level is to accommodate
the flexibility of incorporating VO policies in job scheduling and resource negoti-
ation processes. Additional functionalities of VOPS are policy administration and
information points.

Having multiple policy decision points in various stage of job execution can
be complex. For example, when VO policies and node policies are processed
together, it is possible to have policy conflicts. Therefore, in order to minimize
the impact of such complexity, VOPS is designed to be independent from node
policy decision points.

Together with node level policy decision points, VOPS forms a hierarchical
access control framework that can be tuned to achieve various degrees of control
to resource usage within a VO. It is being used by AEM to facilitate VO policy
governed resource selection and job scheduling. It can also be used together with
the accounting service to enforce constrains (e.g. quota and usage pattern) to
certain types of resource consumption in a real-time manner.

The D3.5.3 defined following AEM use cases: Job Creation, Resource Match-
ing, Resource Negotiation, and Job Execution which are described to detail in
the section 5.4 of the mentioned document. There is no need to redefine all the
AEM related use cases because there have not been any changes to the AEM ser-
vices, which are managing the described processes. However, we shall focus on
the AEM and VOPS interactions because, currently, VOPS only serves AEM job
execution management.

The main process handled by the Application execution manager is job ex-
ecution, which includes job submission, resource discovery and allocation, and
control over the execution. In the following, we describe two major AEM pro-
cesses: resource discovery and allocation, as they both relate to the VOPS.

Resource discovery This process consists of finding a set of suitable resources,
which satisfy the resource requirements described for the job. At first a potential
list is retrieved, which is later on refined based on actual resource state (dynamic
properties). This second step has to include the check with the VOPS in order
to guaranty, that all the selected resources are allowed to run a job for the user
according to the VO policies. Hence, the functionality of VOPS is to act as PDP to
enforce VO policies on resource usage based on the user and resource properties.

38

Resource allocation After the job has a list of candidate resources, which sat-
isfy the job requirements and are compliant with VO policy, the job manager con-
tact the local resource allocation manager on a remote node in order to negotiate
job execution. In the negotiation process, the allocation manager should check
that the request is valid (whether it is signed by the VOPS), and that it is not in
conflict with the local resource policies. The VOPS is not directly involved in this
step but the allocation service can check the VOPS signature in order to confirm
the legitimacy of the requests.

4.1.3 Node-level Policy Service
VO-level Policies versus Node-level Policies

VO-level policies specify whether grid users are able to access one or multiple
node(s) that participate in a VO. Resource owners (a.k.a. domain administrators)
have their final control of external VO access to local nodes by specifying Node-
Level Policies (NLPs). NLPs may comprise access control policies (to specify
what kind of access permissions that VO users could have upon a set of resources)
and resource usage policies (to specify what kind of constraints or throttling
policies under which resources are consumed by VO users).

For a VO user, the successful launching of a job on a resource node has to pass
the checking of both VO-level policies (managed by VO admins) and node-level
policies (managed by local node admins or domain admins). Generally the least
privilege principle should be applied when there are any conflicts between polices
at these two levels.

Application-independent versus Application-specific

NLPs can be application-independent or application-specific. Application-independent
policies are those regulations on the usage of Operating System(OS) objects such
as CPU, memory, disks, files, and so on. These policies could be enforced with the
direct support from local OS. Application specific policies are those regulations
on the usage of objects managed by specific application services such as web ser-
vices, database services and batch job management services. Application-specific
policies are expressed in different manners (e.g. in different formats of configu-
ration files). For example, a MySQL database server could exert a size limitation
of 8Gb for each database created by a VO user, and a local batch job manager
may restrict that a given VO user can only submit jobs on a specific queue with
some predefined priorities. The enforcement of application-specific policies is
performed by local application services .

39

Functionalities

Besides the coordination with high-level security services like VOPS, basic func-
tionalities of node-level policy management are identified as follows:

Build-in support of policy enforcement on OS objects To facilitate the secure
and efficient sharing of nodes among VO users, it is necessary to provide build-
in support of policy enforcement of application-independent OS-aware objects.
These objects could be categorized into: CPU, memory, files (including devices)
and network.

Access control policies Access control policies are mainly related to files
(here we only consider local files, while the access control of global files is han-
dled by XtreemFS). Besides file permission bits, it is nature to use Access Control
Lists (ACLs) to specify more fine-grained file access policies. Sockets could also
be considered as files. For example, a VO user could be granted with read, write
or listen permissions on a specific range of ports.

To perform the enforcement of access control policies on the node, VO users
must be mapped onto local Linux user accounts at first. During the mapping pro-
cess, access control policies are populated into local security configurations such
as file permission bits and ACLs, which is bundled with the mapped accounts (and
possible local groups) if necessary. For advanced fine-grained access control on
OS objects, security enhancement mechanisms like SELinux could be leveraged.

The general syntax to describe an access control rule is as follows:

<subject> <object> <permissions>

where subject is a pattern for matching VO users (or groups, subgroups,
roles), object is a pattern for matching OS objects (e.g. files, directories) and
permissions are a composition of access rights (read / write / execute ...) that
subject could have over the object .

Resource usage policies Resource usage policies are mainly related to quo-
tas, such as CPU time limit, memory limit, disk quota and network bandwidth
throttling. Quotas may be absolute values or relative ones. For example, scien-
tific computing applications are more concerned about the absolute quota of cpu
usage (e.g. a job’s max running time is limited to 1000 cpu hours) whereas com-
mercial applications like web hosting ones put more focus on relative quota of
cpu usage (e.g. a virtual website can process incoming requests by taking less
than 60% of CPU load of the host machine).

40

The enforcement of resource usage policies could be partially done via the
system call setrlimit(). For the enforcement of relative quota on resource usage,
more advanced kernel support is required. Fortunately, new isolation and virtual-
ization mechanisms like process containers, KVM, openvz, Xen are available for
use, which provide extensive support for system resource partition.

Similar to an access control rule, the general syntax to describe a resource
usage rule is as follows:

<subject> <object> <quota>

where subject and object have the same meanings as above, quota
is an expression to specify the usage policy for subject-object pair in the
same line. Besides quota values, there could be other auxiliary information in the
quota expression, such as time frames when the rule is applied or not applied.

Integrated support of policy enforcement on application-specific objects To
define a generic abstraction of all kinds of application-specific policies is beyond
the scope of current version of security services. It is also not realistic for security
services to take over the control of all kinds of policy enforcement. Whereas it
is necessary to allow local admins to express application-specific policies against
VO users, and integrate local application-specific policy engines such as the priv-
ilege subsystem of a DBMS or scheduling components of a batch job manager for
policy enforcement.

Nowadays either open-source or commercial job manager software (e.g. PBS,
OAR, Condor, LSF, Maui, etc.) provide very flexible and effective scheduling
policy support for a cluster, though they adopt different proprietary languages to
express the policies. Moreover, applications like SAP Web Application Server use
their own set of security scheme for authentication and authorization. A coarse
but flexible way to link with these software and take advantage of their policy
support is scripting drivers. The syntax of an application-specific policy rule is as
follows:

<subject> <app-policy-driver> <arguments>

where subject has the same meaning as above, app-policy-driver
is the extern callout to establish the specific policy configurations required by
applications. Arguments are used to pass additional information that only rec-
ognized by app-policy-driver. When the callout is launched, the mapped
local account information corresponding to sub ject will be passed into it.

41

4.2 The Security Architecture

To achieve clarity, we present the security architecture from two angles: one is
from the perspective of AEM and the other from XtreemFS. We describe how the
security services are used to enable three security mechanisms (authentication,
authorization, and delegation) based on their functional description outlined in
Section [2.11

4.2.1 Securing AEM

This section describe a security architecture for supporting application execution
management in XtreemOS. This is illustrated in Figure [5S| To assist the under-
standing of how the security services provide its support, this figure deliberately
follows the same presentation style as the AEM functional description figure (i.e.
Figure 1| of this document) presented in Section [2.1

In Figure [5] the client side is represented by the XtreemOS console, which is
(currently) a command line interface to allow users to type in AEM commands,
such as Xsub for job submission, and Xps for querying current jobs.

XOSD is a server-side daemon service running on each XtreemOS node for
managing jobs (e.g. submission, execution, monitoring), and resources (e.g. al-
location and negotiation). In Figure [5] it is shown running on a client node as
XOSDc and a resource node as XOSDr. XtreemOS console and XOSD are node
(level) services.

AEM has two distributed services (classified as external services in the figure):
JobDirectory and ResMat (ResourceMatching). JobDirectory provides job query
services to users to retrieve the current state of their jobs. ResMat is responsible
for finding resources (machines) that can satisfy the criteria in the job specifica-
tion and have spare resources (e.g. CPU wall time) to provide at the time of job
submission.

All security services (CDA, VOPS, and NOPS) are involved in the security
architecture to support AEM job submission. Apart from NOPS, which resides
on each resource node as node services, all others are global (VO-wide) services.
Figure [5|also includes the additional steps describing the interactions between the
security services and AEM services.

Configuration of the System All global services run on machines separated
from the client and resource nodes. During the setup stage of the system, the
following requirements should be satisfied.

1. The user has registered with the VO manager of the VO - esvo. Thus, ac-
cording to Section [3.3.4] this implies that all the identifiers and attributes
are allocated and the VO databases have been properly populated.

42

2. The user has established a means to authenticate with the CDA. Such means
can be one of the three authentication methods (username/password, public
key certificate, or Kerberos), as specified in the previous deliverable [3]].

3. The VO admin has generated two proxy certificates based on the VO man-
ager’s public-private key pair, one each for CDA and VOPS. The private
keys and the corresponding proxy certificates are then installed on the fol-
lowing security services respectively:

(a) CDA
(b) VOPS

4. The following services have access (either via online access or through
offline installation) to an authentic copy of the VO manager’s public key
certificate and the CDA’s proxy certificate:

(a) JobDirectory
(b) ResMat (i.e. ResMatching)

5. The PAM module and the XOSDr has access to an authentic copy of the VO
manager’s public key certificate (e.g. through offline installation to the
node’s trust anchor by the resource admin) , and, the proxy certificate of
CDA and VOPS.

6. The followings need to have a genuine copy of the resource node’s issuing
CA’s public key certificate:

(a) The client node

7. There is an established means to authenticate the VOPS and ResMat ser-
vices with each other.

8. The system on the resource node has properly configured XtreemOS Pluggable
Authentication Module and Name Service Switch installed. Note that all
the PAM and NSS modules are provided by WP2.1 and are specified in the
deliverable [2]].

Interactions within the Security Architecture

1. A user types the Xsub command to the XtreemOS console. A simplified
example is shown below:

Xsub -vo esvo —group testing -role programmer —-f job.jsdl

It means that the user who is a programmer in the testing group wants to
submit a job, with the job specification job.jsdl, to a VO, called esvo.

1.1 XOSDc requests a XOS-Cert from the CDA service via an established
authentication means.

43

1.2 XOSDc receives the XOS-Cert securely.
1.3 XOSDc verifies the integrity of the XOS-Cert by using the (pre-installed)
VO manager’s certificate.

2. XOSDc generates a jobID and creates a job with the jobID.
3. XOSDc registers the job to the JobDirectory with jobID, and the JobMng
address with the user’s identifier and XOS-Cert.

3.1 Upon receiving a job registration request from a user, the JobDirectory
authenticates the user based on the XOS-Cert

4. registration: success or failure
5. once the job has been registered, XOSDc starts scheduling the job by con-
tacting ResMat with a list of job requirements (i.e. job.jsdl)

5.1 The ResMatching authenticates the user based on the user’s XOS-Cert.

5.2 Once the user is authenticated, the ResMat forms a policy request
based on: (a) the list of job requirements; (b) the list of candidate re-
source nodes belongs to the VO - esvo from the Application Directory
Service (provided by WP3.2 - highly available and scalable services);
and (c) the description of the user (e.g. the identifiers and attributes
extracted from the XOS-Cert). Subsequently, this XACML policy re-
quest is forwarded to the VOPS.

5.3 The VOPS checks the request against the VO policies and signs the de-
cisions using the private key (of the VO manager’s proxy certificate).

5.4 The VOPS sends back a signed policy decision to ResMat.

6. ResMatching returns a list of authorized (i.e. signed decisions from VOPS)
resource nodes to XOSDc.

7. XOSDc performs a resource selection algorithm to decide which (set of)
nodes to be used.

8. XOSDc negotiates resources with XOSDr on the selected nodes until all the
required resources (e.g CPU, memory, queue ...) are reserved.

8.1 Before the negotiation begins, the client and resource nodes perform
mutual authentication to check the authenticity of each other.

8.2 XOSDr checks whether the access is authorized by the VOPS by check-
ing the VOPS’s signature

8.3 Once the authentication and authorization checks are passed and the
negotiation completes (so that the resource node is clear what is re-
quired by the client node), the resource node checks its local policies
using the NOPS.

9. The reservation confirmation is then sent back from XOSDr to XOSDc.

44

10. Once all resources are reserved, XOSDc submits the job to the correspond-
ing (set of) XOSDr, who will first check whether this is a job submission
with an existing resource reservation.

10.1 If it is with an existing reservation, the PAM generates a proxy certifi-
cate [13] and a corresponding private key for the user. This certificate,
together with the private key, is called XOS-Cred.

10.2 The PAM modules allocates UID/GIDs according to the attributes em-
bedded in the XOS-Cert.

10.3 The mapping between the local UID and the GUID and that between
the user’s attributes (e.g. group and role) and local GIDs are stored
in the account mapping database on the resource node by the account
mapping service developed by WP2.1.

10.4 At the meantime, the user’s XOS-Cred, is stored in the kernel key
retention service by the PAM.

11. XOSDr forks a user process for the job.

11.1 The system sets the UID and GIDs for this process. The job will then
start its execution on the node.

12. The confirmation of job submission is sent back to XOSDc. This completes
the job submission process.

4.2.2 Securing XtreemFS

This section describe a security architecture for supporting secure data manage-
ment in XtreemOS. This is illustrated in Figure[6] To assist the understanding of
how the security services provide its support, this figure deliberately follows the
same presentation style as the XtreemFS functional description figure (i.e. Figure
2] of this document) presented in Section [2.1]

A number of additional services have been added to the original functional
overview diagram to provide a secure data accessing environment in XtreemOS.
They are:

e CDA, which provides the XOS-Cred

e the key retention service, which stores the XOS-Cred

e the account mapping database, which stores the mapping between the local
UID and the global GUID and other global credentials

e PAM/NSS modules, which stores the mappings into the account mapping
database

In the figure, two interactions are highlighted in dashed lines because they
occur before the user process is forked by the system. These interactions are:

45

i Security VOPS

' servi . -
| services 5.3 sign decisions

5.2 Policy 5.4 Policy
request decisions
ResMat

JobDirectory

Global 3.1 authenticate user 5.1 authenticate user|

services

,,,,,,,,,,,,,

' PAM/NSS Modules
3. Job regjstration| | 4. Success 5. Find 6. LiSt.Of 3 J 8.1 Mutual Authentication ‘ 3 . m
. X resources authorized i Mappings | O
with gser info| | or error nodes i =
—# 8.2 Check VO authorization %
Q
©
! 1 8.3 Local policy checking =
1.2 Return ' |_by NOPS S
XOS-Cert i ! S
e Y, YY" 8.-Resource a?r:eg?::rate proxy cert ‘ 2
XOSDG negotiation 1 I
<—.—L

: oy XOS.C : 1 | XOSDr ™ 10.2 Allocate UID/GIDs ‘
' | XtreemOS o reqyest -Cert 9.;Reserv'at|oni ' H °
| Console ;-3CV9"|IY ?((gS-Cert cdnfirmation i i | 10.3 Store UID/GUID and ! g
. Create jol R it i ' 1 |_GID/GGID mappings : /o]
7. Select nodes w; ' — ' U:J

D e ! H

12. Gonfirmation r| 10.4 Store XOS-Cred ! XOS-Cred | £
‘ ‘ : 1 g
! Client node : ; ! 11. Fork/exec process User &
77 i ! process 6
1. Xsub -vo esvo -group i 1 . q <

Node testing -role programmer ' ‘T% 11.1 setuid()/setgid() ‘

: Resource node

services :‘_ el

Figure 5: A Secure Application Execution Environment in XtreemOS

e the interaction between the CDA and the key retention service, and
e the interaction between the PAM/NSS modules and the account mapping
database.

Basically, there are two typical occasions that the system can spawn a new
process based on the service provided by the PAM/NSS modules. In the first case,
such a process can be created by the AEM XOSD on a resource node, just as
described in Section[4.2.1] In this case, the XOS-Cert of the XOS-Cred is a proxy
certificate generated by the system, as explained in that section. As the result of a
successful job submission, the mappings are stored in the local account mapping
database and the XOS-Cred is associated with the user in the kernel key retention
service.

The second case is that the user explicitly logins into a VO, and thereby, the
system spawns a new process for the user with the UID/GID supplied by the PAM
module. The outcome is similar to case one. The only difference is that the XOS-
Cert is an end entity certificate issued by the CDA.

Configuration of the System During the setup stage of the system, the follow-
ing requirements should be satisfied.

46

e The MRC has an authentic copy of the VO manager’s public key certificate
installed.

e The node and each OSD has access to an authentic copy of the MRC’s
public key certificate installed.

Interactions within the Security Architecture Figure[6]illustrates the interac-
tions among MRC, OSD, XFS client (aka. XFSc) and a detailed list of additional
interactions related to security.

1. A file (operation) request (e.g. create, open, delete, read, write a file), ini-
tiated by a user (application) process, comes into the XFSc via the Linux
kernel®.

1.1 The XFSc requests local credentials from the FUSE daemon by pass-
ing in the PID of the calling process

1.2 The XFSc receives UID/GIDs back

1.3 The XFSc requests global credentials by UID from the accounting
mapping service (developed by WP2.1)

1.4 The XFSc receives GUID and a list of other global credentials (e.g.
GVIDs) from the accounting mapping service

1.5 The XFSc fetches a XOS-Cred from the key retention service for this
GUID

1.6 The XFSc receives the corresponding XOS-Cred

2. With the global credentials, the XFSc asks the MRC whether the operation
1s permitted.

2.1 The MRC performs a mutual authentication protocol with the XFSc,
who uses the XOS-Cred to authenticate with the MRC.

3. If the operation is allowed, the MRC returns with a set of capabilities, which
is signed by the MRC, and a signed security token for this specific user to
allow him to access the corresponding data (The security token should be
tided to a specific user and a specific piece of data.) Otherwise, the operation
is deemed as denied.

3.1 the XFSc verifies the integrity of the capabilities.

4. With the capabilities and the token, the XFSc contacts the appropriate OSD(s).
(Only one OSD is contacted in the diagram to illustrate the scenario. But in
reality, a file may be stored in multiple OSDs.)

9This kernel must be compiled with the Filesystems in Userspace (FUSE) kernel module and
support the Virtual File System. See the deliverable D3.4.1 [[1]] and D3.4.2 [[7] for more details

47

4.1 the OSD checks the authenticity of the token (to make sure that it is
from the MRC) and the integrity of the capabilities

4.2 if both are satisfied, the OSD performs a mutual authentication proto-
col with the XFSc.

5. The OSD(s) transfers the file to the XFSc. If this process fails, errors will
be reported.

5.1 the XFSc checks the integrity of the file.
6. If the file passes the integrity check, XFSc presents the file back to the user

Pprocess.
Global
services | MRC 0sD, osD, ! Security
I servi
4.1 check the authenticity of i services
2.1 mutual the security token and
authentication oo integrity of the capabilities
4.2 mutual authentication

2. File 3. Allowed
Operation with signed capabilities 4. Contact OSD|

with GUID and and security token with the capabilities| 5. Data
N 8 " transfer
other global credentials or denied and security token
or error
XFSc 1.6 XOS-Cred

Key
Retention
Service
A

1.5 fetch the

3.1 check the integrity of the capabilities corresponding XOS-Cred XOS-Cred
.1 check i ity of fil
8L sheck the.integriy ot flee 1.4 return GUID and other

global credentials 2 Qg Mappings

= r = 2 R

1.3 request by UID 8%% }

i Y =red Y L>a !

. 6. File !

1. File i

Access |

|

1.1PID 1.2 UID/GIDs
granted i

FUSE Daemon PAM/NSS Modules

Node

operation

User process
(PID)
Node

Services

,,,,,,,, > Interactions occur before the process is forked

———p Interactions occur after the process is forked

Figure 6: A Secure Data Access Environment in XtreemOS

4.3 Discussion: Ongoing Security Challenges from Other WPs

At the time of writing, XtreemOS is still a very active project. Because of this, we
perceive it is likely that our design will need to be adjusted to suit the new security
requirements that may emerge in the continuously improved design come up by

48

other WPs. Two potential candidates of such, that have just started to emerge in
the project, can be drawn from AEM and XtreemFS.

As shown in the architecture document [6], the ResMatching component has
been removed from the AEM architectural diagram and a new AEM component,
called Reservation Manager has been introduced. This is due to the fact that some
design decisions between WP3.3 (AEM) and WP3.2 (highly scalable and avail-
able services) have been made. Similarly, although in the security architecture
for XtreemFS, the secure association of capabilities to a user is generally referred
as signed capabilities with security tokens for the user. As stated in D3.4.1 [1]
and our communication with WP3.4, the exact security protocol that is needed to
facilitate the interactions is not yet decided.

However, we plan to continue the use of PKI as the underlying security in-
frastructure to support the overall security architecture because of its well-known
scalability properties in a large scale distributed computing environment.

49

5 Technical Discussion

This technical discussion of the XtreemOS security specification is divided up in
two parts: (1) an architectural discussion and (2) a discussion of the proposed
specification from a business application perspective. The latter area has been
considered as it presents different requirements for security than the scientific
applications that have traditionally motivated Grid computing. The reason for in-
cluding this technical discussion, towards the end of the document, is mainly to
clarify the design decisions made within the specification. Secondly, it assess the
scope and capability of the specification and provides some guidance for devel-
opers and administrators that will need to manage the specification either during
implementation or runtime. Thirdly, the technical discussion explains the scope of
the specification and identifies some additional requirements that we have given
thought to, even though they might not be currently fully addressed in the specifi-
cation. This is an ongoing process again with the intention of guiding developers,
administrators and users in extending or configuring the security mechanisms ap-
propriately, or identify further work to be done to assure XtreemOS for use in a
secure commercial production environment. The details and implications of these
requirements are not yet fully worked out but nonetheless are discussed in the
two sections on "Legacy Application Runtime and Management" and on "Strong
Isolation".

By identifying the additional requirements which is an ongoing process, we
are able to either guide developers, administrators and users in extending or con-
figuring the security mechanisms appropriately, or identify further work to be
done to assure XtreemOS for use in a secure commercial production environ-
ment. The details and implications of these requirements are not yet fully worked
out but nonetheless are discussed in the section on "Legacy Application Runtime
and Management". These requirements are new requirements being studied and
examined in parallel to the work presented in this deliverable. As they are new
findings in the project, they are also been described (from both security and non-
security angles) in a parallel deliverable produced by WP 4.2 in D4.2.4 [4]].

In addition, it must be noted that XtreemOS software will be released as open-
source, such that there is (1) no hiding of how security mechanisms are imple-
mented but (2) possibility for skilled developers to alter and redeploy code in
order to gain advantages. Alternatively, they might be able to study vulnerabil-
ities in a more complete manner, as they can perform white-box analysis on the
code base.

50

5.1 Architectural Discussion

Scalability, flexibility, autonomy and decentralization are four architectural as-
pects that need to be considered in XtreemOS, due to the goal of supporting
largescale and potentially cross-organization systems. We do not only focus on
the basic security goals of authentication, authorization, confidentiality, integrity
and isolation emphasized in the first specification. These have been compiled
as a set of security architecture principles that will be used to rate the current
architectural specification, as well as guide further iterations and configuration
constraints. These architectural principles have been derived by considering re-
quirements from both business and scientific applications and the management of
the infrastructure supporting them. They are however grouped under the 4 head-
ings introduced above.

5.1.1 Scalability

One of the major reasons for moving Grid mechanisms into the OS as opposed
to at the middleware level is to remove some of the overheads associated with
going through several layers of software. Secondly, largescale applications look to
Grid-solutions as a means of increasing performance and availability. Therefore,
the security mechanisms introduced by XtreemOS should not act against these
specific objectives. There are three scalability principles that we have derived for
XtreemOS security.

Fast membership and group lookups and decisions For applications with
very high response time requirements yet that need to validate the affiliations of
principals on a per-asynchronous-message basis, it is necessary that the bottle-
necks introduced by membership and group checks be minimised. The specifica-
tion has not yet matured to the level where we can properly assess these points.
Implementations may have to be tweaked to include caching and localised dis-
tributions of membership lists in order to stay within the response thresholds de-
manded.

Minimise expensive Remote Procedure Calls (RPCs) The overhead of RPC
calls depends on the type of transport protocol and the transmitted data size. As it
is impossible to totally eliminate RPCs in a distributed system, we would like to
find means of minimising them, avoiding synchronous calls where necessary and
avoiding bulky data packet sizes unless delivering content. Currently interactions
with the VOPS to check VO-level policies appears to be a point of concern for
high RPC, such that we will need to focus on techniques for more effective policy

51

distribution and, to some extent, reliance on localised checks. Caching mechan-
ims may also be introduced, but one needs to be aware of the tradeoffs between
performance, data-provenance and privacy that will arise here.

Avoid redundant security protocol actions, certificates and keys The over-
head introduced by public key encryption is negligible these days with the in-
creased capability of processors and more efficient protocols being introduced.
However, in order to support scenarios that introduce several concurrent users in
different VOs, the strain on the various resource providers might be too high, if
they need to perform too many expensive certificate validations, store an extensive
list of public key certificates and continuously monitor their lifetime. However, as
noted in the specification of credential services, we avoid the constraint that users
need to rely on a public key infrastructure to access XtreemOS services. This also
adds to the flexibility objectives of the architecture.

5.1.2 Flexibility

The XtreemOS architecture must remain flexible in order to support various or-
ganizations, applications, policies and types of users. The flexibility goals are
therefore with regards to how resources are shared, selected, accessed and con-
figured. Most of the flexibility goals for XtreemOS security are dependent on the
generality of the VOPS service and its policies. This however may lead to some
issues regarding manageability, which we also should not ignore.

Flexible sharing and multiple group membership Users and resources will
have several different responsibilities in any physical or virtual organization. They
will need to be able to properly coordinate these without violating policies by
disabling security mechanisms and exhausting resources. There is then a need
for users and resources to be in multiple groups with different privileges at the
same time. Fine-grained, role and action-based access controls should also be
possible with the types of policies specified. The XOS-Cert enables the inclusion
of multiple group names in the extensions. However, we do not yet specify how
to selectively include credentials and relevant group names in requests exchanged
between different resources and users.

Selective storage of data Although XtreemFS offers a solution for wide-scale
distributed storage of data, it should still be possible for organizations and users
to place restrictions on where their data is stored. That is, users of XtreemOS
nodes may mount XtreemFS as their sole filesystem, as they are satisfied with the

52

scalability it offers. However the risk of leaking sensitive information often out-
weighs the adoption of distributed storage mechanisms. The current solution in
XtreemOS to this problem is to allow users to specify VO policies in the VOPS
concerning restricted storage of files. However, this introduces a scalability flaw,
as blacklists may need to be maintained per user and possibly per resource i.e.
resource providers may want to block certain owners of data from storing on their
machines. We may want to further introduce some form of mandatory security
into the system that requires labeling of data, but this would again have implica-
tions for the manageability.

Selective levels of isolation Isolation of application processes and data is a sig-
nificant requirement and principle for robust security in resource-sharing systems.
We have introduced isolation in the previous specification but, after internal dis-
cussions, found that this cannot be a set-in-stone mechanism. It should be pos-
sible for users and resource providers to turn on and off isolation as it has some
performance penalties that might even affect scalability. Moreover, we wish to
emphasize the idea of different levels of isolation (including 0), which change the
way in which nodes and groups of nodes are configured. This feature is not yet in-
cluded in the specification but should be possible with a form of local, node-level
policy enforcement.

Resource-respecting security mechanism selection Following from the above,
node-level policies should be capable of being used in order to negotiate which
cryptographic suites are used or if none at all. The decoupling of credentials, iden-
tities, attributes and secure communication help to enable this flexible selection.
This is particularly important for the mobile versions of XtreemOS that will need
to be considerate of the resource constraints of these devices.

5.1.3 Autonomy

Administrator-independent access control, resource and group management
This principle comes from the autonomy goal of Grid systems and general shared
resource environments. The expectation is that basic participants (without spe-
cial administrative privileges or responsibilities) in a shared resource environment
should be able to define access controls to resources they own, as well as create
and edit the membership of groups that have access to their resources. This should
be possible even in a distributed, cross-organization setting, where scenarios such
as shared projects and business processes are envisioned. This is one area where
the XtreemOS security architecture will need to pay more attention as we move
towards addressing implementation and management concerns. According to the

53

current specification, it is still assumed that VO managers and owners delegate
these tasks to dedicated VO administrators.

Support cross-domain sharing with minimal disruption to local native ac-
counts Although today’s organizations encourage collaboration with external
partners and across corporate borders, there is resistance to changing internal set-
tings and policies for the sake of collaboration. The impact of collaboration and
networking resources in a shared manner should therefore be properly controlled,
such that local administration, distribution of privileges and group management
should not be hindered or changed for the sake of sharing - unless there is an
extreme case. The XtreemOS solution to this is based on account mapping as
opposed to demanding changes in local user and group names. Maintaining these
mappings however introduces a new management task, which we continue to im-
prove.

Support for nested subgroups Creators of groups should be able to further re-
strict the membership of these groups easily, such that privileges can be inherited.
This is currently not well-specified in the current specification, as it is an optional
and low priority requirements, but can be treated as an extension to the certificates.

5.1.4 Decentralization

Decoupling of identity, group membership and authentication mechanisms
The decoupling of these is important in a distributed, cross-organizational sys-
tem, as the way in which different types of entities are issued identities, assigned
to groups and authenticated will change according to their technical properties
and organizational affiliations. This is fully satisfied by XtreemOS with the clear
separation of the Credential Distribution Authority (CDA) from the Identity Dis-
tribution Service (IDS).

Decentralized authentication, group membership management and authori-
sation For the purpose of scalability, flexibility and privacy, it should not be
necessary that a network of XtreemOS nodes be restricted to one central point for
authentication and managing membership in VOs or groups. In addition, there
should be no shared user database across organizations for maintaining identities,
as this would force organizations to expose details of their internal policies and
personnel. This is currently unclear as we do not explicitly define how the security
architecture works for cases where there are multiple VO managers.

54

5.2 Legacy Application Runtime and Management

Legacy and large-scale business applications are of particular interest for eval-
uating the XtreemOS security architecture, as they bring requirements that are
not typically associated with Grid applications. Legacy Applications are un-
derstood to be those not initially designed for execution in a Grid environment
and, moreover, not previously deployed on top of a distributed operating system
platform such as XtreemOS. Supporting legacy applications includes the scripts,
batch files, installers and runtime of the application, each of which have been
implemented and compiled with some assumptions of the underlying OS. One
of the key problem areas is that of identity management, user management and
group management. For this reason, the emphasis in this section is placed on
these aspects of deploying and executing systems. The main concern here is that
deploying and configuring legacy applications which are built on the traditional
POSIX understanding of users, groups and ACLs will either fail at start up (as
a result of non-compliance) or may grant/deny access to the wrong users, if the
identity is incorrectly interpreted, truncated or formed. POSIX uses numeric in-
tegers known as User Identifiers (UIDs) and Group Identifiers (GIDs), and are
based on a flat namespace without any notion of a domain identifier. However,
in a more global identifiers required in a distributed, cross-organization system
will need to maintain identifiers for domains and hierarchies for the sake of cross-
organization uniqueness, autonomy and scalability. This is a classical problem for
porting legacy applications across platforms (i.e. if the identity concepts are in-
compatible), as well as deploying them across a distributed OS. Note that although
these potential problems are emphasized within the security specification, these
incompatibilities could have wider implications e.g. job management, scheduling,
execution etc. The goal is hence to show the scope for the current specification in
solving this problem and to identify technical directions for future extension and
application of the specification.

5.2.1 The Application Installation Process

This section describes the application installation process using an adaptation of
the Application Execution Management (AEM) Figure (I The adaptation is il-
lustrated in Figure [/| and explained first below. The scenario considered is that
of a distributed data center, where an administrator needs to quickly deploy and
make available a hosted application for a customer. One goal is that the installer
(which is essentially a script interpreter) should remain unaware of the distributed
OS platform and execute as if it is on one central machine.

1. The administrator starts the application installer, which is located on some
machine in the data center’s administration;

55

Global
services

‘Aplerectory‘ Reshat ‘

8. Find 6. List of
resource resource
nodes

3. Registenl 4. Success
appl |or error

..................... L-B.Rasuurce.‘ e
i ¥ negotiation f
9. Reservation |
Ht 0s I i 12, Fork/exec
(;De:;nme » 2. Create context confirmation g process Execute
7. Select nodes i | Installer

10. Transfar install hih Process n

Client node <

XOS0r

11. app install Resource node

confirmation

Mode

. | 1. Start application-installar
services

Figure 7: The application installation process

. The XtreemOS client daemon receives the request, creates an application
context for the installer and

. registers the application with a central application directory (built on the Job
Directory) mainly for accounting purposes;

. If the application can be registered (e.g. if the customer is still active) then
a success 18 returned;

. The OS daemon then needs to find resources available for installing and
hosting the application; for a typical application server this includes for
the database, different server containers and various server-side software
components.

. A listing of available resource nodes should then be returned and

. a selection process is continued, which should take into account the cus-
tomer’s deployment policies.

. Selected nodes are negotiated with for resources, again invisible to the in-
staller (therefore it is assumed that the installer does not time out) and

. a reservation ACK is returned once the target node is ready. All nodes
should then by this time be capable of resolving identities within a common
namespace that is unique for the particular application context.

56

10. The binaries packed with the installer are then transferred to the respective
target nodes and

11. aconfirmation of starting is returned - this should then update the installer’s
status indicator.

12. Finally, and most critically, each installation binary now executes on the
given node, given that it has the correct privileges to complete.

The challenge set here is that there should be no changes necessary in the
installation script, as this today executes successfully on a large Linux server.
The problem is however that large Linux servers are not always available and it is
desirable that one large server could securely host and install multiple applications
of different customers. For step 12, it should be noted that the targeted server
could already be hosting multiple database instances, web servers and components
that belong to other customers. In principle, the security of XtreemOS should
allow this installation without interference yet without having to change the basic
installation script of the application i.e. the transparency principle of XtreemOS.
The steps here are referenced in order to identify particular problems, discuss how
XtreemOS solves these problems and, in cases where there are some technical
challenges remaining, explains some alternative for getting around these with the
current specification.

5.2.2 User Management

One of the challenges for XtreemOS, including security, is to support both Grid
and Legacy applications. If an initial decision was made to support only one, then
user management would not pose new complexities. User management for an
application installation is understood as the following seven (6) aspects:

1. Identification and registration: associating an operating system user with a
unique, repeatable, unforgeable identifier

2. Role/Group assignment: assigning the user to a specific role or group that
gives them certain privileges for installation

3. Customization: having the OS and applications appear and behave in a way
that is parameterized by the user (e.g. sizing of the machine)

4. Authentication: providing mechanisms that can associate all executables
and messages with a particular principal

57

5. Authorization: providing mechanisms that ensure that only processes be-
longing to an authorized user can access objects, applications, data and cus-
tom settings for installation

6. Accounting: providing mechanisms that associate resource usage with an
individual user or the customer on whose behalf they are acting

The critical point is that of identification and registration. If this fails, then
the other user management operations will also fail. In XtreemOS, identification
and registration is done using credentials specified in the XOS-Cert, which carries
attributes that refer to the user’s unique identifier and groups across the data center.
Thinking in terms of group assignment and authorization, if privileged access to a
resource is required, such as is often the case during installation of an application
(especially for purposes of sizing the target machine), then the current application
context within which the deployment or installation process is running must be
part of a privileged group, otherwise:

1. An application installation procedure is not able to perform privileged ac-
tions in order to configure the operating system to perform best according
to the application’s custom requirements.

2. An application installation procedure is not able to generate additional users
or groups.

The two above problems may occur as early as in Figure [/} step 1 and, if
not resolvable, again in step 12, causing the installation to fail (taking into ac-
count that today’s large installations can take a minimum of 2 hours to be com-
pleted, several failures are not tolerable). One technical precaution that needs to
be recognized is the need for an application’s scripts or installers to run under
multiple user accounts, belonging to different groups and with special privileges.
XtreemOS support this using either a generated or manual approach of creating
a certificate with the required attributes; these attributes are the GlobalUserID,
GlobalPrimaryGroupName and optionally GlobalSecondaryGroupNames. On lo-
gin by the installer of the application, their client is issued a certificate with the
relevant attributes. However, they would need to re-login in order to activate the
new user, unless the assumption of roles or a persistent user pool was included.
If there is a need to re-login, this would cause a break in the automation offered
by legacy installation scripts, as an installer, which relies on the changes in the
user or group database would not continue. Furthermore, this would not scale for
multiple applications on nodes belonging to the same VO. It should also not be
dependent on the application to dictate the naming convention for the mapping the
GlobalUserID to the local UID, as this may result in mapping conflicts.

58

It is possible to by-pass these problems by introducing a constantly active su-
peruser on nodes just for the purpose of installation, such that any global creden-
tial, belonging to an authorized installer, would be resolved to the same, privileged
user. This however is opening up a point that, if exploited, could have wide-spread
consequences. For this reason, carefully managed groups is an additional area that
is significant for legacy applications.

5.2.3 Group Management

Group management in XtreemOS is also challenged by the global-to-local do-
main mapping problem identified above. In a data center, the validity of global
groups suggests that it is always possible to resolve these to local, numeric group
identifiers (GIDs) and privileges on all nodes in the data center. For the case of
application installation, the questions are therefore, recalling that applications for
multiple customer domains and namespaces may be concurrently executed on the
target node:

1. where do the group names come from?

2. when are they created?

3. how are the privileges for groups created?

4. how are the user accounts of the installer added to the necessary groups?
5. how and when are the global group names resolved to local POSIX GIDs?

The group names must be valid, established and resolvable from step 1. In the
worst case, consider a scenario where this is the first time that the particular appli-
cation is to be installed. The installation’s administrator must have a valid XOS-
Cert with the relevant GlobalUserID (GUID), GlobalPrimaryGroupName (GGID)
and GlobalSecondaryGroupNames (GUID) attributes depending on the users the
installer requires. It is assumed that the GlobalVOID (GVID) is equivalent to the
namespace set for the application across the data center. Figure [§]illustrates what
a valid instance of an XOS-Cert should entail for the administrator in order to
complete the installation process, using the Linux groups identified in the sample
from sub-section [2.2.2] It shows that a system administrator issues a certificate
to the application installer with the correct groups embedded. This is done else
system administrators would have to add groups to their own identity certificate
for every application to be installed. In addition, there is often a particular con-
tact person that deals with customers on behalf of the data center, such that they
(or more accurately their machine) assigns administrators to the management of
different applications.

59

[Data Center Authority |

Customer Contact |
— 1

=preamble=vearsion, serlal nurnber, sig algoriim elc. =
Issuer [Systern Administrator X |

Valid from: 99/99/999

Valid to: 99/99/999

Subject Application Installer

Fublic key: a3unique3set3ofibits

GVID: application namespace
GUID:
nz5db, owners, database-software, installation=,
=<|caadm, owners, database-instance, installation=
mzpydadm, admin, system, configuration=
m=dbZpvd, admin, database, configuration=
=s=apppyvd, user, database connect, connection=
GGID
<OWNEer group>
zadministration group=

Figure 8: A hypothetical XOS-cert for the application installation example

The certification process would provide an answer for questions 1 and 2. How-
ever, what about questions 3 and 4?7 When are the groups created on the target
nodes, how are the privileges associated and when are the user accounts (i.e.
mapped from the GUIDs) added as valid users? These would have to be done
by the end of Figure [/} step 8, as a resolution to the negotiation process between
the originating XOS client and the target node. This suggests that the end of
the negotiation process would mean sending the certificate of the application in-
staller over to all target nodes, such that they can authenticate binaries belonging
to the installer (as it is assumed any binaries are signed with the private key gen-
erated for the installer at step 1), as well as inspect the certificate for the groups,
privileges and users to be created at the node. Depending on which aspect of
the installation a node has been selected, the respective groups and users need to
be installed. At this time, there is a need for each selected node to perform the
mapping from strings in the certificate to POSIX GIDs and UIDs. The following
Linux commands would then follow per node and per relevant group (some steps
are advisories):

e mkdir namespace: create a unique directory for the application

e chroot namespace: set the root to that of the new directory created for
the application

e groupadd —-g gid grpname: create a group

60

e useradd —-d namespace —-g gid —u uid: create a user in a pre-
viously created group

However, what if these particular groups and users have already been mapped
at the node and are persistent? Secondly, is it possible that a user or group be
mapped to an already existing numeric identifier? Thirdly, especially for the case
of the administrator privileges, what happens if a configuration setting required by
the scheduled installation conflicts with that of another (e.g. set virtual memory
size)'? Fourthly, as other customers are running, who may even have the same
types of applications, the namespace might not be unique (such that the mkdir
command would fail) and the machine cannot be re-booted or newly logged-into
in order to effect changes or allow permissions to be active. These particular prob-
lems are beyond the scope of XtreemOS security currently, but could be addressed
by including uniqueness checks for users and groups, as well as appending newly
generated sequence numbers to the namespace. A more advanced, comprehen-
sive solution would be to build the XtreemOS software bundle on top of a Linux
distribution that contains support for secure isolation. One technique is that of vir-
tualization [[11], which would allow a clean, strong separation between different
application namespaces and software running from different domains.

5.2.4 Summary and Outlook

This section discussed the deployment of legacy applications on top of an XtreemOS
platform with the currently-specified security specification in place. Two areas
that were more carefully scrutinized are:

e ensuring that identity management and deployment mechanisms do not break
legacy application installation

e checking that the current user concept remains compatible with POSIX
standards

In order to simplify the deployment of legacy applications, an administrator
could make the decision to introduce single superusers on each node known as
pilot jobs. Any application installer would just have to be handed this user id
and run in its context. This would get rid of some of the above discussed techni-
calities but would create a large vulnerability as the separation of privilege, least
privileges and least common mechanism principles would be broken. The above
process is therefore recommended, including the possible extensions to include
virtualization.

190ne workaround here would be to use a maximum policy, where the virtual memory is set to
support the demands of the highest requester

61

Other Alternative Actions: Since there is (i) no backward propagation of local
user/group operations and (ii) no privileged operations at all for legacy installers, a
conflict with the current design could only be avoided by using a segmentation of
the system user and group id ranges. One range could serve legacy applications,
the other range could serve Grid jobs. A privileged pilot job could be used to
deploy the application via their installers. However this does not solve the security
problem. An attribute in a Grid user identity certificate could be used to indicate
if the user needs a static mapping for legacy applications or the current proposed
mapping. However this attribute should belong to the application and not to the
user since a user can run different kinds of applications.

Still this is a workaround which may be enough for executing parts of legacy
applications to exemplify other XtreemOS system attributes. It is not a compre-
hensive solution to this problem and requires a high and error prone manual effort.
Avoiding the superuser idea

Why Isolation is relevant but complex Deploying applications, selecting ap-
propriate resources to support them and managing the runtime environment is a
complex problem[8]. Adding the handling of confidential data to the equation
makes it even more complex. The topic of isolation will receive more attention as
the specification matures, but has already been mentioned frequently. The inter-
esting challenge for XtreemOS here is that now jobs, applications and processes
are being executed in the context of an operating system user as opposed to in the
same context and uid of a single grid scheduler. Isolation requirements arise as
multiple schedulers, processes, applications and jobs, from different sources and
with different users may be running on the same nodes. We therefore understand
that a closer look at isolation mechanisms is required for the following reasons:

e Size of the code base: The Linux code base with the supporting libraries
are huge. From the beginning up to the mid of year 2007 about 125 security
vulnerabilities are reported at the kernel level (see www.securityfocus.org).

e There is no separation of name spaces on the level of user context and
no access control mechanism to allow a fine grained setting apart from
read/write/execute.

e System characteristics have to be segregated and users need the illusion of
being alone on that platform. With legacy and business applications there
is a need to change system variables, which might affect the execution of
other applications being run in parallel.

Since the deployment in XtreemOS via AEM is the single point of entry into
XtreemOS nodes, there are some potential problems for isolation that may arise

62

here. One step in this direction could be the integration of SELinux[12] extensions
into the Linux distribution in order to provide mandatory access control capabili-
ties.

63

6 Conclusions

This specification presents a design for managing global entities in a XtreemOS
VO environment, and for the first time, a complete security architecture to enable
secure application execution and file management in XtreemOS. We have also
described some insights into the future direction of our security work and identi-
fied a number of potential stumbling blocks for deploying and managing complex
applications in XtreemOS. This process has been challenging and fruitful.

However, it should be noted that the work presented in this specification is
based upon our current understanding of the design and implementation of the
system components provided by other WPs. It also reflects the ongoing and still
highly active cross-WP interactions that have been taking place in the project to
ensure our work satisfies the security challenges presented by other WPs. We
will continue to work closely with our colleagues in WP2.1 to ensure the Grid
level security services that we have been developing will be adequately supported
by the node level operating system mechanisms to realise a scalable and secure
approach for providing native VO support in XtreemOS.

64

References

[1] XtreemOS Consortium. Requirement documentation and architecture for
xtreemfs. In Felix Hupfeld, editor, XtreemOS public deliverables - D3.4.1.
Work Package 3.4, November 2006.

[2] XtreemOS Consortium. Design and implementation of node-level vo sup-
port. In XtreemOS public deliverables - D2.1.2. Work Package 2.1, Novem-
ber 2007.

[3] XtreemOS Consortium. Design of the architecture for application execution
management in xtreemos. In XtreemOS public deliverables - D3.3.2. Work
Package 3.3, May 2007.

[4] XtreemOS Consortium. Evaluation Report and Revision of Application Re-
quirements. Work Package 3.3, December 2007.

[5] XtreemOS Consortium. First specification of security services. In XtreemOS
public deliverables - D3.5.3. Work Package 3.5, May 2007.

[6] XtreemOS Consortium. The First Version of System Architecture. Work
Package 3.1, December 2007.

[7] XtreemOS Consortium. Xtreemfs prototype month 18. In Toni Cortes, edi-
tor, XtreemOS public deliverables - D3.4.2, 2007.

[8] Harry J. Foxwell and Isaac Rozenfeld, 2005.

[9] Matthias Hess. Xtreemfs and security - slides presented in the wp3.5 abing-
don meeting. XtreemOS Internal Communication, Oct. 2007.

[10] R. Housley, W. Polk, W. Ford, and D. Solo. Rfc 3280 - internet x.509 public
key infrastructure certificate and certificate revocation list (crl) profile, April
2002.

[11] Hans Lohr, HariGovind V. Ramasamy, Ahmad-Reza Sadeghi, Stefan Schulz,
Matthias Schunter, and Christian Stiible. Enhancing grid security using
trusted virtualization. In Bin Xiao, Laurence Tianruo Yang, Jianhua Ma,
Christian Miiller-Schloer, and Yu Hua, editors, ATC, volume 4610 of Lec-
ture Notes in Computer Science, pages 372—384. Springer, 2007.

[12] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing SELinux
as a Linux security module. NAI Labs Report #01-043, NAI Labs, Dec 2001.
Revised May 2002.

65

[13] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Rfc 3820
- internet X.509 public key infrastructure (pki) proxy certificate profile, June
2004.

66

	Executive Summary
	Glossary
	Introduction
	Brief Recap of D3.5.3
	Document Organization

	Background
	Functional Overview of AEM and XtreemFS
	Security Challenges
	The AEM and XtreemFS Perspective
	The Application Perspective

	Entities for Secure VO Management
	Global vs. OS Entities
	Actors in a VO
	Identity, Attributes, and Membership
	Identity of Global Entities
	Attributes of Global Entities
	Allocation of Identifiers and Attributes
	VO Membership of Users and Resource Nodes
	Certificates for Global Entities

	Policies

	XtreemOS Security Architecture
	Security Services
	Credential Distribution Authority
	VO Policy Service
	Node-level Policy Service

	The Security Architecture
	Securing AEM
	Securing XtreemFS

	Discussion: Ongoing Security Challenges from Other WPs

	Technical Discussion
	Architectural Discussion
	Scalability
	Flexibility
	Autonomy
	Decentralization

	Legacy Application Runtime and Management
	The Application Installation Process
	User Management
	Group Management
	Summary and Outlook

	Conclusions

