XtreemOS BNHE

Information Society

Enabling Linux <
for the Grid \"4/ Technologies

Project no. IST-033576

XtreemOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Report on Formal Analysis of Security Properties
D3.5.6

Due date of deliverable: 30/11/2007
Actual submission date: 1/11/2007

Start date of project: June 1% 2006

Type: Deliverable
WP number: 3.5
Task number: 3.5.6

Responsible institution: Rutherford Appleton Laboratory,

Science & Technology Facilities Council,

Harwell Science and Innovation Campus,

Didcot, Oxon OX11 0QX, United Kingdom

Editor & and editor’s address: Alvaro E. Arenas and Benjamin Aziz

Version 1.0 / Last edited by Benjamin Aziz / 04/12/07

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU | Public v

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services)

Revision history:

Version Date Authors Institution Section affected, comments

0.0 08/08/07 | Alvaro Arenas STFC First draft

0.1 08/10/07 | Erica Yang STFC Added the first version of the revised authentication
protocol

0.2 09/10/07 | Benjamin Aziz STFC Updated the Mutual Authentication protocol

0.3 25/10/07 | Benjamin Aziz STFC Completed the Section on the Verification of the Mu-
tual Authentication protocol

0.4 26/10/07 | Benjamin Aziz STFC Completed the Data Storage Confidentiality
Goal/Anti-Goal Models

0.5 30/10/07 | Benjamin Aziz STFC Completed the Data Storage Integrity and SSO
Goal/Anti-Goal Models

0.6 01/11/07 | Alvaro Arenas STFC Added Introduction, Introduction to Requirements and
KAOS Summary, Conclusion

0.7 20/11/07 | Benjamin Aziz STFC Applied Corrections Corresponding to the First Re-
viewer’s Comments

0.8 21/11/07 | Benjamin Aziz STFC Applied Corrections Corresponding to the Second Re-
viewer’s Comments

0.9 03/12/07 | Benjamin Aziz STFC Updated the Goal and Anti-Goal Models including the
Figures

1.0 04/12/07 | Benjamin Aziz STFC Corrected a few Typos

Reviewers:

Christine Morin and Alexander Reinefeld

Tasks related to this deliverable:

Task No.

Task description

Partners involved

T3.5.6

Formal Analysis of Security Properties

STFC*

*task leader

Contents

[T TInfroducfionl 4
2 Formal Modelling of Security Requirements| 6
2.1 Introductionl 6
[2.2 Goal-Oriented Requirements Engineering| 7
2.1 The GoalModell 7

222 The Anti-Goal Modell. 8

[2.2.3 Linear Temporal Logic| 8

2.3 Modelling Security Requirements| 9
[2.3.1 Data Storage Confidentiality Goal Model 9

[2.3.2 Data Storage Confidentiality Anti-Goal Model| 13

[2.3.3 Data Storage Integrity Goal Model|. 16

[2.3.4 Data Storage Integrity Anti-Goal Model| 19

[2.3.5 Single-S1ign On Goal Model| 21

[2.3.6 Single-Sign On Anti-Goal Model| 22

[2.4 Discussion on the Security Requirements Analysis| 23

3 Security Protocol Verification| 25
(3.1 On Security Protocol Verification and 1ts Importance for Distributed |

[and Operating Systems| 25
[3.2 A Review of Technologies for Protocol Verification| 25
[3.2.1 Abstract Interpretation| 25

[3.2.2 Model Checking| 26

[3.2.3 Automated Theorem Proving|. 27

[3.2.4 Technology Review Conclusion| 27

3.3 The XtreemOS Mutual Authentication Protocoll 28
[3.4 Formal Model and Analysis of the Protocol| 30
3.4.1 A Formal Definition of Mutual Authenticationl 30

[3.4.2 The Language|. 31

BA3 TheModell« ... 33

[3.4.4 The Data Leakage Analysis| 35

[3.4.5 The Mutual Authentication Analysis|. 37

3.5 Discussion on Protocol Verification in XtreemOS| 37

4 __Conclusions| 39

List of Figures

(1 The goal model for data storage confidentiality.| 10
[2 The anti-goal model for data storage confidentiality.| 14
[3 The goal model for data storage integrity.| 18
4 The anti-goal model for data storage integrity.| 20
[5 The goal model forSSO.| 22
[6 The anti-goal model for SSO.f. 23
[/ The syntax of processes.| 32
(8 ‘The model of the mutual authentication protocol.| 33
[5 'The model of the mutual authentication protocol (Cont.).| 34
(6 Leakage analysis for the XtreemOS mutual authentication protocol.| 36

Executive Summary

This document is the first report of the task on formal analysis of security prop-
erties in XtreemOS. The report focuses on two key areas for the development of
security-critical systems: security requirements and protocol verification. Each
area is formally analysed following suitable methodologies and techniques.

For the security requirements part, we have used the KAOS goal-oriented re-
quirements engineering methodology for analysing previously-defined security
requirements of XtreemOS. This methodology has been tailored to model security
aspects by including an anti-goal model, a variant of an attack tree. The root node
of the tree is the global goal of an attacker. Children of a node are refinements
of this goal, and leafs therefore represent attack steps. This representation offers
support for a systematic exploration of the attacks on the system-to-be.

At the protocol level, we formally model one of the chief protocols in the
XtreemOS security architecture: the mutual-authentication protocol. The proto-
col is modelled using the applied 7-calculus; the ProVerif tool is used to verify
automatically that the mutual-authentication property holds. An attacker is also
included in the model, and model-checking techniques are applied to verify that
data leakage does not occur in the presence of such an attacker.

The task of formal analysis revealed a number of outcomes for both the re-
quirement modelling and the protocol verification parts. For the requirement mod-
elling part, the possibility of a number of attacks related to breaches of confiden-
tiality, integrity and single-sign-on properties were revealed at the requirement
level, such as false ownerships, bad credentials, masquerading, misjudgment of
data origin and multiple ids per user. On the other hand, the protocol verification
part confirmed the minimum secrecy and authenticity properties of the proposed
protocol, even though these were judged to be dependent on the size of the Diffie-
Hellman numbers and the existence of secure, non-cryptographic, channels.

1 Introduction

Formal methods are mathematically-based techniques for the specification, devel-
opment and verification of software and hardware systems. The use of formal
methods for software and hardware design is motivated by the expectation that,
as in other engineering disciplines, performing appropriate mathematical analyses
can contribute to the reliability and robustness of a design.

Formal methods can help us articulate precisely a system’s boundary, i.e. the
interface between the system and its environment; characterize precisely a sys-
tem’s behaviour; define precisely a system’s desired properties; prove a system
meets its specification; and determine under what circumstances a system does
not meet its specification. For example, some methods produce counter-examples,
such as intruder scenarios, which explain why the system is flawed.

These capabilities of formal methods help the practitioner in two ways:

e Through specification, focusing the system designer’s attention. What is
the interface? What are one’s assumptions about the system’s environment?
What is the system supposed to do under this condition or that condition?
What happens if that condition is not met? What are the system’s invariant
properties?

e Through verification, providing additional assurance. Relying on a proof
that a system meets its security goals is better than relying on a gut feeling.

In this document we report the application of formal methods to two important
parts of the development of the security services in XtreemOS: security require-
ments and protocol verification.

First, we apply a formally-based requirements-engineering methodology to
define and analyse three important security requirements of XtreemOS identi-
fied previously in deliverable D3.5.2: data storage confidentiality, data storage
integrity and single sign-on. Each of these requirements has been modelled fol-
lowing the KAOS goal-oriented methodology, including attack scenarios that al-
low one to determine potential vulnerabilities in the system. This work helps de-
signers to describe unambiguously their requirements, to define the assumptions
of the system environment, and to specify XtreemOS security services and their
interface.

Second, we verify formally the XtreemOS mutual-authentication protocol,
presented previously in deliverable D3.5.3. This protocol aims at proving a user’s
identity in the context of a Virtual Organisation (VO), based on the classic Diffie-
Hellman key agreement protocol. Our approach has consisted in (1) defining for-
mally the meaning of the mutual authentication property; then (2) modelling the
protocol using the applied m-calculus, a variant of the well-known m-calculus; and

4

(3) verifying automatically that the mutual-authentication property holds in the
protocol using the ProVerif tool. We have also verified that the protocol does not
leak data to external attackers. The initial version of the protocol proved to be
correct, but some parts of the protocol could be interpreted ambiguously, so as a
result of this formal work a new version of the protocol has been produced.

2 Formal Modelling of Security Requirements

2.1 Introduction

The elaboration of requirements is a crucial step in the development of software-
intensive security-critical applications. A missing, inadequate, imprecise or in-
consistent requirement might cause the resulting application to have vulnerabili-
ties, despite the huge amount of work that might be invested in implementing the
elaborated security requirements.

Security requirements are generally organised into the following non-exhaustive
taxonomy known as the C.I.A. taxonomy [9]:

e Confidentiality requirements prescribe that sensitive information be not
disclosed to unauthorized agents.

o Integrity requirements prescribe that information is changed only in a
specified and authorized manner.

¢ Availability requirements prescribe that the system must be accessible and
usable upon demand by some authorized entity.

This chapter models formally a subset of the security requirements identified
previously in XtreemOS deliverable D3.5.2, Security Requirements for a Grid-
Based OS [1]]. Above taxonomy has motivated us to select three security-critical
requirements identified in D3.5.2: data storage confidentiality, data storage in-
tegrity, and single sign-on. It could be argued that this selection is not exhaustive,
but we hope that the method described below could guide developers to analyse
their security requirements more rigorously according to the project needs.

It is not yet very clear how to identify security requirements systematically
through the various stages of the requirements engineering process. Security re-
quirements are sometimes left unspecified, notably because of the cost of identi-
fying them and because they are not clearly visible in the implementation, unlike
functional requirements. The oldest practices rely on general guidelines, partial
reuse of existing requirements model, or peer reviewing. Two other trends have
emerged, the first one relies on refinement of the desired security properties and
the second one relies on attack identification and prevention.

For the formal work on security requirements in XtreemOS, we have followed
the recent trends on requirements engineering — refinement of security proper-
ties and attack identification — by applying the KAOS requirements-engineering
methodology [20]].

2.2 Goal-Oriented Requirements Engineering

KAOS is a generic methodology that is based on the capturing, structuring and
precise formulation of the system goals [20]. A goal is prescriptive description
of system properties, formulated in non-operational terms. A system includes not
only the design but also its environment. Goals are refined and operationalised
in a top-down manner as the system is designed or bottom up approach while re-
engineering existing systems. The approach also supports adverse environments,
composed of possibly malicious external agents trying to violate the system goal
rather than to collaborate in the goal fulfillment. As a Grid system is typically
composed of a number of interacting nodes immersed in an open and possibly
adverse environment, this approach fits our needs well.
A KAOS model is composed of a number of interrelated sub-models:

e The goal model captures and structures the assumed and required properties
of a system. In our case we will focus on security properties.

e The agent model assigns goals to agents in a realizable way. Discovering
the responsible agents is the criterion to stop a goal-refinement process.

e The object model is used to identify the concepts of the application domain
that are relevant with respect to the requirements and to provide static con-
straints on the operational systems that will satisfy the requirements. The
object model consists of objects from the stakeholders’ domain and objects
introduced to express requirements or constraints on the operational system.

e The operation model details, at state-transition level, the actions an agent
has to perform to reach the goals it is responsible for.

e The anti-goal model captures attacks on the system and how they are ad-
dressed. This model is built in parallel with the goal-model and helps
discover goals that will improve the robustness of the system, especially
against malicious agents whose aim is to break the high level goals of the
system.

In our work, we have focused only on the goal and anti-goal models, since they
allow one to refine security properties and to construct attack trees respectively.

2.2.1 The Goal Model

The goal model is the driving model of the KAOS language. It declares the goals
of the composite system. A goal defines an objective the composite system should
meet, usually through the cooperation of multiple agents. An example of goal for

7

a meeting scheduling problem is the goal Goal [Maintain Data Storage Confiden-
tiality] requiring that the confidentiality of a data storage must be maintained all
time.

Goals are organized in AND/OR refinement-abstraction hierarchies where higher-
level goals are in general strategic, coarse-grained and involve multiple agents
whereas lower-level goals are in general technical, fine-grained and involve less
agents. In such structures, AND-refinement links relate a goal to a set of subgoals
(called refinement) possibly conjoined with domain properties; this means that
satisfying all subgoals in the refinement is a sufficient condition in the domain for
satisfying the goal. OR-refinement links may relate a goal to a set of alternative
refinements; this means that satisfying one of the refinements is a sufficient con-
dition in the domain for satisfying the goal. Goal refinement ends when every
subgoal is realizable by some individual agent assigned to it, that is, expressible
in terms of conditions that are monitorable and controllable by the agent. A re-
quirement is a terminal goal under responsibility of an agent in the software-to-be;
an expectation is a terminal goal under responsibility of an agent in the environ-
ment (unlike requirements, expectations cannot be enforced by the software-to-
be). Goals prescribe intended behaviors; they can be formalized in a real-time
temporal logic.

2.2.2 The Anti-Goal Model

In the context of security engineering, it is important to model attackers, their
goals and capabilities, the software vulnerabilities they can monitor or control, and
attacks that satisfy their goals based on their capabilities and on the system’s vul-
nerabilities. In [21], such models are called anti-models and the attacker’s goals
are called anti-goals, including malicious obstacles to security goals. Anti-goals
should of course be distinguished from the goals the system under consideration
should satisfy. Anti-models should lead to the generation of more subtle threats
and the derivation of more robust security requirements as anticipated counter-
measures to such threats.

2.2.3 Linear Temporal Logic

Both goals and anti-goals are formally modelled using Linear Temporal Logic
(LTL) formulae. Formulae, P, (), in LTL are built from the usual logic connectors
(A V = —«) as well as the following temporal modal operators:

e oP: This is the next operator, which says that P has to hold in the next state.

e [1P: This is the always operator, which says that P has to hold from this
point in time and all subsequent states.

e (O P: This is the eventually operator, which says that P has to hold at some
time in the future.

e P U Q: This is the until operator, which says that () has to hold now or
some time in the future and until then, P must hold. Once () occurs, P does
not have to hold any more.

We also write, (P = @) to mean (P —). In the following sections, we shall
use the language of LTL in modelling the security goal and anti-goal models.

2.3 Modelling Security Requirements

In the following sections, we define the goal and anti-goal models for three secu-
rity properties: data storage confidentiality, integrity and single-sign on.

2.3.1 Data Storage Confidentiality Goal Model

The confidentiality requirement for data storage we consider here is one of the se-
curity requirements recognised by the test case scenarios in the XtreemOS project.
The requirement is highlighted as R78 in deliverable D3.5.2 [[1].

The requirement considers only access control as a mechanism for ensuring
the confidentiality of data stored on a system. Therefore, we do not consider other
mechanisms for achieving confidentiality such as encryption or non-interference
here. Only valid principals of the Grid can access data stored on resources. Prin-
cipals are defined as being the users, administrators or services present in the Grid,
whereas data is defined as being any data stored on the local or grid-based filesys-
tem, data present in a shared memory or data contained within a license. A valid
principal then is defined as follows:

e the owner of the data, or
e a non-owner principal who is a member of a VO, and:

— the VO is authorised to access the data, and

— the principal is assigned to a task requiring access to the data.

The last condition assumes the principle of least privilege, which states that prin-
cipals should obtain no more than their minimum (access) rights necessary to
achieve their functionality. Any principal not satisfying the conditions above is
considered to be an invalid principal.

Using KAOS concepts, the goal model of the data storage confidentiality is
shown in Figure[I] Before defining the formal goal model for confidentiality, we
introduce a few useful sets and predicates:

9

diyssaguep ybnouy) ssauaan Aenuapyuos

[

diysiaumy ybBnoay] sseuann Apequapyuo

—

ssauaa AlBuapyuoy fageg Ayenuapyuos

Auenuepyucy

Figure 1: The goal model for data storage confidentiality.

10

VO: the set of all VOs.

Data: the set of all data including that which may be created and used by
XtreemOS applications.

Principal: the set of principals in a VO. Principals may be users, adminis-
trators or services present on the Grid.

Task: the set of tasks running in a VO. Tasks are usually assigned to princi-
pals in the VO.

Entity: 1s the union set VO U Data U Task.

Credential: This is the set of credentials. A credential may be a password,
a certificate or any other mechanism.

Attribute: This is the set of attributes of a credential. This set includes
data ownership, VO membership, task assignment and data read and write
attributes.

Right: is the set of access rights, read and write. Note that Right C Attribute.
For the case of the confidentiality property, we only consider the right to
read data.

owner : Principal x Data — B is a predicate on principals and datasets
denoting that a principal owns a dataset.

member : Principal x VO — B is a predicate on principals and VOs denot-
ing that a principal is a member of a VO.

assigned : Principal x Task — B is a predicate denoting that a principal is
assigned to some task.

requires : Task x Data — B is a predicate on tasks and datasets denoting
that a task requires a dataset.

hasVORights : Principal x Data x VO x Right — B is a predicate on
principals and datasets denoting that a principal has a right (read or write)
to access the dataset and that the right was issued by some VO.

binding : Principal x Entity x Attribute X Credential — B is a predicate
on principals and entities denoting that a principal is bound to the entity by
means of some credential and this binding has the specified attribute.

issued_By : Credential x VO — B is a predicate stating that a credential is
issued by a VO.

11

Using these sets and predicates, we formalise the top-level goal of data storage
confidentiality as follows:

Goal [Confidentiality]
FormalDef Vp € Principal,d € Data :
authorised(p, d, read) <
(owner(p,d) vV (Fvo € VO, t € Task : member(p,vo) N\ hasVORights(p, d,vo, read) N
assigned(p,t) A requires(t,d)))

where authorised : Principal x Data x Right — B is a predicate denoting that a
principal is authorised to access some data with some right (in our case, the right
to read the data). Next, we break down the top-level goal in terms of the following
two subgoals:

Goal [Confidentiality Safety]
FormalDef Vp € Principal,d € Data,r € Right :
authorised(p, d, read) =
(owner(p,d) V (Jvo € VO, t € Task : member(p,vo) N hasVORights(p, d, vo, read) N
assigned(p,t) N requires(t,d)))

Goal [Confidentiality Liveness]
FormalDef Vp € Principal,d € Data :
authorised(p, d, read) <
(owner(p,d) vV (Jvo € VO, t € Task : member(p,vo) N\ hasVORights(p, d,vo, read) N
assigned(p,t) A requires(t,d)))

The first subgoal can only be true if it is true that the principal is either the owner
or a valid member of a VO. Therefore, it denotes safety of confidentiality through
the sufficiency of the right side condition. In the second subgoal, the left side must
be true if the principal is the owner of the data or a valid VO member for the goal
to be true. Therefore, it denotes liveness of confidentiality. Now, we break down
the second subgoal further on to the following two subgoals:

Goal [Confidentiality Liveness Through Ownership]
FormalDef Vp € Principal,d € Data,r € Right :
authorised(p, d, read) < owner(p,d)

Goal [Confidentiality Liveness Through Membership]
FormalDef Vp € Principal,d € Data,r € Right :
authorised(p, d, read) < (Jvo € VO, t € Task : member(p,vo) A
hasVORights(p, d,vo, read) N assigned(p,t) N requires(t,d))

Note that read in the first subgoal does not affect the predicate since an owner
has exclusive rights over its datasets (including the right to read the data). Finally,

12

we give Grid-based domain-specific definitions of the predicates appearing on the
right side of these implications.

Definition [Owner Credential Validated]
FormalDef (Vp € Principal,d € Data) : owner(p,d) <
(Jer € Credential : binding(p, d,own,cr) N well_defined(cr))

Definition [Assignment Credential Validated]
FormalDef (Vp € Principal,t € Task) : assigned(p,t) <
(Jer € Credential - binding(p, t, assigned, cr))

Definition [Member Credential Validated]
FormalDef (Vp € Principal,vo € VO) : member(p,vo) <
(Jer € Credential : binding(p, vo, member, cr))

Definition [Rights Credential Validated]
FormalDef (Vp € Principal,d € Data,vo € VO, r € Right) :
hasVORights(p, d, vo, read) < (Jer € Credential : binding(p, d, read, cr) N
issued_By(cr,v0))

In addition to the above definitions, we state the well-definedness of ownership
credentials as follows:

Definition [Credential Well-Definedness]|
FormalDef Vcr € Credential :
well_defined(cr) < (Vp,p' € Principal,d € Data :
binding(p,d,own,cr) A binding(p',d,own,cr) = p=7p')

The requirement essentially states that a credential cannot refer to more than
one principal. An example of this requirement is that a certificate, which has a
unique serial number, must refer to only one principal. The public key of the
principal contained in the certificate represents the data to which the principal is
bound.

2.3.2 Data Storage Confidentiality Anti-Goal Model

The anti-goal model of data storage confidentiality is shown in Figure[2] As men-
tioned in section the anti-goal model can be obtained by negating the goal
model at all levels. This will help reveal internal vulnerabilities and external at-
tacks targeted against the data storage confidentiality property. We start at the
top-level:

To obtain the formal model, we start by negating the "Confidentiality Safety",

13

juswiubissy Yse] Jo ¥oen 4 _ [Enuapai) diysisgquiap O 1o 3IET _
SIBOWS|Y O] UDESUOUINY JO |BluBg 7 _ SJBUMOD Q) UONESOWNY JO [BlusQ
uoeaig Alfenliepyuog

_ [enuepei) 1B O Jo HoeT _ 7 #oeny Bupeienbsepy

yoeelg Aleyes AlenuepuLeD

Figure 2: The anti-goal model for data storage confidentiality.

14

the "Confidentiality Liveness Through Ownership" and the "Confidentiality Live-
ness Through Membership" subgoals, as follows:

AntiGoal [Confidentiality Safety Breach]

FormalDef Jp € Principal, d € Data : { (authorised(p, d, read) N
—(owner(p,d) V (Fvo € VO,t € Task : member(p,vo) A
hasVORights(p, d, vo, read) \
assigned(p,t) N requires(t,d))))

AntiGoal [Denial of Authorisation to Owners]
FormalDef dp € Principal,d € Data :
O (—authorised(p, d, read) N owner(p,d))

AntiGoal [Denial of Authorisation to Members]
FormalDef dp € Principal, d € Data :
O (—authorised(p, d, read) N\ (Jvo € VO,t € Task : member(p,vo) A
hasVORights(p, d, vo, read) N
assigned(p,t) N requires(t,d)))

Though interesting, the last two anti-subgoals are outside the scope of confi-
dentiality breaches since these deal more with the denial of service-like vulnera-
bilities. Therefore, we only focus on the first anti-subgoal. It is possible to expand
the "Confidentiality Safety Breach" anti-subgoal by substituting the definitions of
the different predicates into the anti-subgoal. However, for lack of space, we shall
consider only the interesting cases of the ownership and the VO rights predicates.
We start with the former:

AntiGoal [Confidentiality Safety Breach]
FormalDef dp € Principal,d € Data,Ver € Credential,vo € VO,t € Task :
O (authorised(p, d, read) N
(—binding(p, d,own, cr) vV —well_defined(cr)) N
(—member(p,vo) V' —hasVORights(p,d,vo, read) V/
—assigned(p,t) V —requires(t,d)))

This anti-subgoal introduces the predicate, —well_defined(cr), which expresses
badly-defined credentials. By substituting the definition of this predicate into the
anti-subgoal, we get.

AntiGoal [Masquerading Attack]
FormalDef Ip,p’ € Principal,d € Data,Ncr € Credential,vo € VO,t € Task :
O (authorised(p, d, read) N
(—binding(p, d,own, cr) V
(binding(p, d,own, cr) A binding(p’, d,own, cr) A
—(p=1p"))) A

15

(—member(p,vo) V —hasVORights(p,d, vo, read) V
—assigned(p,t) V —requires(t,d)))

This anti-subgoal models the case in which a credential refers to two different
principals both as owners of the same dataset. In our opinion, this constitutes a
form of masquerading attacks in which one principal pretends to be another by
presenting information to the system pertaining to be the other principal.

On the other hand, expanding with the definition of the lack of Vo rights,
—hasVORights(p, d, vo, read), yields the following anti-subgoal:

AntiGoal [Lack of VO Right Credential]
FormalDef dp € Principal,d € Data,Ver € Credential,vo € VO,t € Task :
O (authorised(p, d, read) N
(mowner(p,d)) N
(—member(p,vo) V
(=binding(p, d, read, cr) V —issued_By(cr,vo)) V
—assigned(p,t) V —requires(t,d)))

This anti-subgoal expresses a hacking attack in which the principal is au-
thorised to read the data even though it has no VO rights credential. Similarly,
it is possible to express other scenarios by expanding on the definitions of the
—assigned and —member predicates, as follows:

AntiGoal [Lack of VO Membership Credential]
FormalDef dp € Principal,d € Data,Ver € Credential,vo € VO,t € Task :
O (authorised(p, d, read) N —owner(p,d) N
(—binding(p, vo, member, cr) ' —hasVORights(p, d, vo, read) V/
—assigned(p,t) V —requires(t,d)))

AntiGoal [Lack of Task Assignment]
FormalDef dp € Principal,d € Data,Ver € Credential,vo € VO,t € Task :
O (authorised(p, d, read) N —owner(p,d) N
(—member(p,vo) V —hasVORights(p,d,vo, read)
—binding(p, t, assigned, cr) V —requires(t,d)))

Which express the two scenarios where the principal can read the data even
though it is not a member of the VO nor is assigned to a task requiring the data.

2.3.3 Data Storage Integrity Goal Model

The second security requirement considered here is that of data storage integrity.
This requirement appears as R80 in [[1]. In this requirement, integrity is defined
as the "inability to prevent illegal changes to data", both locally and remotely.
Essentially, R80 identifies three scenarios in which data integrity is an issue:

16

e Data belonging to a principal may be stored in a remote trust domain. This
has the implication that the domain may be able to modify the data without
the principal’s consent.

e Data belonging to a principal and stored in the local principal’s trust domain
may be shared with other external principals who may have access to the
data. This implies that those principals may be able to modify the data,
again without the principal’s consent.

e Finally, a principal sourcing some data must make sure that the data in-
tegrity is validated. This is due to the fact that data may be sourced from
non-owner principals who may have illegally modified the data.

In all these scenarios, a principal is authorised to modify the data if the principal
is the owner of the data or a member of a VO and have the appropriate rights to
make changes to the data.

Using the KAOS goal model, we can illustrate the data storage integrity re-
quirement as in Figure (3 More formally, we can state the property in terms of
temporal logic operators as follows:

Goal [Integrity]
FormalDef Vp € Principal,d € Data :
O ((authorised(p, d, write)
(owner(p,d) V (Jvo € VO : member(p,vo) N hasVORights(p,d,vo,write)))) A
(sourced(p, d) = validated(p,d)))

where we introduce two new predicates, sourced : Principal x Data — B,
which states that a principal has sourced some data and validated : Principal %
Data — B to state that a principal has validated the origin of the data. The
integrity goal is further refined to the following subgoals:

Goal [Safety of Writing Integrity]
FormalDef Vp € Principal,d € Data :
authorised(p, d, write) =
(owner(p,d) V (Jvo € VO : member(p,vo) A hasVORights(p,d, vo, write)))

Goal [Liveness of Writing Integrity]
FormalDef Yp € Principal,d € Data :
authorised(p, d, write) <
(owner(p,d) V (Fvo € VO : member(p,vo) N hasVORights(p,d,vo,write)))

Goal [Sourcing Integrity]
FormalDef Vp € Principal,d € Data :
sourced(p, d) = validated(p, d)

17

palsnu) Asojeulis

-

uoljepije, ainjeubis

uouepieA eleq

AuBsu) Bupunog _

o

_ MuBau| Bunip Jo fajes

fubaiu) Bunupy Jo ssauan

B

AyuBayyy

Figure 3: The goal model for data storage integrity.

18

We only consider the first and third subgoals here, since these are more related
to the safety of our integrity property. The first subgoal states that in order to
be able to write to some data, a principal must be either the owner of the data
or a member of a VO with appropriate writing access right issued by the VO.
Note here that in this subgoal, we are using predicates introduced in the previous
section on confidentiality, except now we talk about writing rather reading access
rights. In the third subgoal, every data that is sourced must be also validated by the
principal that is sourcing it. The second goal is more related to scenarios where
being the owner or valid VO member guarantees the principal the right to write to
the dataset. We consider such goal as a liveness property. Next, we need to clarify
by what we mean by data validation through the following subgoal:

Goal [Data Validation]
FormalDef Yd € Data,p € Principal :
validated(p,d) = (3p’ € Principal : signed(d,p’) N trusts(p,p’))

The signed : Data x Principal — B predicate states that some data is signed
by a principal and the trusts : (Principal U CA) x (Principal U CA) — B predicate
states that a principal or a Certification Authority (CA) trusts another principal or
CA. The definition of the signed and trusts predicates are given as follows:

Definition [Signature Validation]
FormalDef Vd € Data,p € Principal :
signed(d,p) < (3sig € Signature : keyBy(sig, p) N hashBy(sig,d))

Definition [Signatory Trusted]
FormalDef Vp,p' € Principal : trusts(p,p’) < (Jca € CA : trusts(p,ca) N
trusts(ca, p’))

Where the first definition states that for some data to be signed by a principal,
there must exist a digital signature such that the private key signing the data be-
longs to the principal and the hash in the signature belongs to the data. The second
definition states that trust is a transitive relation.

2.3.4 Data Storage Integrity Anti-Goal Model

The anti-goal model for data storage integrity is defined by taking the negation
of each of the goals and requirements defined in the previous section. Informally,
the goal is illustrated in Figure l] We start by negating the "Safety of Writing
Integrity" and the "Sourcing Integrity" subgoals as follows:

AntiGoal [No Safety of Writing Integrity]
FormalDef dp € Principal,d € Data :

19

SM0WaY 0 UORESLOUNY JO [EIUS]

_ SIBUML) O] LUDIESLOLINY JO [BIUBQ

yoesag Aubeiu) Buiminog

fauBe Bunitn b feses on

Figure 4: The anti-goal model for data storage integrity.

20

authorised(p, d, write) N
—owner(p,d) N (Yvo € VO : —member(p,vo) V —hasVORights(p,d,vo, write))

AntiGoal [Sourcing Integrity Breach]
FormalDef dp € Principal,d € Data :
sourced(p, d) N\ —walidated(p, d)

Expanding along the first anti-subgoal, we could obtain the scenarios where
the principal has managed to write to the dataset without being its owner nor being
a valid member of a VO with appropriate rights. This anti-subgoal can be further
expanded using credential-specific definitions and the credential well-definedness
property. On the other, expanding the second anti-subgoal along the definition of
validated(p, d) yields the following:

AntiGoal [Sourcing Integrity Breach]
FormalDef dp € Principal,d € Data :
sourced(p,d) N —(Vp' € Principal : —signed(d,p’) vV —trusts(p,p’))

This further yields the following anti-subgoal:

AntiGoal [Sourcing Integrity Breach]
FormalDef dp € Principal, d € Data :
sourced(p,d) N =(Vp' € Principal :
(Vsig € Signature : —keyBy(sig,p) V —hashBy(sig,d)) V
(Vea € CA . —trusts(p,ca) V —trusts(ca,p')))

This is implies that the sourced data either had not been signed by a trusted
principal, or it is signed by a principal that cannot be trusted due to the lack of a
trust chain.

2.3.5 Single-Sign On Goal Model

Single-Sign On (SSO) is a method of authentication that associates a unique iden-
tifier with every user in a VO or across VOs at authentication time such that
changes made in VO resource configurations are transparent to the user and such
that VO resources have a common identification mechanism for all users.

The requirement to have SSO in project XtreemOS was identified in D3.5.2
[1] as R82. Here, we define the informal SSO goal model as in Figure [5] We first
introduce a few useful predicates.

e User: The set of grid users. We assume that User C Principal.
e ID: The set of user ids.

21

Single-Sign On

User Authenticated | | User Has Unigue 1D

Figure 5: The goal model for SSO.

o authenticated : User x VO — B is a predicate to state whether a user has
been authenticated or not by a VO.

e single_id : User x VO — B is a predicate to state whether a user has a
single id or not within a VO.

The formal model is then defined as the following goal, which introduces the
sso : User x VO — B predicate to denote whether a user enjoys SSO within a VO
or not:

Goal [Single-Sign On]
FormalDef Vu € User,vo € VO :
sso(u,vo) = (authenticated(u,vo) A single_id(u,vo))

The user authentication and single user id predicates are defined as follows.

Definition [User Authenticated]
FormalDef Yu € User,vo € VO : authenticated(u,vo) < (Jer € Credential
binding(u, id,owns, cr) A issued_By(cr,vo))

Definition [User Has Unique ID]
FormalDef Vu € User,vo € VO, cr,cr’ € Credential,id,id" € ID :
single_id(u,vo) < (binding(u,id,owns,cr) A binding(u,id',owns,cr’) A
issued_By(cr,vo) A issued_By(cr',vo) = id =1id")

In the first definition, a user is considered to be authenticated in a VO if and
only if there is a credential binding the user to its identity (such as a certificate) and
the credential is issued by the VO. The second definition states that a user must
not have two different identities within a VO, even though it may have multiple
(different) certificates issued by that VO.

2.3.6 Single-Sign On Anti-Goal Model

The informal model of SSO anti-goal is illustrated in Figure [f] As in the case

22

Single-SiEn On Breach

Lack of User Credential User Has Multiple 1Ds

Figure 6: The anti-goal model for SSO.

of confidentiality and integrity, we define the formal anti-goal model of SSO by
negating the top-level goal:

AntiGoal [Single-Sign On Breach]
FormalDef ¢ (Ju € User,vo € VO :
sso(u,vo) A (—authenticated(u,vo) V —single_id(u,v0))

Expanding the anti-subgoal along the definitions of the authentication and single
user id predicates, we obtain the following two vulnerabilities:

AntiGoal [Lack of User Credential]
FormalDef ¢ (Ju € User,vo € VO :
sso(u,vo) A ((Ver € Credential : —binding(u, id, owns, cr) V —issued_By(cr,vo))V
—single_id(u,vo))

AntiGoal [User has Multiple IDs]
FormalDef ¢ (Ju € User,vo € VO :
sso(u,vo) A (—authenticated(u, vo) V (binding(u, id,owns, cr) A
binding(u,id’,owns, cr’) A issued_By(cr,vo) A issued_By(cr’,vo) A =(id = id")))

The former represents the case of a user who is capable of obtaining the SSO
capability but that does not have a valid identity credential issued by the VO. The
second however refers to the case of the user who has managed to obtain multiple
identities but it is still considered to have the SSO capability. This latter case is
dangerous as it may lead an SSO-based system to assume that there are two users,
and hence leads to a form of non-existent user attack.

2.4 Discussion on the Security Requirements Analysis

The modelling of security requirements using the goal and anti-goal models of
the KAOS methodology revealed interesting results as well as enriched our under-
standing of the security requirements underlying the XtreemOS operating system.
In particular, one may summarise the outcome in the following paragraphs:

23

e The formalisation of the data storage confidentiality and integrity require-
ments revealed that these requirements focus on one aspect only: access
control. In R78 and R80, both confidentiality and integrity are assumed to
be achieved through maintaining authorised access to the data. There are
other means by which these properties can be maintained, for example, the
use of cryptography or data isolation.

e The anti-goal model helped reveal a number of interesting threat and vul-
nerability scenarios:

1. Confidentiality: A principal may be able to break the system by gain-
ing false ownership, membership or task assignment despite the lack
of valid necessary credentials. Therefore, it is recommended that the
system ensures that the credential mechanism (both at producer and at
consumer) is robust and cannot be bypassed. Also, it is recommended
that the credentials are not issued unnecessarily and are well-defined,
since not upholding the latter property of credentials may lead to mas-
querading attacks.

2. Integrity: One of the interesting integrity vulnerabilities revealed by
the anti-goal model was the possibility that the system may attribute
some data to a principal who has not signed it. In other words, the
system may misjudge the origin of the data.

3. SSO: The interesting vulnerabilities that we found in the case of SSO
was that the system may issue multiple identities for the same user or
the user may lack the necessary identity credential.

24

3 Security Protocol Verification

Protocol verification refers to the process of analysing, at static time, a protocol in
a formal and rigorous manner in order to prove/disprove certain properties about
that protocol. The verification of security protocols often aims at establishing that
the protocol maintains certain security properties, such as the secrecy of session
keys. These properties are usually expressed as safety properties in which the
protocol will always maintain the property or as liveness properties, in which the
protocol will eventually arrive at some state satisfying the property.

In the following sections, we shall discuss security properties for the XtreemOS
mutual authentication protocol from the above perspective.

3.1 On Security Protocol Verification and its Importance for
Distributed and Operating Systems

Security protocols constitute an important and vital element in the infrastructure
needed for the secure communication and processing of information in distributed
systems. The increasing complexity of these systems and their security require-
ments creates a need for more robust and secure protocols that ensure their purpose
is met with minimum vulnerabilities and threats from malicious attackers. There-
fore, it often becomes necessary to treat such protocols as critical components of
the system that require rigorous logical methods to verify their security properties.

3.2 A Review of Technologies for Protocol Verification

The area of formal protocol verification comprises a wide range of technologies
such as abstract interpretation, theorem proving and model checking that vary
according to the degree of automation, the ability to handle complex systems and
the expressive power that allows different security properties to be verified.

3.2.1 Abstract Interpretation

In abstract interpretation, a model of the system is defined using a formal lan-
guage, such as a process algebra, after which the semantics of the language are
defined in terms of an abstract semantic domain with a finite size instead of the
usual interpretation carried out in a concrete and precise domain but that may have
an infinite size. The idea of abstract interpretation was first formalised by Cousot
and Cousot in [[10] and since then, it has been used widely for the verification of
security protocols [6) 8, [13, [16]. In abstract interpretation, the results obtained
are sound but approximate in the sense that any vulnerability or attack present in
the protocol is necessarily captured by the analysis. However, the analysis may

25

sometimes produce false positives, i.e. attacks or vulnerabilities that do not exist
in the protocol. For a good reference on the principles of abstract interpretation
and other static analysis methods, the reader is referred to [[17]].

One efficient abstract interpretation-based static analysis tool is ProVerif [7]]
(http://www.proverif.ens.fr/). The tool models a security protocol
using Horn-clauses and uses abstract interpretation to achieve analyses for un-
bounded number of sessions for the protocol and it considers a model of the at-
tacker based on Dolev-Yao’s most powerful attacker [[12]]. This attacker is capable
of receiving and sending messages over public channels and also applying any
cryptographic operations over those messages. ProVerif is also equipped with
a translator that allows it to accept as input models written in message-passing
process algebra (such as the pi-calculus [15]). This ability renders the tool very
attractive since message-passing process algebra are naturally suitable to the for-
mal modelling of security protocols, the latter being based on message-passing.
For this reason, and the fact that ProVerif is one of the most efficient and expres-
sive analysis tools specially designed for security protocols, we shall be adopting
ProVerif for the analysis to follow.

3.2.2 Model Checking

In model checking, a model of the system is constructed in the input formal lan-
guage of the model checker after which the state space of the system is explored in
search of possible traces than satisfy the property being verified often expressed as
a logical formula. In particular, the system corresponds to a finite state machine,
1.e., a direct graph, in which the nodes represent the states of the system and the
edges are transitions between those states. Atomic propositions then are used to
represent properties that hold at a certain point of the computation. If the state
space is finite, the model checking problem reduces to a graph search. However,
in the case of complex systems, the state space tends to be very large or even infi-
nite. In such cases, it is necessary to utilise certain techniques to avoid state space
explosions. For example, in symbolic model checking, the graph corresponding
to the state space is never built but rather encoded as a propositional logical for-
mula. In partial order reduction, the number of concurrent process interleaving is
reduced by not considering certain unnecessary interleaving. On the other hand,
sound but incomplete abstraction techniques are used to construct a simplified
model of the system.

The area of model checking comprises a wide range of research and tools.
We refer the reader to [J5, [19]], which provide excellent overviews of some of
the model checking research and tools specialised in the area of security pro-
tocol verification. More recent projects in the area include the AVISPA project
(http://www.avispa-project.org/), which is also concerned with the issue of "speed-

26

ing up the development of the next generation of security protocols and to im-
prove their security". Tools for finding flaws or asserting correctness of a pro-
tocol should be completely automated and easily usable, to be integrated in the
protocol development and standardization processes. Their main concern is that
(semi-)automated protocol analyzers have been proposed in the past recent years,
but those perform automatic analysis for small and medium-scale protocols only.
The AVISPA Library comprises more than one hundred security problems derived
several protocols.

3.2.3 Automated Theorem Proving

In automated theorem proving, a computer program is used to show that some
statement called the conjecture is a logical consequence of a set of other state-
ments called axioms and hypotheses. The language of conjectures, axioms and
hypotheses is usually logic-based, such as first order logic or some higher order
logics. In the problem of automated proof verification is concerned certifying that
the proof of a theorem is a valid one. This then requires that each step of the proof
be verified by a program or a primitive recursive function, and hence the problem
should always be decidable. However, in reality, this is not always possible due to
Godel’s Incompleteness Theorem. The implication of this theorem is that there are
logical questions that require an unbounded amount of resources to solve them.
Therefore, theorem provers may fail to terminate and are usually designed to be
interactive programs that require the intervention of the user.

Theorem proving techniques have been applied to the problem of security
property verification in cryptographic protocols. A survey of these techniques
and associated logics can be found in [J5].

3.2.4 Technology Review Conclusion

Our choice of approach was mainly driven by the following main considerations:

e The natural suitability of the input language of the tool for modelling secu-
rity protocols. Such a language has to be message-passing and capable of
expressing security primitives (such as cryptographic functions).

e The presence of supporting tools and the degree of automation of those tools
as well as their efficiency and natural ability in verifying security properties.

e The approach as well as the supporting tools must be able to deal with in-

finite runs of the system, since security protocols are assumed to have an
infinite number of sessions.

27

After considering the different approaches (i.e. abstract interpretation, model
checking and theorem proving) in the area of static analysis of security proto-
cols, we found that the abstract interpretation using process algebra such as the
m-calculus was very well suited to the modelling of security protocols. Further-
more, this approach is supported by one of the most efficient static analysis tools
targeted at the analysis of security protocols, namely ProVerif.

3.3 The XtreemOS Mutual Authentication Protocol

This section presents a revised version of the mutual authentication protocol de-
scribed in the first specification of security services (refer to D3.5.3 [2]). The
protocol is based on the classic Diffie-Hellman key agreement protocol[11]. At
the end of this protocol, a shared secret key is agreed between communicating par-
ties who (a) previously are unknown to each other; and (b) are under two different
administrative domains, who may or may not use the same kind of authentication
methods. This protocol aims to prove a user’s identity in the context of a VO.
The following is a list of notations used in the protocol:

e [UU: auser within a Home Authentication Authority (HAA)
e User;q: the user’s unique identity within the HAA

e VO,4: the identity of a VO that U is registered with

e N: aresource node!

e VOM: a VO management authority that runs CDA and X-VOMS
e g, n: the Diffie-Hellman (DH) parameters?

e [Ry: arandom number generated by entity YV

e Gy aconstant where Gy = g™ mod n

e Gyx: aconstant where Gy x = (¢"**mod n)**mod n

e Ty : atimestamp generated by entity Y

e K3 : the private key of entity Y’

e Ky the public key of entity Y

'Examples of a node are a resource node for application execution or a MRC or OSD node in
XtreemFS. In fact, any service that has a public key certificate can be such a node.

2g is the DH exponent (i.e. generator) and 7 is the size of the DH field which the computation
is based upon.

28

o <M>K5: amessage M signed by Y'’s private key
o {M} K3 amessage M encrypted by Y’s public key
e RndM sgy: arandom message generated by entity YV

The mutual authentication protocol consists of the following messages de-
scribed in the classical Alice-Bob style:

1. U —=VOM: User;q, VOiq, g, n, Gy

2. VOM — U: <Useriq, VOiq, g, n, Gu, Tvom> K{on

3. U— N:{<Userig, VOiq, g, n, Gy, Tvom>Ki, 05, BndMsgy, Ty YK
4. N - U: Gy, {RndMsgy, Ty }Gun,{ RndM sgn, Tn}Gun

5. U — N: {RndMsgn,Tn}Gnu

The protocol commences when the user, U, in (1.) requests from its home VO
management authority, VOM, an XOS certificate by submitting to VOM its user
identity U;4, the id of the VO it belongs to, V;,4, the Diffie-Hellman parameters,
g,n, and the constant GGy, which the user computes based on a fresh random
number, Ry, it generated. This initial message is assumed to be communicated
over a trusted secure channel shared between U and VOM. In general, there are
three ways in which such a trusted and secure channel can be established (refer
to D3.5.3, Section 4.2.4). As long as the secrecy and authenticity requirements
are met, this step is not constrained to any specific authentication methods. Once
VOM receives the message, it will check the authenticity of the user and the
validity of its VO membership.

In the next message (2.), VOM replies to U by sending it an XOS certifi-
cate signed by its private key, K7,,,,, and carrying a timestamp, 7y oy, denoting
the expiry time of the certificate. U is then able to use the certificate within its
time validity to authenticate itself to any node in the VO that trusts VOM and to
establish a shared session with that node.

In message (3.), U contacts one such node, NV, over an insecure public channel.
U sends to N the certificate it received from VOM along with a timestamped
message, RndM sgy, Ty, all encrypted with the public key of the node, K. This
ensures that the message is fresh and that it can only be decrypted by N. Once N
receives the message, it checks the validity of the certificate and if it is valid®, it
then generates the public constant, G, as well as the session key Gy .

3Validity needs to be formally defined

29

In message (4.), N then sends to U the public constant Gy along with the
original timestamped message of U encrypted under the session key Gy and a
new timestamped message, RndM sgy, Ty generated by N and encrypted with
Gun. Upon the receipt of this message, U generates its own copy of the session
key, G'ny, which is equivalent to Gy . U then uses Gy to decrypt the two parts
of the message containing RndM sqy, Ty and RndM sgy, Ty. If RndM sgy, Ty
is the same as the original and RndM sgy is fresh (i.e. Tl is recent), then NV is
authenticated and Gy is accepted as the session key by U.

Finally, in message (5.), U sends to N message, RndM sgn, T, encrypted
with its session key Gyy. N then receives the message, decrypts it, and then
checks that the pair RndM sgy, Ty is the same as the original one generated by
N. If this is the case, then N accepts the authenticity of U and the use of Gy
as the session key. At the end of this step, both U and N will have authenticated
themselves and accepted Gy = Gy as their session key, only known by them.

3.4 Formal Model and Analysis of the Protocol

In this section, we formally model and analyse the mutual authentication protocol
introduced in the previous section. Our approach is to first define what we mean
by mutual authentication. Then we construct a model of the protocol in a formal
language that is expressive enough to be able to capture concepts and mechanisms
used in the protocol and that is supported by automated verification tools. Finally,
we use the verification tool(s) to verify that the mutual authentication property is
upheld by the protocol and that external attackers are unable to break the property.

3.4.1 A Formal Definition of Mutual Authentication

Our definition of authentication is based on the type (3) authentication as specified
by Lowe [[18), §3.3]. In this type, two entities, a and b can mutually authenticate
themselves and agree on additional information specific to the protocol session
if each is convinced that the other entity has participated in the run and that the
information exchanged is the same. This is achieved using the concept of commit
and running events. The commit-running events provide a mechanism to ensure
the temporal ordering of protocol steps in a manner leading to (mutual) authenti-
cation. The occurrence of a commit event in b must imply that the running event
in a has already occurred. This means that b has authenticated a. The opposite
authenticates b to a. The commit event must happen after the end of the protocol,
whereas the running event can happen at anytime during the protocol but must
happen before it is over.
More formally, it is possible to define one-way authentication as follows.

30

Definition 1 (One-Way Authentication) Given two processes, A and B, we say
that A authenticates B agreeing on M if A executes event commita(M) and B
executes event running g(M') and the following is true:

(commita(M) = runningzg(M')) A (M = M')

In other words, the definition of one-way authentication states that the occurrence
of running z(M'") precedes the occurrence of commit4(M). Furthermore, by the
time both these events have occurred, their corresponding parameters, M, M’,
must be the same according to some definition of the = relation.

Now, the definition of mutual authentication is formalised as follows, based
on the definition of one-way authentication.

Definition 2 (Mutual Authentication) We say that A and B mutually authenti-
cate each other, if the following holds true:

A authenticates B agreeing on M < B authenticates A agreeing on M’

Here, it is not necessary that M = M’, however, in session key agreement pro-
tocols where the aim is to establish a common session key, the two values must
agree if they represent the common session key. In fact, in our analysis to follow,
this will be the case.

3.4.2 The Language

The syntax of the input language is given in Figure |/l This syntax is based largely
on a version of the m-calculus [[15] called the applied 7-calculus [4], which ex-
tends the 7-calculus with functional constructors/destructors and equational the-
ories defining how constructors and destructors are related to each other. The
meaning of the syntax is described informally as follows: A term, (term), is either
an identifier, a sequence of terms or the application of a function to a sequence
of terms. A fact, (fact), is either a predicate applied to a sequence of terms, an
inequality check of two terms or an equality check of two terms. Using terms and
facts, a process is then defined according to the following constructs:

e ((process)): a process enclosed by two brackets to remove ambiguity.

e | (process): a replicated process, which is capable of spawning as many
copies of itself as is required by the context.

e 0: the null process, which is incapable of any behaviour and cannot evolve
any further.

31

(term) = (ident)
| (seq(term))
ident) (seq(term))

(

(fact) == (ident): seq(term)
| (term) <> (term)
| (term) = (term)

(process) = ({process))

! (process)
0

|
|
| new (ident); (process)

| £ (fact) then (process) [else (process)]

| in ((term), (term))[; (process)]

| out ((term), (term)) [; (process)]

| let (term) = (term) in (process) [else (process)]
| (process) | (process)

| event (term)[; (process)]

Figure 7: The syntax of processes.

new (ident); (process): the process that creates a new identifier with scope
restricted to the residual process.

if (fact) then (process) [eLlse (process)]: a process that checks whether
the specified fact is true. If so, it chooses the then-branch. Otherwise, it
proceeds as the e1 se-branch.

n ({term), (term))[; (process)]: an input process that receives a term
over a channel name (the first indicated term) and uses that term to replace
its input parameter (the second indicated term). It then proceeds as the
residual process. The input parameter has a scope restricted to the residual
process.

out ({term), (term)) [; (process)]: an output process, which sends over a
channel (the first indicated term) a message (the second indicated term) and
then proceeds as the residual process.

let (term) = (term) in (process) [else (process)]: a let-process, which
assigns a term (the second indicated) to another (the first indicated) with
the scope of the residual process. If the assignment fails, the let-process
proceeds as the else-process indicated at the end.

(process) | (process): the parallel composition of two processes, which has
an interleaving semantics.

32

e cvent (term)[; (process)]: an event that has a name and a possible se-
quence of terms that it may synchronise on. The event is followed by the
residual process.

For a formal definition of the semantics of the syntax, we refer the reader to [7]
and [4]].
3.4.3 The Model

We define here a model of the mutual authentication protocol as described in Sec-
tion [3.3| using the syntax of the previous section. The protocol model is shown in

Figure [§]

(* The VOM Process Definition *)
let vom =
(* Get initialised with the VOM private key *)
in (tvom, skVOMO);
(* Receive a Xcert request from a user *)
in (vom, (vl,v2,v3,v4,v5));
(* Check that the user’s name is u - (identification abstraction) *)
if vl=u then
(* Send the user’s Xcert signed by VOM’s private key and timestamped *)
out (vom, sign((v1,v2,v3,v4,v5, Tvom) ,skVOMO))

(* The User Process Definition *)
let p0 =
(* Create a new user random number *)
new Ru;
(* Request an XCert from the VOM #)
out (vom, (u,vid, DHexp, DH fld,g (Ru))); in (vom,xcert);
¢
(* Get initialised with a node’s name and public key *)
in (tu, (nv,pkNO)) ;
(* Create a new message *)
new MSGu;
(* Contact the node and wait for the response *)
out (nv, pubenc ((xcert, M SGu,Tu) ,pkNO0)); in(u, (ml,m2,m3));
(* Generate the session key *)
let ku = f(ml,Ru) in
(* Decrypt the node messages using the session key *)
let md=dec(m2,ku) in
let mb=dec (m3,ku) in
(* Check that the message returned by the node is the same one sent by the user *)
(* If so, signal a running event *)
if m4 = (MSGu,Tu) then event pOrunning(f(g(Rn), Ru));
(* Send to the node its own message back and
signal a commit event agreeing on the session key *)
out (nv,m3) ; event pOcommit(f(g(Rn), Ru)))

Figure 8: The model of the mutual authentication protocol.

33

(* The Node Process Definition *)
let pl =
'
(* Initialise the node with its private key and the VOM public key *)
in (tn, (skN1,pkVOM1)) ;
(* Receive a request from the user *)
in(nv,x);
(* Decrypt the message sent by the user using the node’s private key *)
let (x0,21,x11) = pubdec(x,skN1) in
(* Verify the XCert signed by VOM using the latter’s public key *)
let (x2,23,x4,x5,x55,2555) = checksign(x0,pkVOM1) in
(* Check that the VO id is correct and that the timestamp is fresh *)
if 23 = vid then if 24 = DHexp then
if 5 = DHfld then if x555 = Twom then
(* Create a new random number and message *)
new Rn; new MSGn;
(* Create the session key signal the running event agreeing on the session key *)
let kn = f(x55,Rn) in event plrunning(f(g(Ru), Rn));
(* Send message to the user including g(Rn) *)
out (22, (g (Rn),enc ((x1,z11),kn),enc((MSGn,Tn), kn)));
(* Receive the reply from the user *)
in (nv,x6);
(* Decrypt the message *)
let z7 = dec(x6,kn) in
(* Check that the received message is the same as the original one sent *)
(* If so, signal the commit event agreeing on the session key *)
if 27 = MSGn then event plcommit(f(g(Ru), Rn)))

(* The Protocol Definition *)
(* Create secure private channel names *)
new tvom; new wvom; new tn; new tu; (
(* Create private/public key pair for VOM *)
new skVOM; let pkVOM = pk(skVOM) in
(* Initialise VOM with its private key and advertise its public key *)
out (tvom, skVOM) ; out (attc,pkVOM) ;
(* Initialise as many nodes with their private key and VOM’s public key *)
(* Advertise the node’s public key and initialise the user with the node’s public key *)
'
new skN;
let pkN = pk(skN) in out (attc,pkN) ;
(out (tn, (skN,pkVOM)) | out (tu, (n,pkN)))
))
(* Run the node, the user and the VOM process concurrently *)
(* The attacker is listening on channel attc *)
| (p1) | (p0) | (wom) | (! (in(attc,v)))

Figure 5: The model of the mutual authentication protocol (Cont.).

34

The protocol definition consists of three process definitions: vom representing
the VO management process, p0 representing the user process and p1 representing
the node process. The protocol definition starts creating the private and public
parts of the vom process and initialises it with the private part of the key. It also
advertises the public part over a public channel, attc, that can be read by the
attacker. It then starts initialising any number of nodes with their private keys and
with the public key of vom as well as advertising the public key of these nodes
over attc. At the same time, the protocol process runs the node, the user and vom
processes in parallel with each other.

The vom process is ready to accept a request from a user for an XOS certificate
over a channel, vom, known only to the vom and user processes. The request is
dealt with by sending to the user a signed certificate and then signaling using
an event the termination of vom. The assumption here is that there is a single
user willing to communicate with several nodes. The user then, after receiving the
certificate, starts a replicated process which is able to start mutually authenticating
as many nodes as available. Note the presence of the commit-running events for
both the user and node processes, which will be used to verify the success of
authentication.

The specification of the protocol utilises the following equations defining the
relationship among functions:

getmess(sign(m, k)) =m (1)
checksign(sign(m, k), pk(k)) = m (2)
pubdec(pubenc(z, pk(y)),y) =« (3)

dec(enc(z,y),y) = 4)
fla(y),z) = f(g(x),y) (5)

Where equations define public-key cryptography operations, equation 4] de-
fines secret-key cryptography and equation [5] defines the Diffie-Hellman pair of
functions. This representation of the Diffie-Hellman functions in this manner is
popular in process-algebraic-based protocol definitions [3, [7] and it’s motivated
by the analysis algorithms. Essentially, g(Ry) = Gy and f(Gy, Rx) = Gyx in
terms of the Gy and Gy x defined in Section@ The user process, however, also
passes to the vom process the Diffie-Hellman parameters, D Hexp and DH fld,
as numbers representing the exponent and the field size. This is included to model
faithfully the protocol description.

3.4.4 The Data Leakage Analysis

The first analysis of the XtreemOS mutual authentication protocol using ProVerif
was carried out to determine which data terms can possibly be leaked to the exter-

35

nal Dolev-Yao attacker. The results of the leakage analysis are given in Table [6]

TERM LEAKAGE STATUS
Ru - random number Not leaked
Rn - random number Not leaked
f(g(Ru), Rn) - session key Not leaked
f(g(Rn), Ru) - session key Not leaked
g(Ru) - data Not leaked
M SGu - message Not leaked
MSGn - message Not leaked
skN - private key Not leaked
skVOM - private key Not leaked
T'u - timestamp Not leaked
T'n - timestamp Not leaked
Tvom - timestamp Not leaked
tu - secure channel Not leaked
tn - secure channel Not leaked
vom - secure channel Not leaked
tvom - secure channel Not leaked
pkN - public key Leaked
pkV OM - public key Leaked
D Hexp - Diffie-Hellman data Leaked
DH fld - Diffie-Hellman data Leaked
u - public channel Leaked
vid - public channel Leaked
nv - public channel Leaked
attc - public channel Leaked
g(Rn) - data Leaked

Figure 6: Leakage analysis for the XtreemOS mutual authentication protocol.

From these results, it is clear that the attacker was not able to construct or
capture the session key, f(g(Ru), Rn), which is the same as f(g(Rn), Ru) nor
indeed any of the terms that need to be kept secret such as the random numbers
generated by the user and the node, R,, R,, the private keys of the node and
VOM, skN, skVOM, and the exchanged messages generated by the user and the
node, M SGu, MSGn.

On the other hand, the analysis reveals that the attacker is able to capture
the term, g(Rn), which is a representation of GGy in the protocol’s Alice-Bob

36

description of Section [3.3] This implies that the attacker may be able to guess the
value of the random number Rn if the node did not choose a sufficiently large Rn
(in the order of 100 digits long). Similarly, the attacker may also guess the value
of the session key f(g(Rn), Ru) given Rn, if the user did not manage to choose
a sufficiently large random number Ru (again in the order of 100 digits long).

On the other hand, we note that the attacker is unable to capture g(Ru) gener-
ated by the user, even though this term is sent on the clear initially to the VOM.
This is due to the fact that the vom channel is declared as a secure channel using
the restriction (new vom) in the definition of the protocol. Even though in the
model, such channels are possible to describe, in reality, one cannot assume that
there are channels secure by their nature. Therefore, our model is somehow un-
realistic in that it assumes the existence of such naturally secure channels. One
alternative to move away from this assumption would be to use encryption for ini-
tial communication between the use and VOM. In that case, it would be possible
to send the message (including g(Ru)) over an insecure public channel.

3.4.5 The Mutual Authentication Analysis

For the second, we wanted to verify the mutual authentication property for the
protocol using commit-running events. The ProVerif tool was able to prove that
the following two implications are true:

plcommit(f(z55, Rn)) = pOrunning(f(ml, Ru)) (6)
pOcommit(f(ml, Ru)) = plrunning(f(z55, Rn)) (7)

Where x55 is a term instantiated to g(Ru) and m1 is a term instantiated to g(Rn).
According to the equation f(g(z),y) = f(g(y), z), we can infer that f(x55, Rn) =
f(m1, Ru) in both cases, therefore we can say that the above result satisfies the
definition of mutual authentication (Section [3.4.1]) for both the node and the user.

3.5 Discussion on Protocol Verification in XtreemOS

We found that the modelling of the XtreemOS mutual authentication protocol
was naturally straightforward in the message-passing process algebra due to the
similarity in the nature of the protocol and the process algebraic language. The
existence of an automatic and efficient verification tool backed up by a formal
theory (in the style of Horn clauses [14]) facilitated the task of verifying security
properties such as data leakage and mutual authentication related to our protocol.

Both the data leakage and the mutual authentication analyses revealed ex-
pected results. One recommendation is related to the fact that some of the data
terms, such as g(Rn), are sent on the clear and captured by the attacker. This re-
quires that the user and the node must choose large random numbers, Rn, Ru, in

37

order to prevent the attacker from guessing the session key. This is a well-known
requirement in Diffie-Hellman-based protocols that reveal some of the protocol-
generated data on the clear.

Another recommendation is related to the assumption of secure communi-
cation channels, for example in the initial communication between the user and
VOM. Although this assumption may seem realistic for the specific case where
both the user and VOM are running within the same trust domain, it is unrealistic
for the general case where there is an untrusted network separating the user and
VOM. This aspect of the protocol was clarified when modelling the protocol in
the language of applied 7-calculus, where it was necessary to use the restriction
operator new for hiding channel vom in order to express the security property of
the channel without using cryptographic operations.

38

4 Conclusions

This document describes the formal analysis of two elements in the development
process of XtreemOS security system: security requirements and protocol verifi-
cation.

In relation to requirements, we have modelled confidentiality, integrity, and
single sign-on properties following the KAOS goal-oriented requirements-engineering
methodology. The following recommendations summarise the outcome of this ex-
ercise:

e The formalisation of the data storage confidentiality and integrity require-
ments revealed that these requirements focused only on one aspect of confi-
dentiality: access control. There are other means by which these properties
can be maintained, for example, the use of cryptography or data isolation.

e The application of anti-goal modelling revealed some potential threat and
vulnerability scenarios. A principal may be able to break the system by
gaining false ownership, membership or task assignment despite the lack of
valid necessary credentials. Therefore, it is recommended that the system
ensures that the credential mechanism (both at producer and at consumer)
is robust and cannot be bypassed. Other scenarios revealed the possibility
of masquerading attacks and mis-judgment in the origin of the data.

In relation to protocol verification, we have modelled the XtreemOS mutual-
authentication protocol using the Applied 7-calculus, and verified automatically
using the ProVerif tool that the protocol holds the mutual-authentication property.
The following recommendations summarise the outcome of this exercise:

e Some of the data terms, such as g(Rn), are sent on the clear and captured
by the attacker. This requires that the user and the node must choose large
random numbers, [*n, Ru, in order to prevent the attacker from guessing
the session key. This is a well-known requirement in Diffie-Hellman-based
protocols that reveal some of the protocol generated data on the clear.

e Another recommendation is related to the assumption of secure communi-
cation channels. Although this assumption may seem realistic for the spe-
cific case where both the user and VOM are running within the same trust
domain, it is unrealistic for the general case where there is an untrusted
network separating the user and VOM.

As future work, we are planning to generate automatically test-cases from the
requirements model.

39

References

[1]

(2]

[3]

[4]

[5]

[6]

[71]

[8]

[9]

[10]

XtreemOS Deliverable D3.5.2: Security Requirements for a Grid-based OS,
2007.

XtreemOS Deliverable D3.5.3: First Specification of Security Services,
2007.

Martin Abadi, Bruno Blanchet, and Cédric Fournet. Just fast keying in the
pi calculus. In David Schmidt, editor, Programming Languages and Sys-
tems: Proceedings of the 13" European Symposium on Programming, vol-
ume 2986 of Lecture Notes in Computer Science, pages 340-354, Barcelona,
Spain, March 2004. Springer Verlag.

Martin Abadi and Cédric Fournet. Mobile Values, New Names, and Secure
Communication. In Proceedings of the 28" ACM Symposium on Principles
of Programming Languages, pages 104—115, London, UK, January 2001.
ACM Press.

Benjamin Aziz, David Gray, Geoff Hamilton, Frederic Oehl, James Power,
and David Sinclair. Implementing Protocol Verification for E-Commerce. In
Proceedings of the 2" International Conference on Advances in Infrastruc-
ture for E-Business, E-Science and E-Education on the Internet, L’ Aquila,
Italy, August 2001.

Benjamin Aziz, Geoff Hamilton, and David Gray. A static analysis of cryp-
tographic processes: The denotational approach. Journal of Logic and Alge-
braic Programming, 64(2):285-320, August 2005.

Bruno Blanchet. An efficient cryptographic protocol verifier based on pro-
log rules. In Proceedings of the 14" IEEE Computer Security Foundations
Workshop, pages 82-96, Cape Breton, Nova Scotia, Canada, July 2001.

Chiara Bodei, Pierpaolo Dagano, Flemming Nielson, and Hanne Riis Niel-
son. Static analysis for the 7-calculus with applications to security. Infor-
mation and Computation, 168(1):68-92, July 2001.

Common Criteria Consortium. Common criteria for information technology
security evaluation, September 2006.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4" ACM Symposium on Principles of

40

Programming Languages, pages 238-252, Los Angeles, California, U.S.A.,
January 1977. ACM Press.

[11] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 1T-22(6):644—654, November
1976.

[12] Danny Dolev and A. Yao. On the security of public key protocols. In Pro-
ceedings of the 22" Annual Symposium on Foundations of Computer Sci-
ence, pages 350-357, October 1981.

[13] Jérome Feret. Confidentiality analysis of mobile systems. In Proceedings
of the T International Static Analysis Symposium, volume 1824 of Lecture
Notes in Computer Science, pages 135-154, University of California, Santa
Barbara, USA, June 2000. Springer Verlag.

[14] Alfred Horn. On sentences which are true of direct unions of algebras. The
Journal of Symbolic Logic, 16(1):14-21, March 1951.

[15] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses (parts I & II). Information and Computation, 100(1):1-77, September
1992.

[16] Flemming Nielson, René Rydhof Hansen, and Hanne Riis Nielson. Ab-
stract interpretation of mobile ambients. Science of Computer Programming,
47(2-3):145-175, May 2003.

[17] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

[18] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill
Roscoe. Modelling and Analysis of Security Protocols. Addison-Wesley
Professional, December 2000.

[19] P.Y.A. Ryan and S.A. Schnieder. Modelling and Analysis of Security Proto-
cols. Addison-Weslley, 2001.

[20] A. van Lamsweerde. Requirements Engineering in the Year 00: A Research
Perspective. In International Conference on Software Engineering, pages
5-19, 2000.

[21] A. van Lamsweerde. Elaborating security requirements by construction of
intentional anti-models. 26th ACM-IEEE International Conference on Soft-
ware Engineering (ICSE’04), pages 148—157, 2004.

41

	Introduction
	Formal Modelling of Security Requirements
	Introduction
	Goal-Oriented Requirements Engineering
	The Goal Model
	The Anti-Goal Model
	Linear Temporal Logic

	Modelling Security Requirements
	Data Storage Confidentiality Goal Model
	Data Storage Confidentiality Anti-Goal Model
	Data Storage Integrity Goal Model
	Data Storage Integrity Anti-Goal Model
	Single-Sign On Goal Model
	Single-Sign On Anti-Goal Model

	Discussion on the Security Requirements Analysis

	Security Protocol Verification
	On Security Protocol Verification and its Importance for Distributed and Operating Systems
	A Review of Technologies for Protocol Verification
	Abstract Interpretation
	Model Checking
	Automated Theorem Proving
	Technology Review Conclusion

	The XtreemOS Mutual Authentication Protocol
	Formal Model and Analysis of the Protocol
	A Formal Definition of Mutual Authentication
	The Language
	The Model
	The Data Leakage Analysis
	The Mutual Authentication Analysis

	Discussion on Protocol Verification in XtreemOS

	Conclusions

