
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

XtreemFS and Object Sharing Service: Second Prototype
D3.4.4

Due date of deliverable: 30-NOV-2008
Actual submission date: 14-NOV-2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.4

Responsible institution: ZIB
Editor & and editor’s address: Felix Hupfeld

Zuse Institute Berlin
Takustr. 7

14195 Berlin
Germany

Version 1.0 / Last edited by Björn Kolbeck / 13-NOV-2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 13.10.08 Björn Kolbeck, Jan Stender,
Felix Hupfeld

ZIB Initial version of XtreemFS User Guide

0.2 23.10.08 Kim-Thomas Möller UDUS Initial version of OSS User Guide
0.3 24.10.08 Jan Stender ZIB Minor fixes
0.4 04.11.08 Björn Kolbeck, Jan Stender ZIB Incorporated Reviewer’s comments, Minor fixes
0.5 12.11.08 Marc-Florian Müller UDUS Incorporated Reviewer’s comments
0.6 13.11.08 Björn Kolbeck, Jan Stender ZIB Final draft

Reviewers:
Mathijs den Burger (VUA), Adolf Hohl (SAP)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.4.1 XtreemFS File Access CNR∗, BSC, ZIB
T3.4.2 XtreemFS Metadata Server ZIB∗

T3.4.4 XtreemFS Pattern-Aware Data Access BSC∗, CNR
T3.4.5 Object Sharing Service UDUS∗

T3.4.6 XtreemFS client NEC∗, UDUS

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Contents

1 Executive Summary 5

2 The XtreemFS User Guide 7

2.1 Quick Start . 7

2.2 What is XtreemFS . 1

2.2.1 About XtreemFS . 1

2.2.2 XtreemFS Architecture 2

The Components of XtreemFS 2

Security . 3

2.2.3 Policies . 4

OSD Selection Policies 4

Striping Policies . 4

Authorization - Access Policies 5

Pluggable Policies . 6

2.3 XtreemFS Services . 7

2.3.1 Installation . 7

Prerequisites . 7

Installing from Pre-Packaged Releases 7

Installing from Sources 8

2.3.2 Configuration . 8

A Word about UUIDs 8

Authentication . 9

UNIX uid/gid - NullAuthProvider 9

1

Plain SSL Certificates - SimpleX509AuthProvider 9

XtreemOS Certificates - XOSAuthProvider . . . 10

List of Configuration Options 10

authentication provider 10

capability secret 11

checksums.enabled 11

checksums.algorithm 11

database.dir 11

database.log 12

database.checkpoint.interval 12

database.checkpoint.idle interval 12

database.checkpoint.logfile size 12

debug level . 13

dir service.host 13

dir service.port 13

listen.address optional 13

listen.port 14

local clock renewal 14

no atime . 14

no fsync optional 15

object dir . 15

osd check interval 15

remote time sync 16

report free space 16

ssl.enabled 16

ssl.service creds 16

ssl.service creds.container 17

ssl.service creds.pw 17

ssl.trusted certs 17

ssl.trusted certs.container 17

2

ssl.trusted certs.pw 17

uuid . 18

DIR Configuration . 18

MRC Configuration . 18

OSD Configuration . 19

Configuring SSL Support 19

Converting PEM files to PKCS#12 20

Importing trusted certificates from PEM into a
JKS 20

Sample Setup 21

2.3.3 Management . 23

Starting and Stopping the XtreemFS services 23

Web-based Status Page 24

Creating Volumes . 24

Deleting Volumes . 25

MRC Database Conversion 25

Scrubbing and Cleanup 26

2.4 The XtreemFS Client . 27

2.4.1 Installation . 27

Prerequisites . 27

Installing from Pre-Packaged Releases 27

Installing from Sources 28

2.4.2 Mounting and Un-mounting 28

2.4.3 Reading XtreemFS-specific File Info 29

2.4.4 Changing Striping Policies 29

2.5 Troubleshooting and Support 30

2.5.1 Logfiles . 30

2.5.2 Support . 30

2.5.3 Troubleshooting . 30

3

3 The OSS API and User Guide 33

3.1 What is OSS . 33

3.2 Installation of OSS . 33

3.2.1 Installing OSS Using the Distribution Packages 34

3.2.2 Building and Installing OSS from Source 34

Prerequisites . 34

Compilation . 36

Installation . 36

3.2.3 Testing the OSS Installation 37

Simple test of Object Sharing 37

The Raytracer Application 37

3.3 Developing Applications Using OSS 38

3.3.1 Internal Interface of the OSS Library 38

3.3.2 Linking Against the OSS Library 41

A XtreemOS Integration 43

XtreemFS Security Preparations 43

B Command Line Utilities 47

4

Chapter 1

Executive Summary

This documents contains the two user guides for The XtreemFS File System
and for the Object Sharing Service (OSS).

The XtreemFS user guide describes the release 0.10 of XtreemFS which is
publicly available under the GPL license. The current release presents a fully
functional POSIX compatible distributed file system. Advanced features like
encryption and authentication between components using SSL and striping
over multiple storage servers are implemented and well-tested.

The OSS user guide describes the API as well as the installation and usage
of release 0.2 of the Object Sharing Service which is publicly available under
the GPL license.

5

6

Chapter 2

The XtreemFS User Guide

2.1 Quick Start

This is the very short version to help you set up a local installation of
XtreemFS.

1. Download XtreemFS RPMs/DEBs and install

(a) Download the RPMs or DEBs for your system from the XtreemFS
website

(b) open a root console (su or sudo)

(c) install with rpm -Uhv xtreemfs-client-0.10.0.rpm
xtreemfs-server-0.10.0.rpm

2. Start the Directory Service:
/etc/init.d/xtreemfs-dir start

3. Start the Metadata Server:
/etc/init.d/xtreemfs-mrc start

4. Start the OSD:
/etc/init.d/xtreemfs-osd start

5. If not already loaded, load the FUSE kernel module:
modprobe fuse

6. Depending on your distribution, you may have to add users to a special
group to allow them to mount FUSE file systems. E.g.: In openSUSE

7

http://www.XtreemFS.com
http://www.XtreemFS.com

users must be in the group trusted, in Ubuntu in the group fuse. You
may need to logout and login again for the new group membership to
become effective.

7. You can now close the root console and work as a regular user.

8. Wait a few seconds for the services to register at the directory service.
You can check the registry by opening the DIR status page in your
favorite web browser http://localhost:32638.

9. Create a new volume with a stripe size of 256kB:
xtfs mkvol -p RAID0,256,1 http://localhost/myVolume

10. Create a mount point:
mkdir ~/xtreemfs

11. Mount XtreemFS on your computer:

xtfs_mount -o dirservice=http://localhost, \
volume_url=http://localhost/myVolume ~/xtreemfs

12. Have fun ;-)

13. To un-mount XtreemFS:
xtfs umount ~/xtreemfs

You can also mount this volume from other computers. First make sure
that the ports 32636, 32638 and 32640 are open for incoming TCP con-
nections. You must also specify a hostname that can be resolved by the
remote machine! Finally, you have to use http://hostname instead of
http://localhost when mounting.

2.2 What is XtreemFS

2.2.1 About XtreemFS

With XtreemFS you are about to install a modern distributed file system. As
a distributed file system, XtreemFS stores your file data on several servers
and you can simply scale your file system by adding more hosts. XtreemFS
is a full-featured file system that supports the full POSIX file interface, in-
cluding extended attributes (xattrs). In case of concurrent access by several

1

http://localhost:32638

distributed programs, XtreemFS provides you currently with NFS close-to-
open consistency.

XtreemFS has been designed for deployment in wide-area environments con-
nected by the Internet. This means that it allows you to mount an XtreemFS
volume from any location, given the right permissions; but it also implies that
file system installations can span multiple locations or data centers.

In a normal UNIX environment, XtreemFS has full permission and POSIX
ACL support. XtreemFS can also be integrated into X.509-based secu-
rity architectures. Access policies (as well several other policies) are plug-
gable and can be easily extended. If you deploy XtreemFS as part of an
XtreemOS installation, you will benefit from its transparent integration with
the XtreemOS Virtual Organization (VO) infrastructure in the form of dy-
namic user mappings and automatic mounting of home volumes.

If you need high-performance access to your files, XtreemFS can help you
with support for file striping : XtreemFS can store a file across several storage
servers and access the parts in parallel. The size of an individual stripe and
the number of storage servers used can be configured on a per-file or per-
directory basis.

2.2.2 XtreemFS Architecture

XtreemFS implements an object-based file system architecture (Fig. 2.1).
The name of this architecture comes from the fact that an object-based file
system splits file content into a series of fixed-size objects and stores them on
its storage servers. In contrast to block-based file systems, the size of such
an object can vary from file to file.

The metadata of a file (such as the file name or file size) is stored separate
from the file content on a Metadata server. This metadata server organizes
file system metadata as a set of volumes , each of which implements a separate
file system namespace in form of a directory tree.

The Components of XtreemFS

An XtreemFS installation contains three types of servers that can run on one
or several machines (Fig. 2.1):

• DIR - Directory Service
The directory service is the central registry for all services in XtreemFS.
The MRC uses it to discover storage servers.

2

Figure 2.1: The XtreemFS architecture and components.

• MRC - Metadata and Replica Catalog
The MRC stores the directory tree and file metadata such as file name,
size or modification time. Moreover, the MRC authenticates users and
authorizes access to files.

• OSD - Object Storage Device
An OSD stores arbitrary objects of files; clients read and write file data
on OSDs.

These servers are connected by the client to a file system. A client mounts
one of the volumes of the MRC in a local directory. It translates file system
calls into RPCs sent to the respective servers.

The client is implemented as a FUSE user-level driver that runs as a normal
process. FUSE itself is a kernel-userland hybrid that connects the user-land
driver to Linux’ Virtual File System (VFS) layer where file system drivers
usually live.

Security

As usual, XtreemFS security differentiates between authentication and au-
thorization. Authentication is the process of verifying a user’s or client’s

3

identity, e.g. validating and reading an X.509 certificate. In contrast, autho-
rization is the process of checking if a user has the permission to execute a
certain operation, e.g. write access to a file.

By default, XtreemFS uses unauthenticated and unencrypted TCP connec-
tions. However, SSL can be enabled in all XtreemFS services and the client.
Using SSL requires that all users and services provide valid X.509 certificates.
Any data sent over a SSL connection is encrypted. Using SSL, however, will
increase the resource consumption of all components, especially for connec-
tion setup (SSL handshake).

2.2.3 Policies

Many facets of the behavior of XtreemFS can be configured by means of
policies. A policy defines how a certain task is performed, e.g. how the
MRC selects a set of OSDs for a new file, or how it distinguishes between an
authorized and an unauthorized user when files are accessed. Various policies
have been defined that cover different aspects.

OSD Selection Policies

When a new file is created, the MRC must decide which OSDs to use for
storing the file content. Based on the required number of OSDs defined in
the file’s striping policy, an OSD Selection Policy is responsible for select-
ing the most suitable OSDs. OSD selection policies are assigned at volume
granularity. Currently, there are the following policies:

• Random OSD Selection (policy id 1)
Randomly selects OSDs from the list of all available OSDs that are
alive and have more than 2GB of free space left.

• Proximity-based OSD Selection (policy id 2)
Selects a group of OSDs that are close to each other. The distance
is determined by the IP address, i.e. OSDs on the same subnet are
preferred. This policy is particularly useful for striping, since it is
desirable to have all OSDs at the same site.

Striping Policies

XtreemFS allows the content of a file to be distributed among several storage
devices (OSDs). This has the benefit, that the file can be read or written in

4

parallel on multiple servers which increases the bandwidth. The more OSDs
are used, the higher the bandwidth available for reading or writing. The
number of OSDs is called the striping width.

A striping policy is a rule that defines how the objects are distributed on
the available OSDs. Currently, XtreemFS implements only the RAID0 policy
which simply stores the objects in a round robin fashion on the OSDs. The
RAID0 policy has two parameters. The striping width defines to how many
OSDs the file is distributed. The stripe size defines the size of each object.

When using a striping width of 1, the files are not striped but each file is
stored on a single OSD. In that case, you can use any OSD Selection Policy
which suits your needs. For striped files (i.e. a striping width larger than 1)
we recommend to use the Proximity-based OSD selection policy, because the
OSDs onto the files are striped should reside on the same network for better
performance and data availability.

Striping over several OSDs enhances the read and write bandwidth of a file,
the bandwidth increases the larger the striping width. Please note, that
striping also increases the probability of data loss. A striped file will become
corrupted even if a single OSDs it is stored on has a disk crash.

Authorization - Access Policies

User authorization is managed by means of Access Policies. An access policy
defines the access rights for any user on any file or directory contained in a
volume. When creating a new volume, the access policy has to be chosen,
which cannot be changed in the future. Various access policies can be used:

• Authorize All Policy (policy Id 1)
No authorization - everyone can do everything. This policy is useful if
performance of metadata operations matters more than security, since
no recursive evaluation of access policies is done.

• POSIX ACLs & Permissions (policy Id 2)
This access policy implements the traditional POSIX permissions com-
monly used on Linux, as well as POSIX ACLs, an extension that pro-
vides for access control at the granularity of single users and groups.
POSIX permissions should be used as the default, as it guarantees
maximum compatibility with other file systems.

• Volume ACLs (policy Id 3)
Volume ACLs provide an access control model similar to POSIX ACLs

5

& Permissions, but only allow one ACL for the whole volume. This
means that there is no recursive evaluation of access rights which yields
a higher performance at the price of a very coarse-grained access con-
trol.

Pluggable Policies

Administrators may extend the set of existing policies by defining plug-in
policies. Such policies are Java classes that implement a predefined policy
interface. Currently, the following policy interfaces exist:

• org.xtreemfs.common.auth.AuthenticationProvider
can be used to implement an individual mechanism to authenticate
users and groups

• org.xtreemfs.mrc.ac.FileAccessPolicy
can be used to implement an individual access control model on files,
directories and volumes

• org.xtreemfs.mrc.osdselection.OSDSelectionPolicy
can be used to implement an individual policy for allocating OSDs to
newly created files

Note that there may only be one authentication provider per MRC, while file
access policies and OSD selection policies may differ for each volume. The for-
mer one is identified by means of its class name (property authentication provider,
see Sec. 2.3.2), while volume-related policies are identified by ID numbers.
It is therefore necessary to add a member field

public static final long POLICY_ID = 4711;

to all such policy implementations, where 4711 represents the individual ID
number. Administrators have to ensure that such ID numbers neither clash
with ID numbers of built-in policies (1-9), nor with ID numbers of other
plug-in policies. When creating a new volume, IDs of plug-in policies may
be used just like built-in policy IDs.

Plug-in policies have to be deployed in the directory specified by the MRC
configuration property policy dir. The property is optional; it may be
omitted if no plug-in policies are supposed to be used. An implementation
of a plug-in policy can be deployed as a Java source or class file located in a

6

directory that corresponds to the package of the class. Library dependencies
may be added in the form of source, class or JAR files. JAR files have to be
deployed in the top-level directory. All source files in all subdirectories are
compiled at MRC start-up time and loaded on demand.

2.3 XtreemFS Services

2.3.1 Installation

When installing XtreemFS, you can choose from two different installation
sources: you can download one of the pre-packaged releases that we create for
most Linux distributions or you can install directly from the source tarball.
In the pre-packaged release, the server and the client parts are split into
separate packages.

Prerequisites

For the pre-packaged release, you will need Sun Java JRE 1.6.0 or newer to
be installed on the system.

When building XtreemFS directly from the source, you need a Sun Java JDK
1.6.0 or newer, Ant 1.6.5 or newer and gmake.

Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS)
you can install the package with

$> rpm -i xtreemfs-server-0.10.x.rpm

For Debian-based distributions, please use the .deb package provided and
install it with

$> dpkg -i xtreemfs-server-0.10.x.deb

Both packages will also install init.d scripts for an automatic start-up of the
services. Use insserv xtreemfs-dir, insserv xtreemfs-mrc and insserv
xtreemfs-osd, respectively, to automatically start the services during boot.

7

Installing from Sources

Extract the tarball with the sources. Change to the top level directory and
execute

$> make server

After successful build, you can use the provided installer

$> cd install
$> ./install

The installer script will guide you through a basic setup, install the services
and prepare start and stop scripts.

2.3.2 Configuration

Generally, the configuration files of XtreemFS are located in /etc/xos/xtreemfs/
if you installed from packages. If you used the installer for the source distri-
bution, the configuration file can be found in <INSTALLDIR>/config/ where
<INSTALLDIR> refers to the XtreemFS installation directory that you have
chosen during installation.

A Word about UUIDs

XtreemFS uses UUIDs (Universally Unique Identifiers) to be able to identify
services and their associated state independently from the machine they are
installed on. This implies that you cannot change the uuid of a MRC or
OSD after it has been used for the first time!

The Directory Service keeps a mapping from UUID to a port number and
IP address or hostname. Currently, each UUID can only be associated with
a single endpoint; the netmask must be “*” which means that this mapping
is valid in all networks. Upon first start-up, OSDs and MRCs will create the
mapping if it does not exist. They will use the first available network device
with a public address.

Changing the IP address, hostname or port is possible at any time. Due to
the caching of UUIDs in all components it can take some time until the new
UUID mapping is used by all OSDs, MRCs and clients. The TTL defines

8

how long an XtreemFS component is allowed to keep entries cached. The
default value is 3600 seconds (1 hour). It should be set to shorter durations
if services change their IP address frequently.

To create a globally unique UUID you can use tools like uuidgen. During
installation the post-install script will automatically create a UUID for each
OSD and MRC if it does not have a UUID assigned.

Authentication

XtreemFS has an interface which allows MRC administrators to choose the
way of authenticating users. Basically, an MRC has two sources of informa-
tion on users. The first one is the user id and group ids sent by the client
along with each request. In addition, the MRC can use information included
in the certificates if SSL is enabled. The Authentication Providers are mod-
ules that implement different methods for retrieving the user and group IDs
to use.

UNIX uid/gid - NullAuthProvider The NullAuthProvider is the de-
fault Authentication Provider. It simply uses the user ID and group IDs sent
by the XtreemFS client. This means that the client is trusted to send the
correct user/group IDs.

The XtreemFS Client will send the user ID and group IDs of the process
which executed the file system operation, not of the user who mounted the
volume!

The superuser is identified by the user ID root and is allowed to do everything
on the MRC. This behavior is similar to NFS with no root squash.

Plain SSL Certificates - SimpleX509AuthProvider XtreemFS sup-
ports two X.509 certificate “types” which can be used by the client. When
mounted with a service/host certificate the XtreemFS client is regarded as a
trusted system component. The MRC will accept any user ID and groups sent
by the client and use them for authorization as with the NullAuthProvider.
This setup is useful for volumes which are used by multiple users.

The second certificate type are regular user certificates. The MRC will only
accept the user name and group from the certificate and ignore the user ID
and groups sent by the client. Such a setup is useful if users are allowed to
mount XtreemFS from untrusted machines.

9

Both certificates are regular X.509 certificates. Service and host certificates
are identified by a Common Name (CN) starting with host/ or xtreemfs-service/,
which can easily be used in existing security infrastructures. All other cer-
tificates are assumed to be user certificates.

If a user certificate is used, XtreemFS will take the Distinguished Name (DN)
as the user ID and the Organizational Unit (OU) as the group ID.

Superusers must have xtreemfs-admin as part of their Organisational Unit
(OU).

XtreemOS Certificates - XOSAuthProvider In contrast to plain X.509
certificates, XtreemOS embeds additional user information as extensions in
XtreemOS-User-Certificates. This authentication provider uses this infor-
mation (gloabl UID and global GIDs), but the behaviour is similar to the
SimpleX509AuthProvider.

The superuser is identified by being member of the VOAdmin group.

List of Configuration Options

All configuration parameters that may be used to define the behavior of the
different services are listed in the following. Unless marked as optional, a
parameter has to occur (exactly once) in a configuration file.

authentication provider

Services DIR, MRC
Values Java class name
Default org.xtreemfs.common.auth.NullAuthProvider
Description Defines the Authentication Provider to use to retrieve

the user identity (user ID and group IDs). See Sec.
2.3.2 for details.

10

capability secret

Services MRC, OSD
Values String
Default -
Description Defines a shared secret between the MRC and all OSDs.

The secret is used by the MRC to sign capabilities, i.e.
security tokens for data access at OSDs. In turn, an
OSD uses the secret to verify that the capability has
been issued by the MRC.

checksums.enabled

Services OSD
Values true, false
Default false
Description If set to true, the OSD will calculate and store check-

sums for newly created objects. Each time a check-
summed object is read, the checksum will be verified.

checksums.algorithm

Services OSD
Values Adler32, CRC32, MD5, SHA-1
Default Adler32
Description Must be specified if checksums.enabled is enabled.

This property defines the algorithm used to create OSD
checksums.

database.dir

Services DIR, MRC
Values absolute file system path to a directory
Default DIR: /var/lib/xtreemfs/dir/database,

MRC: /var/lib/xtreemfs/mrc/database
Description The directory in which the Directory Service or MRC

will store their databases. This directory should never
be on the same partition as any OSD data, if both ser-
vices reside on the same machine. Otherwise, deadlocks
may occur if the partition runs out of free disk space!

11

database.log

Services MRC
Values absolute file system path
Default MRC: /var/lib/xtreemfs/mrc/dblog
Description The file the MRC uses as the database operations log.

This directory should never be on the same partition as
any OSD data, if both services reside on the same ma-
chine. Otherwise, deadlocks may occur if the partition
runs out of free disk space!

database.checkpoint.interval

Services MRC
Values milliseconds
Default 180,000
Description The MRC regularly checks if it is necessary to create a

database checkpoint on disk. This parameter specifies
the interval between two checks.

database.checkpoint.idle interval

Services MRC
Values milliseconds
Default 1,000
Description The MRC will only create a checkpoint if

there have been no client requests for the last
database.checkpoint.idle interval milliseconds.

database.checkpoint.logfile size

Services MRC
Values kilobytes
Default 16,384
Description A checkpoint of the database will only be created if the

database.log has exceeded the specified file size.

12

debug level

Services DIR, MRC, OSD
Values 0, 1, 2, 3, 10
Default 2
Description The debug level determines the amount and detail of

information written to logfiles. 0 logs errors only, 1 logs
additional warnings, 2 logs errors, warnings and info, 3
logs errors, warnings, info and debug messages (generats
large logfiles!), 10 also catches tracing output (generates
very large logfiles!).

dir service.host

Services MRC, OSD
Values hostname or IP address
Default localhost
Description Specifies the hostname or IP address of the directory

service (DIR) at which the MRC or OSD should register.
The MRC also uses this directory service to find OSDs.

dir service.port

Services MRC, OSD
Values 1 .. 65535
Default 32638
Description Specifies the port on which the remote directory service

is listening. Must be identical to the listen port in
your directory service configuration.

listen.address optional

Services OSD
Values IP address
Default -
Description If specified, defines the interface to listen on. If not

specified, the service will listen on all interfaces (any).

13

listen.port

Services DIR, MRC, OSD
Values 1 .. 65535
Default DIR: 32638,

MRC: 32636,
OSD: 32640

Description The port to listen on for incoming connections (TCP).
The OSD uses TCP and UDP on the specified port.
Make sure to configure your firewall to allow incoming
TCP and UDP traffic on the specified port.

local clock renewal

Services MRC, OSD
Values milliseconds
Default 50
Description Reading the system clock is a slow operation on some

systems (e.g. Linux) as it is a system call. To in-
crease performance, XtreemFS services use a local vari-
able which is only updated every local clock renewal
milliseconds.

no atime

Services MRC
Values true, false
Default true
Description The POSIX standard defines that the atime (timestamp

of last file access) is updated each time a file is opened,
even for read. This means that there is a write to the
database and hard disk on the MRC each time a file is
read. To reduce the load, many file systems (e.g. ext3)
including XtreemFS can be configured to skip those up-
dates for performance. It is strongly suggested to disable
atime updates by setting this parameter to true.

14

no fsync optional

Services MRC
Values true, false
Default false
Description By default, the MRC will write all file-modifying oper-

ations (such as create file, delete etc.) to disk followed
by a fsync to ensure data is written to the hard disk.
While this ensures maximum data safety in case of crash
of the MRC server, it also reduces the performance of
the MRC. Set this to true, if you want much higher per-
formance at the risk of losing some recent file operations
in case of a server crash.

object dir

Services OSD
Values absolute file system path to a directory
Default /var/lib/xtreemfs/osd/
Description The directory in which the OSD stores the objects. This

directory should never be on the same partition as any
DIR or MRC database, if both services reside on the
same machine. Otherwise, deadlocks may occur if the
partition runs out of free disk space!

osd check interval

Services MRC
Values seconds
Default 300
Description The MRC regularly asks the directory service for suit-

able OSDs to store files on (see OSD Selection Policy,
Sec. 2.2.3). This parameter defines the interval between
two updates of the list of suitable OSDs.

15

remote time sync

Services MRC, OSD
Values milliseconds
Default 30,000
Description MRCs and OSDs all synchronize their clocks with the di-

rectory service to ensure a loose clock synchronization of
all services. This is required for leases to work correctly.
This parameter defines the interval in milliseconds be-
tween time updates from the directory service.

report free space

Services OSD
Values true, false
Default true
Description If set to true, the OSD will report its free space to the

directory service. Otherwise, it will report zero, which
will cause the OSD not to be used by the OSD Selection
Policies (see Sec. 2.2.3).

ssl.enabled

Services DIR, MRC, OSD
Values true, false
Default false
Description If set to true, the service will use SSL to authenticate

and encrypt connections. The service will not accept
non-SSL connections if ssl.enabled is set to true.

ssl.service creds

Services DIR, MRC, OSD
Values path to file
Default DIR: /etc/xos/xtreemfs/truststore/certs/ds.p12,

MRC: /etc/xos/xtreemfs/truststore/certs/mrc.p12,
OSD: /etc/xos/xtreemfs/truststore/certs/osd.p12

Description Must be specified if ssl.enabled is enabled. Specifies
the file containing the service credentials (X.509 certifi-
cate and private key). PKCS#12 and JKS format can be
used, set ssl.service creds.container accordingly.
This file is used during the SSL handshake to authenti-
cate the service.

16

ssl.service creds.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default pkcs12
Description Must be specified if ssl.enabled is enabled. Specifies

the file format of the ssl.service creds file.

ssl.service creds.pw

Services DIR, MRC, OSD
Values String
Default -
Description Must be specified if ssl.enabled is enabled. Spec-

ifies the password which protects the credentials file
ssl.service creds.

ssl.trusted certs

Services DIR, MRC, OSD
Values path to file
Default /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
Description Must be specified if ssl.enabled is enabled. Specifies

the file containing the trusted root certificates (e.g. CA
certificates) used to authenticate clients.

ssl.trusted certs.container

Services DIR, MRC, OSD
Values pkcs12 or JKS
Default JKS
Description Must be specified if ssl.enabled is enabled. Specifies

the file format of the ssl.trusted certs file.

ssl.trusted certs.pw

Services DIR, MRC, OSD
Values String
Default -
Description Must be specified if ssl.enabled is enabled. Specifies

the password which protects the trusted certificates file
ssl.trusted certs.

17

uuid

Services MRC, OSD
Values String, but limited to alphanumeric characters, - and .
Default -
Description Must be set to a unique identifier, prefer-

ably a UUID according to RFC 4122. UUIDs
can be generated with uuidgen. Example:
eacb6bab-f444-4ebf-a06a-3f72d7465e40.

DIR Configuration

The directory service configuration is stored in dirconfig.properties.

debug_level = 0
listen.port = 32638
database.dir = /var/lib/xtreemfs/dir/database
ssl.enabled = false
authentication_provider = org.xtreemfs.common.auth.NullAuthProvider
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/ds.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

MRC Configuration

The directory service configuration is stored in mrcconfig.properties.

debug_level = 0
listen.port = 32636
dir_service.host = localhost
dir_service.port = 32638
database.dir = /var/lib/xtreemfs/mrc/database
database.log = /var/lib/xtreemfs/mrc/dblog
database.checkpoint.interval = 1800000
database.checkpoint.idle_interval = 1000
database.checkpoint.logfile_size = 16384
osd_check_interval = 300

18

no_atime = true
local_clock_renewal = 50
remote_time_sync = 60000
uuid = eacb6bab-f444-4ebf-a06a-3f72d7465e40
authentication_provider = org.xtreemfs.common.auth.NullAuthProvider
ssl.enabled = false
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/ds.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

OSD Configuration

The OSD service configuration is stored in osdconfig.properties.

debug_level = 0
listen.port = 32640
listen.address = 127.0.0.1
dir_service.host = localhost
dir_service.port = 32638
object_dir = /var/lib/xtreemfs/objs/
local_clock_renewal = 50
remote_time_sync = 60000
report_free_space = true
uuid = eacb6bab-f444-4ebf-a06a-3f72d7465e41
ssl.enabled = false
ssl.service_creds = /etc/xos/xtreemfs/truststore/certs/ds.p12
ssl.service_creds.pw = xtreemfs
ssl.service_creds.container = pkcs12
ssl.trusted_certs = /etc/xos/xtreemfs/truststore/certs/xosrootca.jks
ssl.trusted_certs.pw = xtreemfs
ssl.trusted_certs.container = jks

Configuring SSL Support

In order to enable certificate-based authentication in an XtreemFS installa-
tion, services need to be equipped with X.509 certificates. Certificates are

19

used to establish a mutual trust relationship among XtreemFS services and
between the XtreemFS client and XtreemFS services.

It is not possible to mix SSL-enabled and non-SSL services in an XtreemFS
installation!

Each XtreemFS service needs a certificate and a private key in order to be
run. Once they have created and signed, the credentials may need to be
converted into the correct file format. XtreemFS services also need a trust
store that contains all trusted Certification Authority certificates.

By default, certificates and credentials for XtreemFS services are stored in

/etc/xos/xtreemfs/truststore/certs

Converting PEM files to PKCS#12

The simplest way to provide the credentials to the services is by converting
your signed certificate and private key into a PKCS#12 file using openssl:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key
-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each
containing the private key and certificate for the respective service. The
passwords chosen when asked must be set as a property in the corresponding
service configuration file.

Importing trusted certificates from PEM into a JKS

The certificate (or multiple certificates) from your CA (or CAs) can be im-
ported into a Java Keystore (JKS) using the Java keytool which comes with
the Java JDK or JRE.

Execute the following steps for each CA certificate using the same keystore
file.

$> keytool -import -alias rootca -keystore trusted.jks
-trustcacerts -file ca-cert.pem

20

This will create a new Java Keystore trusted.jks with the CA certificate
in the current working directory. The password chosen when asked must be
set as a property in the service configuration files.

Note: If you get the following error

$> keytool error: java.lang.Exception: Input not an X.509 certificate

you should remove any text from the beginning of the certificate (until the
-----BEGIN CERTIFICATE----- line).

Sample Setup

Users can easily set up their own CA (certificate authority) and create and
sign certificates using openssl for a test setup.

1. Set up your test CA.

(a) Create a directory for your CA files

$> mkdir ca

(b) Create a private key and certificate request for your CA.

$> openssl req -new -newkey rsa:1024 -nodes -out ca/ca.csr \
-keyout ca/ca.key

Enter something like XtreemFS-DEMO-CA as the common name
(or something else, but make sure the name is different from the
server and client name!).

(c) Create a self-signed certificate for your CA which is valid for one
year.

$> openssl x509 -trustout -signkey ca/ca.key -days 365 -req\
-in ca/ca.csr -out ca/ca.pem

(d) Create a file with the CA’s serial number

$> echo "02" > ca/ca.srl

2. Set up the certificates for the services and the XtreemFS Client.
Replace service with dir, mrc, osd and client.

(a) Create a private key for the service.
Use XtreemFS-DEMO-service as the common name for the cer-
tificate.

21

$> openssl req -new -newkey rsa:1024 -nodes
-out service.req
-keyout service.key

(b) Sign the certificate with your demo CA.
The certificate is valid for one year.

$> openssl x509 -CA ca/ca.pem -CAkey ca/ca.key
-CAserial ca/ca.srl -req
-in service.req
-out service.pem -days 365

(c) Export the service credentials (certificate and private key) as a
PKCS#12 file.
Use “passphrase” as export password. You can leave the export
password empty for the XtreemFS Client to avoid being asked for
the password on mount.

$> pkcs12 -export -in service.pem -inkey
service.key
-out service.p12 -name "service "

(d) Copy the PKCS#12 file to the certificates directory.

$> mkdir -p /etc/xos/xtreemfs/truststore/certs
$> cp service.p12 /etc/xos/xtreemfs/truststore/certs

3. Export your CA’s certificate to the trust store and copy it to the cer-
tificate dir.
You should answer “yes” when asked “Trust this certificate”.
Use “passphrase” as passphrase for the keystore.

$> keytool -import -alias ca -keystore trusted.jks\
-trustcacerts -file ca/ca.pem

$> cp trusted.jks /etc/xos/xtreemfs/truststore/certs

4. Configure the services. Edit the configuration file for all your services.
Set the following configuration options (see Sec. 2.3.2 for details).
use ssl = true
ssl service creds pw = passphrase
ssl service creds container = pkcs12
ssl service creds = /etc/xos/xtreemfs/truststore/certs/service.p12
ssl trusted certs = /etc/xos/xtreemfs/truststore/certs/trusted.jks
ssl trusted certs pw = passphrase
ssl trusted certs container = jks

22

5. Start up the XtreemFS services (see Sec. 2.3.3).

6. Create a new volume (see Sec. 2.3.3 for details).

$> xtfs_mkvol -c /etc/xos/xtreemfs/truststore/certs/client.p12 \
-p RAID0,256,1 https://localhost/test

7. Mount the volume (see Sec. 2.4.2 for details).

$> xtfs_mount -o ssl_cert=\
/etc/xos/xtreemfs/truststore/certs/client.p12, \
dirservice=https://localhost, \
volume_url=https://localhost/test /mnt

2.3.3 Management

This section covers all tools and functionality for XtreemFS management and
tracing. In general, the use of management tools is restricted to superusers.

Starting and Stopping the XtreemFS services

If you installed a pre-packaged release you can start, stop and restart the
services with the init.d scripts:

$> /etc/init.d/xtreemfs-ds start
$> /etc/init.d/xtreemfs-mrc start
$> /etc/init.d/xtreemfs-osd start

or

$> /etc/init.d/xtreemfs-ds stop
$> /etc/init.d/xtreemfs-mrc stop
$> /etc/init.d/xtreemfs-osd stop

Note that the Directory Service should be started first, in order to allow
other services an immediate registration. Once a Directory Service and at
least one OSD and MRC are running, XtreemFS is operational.

If you installed from sources, you will find a start.sh and stop.sh script in
the install directory. These scripts will automatically start/stop all services
you installed on the machine.

23

Web-based Status Page

The XtreemFS services all have a HTML status page which can be used to
check if the service is working correctly (Fig. 2.2). It can be displayed by
opening the service URL in your favorite web browser, e.g.
http://my-mrc-host.com:32636/. If you use SSL you should first import
the client credentials (PKCS#12 file) into your webbrowser’s credential store.

Figure 2.2: OSD status web page

Creating Volumes

Volumes can be created with the xtfs mkvol command line utility. Please
see man xtfs mkvol for a full list of options and usage.

When creating a volume, it is recommended to specify the access policy (see
Sec. 2.2.3). If not specified, POSIX permissions/ACLs will be chosen by
default. Access policies cannot be changed afterwards.

An OSD selection policy (see Sec. 2.2.3) can also be specified per volume,
but can be changed anytime. By default, a random selection of available
OSDs is assigned to newly created files.

24

In addition, it is recommended to set a default striping policy (see Sec. 2.2.3).
If no per-file or per-directory default striping policy overrides the volume’s
default striping policy, the volume’s policy is used for new files and directo-
ries. If no volume policy is explicitly defined, a RAID0 policy with a stripe
size of 4kB and a width of 1 will be assigned to the volume.

An example call to xtfs mkvol for creating a volume with POSIX ACLs,
256kB stripe size and a stripe width of 1 (which means no striping):

$> xtfs_mkvol -a 2 -p RAID0,256,1 \
http://my-mrc-host.com:32636/myVolume

Currently, there are no restrictions on the creation of volumes; any user may
create a new volume.

Deleting Volumes

The xtfs rmvol tool can be used to delete a volume. This also deletes all
files and data on that volume! Please see man xtfs rmvol for a full list of
options and usage.

Example call to xtfs rmvol to delete myVolume:

$> xtfs_rmvol http://my-mrc-host.com:32636/myVolume

Volume deletion is restricted to volume owners and superusers.

MRC Database Conversion

The format in which the MRC stores its data on disk may change with
future XtreemFS versions. In order that XtreemFS server components may
be updated without losing the whole content of the file system, it is possible
to create a version-independent XML representation of the metadata stored
in MRC database.

Such an XML representation can e.g. be created as follows:

$> xtfs_mrcdbtool http://my-mrc-host.com:32636 \
dump /tmp/dump.xml

25

This call will create a file dump.xml containing the entire MRC database
content in the /tmp directory at my-mrc-host.com.

To restore an MRC database from a dump, execute

$> xtfs_mrcdbtool http://my-mrc-host.com:32636 \
restore /tmp/dump.xml

This will restore the database stored in /tmp/dump.xml at my-mrc-host.com.
Note that for safety reasons, it is only possible to restore a database from a
dump if the database of the running MRC does not have any content. To
restore an MRC database, it is thus necessary to delete all MRC database
files before starting the MRC.

Scrubbing and Cleanup

In real-world environments, errors occur in the course of creating, modifying
or deleting files. This can cause corruptions of file data or metadata. Such
things happen e.g. if the client is suddenly terminated, or loses connection
with a server component. There are several such scenarios: if a client writes
to a file but does not report file sizes received from the OSD back to the
MRC, inconsistencies between the file size stored in the MRC and the actual
size of all objects in the OSD will occur. If a client deletes a file from the
directory tree, but cannot reach the OSD, orphaned objects will remain on
the OSD. If an OSD is terminated during an ongoing write operation, file
content will become corrupted.

In order to detect and, if possible, resolve such inconsistencies, tools for
scrubbing and OSD cleanup exist. To check the consistency of file sizes and
checksums, the following command can be executed:

$> xtfs_scrub -dir http://my-dir-host.com:32638 \
http://my-mrc-host.com:32636/myVolume

This will scrub each file in the volume myVolume, i.e. check file size consistency
and set the correct the file size on the MRC, if necessary, and check whether
an invalid checksum in the OSD indicates a corrupted file content. The -dir
argument specifies the directory service that will be used to resolve service
UUIDs. Please see man xtfs scrub for further details.

A second tool searches an OSD for orphaned objects, which can be used as
follows:

26

$> xtfs_cleanup -dir http://my-dir-host.com:32638 \
http://my-osd-host.com:32640

This will touch all objects stored on the given OSD and check whether a
metadata representation exists on the responsible MRC. If this is not the case,
the objects may either be deleted, or assigned to new files in a lost+found
directory at the top level of the volume. Please see man xtfs cleanup for
further details.

2.4 The XtreemFS Client

2.4.1 Installation

As for the XtreemFS Services, there are two different installation sources for
the XtreemFS Client: pre-packaged releases and source tarballs.

Prerequisites

For both installations you need FUSE 2.6 or newer, openSSL 0.9.8 or newer
and a Linux 2.6 kernel.

To build the XtreemFS Client from sources, you need the openSSL headers
(e.g. openssl-devel package), gmake 3.81 or newer and gcc 4.1.2 or newer.

Installing from Pre-Packaged Releases

On RPM-based distributions (RedHat, Fedora, SuSE, Mandriva, XtreemOS)
you can install the package with

$> rpm -i xtreemfs-client-0.10.x.rpm

For Debian-based distributions, please use the .deb package provided and
install it with

$> dpkg -i xtreemfs-client-0.10.x.deb

27

Installing from Sources

Extract the tarball with the sources. Change to the top level directory and
execute

$> make client

You can copy the driver xtfs mount from AL/src and the utilities from the
AL/tools directory.

2.4.2 Mounting and Un-mounting

Before mounting XtreemFS volumes, please ensure that the FUSE kernel
module is loaded. Please check your distribution’s manual to see, if users
must be in a special group (e.g. trusted in openSUSE) to be allowed to
mount FUSE.

$> su
Password:
#> modprobe fuse
#> exit

To mount an XtreemFS volume use the xtfs mount tool.

$> xtfs_mount -o dirservice=http://remote.dir.machine \
-o volume_url=http://remote.mrc.machine/myVolume \
/xtreemfs

The -o volume url=URL option is mandatory and specifies which volume
to mount. -o dirservice=URL option is mandatory as well and must point
to the directory service. The first and only argument points to a directory
on the local file system in which to mount the XtreemFS volume. For more
options, please refer to man xtfs mount.

A fuse mount is normally private for one user. To allow other users on the sys-
tem or permit root to use the mounted volume as well, the -o allow other
and -o allow root options can be passed to xtfs mount, respectively. They
are, however, mutually exclusive. In order to use these options, the system
administrator must create a FUSE configuration file /etc/fuse.conf and
add a line user allow other.

Volumes are unmounted using the xtfs umount tool.

$> xtfs_umount /xtreemfs

28

2.4.3 Reading XtreemFS-specific File Info

In addition to the regular file system information provided by the stat Linux
utility, XtreemFS provides the xtfs stat tool which displays XtreemFS spe-
cific information for a file or directory.

$> cd /xtreemfs
$> echo ’Hello World’ > test.txt
$> xtfs_stat test.txt

will produce output similar to the following

filename test.txt
XtreemFS URI uuid:eacb6bab-f444-4ebf-a06a-3f72d7465e40/xtreemfs/test.txt
XtreemFS fileID 0004760EDB989891BD4774E2:398564
object type regular file
owner xtreemfs
group users
read-only false
replica list ver. 1
replica 1 (policy: RAID0, width: 2, stripe-size: 512kB)

OSD 1 eacb6bab-f444-4ebf-a06a-3f72d7465e41
OSD 2 9aea34d3-bce4-4948-b4ff-0af31f3fd229

The XtreemFS url can be used to retrieve the volume URL and the path of
the file on the volume. The fileID is the unique identifier of the file used on
the OSDs to identify the file’s objects. The owner/group fields are shown
as reported by the MRC, you may see other names on your local system if
there is no mapping (i.e. the file owner does not exist as a user on your local
machine). Finally, the XtreemFS replica list shows the striping policy of the
file, the number of replicas and for each replica, the OSDs used to store the
objects.

2.4.4 Changing Striping Policies

It is not (yet) possible to change the striping policy of an existing file, as
this would require moving and reformatting data among OSDs. However,
individual striping policies can be assigned to new files (i.e. empty files) by
changing the default striping policy of the parent directory or volume. For
this purpose, XtreemFS provides the xtfs sp tool. The tool can be used to
change the striping policy that will be assigned to newly created files.

29

$> xtfs_sp set /xtreemfs RAID0,128,3

In addition, the tool can be used to retrieve the default striping policy of a
volume or directory.

$> xtfs_sp get /xtreemfs

The output will be similar to the following:

RAID0,128,3

When creating a new file, XtreemFS will first check whether a default striping
policy has been assigned to the parent directory. If this is not the case, the
default striping policy for the volume will be used as the striping policy
for the new file. Changing a volume’s or directory’s default striping policy
requires superuser access rights or ownership of the directory or volume.

2.5 Troubleshooting and Support

2.5.1 Logfiles

The logfiles for the XtreemFS services are located in /var/log/xtreemfs.
The client logfile must be specified with the -o logfile=/var/log/xtreemfs/client1.log
mount option to xtfs mount, otherwise the client messages will go to your
syslog.

2.5.2 Support

Please visit the XtreemFS website at www.XtreemFS.org for links to the user
mailing list and IRC channel.

2.5.3 Troubleshooting

Problem: The client hangs when opening/copying/creating a file but oper-
ations like ls or mkdir work.

Solution: This problem can occurr when an OSD uses a UUID which re-
solves to an address that the client cannot (correctly) resolve. For instance,

30

http://www.XtreemFS.org

if you use a UUID for the OSD that resolves to http://localhost:32640,
the client will try to contact the local machine instead of the machine on
which the OSD runs. Open the status page of your Directory Service and
check the UUID of the OSDs.

31

32

Chapter 3

The OSS API and User Guide

3.1 What is OSS

The Object Sharing Service (OSS) implements distributed objects for nodes
participating in an interactive multi-user grid application. OSS runs on each
client machine to enable sharing of objects residing in volatile memory. An
object in this context is a replicated volatile memory region, dynamically
allocated by an application or mapped into memory from a file.

Objects may contain scalars, references, and code. Therefore, OSS handles
concurrent read and write access to objects and maintains the consistency
of replicated objects. Persistence and security for objects stored in files are
provided by XtreemFS. Fault tolerance is provided by the grid checkpointing
mechanisms developed in WP3.3. OSS is being developed for Linux on IA32
or AMD64 compatible processors.

3.2 Installation of OSS

You can install OSS either using the prebuild distribution packages, which are
for example available on the XtreemOS release media, or you can build and
install OSS from source code. We suggest using the first method mentioned,
unless you wish to configure special build-time settings for OSS.

33

3.2.1 Installing OSS Using the Distribution Packages

The XtreemOS release contains the OSS library, as well as a raytracing demo
application to demonstrate object sharing. During the XtreemOS installation
procedure, simply select the checkbox Object Sharing Service to install the
packaged version of OSS. If you have XtreemOS already installed and wish to
install OSS, select it in the package management dialog, or run the following
command as root:

$> urpmi liboss-0.2

If you are running a Debian-based distribution, please download the liboss-0.2.deb
package and install it by running the following command as root:

$> dpkg -i liboss-0.2.deb

3.2.2 Building and Installing OSS from Source

By building and installing OSS from source, you have full control over the
installation process. You can configure how OSS is installed, and fine-tune
all OSS features. However, a few additional tools and libraries are needed to
build OSS.

Prerequisites

If you wish to build and install OSS from the source code, you need to
have some additional development packages installed on your build system.
The names of these packages depend on which Linux distribution you are
using. Although the OSS build process includes diverse checks for these
libraries, we cannot anticipate the requirements for building OSS on all Linux
distributions available. If in doubt, please consult the package search of your
distribution.

Under Debian GNU/Linux, the following packages are needed to build OSS
and the included demo applications:

• gcc ≥ 4.3

• binutils ≥ 2.18

• make

34

• libc6-dev

• libglib2.0-dev ≥ 2.14

• libreadline5-dev

In case your distribution does not include a recent GLib, the OSS installation
process helps you download and install GLib from source. Simply run the
following command, entering the root password when asked for:

$> make build/glib

For 32-bit OSS under Linux x86 64 you also need

• ia32-libs

• ia32-libs-gtk

To compile 32-bit OSS under Linux x86 64, some distributions lack symbolic
links to 32-bit libraries (libgthread-2.0.so and libglib-2.0.so). When encoun-
tering error messages telling that libgthread or glib cannot be found, log in
as user root and create the missing symlinks:

$> ln -s libgthread-2.0.so.0 /emul/ia32-linux/usr/lib/libgthread-2.0.so
$> ln -s libglib-2.0.so.0 /emul/ia32-linux/usr/lib/libglib-2.0.so

The following packages are useful to generate documentation:

• doxygen

• graphviz

• texlive

Doxygen generates source code documentation, whereas graphviz and texlive
enable dependency graph and PDF file output respectively.

35

Compilation

Unpack the OSS source code archive, change to the base directory that just
has been created, and type the following command to build the OSS library
in the standard configuration:

$> make

The make system autodetects most tools used for building OSS. If you en-
counter any errors, please ensure you have a recent compiler and linker in-
stalled, and that all developer packages mentioned above are installed cor-
rectly.

If you wish to enable non-standard features, you can supply the corresponding
parameters to make. For example, run make -B ARCH=I686 to configure
building for 32-Bit x86 machines.

If you prefer running OSS using transactional consistency model with more
than two nodes, you must specify the number of participating nodes during
compile time. For example, run make -B CFLAGS+=-DTC MAX NODES=<x>,
where x stands for the number of nodes.

In release 0.3 of OSS, the number of nodes will be variable, and a menu-based
configuration utility will be included, which is invoked via the command:

$> make configure

Installation

The following command installs the OSS library on the system, by default in
the /usr/local hierarchy. For write access to system directories, you need
root privileges.

$> make install

You can change the default installation hierarchy by specifying prefix=<pathname>,
e.g. to install OSS below /usr, run the command

$> make install prefix=/usr

Software distributors can specify an additional prefix for the actual instal-
lation directory by defining DESTDIR=<additional-prefix> on the make
command line.

36

3.2.3 Testing the OSS Installation

The OSS make system includes a command to verify that OSS has been
installed correctly, and that everything needed for running a program that
uses OSS is set up correctly:

$> make verify-install

The program should output the version and build information of the OSS
library found:

Object Sharing Service version 0.2 architecture I686
subversion revision 1297 (2008-09-11 14:37:52)

build 1
Object Sharing Service has been installed correctly.

Simple test of Object Sharing

The simple test of object sharing starts two instances of a program: the first
process creates a shared object and writes the string ”‘hello”’ to it. The
second process waits until the object has been created, and as soon as it
reads the expected string, it overwrites it with the string ”‘world”’.

The Raytracer Application

The raytracer is based on a application developed for a course at the MIT
and has been ported to OSS with the focus on testing and demonstrating
transactional shared memory. All graphical objects and the image file are
allocated in transactional shared memory. Start the first node with

$> oss_raytracer --address <IP1>

and the subsequent nodes with

$> oss_raytracer --address <IPn> --bootstrap <IP1>

where IP1 is the IP address for the first node, and IPn is replaced by the IP
address of the respective node. To configure the tracing progress, the first
node will ask some parameters:

37

1. Consistency model: ’t’ for transactional consistency, ’s’ for strong con-
sistency

2. Number of Nodes

3. Number of accesses (applies to transactional consistency only): number
of accesses between bot and eot

4. Pattern: specify one of ’l’, ’c’, ’p’, ’x’ or ’m’. ’l’ for line by line, ’c’ for
column by column, ’p’ for x partitions, ’x’ for every Xth dot, ’m’ for
matching pages.

5. Scene: 1, 2, or 3

6. Columns (e.g. 640)

7. Rows (e.g. 480)

After rendering is done, you can give new parameters and render another
scene. There are three predefined scenes in this project. Scene1 very simple
with one sphere in center and a few bowls around and only a few lights,
Scene2 very complex with some arrangements of bowls and reflecting walls.
Scene3 just for amusing OSS written with bowls. You can write own scenes
as C files analoguous to SceneDemo1.c.

We are currently extending the raytracer with a graphical user interface
(GUI), to visualize parallel rendering.

3.3 Developing Applications Using OSS

The internal interface of the OSS library is implementation-dependent, and
may be extended in the future, based on insights gained during the develop-
ment of OSS-based applications. In constrast, WP3.1 is currently defining
an XOSAGA interface for object sharing, which will eventually represent the
OSS interface in a portable way.

3.3.1 Internal Interface of the OSS Library

The interface of the OSS library is declared in the header file oss.h. The
following command generates an interface documentation in HTML and (if
latex is available) in PDF format:

38

$> make interface-doc

The documentation is stored in the build/doc/ subdirectory.

Let us quickly walk through the basic functionality of the OSS library. For a
more detailed and precise discussion of the internal library interface, please
see the Doxygen documentation generated directly from the source code. To
get a deeper understanding of how to design applications that access shared
objects, we suggest looking at the source code examples in the src/apps/
subdirectory.
int
oss_startup(

const char *addr,
const char *listen_port,
const char *bootstrap_addr,
const char *bootstrap_port
);

The oss startup call starts the OSS system by joining a bootstrap peer.
The addr and listen port parameters allow to bind the OSS instance to a
specific interface. If no bootstrap peer is specified (i.e. a NULL pointer is
passed), a new distributed object storage is created. A return value of zero
indicates successful startup.

void *
oss_alloc(

size_t size,
oss_consistency_model_t consistency_model,
oss_alloc_attributes_t *attributes
);

The oss alloc call creates a shared object of specified size, initializes it
with a consistency model and further attributes (defined by the consistency
model), and returns an identifier for the object.

void
oss_free(

void *ptr
);

The oss free call frees some memory which has previously been dynamically
allocated using oss alloc.

39

oss_transaction_id_t
oss_bot(

oss_transaction_priority_t priority,
oss_transaction_attributes_t *attributes
);

The oss bot call marks the begin of a transaction with given priority and
attributes. OSS guarantees that all accesses to distributed objects between
oss bot and oss eot perform atomically, consistent, isolated, and durable.
The return value references the transaction that has been started, or equals
oss undefined transaction id which indicates that the transaction failed
to start.

int
oss_eot(

oss_transaction_id_t taid
);

The oss eot call denotes the end of the supplied transaction.

int
oss_abort(

oss_transaction_id_t taid
);

oss_permit_abort(
oss_transaction_id_t taid
);

Both calls handle voluntarily aborting a transaction. An application that
somehow finds out that it cannot commit, or that committing will have ad-
verse effect, may call oss abort to unconditionally abort the supplied trans-
action. Depending on the transaction attributes used, the transaction will
restart or simply fail. An application may optionally call oss permit abort
to mark locations in the code where it is safe to abort a transaction. If the
transaction is already known to fail on commit, OSS can restart the trans-
action and need not delay restarting the transaction until oss eot. If the
success of the transaction is not yet determined, the call to oss permit abort
will simply appear as a void statement.

40

3.3.2 Linking Against the OSS Library

The OSS library is built as a static shared library (liboss.a) and as a
dynamic shared library (liboss.so). Simply specify the option -loss to
the compiler driver or linker, which will link against the appropriate static or
dynamic library. If you did not install the library into a well-known location
such as /usr/lib, you will need to specify the path to the library via the
option -L<path>.

41

42

Appendix A

XtreemOS Integration

XtreemFS Security Preparations

XtreemFS can be integrated in an existing XtreemOS VO security infras-
tructure. XtreemOS uses X.509 certificates to authenticate users in a Grid
system, so the general setup is similar to a normal SSL-based configuration.

Thus, in an XtreemOS environment, certificates have to be created for the
services as a first step. This is done by issuing a Certificate Signing Request
(CSR) to the RCA server by means of the create-server-csr command.
For further details, see the Section Using the RCA in the XtreemOS User
Guide.

Signed certificates and keys generated by are RCA infrastructure are stored
locally in PEM format. Since XtreemFS services are currently not capable
of processing PEM certificates, keys and certificates have to be converted to
PKCS12 and Java Keystore format, respectively.

Each XtreemFS service needs a certificate and a private key in order to be
run. Once they have created and signed, the conversion has to take place.
Assuming that certificate/private key pairs reside in the current working
directory for the Directory Service, an MRC and an OSD (ds.pem, ds.key,
mrc.pem, mrc.key, osd.pem and osd.key), the conversion can be initiated
with the following commands:

$> openssl pkcs12 -export -in ds.pem -inkey ds.key
-out ds.p12 -name "DS"

$> openssl pkcs12 -export -in mrc.pem -inkey mrc.key
-out mrc.p12 -name "MRC"

$> openssl pkcs12 -export -in osd.pem -inkey osd.key

43

-out osd.p12 -name "OSD"

This will create three PKCS12 files (ds.p12, mrc.p12 and osd.p12), each
containing the private key and certificate for the respective service.

XtreemFS services need a trust store that contains all trusted Certification
Authority certificates. Since all certificates created via the RCA have been
signed by the XtreemOS CA, the XtreemOS CA certificate has to be included
in the trust store. To create a new trust store containing the XtreemOS CA
certificate, execute the following command:

$> keytool -import -alias xosrootca -keystore xosrootca.jks
-trustcacerts -file
/etc/xos/truststore/xtreemosrootcacert.pem

This will create a new Java Keystore xosrootca.jks with the XtreemOS
CA certificate in the current working directory. The password chosen when
asked will later have to be added as a property in the service configuration
files.

Once all keys and certificates have been converted, the resulting files should
be moved to /etc/xos/xtreemfs/truststore/certs as root:

mv ds.p12 /etc/xos/xtreemfs/truststore/certs
mv mrc.p12 /etc/xos/xtreemfs/truststore/certs
mv osd.p12 /etc/xos/xtreemfs/truststore/certs
mv xosrootca.jks /etc/xos/xtreemfs/truststore/certs

For setting up a secured XtreemFS infrastructure, each service provides the
following properties:

specify whether SSL is required
use_ssl = true

server credentials for SSL handshakes
ssl_service_creds = /etc/xos/xtreemfs/truststore/certs/\
service.p12
ssl_service_creds_pw = xtreemfs
ssl_service_creds_container = pkcs12

trusted certificates for SSL handshakes

44

ssl_trusted_certs = /etc/xos/xtreemfs/truststore/certs/\
xosrootca.jks
ssl_trusted_certs_pw = xtreemfs
ssl_trusted_certs_container = jks

service.p12 refers to the converted file containing the credentials of the
respective service. Make sure that all paths and passphrases (xtreemfs in
this example) are correct.

45

46

Appendix B

Command Line Utilities

xtfs mount The XtreemFS client which mounts an XtreemFS volume lo-
cally on a machine.

xtfs umount Un-mounts a mounted XtreemFS volume.

xtfs showmount Shows all locally mounted XtreemFS volumes.

xtfs mkvol Creates a new volume on an MRC.

xtfs lsvol Lists the volumes on an MRC.

xtfs rmvol Deletes a volume and all files on that volume from the MRC
and the OSDs.

xtfs stat Displays XtreemFS specific file information such as the striping
policy and the OSDs.

xtfs sp Displays and modifies the striping policy for a file, or the default
striping policy for directories and volumes.

xtfs scrub Examines all files in a volume for incorrect file sizes and check-
sums. In case of incorrect file sizes, file sizes are corrected at the MRC.

xtfs cleanup Deletes orphaned objects on an OSD or creates new metadata
objects for orphaned files.

xtfs mrcdbtool Dumps an XML representation of the MRC database to a
given directory in the MRC’s local file system.

47

Index

Access Policy, 5
Authorize All, 5
POSIX ACLs, 5
POSIX Permissions, 5
Volume ACLs, 5

allow others option, 28
allow root option, 28
Architecture, 2
Authentication, 3
Authentication Provider, 9

NullAuthProvider, 9
SimpleX509AuthProvider, 9
XOSAuthProvider, 10

Authorization, 4
Authorize All Access Policy, 5

CA
Certificate Authority, 21

Certificate, 4, 19
Certificate Authority, 21
Client, 3
Create Volume, 24
Credentials, 19

Delete Volume, 25
DIR, 2
Directory Service, 2

fileID, 29
FUSE, 3

init.d, 23

Java KeyStore, 20
JKS, 20

Logfile, 30

Metadata, 2
Metadata and Replica Catalog, 3
Metadata Server, 3
Mount, 28
Mounting, 3
MRC, 3

NullAuthProvider, 9

Object, 2
object, 33
object sharing service, 33
Object Storage Device, 3
Object-base File System, 2
OSD, 3
OSD Selection Policy, 4

Proximity-based, 4
Random, 4

OSS, 33

PKCS#12, 20
Policy

Access Policy, 5
OSD Selection Policy, 4
Striping Policy, 5

POSIX ACLs Access Policy, 5
POSIX Permissions Access Policy, 5
Proximity-based OSD Selection, 4

RAID0, 5
Random OSD Selection, 4
raytracer application, 37

SAGA, 38

48

SimpleX509AuthProvider, 9
SSL, 4
Status Page, 24
Storage Server, 3
Stripe Size, 5
Striping, 5

Stripe Size, 5
Striping Width, 5

Striping Policy, 5

Unmount, 28
user allow other option, 28
UUID, 8

VFS, 3
Volume, 2, 3

Create, 24
Delete, 25
Mount, 28
Unmount, 28

Volume ACLs Access Policy, 5

Width, Striping Width, 5

X.509, 4, 19
XOSAGA, 38
XOSAuthProvider, 10
xtfs mkvol, 24
xtfs mount, 28
xtfs rmvol, 25
xtfs sp, 29
xtfs stat, 29
xtfs umount, 28
XtreemFS stat, 29
XtreemFS striping policy tool, 29
XtreemOS

Integration, 43
XtreemOS Certificates, 10

49

	Executive Summary
	The XtreemFS User Guide
	Quick Start
	What is XtreemFS
	About XtreemFS
	XtreemFS Architecture
	The Components of XtreemFS
	Security

	Policies
	OSD Selection Policies
	Striping Policies
	Authorization - Access Policies
	Pluggable Policies

	XtreemFS Services
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Configuration
	A Word about UUIDs
	Authentication
	UNIX uid/gid - NullAuthProvider
	Plain SSL Certificates - SimpleX509AuthProvider
	XtreemOS Certificates - XOSAuthProvider

	List of Configuration Options
	authentication_provider
	capability_secret
	checksums.enabled
	checksums.algorithm
	database.dir
	database.log
	database.checkpoint.interval
	database.checkpoint.idle_interval
	database.checkpoint.logfile_size
	debug_level
	dir_service.host
	dir_service.port
	listen.address optional
	listen.port
	local_clock_renewal
	no_atime
	no_fsync optional
	object_dir
	osd_check_interval
	remote_time_sync
	report_free_space
	ssl.enabled
	ssl.service_creds
	ssl.service_creds.container
	ssl.service_creds.pw
	ssl.trusted_certs
	ssl.trusted_certs.container
	ssl.trusted_certs.pw
	uuid

	DIR Configuration
	MRC Configuration
	OSD Configuration
	Configuring SSL Support
	Converting PEM files to PKCS#12
	Importing trusted certificates from PEM into a JKS
	Sample Setup

	Management
	Starting and Stopping the XtreemFS services
	Web-based Status Page
	Creating Volumes
	Deleting Volumes
	MRC Database Conversion
	Scrubbing and Cleanup

	The XtreemFS Client
	Installation
	Prerequisites
	Installing from Pre-Packaged Releases
	Installing from Sources

	Mounting and Un-mounting
	Reading XtreemFS-specific File Info
	Changing Striping Policies

	Troubleshooting and Support
	Logfiles
	Support
	Troubleshooting

	The OSS API and User Guide
	What is OSS
	Installation of OSS
	Installing OSS Using the Distribution Packages
	Building and Installing OSS from Source
	Prerequisites
	Compilation
	Installation

	Testing the OSS Installation
	Simple test of Object Sharing
	The Raytracer Application

	Developing Applications Using OSS
	Internal Interface of the OSS Library
	Linking Against the OSS Library

	XtreemOS Integration
	XtreemFS Security Preparations

	Command Line Utilities

