XtreemOS /j~ BUH

Information Society

Enabling Linux .
for the Grid)4/ Technologies

Project no. IST-033576

XtreemOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

XtreemFS and OSS Developer Guide
D3.4.5

Due date of deliverable: 30-MAY-2009
Actual submission date: 29-MAY-2009

Start date of project: June 1% 2006

Type: Deliverable
WP number: WP3.4

Responsible institution: Z1B

Editor & and editor’s address: Bjorn Kolbeck
Zuse Institute Berlin

Takustr. 7

14195 Berlin

Germany

Version 1.0 / Last edited by Jan Stender, Bjorn Kolbeck / 26-MAY-2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level
PU | Public N
PP | Restricted to other programme participants (including the Commission Services)
RE | Restricted to a group specified by the consortium (including the Commission Services)
CO | Confidential, only for members of the consortium (including the Commission Services)

Revision history:

Version H Date \ Authors \ Institution \ Section affected, comments

Reviewers:
Mathijs den Burger (VUA), Roman Talyansky (SAP)

Tasks related to this deliverable:

Task No. || Task description Partners involved®
T3.4.1 XtreemFS File Access CNR*, BSC, ZIB
T3.4.2 XtreemFS Metadata Server ZIB*

T3.44 XtreemFS Pattern-Aware Data Access BSC*, CNR

T3.4.5 Object Sharing Service uDUS*

T3.4.6 XtreemFS client NEC*, UDUS

°This task list may not be equivalent to the list of partners contributing as authors to the deliverable
*Task leader

Contents

1 The XtreemFS Developer Guide 5
1.1 Imtroductiono 5
1.1.1 Document Structure 6

1.2 XtreemFS Serverso 6
1.2.1 DIR - Directory Service 7
1.2.2 MRC - Metadata and Replica Catalog 7
1.2.3 OSD - Object Storage Device 18

1.3 Client 19
1.3.1 Architecture 20

1.3.2 Implementation 22

1.4 RMS - Replica Management Service 23
1.4.1 Choosing the best replica. 23
1.4.2 Replica creation, 28
1.4.3 Replicadeletion 30
1.4.4 Interaction with the Application Execution Management 30

1.5 Testing o 31
1.5.1 Testing POSIX compliance of XtreemFS 32
1.5.2 Regression Tests 34

1.6 Protocol and Interactions 35
1.6.1 Constants oL 35
1.6.2 Types o 36
1.6.3 Directory Service Interface 40

1

2 The
2.1
2.2
2.3

24

2.5

1.6.4 Metadata and Replica Catalog Interface 43

1.6.5 Object Storage Device Interface 52
1.6.6 Interactions L. 57
OSS Developer Guide 65
Introduction Lo o 65
APL o 65
Architecture oo 66
2.3.1 Cache Management 66
2.3.2 Consistency Models 67
2.3.3 Name Service 68
2.3.4 Network Communication 69
Internal Interfaces 71
2.4.1 Cache Management 71
2.4.2 Network Communication 74
How to implement Consistency Models 76
2.5.1 Function Pointer Table 76
2.5.2 Consistency Model Registration in OSS 76
2.5.3 Initializer and Finalizer 7
2.5.4 Register PDU handlers 7
2.5.5 Writing PDU handlers 78
25.6 PDUsubsystem 79
2.5.7 Page Fault Handler 79
2.5.8 Exporting functions to the APT 80

Executive Summary

In this guide we describe the internals of the XtreemF'S file system and the
Object Sharing Service (OSS). This document is intended for developers as
a reference documentation of the protocols and architectures as well as an
introduction for those new to XtreemFS or OSS.

The section on XtreemF'S describes the overall architecture, goals and fea-
tures. Individual components are presented and their internal design is ex-
plained, the XtreemFS protocol is described and documented. Finally, the
testing tools and methodology is described.

The following chapter describes the internals of OSS and its architecture.
OSS’ modules are described and explained in detail, and an overview of OSS’
network protocol is given. The section on internal interfaces documents the
inter-module function calls. The last section describes step by step how
developers can implement their own consistency models.

Chapter 1

The XtreemFS Developer Guide

1.1 Introduction

XtreemF'S [5] is an object-based [1, 10] file system designed for Grid envi-
ronments. It is the main distributed file system in the XtreemOS operating
system, which relies on XtreemF'S for replicated and low-latency file storage
between Grid machines.

From a user’s perspective, XtreemF'S offers a global view on files. Files and
directory trees are arranged into volumes. A volume can be mounted at
any Grid node where a sufficiently authorized job can access and modify
files on the volume. Applications access directories and files on XtreemF'S
volumes through normal POSIX interfaces (open, read, etc.) and thus do
not require re-compilation in order to work with XtreemFS. This stands in
marked contrast with earlier Grid file systems such as GFarm [13], which
often forced users to rewrite parts of their applications in order to access files
across the Grid via special non-POSIX APIs or to adapt to a non-POSIX file
system semantics.

From an administrator’s perspective, an XtreemF'S installation consists of file
system clients running on each user’s machine and network-based services for
storing and retrieving file metadata and data. The former services are known
as Metadata and Replica Services (MRCs), while the latter are called Object
Storage Services (OSDs). These services are complemented by the Replica
Management Service (RMS), which is responsible for creating replicas on
demand in response to changing user access patterns as well as eliminating
redundant replicas; and the Object Sharing Service (OSS), which provides
transaction-based sharing of volatile memory objects and supports memory-
mapped files for XtreemF'S.

This deliverable is intended to serve as a developer guide. Its focus is on the
current design and implementation of the XtreemF'S client and servers, net-
work protocols used between clients and servers, and test suites for XtreemF'S.

1.1.1 Document Structure

The report is structured as follows. Sections 1.2.2, 1.2, 1.2.1, 1.2.3 describe
the XtreemFS directory, metadata, and object store services. In section 1.3
we introduce the new XtreemF'S client, which was designed from the ground
up to take advantage of the new binary protocol and to remedy numerous
performance and scalability problems in the previous revision of the client.
Section 1.4 concerns the XtreemFS Replica Management Service. We con-
clude with a discussion of recent testing efforts in section 1.5. Finally, sec-
tion 1.6 documents the new binary client-server and server-server protocol, a
more efficient and easily-maintained replacement for the text-based protocol
of previous releases.

1.2 XtreemFS Servers

All XtreemF'S servers (DIR, MRC and OSD) are written in Java and em-
ploy an event-based staged design. In addition to the common architecture,
they also share the basic libraries like RPC server and client or memory
management.

In our design, a stage has one or more threads to do the work. Usually, a stage
is used for processing which is blocking (e.g. I/O operations) or consumes
larger amounts of CPU time (e.g. checking signatures). Each stage receives
requests (events), processes them asynchronously and passes the result to
a callback. Operations are the “glue” between the stages. For each client
request or internal event, there is an Operation class which implements the
logic of the call.

All servers also use a custom method of memory management. To avoid
excessive data copying to and from the Java VM, we use direct ByteBuffers
which represent raw memory on the heap. These direct ByteBuffers are not
managed by the Java garbage collector and excessive allocation and freeing of
them causes severe performance problems. To overcome this problem and to
reduce overall memory consumption, we use a concurrent BufferPool to allo-
cate ByteBuffers. In addition, we use a wrapper class (called ReusableBuffer)

6

which implements reference counting. It also ensures that ReusableBuffers
which have been returned to the pool cannot be used anymore.

The ReusableBuffers must be freed (i.e. returned to the BufferPool) after
using them. Failing to do so will cause an error message to be printed on
finalization which should help to detect memory leaks. Setting Buffer-
Pool.recordStackTraces to true will add a full stack trace of the allocation
to the error message which is useful to locate memory leaks. This option
is only for debugging and should not be used for production due to the
performance penalty of recording stack traces on each allocation.

The ONC RPC server and client are used by all three servers as well. Both
are implemented using Java’s non-blocking network IO NIO and can be used
with or without SSL.

The DIR and MRC also use an external key-value store called BabuDB (see
http://babudb.googlecode.com) to persistently store information. How it is
used and how the data is stored in BabuDB is described in the DIR and
MRC sections, respectivly.

1.2.1 DIR - Directory Service

The Directory Service (DIR) is the central service registry of XtreemFS.
All services register and regularly update their registration at the DIR. In
addition, it keeps all address mappings which the services need to translate
UUIDs to hostname and port. The directory service is also used by the MRCs
and OSDs to synchronize their clocks.

Currently, the directory service is a single instance. In the future, this service
will be replicated and and divided into a hierarchy of DIR services.

Persistent data is stored in BabuDB!, a non-transactional key-value-store.
The service and address mapping records are stored in their XDR represen-
tation. This means that the DIR database must be deleted or converted if
data structures change.

1.2.2 MRC - Metadata and Replica Catalog

The Metadata and Replica Catalog (MRC) is responsible for the management
of all metadata in an XtreemF'S installation. Core tasks of the MRC are the
management of volumes and directory trees, storage of file and directory
metadata and access control enforcement.

http://babudb.googlecode.com

http://babudb.googlecode.com

Architecture

Aside from the ONC RPC server that listens for incoming client requests,
the MRC architecture comprises two core components: the processing stage
and the database backend. Each request received by the ONC RPC server is
parsed and forwarded to the processing stage, which executes the respective
file system logic. Any data that needs to be retrieved or modified during file
system logic execution is stored in a database backend.

Processing Stage

The MRC interface consists of multiple so-called operations. Each operation
relates to an implementation of the logic for the execution of a certain re-
quest. There are operations e.g. for opening files, reading directory content,
creating volumes, and the like. Operations are named and parametrized sim-
ilar to their corresponding POSIX calls. To circumvent locking issues in the
underlying database, operation execution is serialized for each volume, i.e.
no more than one thread may execute operations on a certain volume at the
same time.

All operations have a similar composition. First, authorization checks are
performed, in order to find out whether the user on behalf of whom the re-
quest was sent has sufficient permissions to execute the operation. In case
of a positive result, the operation logic is executed. Operation logic execu-
tion may involve an arbitrary number of accesses to the underlying database
backend. A readdir request will e.g. result in a database lookup for the
content of a directory, a setxattr request will cause an extended attribute
of a file to be added in the database.

A detailed description of the interface to the MRC including all operations
is given in Sec. 1.6.4.

Database Backend

The database backend is accessed at record level, i.e. at a granularity of
single key-value pairs. The creation of a new file could e.g. require several
record modifications, since a file metadata object needs to be inserted in the
database, a link to the parent directory needs to be established, time stamps
of parent directories need to be updated, and so forth. Multiple such records
can be combined in an insert group, which causes the insertion of a new set
of records to take place in a single step, i.e. atomically.

The database backend implementation is decoupled from the remaining MRC
code via an interface, which gives developers the opportunity to implement
their own database bindings. The currently used implementation is based on
BabuDB. A BabuDB instance may comprise multiple databases, which may
in turn comprise multiple indices. Databases are identified by name strings,
whereas indices of a database are serially numbered. Lookups and insertions
are directed to single indices of a database; besides normal value lookups for
keys, BabuDB supports queries for key prefixes, which provides the basis for
an efficient lookup of consecutive key-value pairs.

A range of different indices are used to store XtreemFS metadata. How
XtreemFS metadata is mapped to BabuDB indices will be described in the
following.

Metadata for Volume Management Volume metadata is stored in a
database named V. It is arranged in the following indices:

| Name Description
0 | Volume ID Index Maps a volume UUID to a volume metadata entity.
Volume Name Index | Maps a volume name to a volume ID.

| Volume ID Index

key

Element # Bytes | Description

volumeID var the volume ID string

value

Element # Bytes | Description

fileAccPolID | 2 the file access policy ID for the
volume

osdPolID 2 the OSD selection policy ID for the
volume

offsVolName 2 the offset position of the ’volName’

element, relative to the offset of

the buffer’s first byte

offsPolArgs 2 AEBéAb%fééggﬁbgifiaﬁubiifhé 7777777777
"osdPolArgs’ element, relative to

the offset of the buffer’s first byte

volID var the volume’s UUID string
volName var the volume’s name string
osdPolArgs var the volume’s OSD selection policy

argument string

| Volume Name Index

key

Element # Bytes | Description

volName var the volume name string
value

Element 7# Bytes | Description

volId var the volume’s UUID string

Metadata for Files and Directories File system metadata of a volume
is stored in a BabuDB database with a name equal to the volume’s UUID.
Various indices are used to manage metadata pertaining to files and direc-
tories, which will be described in the following tables. Indices have been
designed with the following goals in mind:

e Lookups performed by frequently invoked operations should be as fast
as possible, like metadata lookups for a given directory path.

e Database records that are frequently updated should include as little
unchanged data as possible.

e Frequently performed database updates should be fast, i.e. involve as
little index insertions as possible.

e Indices should contain as little redundancy as possible, in order to
minimize database size and memory footprint.

With the aforementioned goals in mind, we decided to have a primary index
for the primary metadata of files, which maps a key essentially consisting of a
parent directory ID and a file name hash to a value that contains a metadata
record. This way, BabuDB prefix lookups for parent directory IDs can be
used to efficiently retrieve contents of a directory, while normal lookups can
be used to retrieve metadata for a single file. Since POSIX requires support
for hard links, i.e. different directory entries pointing to the same metadata,
and some operations require a retrieval of file metadata by means of file IDs,
we decided to maintain a secondary index that allows a retrieval of metadata
by means of a file ID. Other indices are used to store extended attributes
and access control lists.

10

Name

Description

File Index

Stores primary metadata for a directory entry. Values in the
index may be of different kinds:

o frequently changed metadata - encapsulates all metadata
that is frequently modified, such as time stamps or file
sizes

e rarely changed metadata - encapsulates all metadata that
is infrequently changed, such as file names, access modes,
or ownership of a file

e replica location metadata - encapsulates X-Location lists

of files

e hard link targets - in case additional hard links exist for
one file, the value is a hard link target, i.e. a key in the
File ID index. Lookups to file metadata will then be per-
formed in two steps: first, a lookup in the File Index will
be performed, in order to retrieve the hard link target;
then, metadata will be looked up in the File ID Index.

XAttr Index

Contains any extended attributes of files and directories. This
includes Softlink targets and default striping policies, since they
are mapped to extended attributes.

ACL Index

Contains access control list entries of all files.

File ID Index

The file ID index is used to retrieve file metadata by means of its
ID. If no hard links have been created to a file, the file ID will
be mapped to a key in the file index, for which the metadata will
have to be retrieved with a second lookup. Such a mapping is
necessary for some operations that are based on file IDs instead
of path names. If hard links have been created, the file ID will
be directly mapped to the three different types of primary file
metadata (i.e. rarely and frequently changed metadata, as well
as replica locations). In this case, the file’s entries in the file index
point to the corresponding prefix key in the file ID index.

Last ID Index

Contains a single key-value pair that maps a static key to the last
file ID that has been assigned to a file. The index ensures that
new file IDs are assigned to newly created files or directories.

11

] File Index

key
Element # Bytes | Description
parentID 8 file ID of the parent directory
| fileNameHash | 4 | a hash value of the file name |
| type | S type of metadata (O=frequently |
changed metadata, l=rarely changed
metadata, 2=replica locations, 3=hard
link targets)
| collCount |2 |« counter that is incremented with each |
collision of file name hashes - will
be omitted unless multiple file names
in the directory have the same hash
values
value, type = 0
Element # Bytes | Description
fcMetadata 20/12/8 | frequently changed metadata

associated with the file (see

" fcMetadata’ definition), 20

bytes for files & symlinks, 12 for
directories, 8 for hard link targets

value, type = 1

Element # Bytes | Description

rcMetadata var rarely changed metadata associated
with the file (see ’rcMetadata’
definition)

value, type = 2

Element 7# Bytes | Description

xLocList var/8 the replica location list associated
with the file (see ’xLocList’
definition), variable length for
files & directories, 8 for hard link
targets

12

] XAttr Index

key
Element # Bytes | Description
filelID 8 the ID of the file to which the
extended attribute has been assigned B
ownerHash 4 a hash value of the attribute’s owner
attrNameHash | 4 a hash value of the attribute name
collCount 2 counter that is incremented with
each collision of (ownerHash,
attrNameHash) pairs - will be omitted
unless different attributes are
hashed to the same such pair
value
Element # Bytes | Description
offsKey 2 the offset position of the ’attrKey’
element, relative to the offset of
the buffer’s first byte
offsvValue 2 the offset position of the
"attrValue’ element, relative to the
R offset of the buffer’s first byte ___
attrOwner var t??AP§§F,}Q_Pﬁ,?b§4§FE€}?E§?:§AQWQ%P,,
attrKey var the attribute key
attrValue var the attribute value
| ACL Index
key
Element # Bytes | Description
filelID 8 the ID of the file to which the
] extended attribute has been assigned _
entityName var the name of the entity associated
with the ACL entry
value
Element # Bytes | Description
rights 2 the access rights for the entity

13

] File ID Index

key

Element # Bytes | Description

fileID 38 the ID of the file
type 1 type of metadata (0O=frequently

changed metadata, l=rarely changed
metadata, 2=replica locations, 3=hard
link targets)

value, type = 0

Element # Bytes | Description

fcMetadata 20/12 frequently changed metadata
associated with the file (see

" fcMetadata’ definition), 20

bytes for files & symlinks, 12 for

directories

value, type = 1

Element # Bytes | Description

rcMetadata var rarely changed metadata associated
with the file (see ’rcMetadata’
definition)

value, type = 2

Element # Bytes | Description

xLocList var the replica location list associated
with the file (see ’xLocList’
definition)

value, type = 3

Element # Bytes | Description

parentID 8 the ID of the parent directory in
which the metadata for the file is

,,,,,,,,,,,,,,,,, stored _ _ _ _ _ _ _ _ o __________|

fileName var the file name in the parent directory

14

] Last ID Index

key

Element # Bytes | Description

fox! 1 the only key in the table

value

Element # Bytes | Description

lastFileID 8 the last ID that has been previously
assigned to a file or directory

Data types referenced in the index descriptions above are listed in the fol-

lowing:

| frequentlyChangedMetadata

files
Element # Bytes | Description
atime 4 file access time stamp in seconds
since 1970
| ctime | 4] file metadata change time stamp in |
seconds since 1970
| mtime | 4] file content modification time stamp |
in seconds since 1970
| size | I file size in bytes |
directories
Element # Bytes | Description
atime 4 file access time stamp in seconds
since 1970
| ctime | A file metadata change time stamp in |
seconds since 1970
| mtime | 4] file content modification time stamp |
in seconds since 1970

15

| rarelyChangedMetadata

files
Element # Bytes | Description
type 1 the type of the entry (0=file,
l=directory)
T I I file ID]
mode	4 POSIX access mode	
linkCount	2	1 number of hard links to the file
w32attrs	I Win32-specific attributes	
epoch	A current truncate epoch	
issEpoch	A last truncate epoch that has been	
issued		
readonly	A a flag indicating whether the file is	
suitable for read-only replication		
offsOwner	2	« o%féé%‘ﬁbéifiéﬁfBf‘fké‘76&6é37 7777777
element, relative to the offset of		
the buffer’s first byte		
offsGroup	2	« offset position of the ’group’
element, relative to the offset of		
the buffer’s first byte		
fileName	- var	1 name of the file]
owner	- var	1 user ID of the file’s owner
group	- var	« group ID of the file’s owner
directories		
Element # Bytes	Description	
type 1 the type of the entry (0=file,		
l=directory)		
lid I I file ID]		
mode	4 POSIX access mode	
linkCount	2	number of hard links to the file
w32attrs	I Win32-specific attributes	
offsOwner	2	« offset position of the ’owner’
element, relative to the offset of		
the buffer’s first byte		
offsGroup	2	« offset position of the ’group’
element, relative to the offset of		
the buffer’s first byte		
fileName	: var	1 name of the directory
owner	- var	1 user ID of the directory’s owner
group	- var	« group ID of the directory’s owner

16

]XLocth

xLocList
Element # Bytes | Description
version 4 version of the X-Locations 1list
| replcount |4 |1 number of replicas in the list |
| offsUpdPol | 4 |« offset position of the ’updPol’ |
element, relative to the offset of
the buffer’s first byte
| offs1 |- 4
e . offset positions for all replicas,
offsN 4 relative to the offset of the
buffer’s first byte
| xLocl |- var |
replicas in the X-Locations list
xLocN var
| updPol |- var |1 update policy string that describes |
how replica updates will be
propagated
xLoc
Element # Bytes | Description
offsOsdList 2 offset position of the ’osdList’
element, relative to the offset of
the buffer’s first byte
| strpol | var | ¢ striping policy associated with the |
replica
| osdList |- var | . list of all 0SDs for the replica |
strPol
Element # Bytes | Description
stripeSize 4 size of a single stripe (=object) in
kB
| width |- 4 number of 0SDs for the striping |
| pattern |- var | string containing the striping |
pattern
osdList
Element # Bytes | Description
osdCount 2 number of 0OSDs in the list
| offs0SD1 | 2]
.. .. offset positions for all OSD UUIDs,
0ffs0OSDn 2 relative to the offset of the
buffer’s first byte
| osduuID1l |- var |
e R UUIDs of all OSDs in the list
0sdUUIDn var

[y
-

1.2.3 OSD - Object Storage Device

The Object Storage Device (OSD) is responsible for reading and writing
objects from/to disk. In addition, it also implements the replication (which
is transparent to clients). In this section, we first describe the stages and
components of the OSD. We then describe the interaction between OSDs for
striped files and for read-only replication.

e StorageStage and StorageThread
The StorageStage distributes the request onto a pool of StorageTh-
reads. The allocation of requests is based on the fileID to ensure that
all requests for a single file are handled by the same thread. This is
necessary to avoid sharing of file metadata across multiple threads.

The StorageThread implements the actual file I/O to access objects on
disk. It uses a StorageLayout which is responsible for arranging the
objects into files and directories in the underlying file system.

e PreprocStage

Analyzes the incoming RPC requests and starts the matching Oper-
ation for the requests. It also parses the request arguments (RPC
message) based on the Operation. In addition, it parses and validates
the signed capability and ensures that the client is authorized to exe-
cute the operation. To enhance performance, the PreprocStage keeps a
cache of validated Capabilities and XLocation lists. The PreprocStage
also keeps a list of open files which is updated whenever a file (i.e. a
file’s object) is accessed. The list is regularly checked (approx. every
mminute) for last access times and files which have timed out will be
closed. This close event is sent to the other stages, to allow them to
clean their caches. As POSIX requires that a file which is deleted while
still opened can still be read or written to, the close event is also used
to finally remove data of deleted files.

e DeletionStage
This stage is removing the objects on disk for files which have been
deleted. This is done directly when the unlink RPC is received or
when the file is closed (see PreprocStage).

e VivaldiStage

Implements the OSD’s Vivaldi component and regularly updates its
coordinates. See Sec. 1.4 for details on Vivaldi.

18

e ReplicationStage
Fetches data from remote OSDs for files which are replicated. For more
details about the read-only replication see Sec. 1.2.3.

e CleanupThread

This is not a regular stage, but a background task to scan for orphaned
files. If a file is deleted on the MRC but the client fails to delete
the file at the OSD, we get so called zombies. To remove them, the
OSD has to scan its file system from time to time and check the files
at the MRC. How often and when these cleanup operations should be
executed depends on the usage pattern of the system (e.g. client’s often
disconnecting during operations).

Striping

XtreemF'S allows files to be striped (distributed) over several OSDs. To en-
sure correct POSIX semantics in this distributed case, OSDs need to exchange
additional information on some write and read operations. We use additional
UDP datagrams on write to disseminate file size update hints among OSDs.
See [12] for a detailed description of the algorithms used in XtreemFS.

Read-only replication

The read-only replication allows users to replicate their immutable files with
very low overhead. Users can set a file to read-only which means that it
cannot be modified anymore. This allows users to add replicas on other
OSDs which can either be a “full” or a “lazy” replica. For a “full” replica the
OSD will automatically fetch all objects of that file. For a “lazy” replica the
OSD only fetches the objects when a client tries to read them. Additional
prefetching for “lazy” replicas will be added.

1.3 Client

The XtreemFS client connects applications to XtreemFS and acts as a gate-
way to the XtreemFS directory (DIR), metadata (MRC), and object store
(OSD) servers. From a user’s perspective, the client consists of a number
of binary programs that reside on the user’s machine. These programs and
their functions are summarized in table 1.1.

19

Command line tool | Function

xtfs_lsvol list volumes on an XtreemFS MRC server
xtfs_mkvol create a volume on an XtreemFS MRC server
xtfs_mount mount an XtreemES volume

xtfs_rmvol delete a volume on an XtreemFS MRC server
xtfs_send send arbitrary RPCs to an XtreemF'S server
xtfs_stat print statistics on an XtreemF'S file or directory

Table 1.1: XtreemF'S client command line tools

1.3.1 Architecture

The client is structured as a network of message-processing stages connected
by queues. These stages are similar to those in the XtreemF'S servers, and are
designed with the same intent: to increase concurrency while avoiding data
races (see |11] and previous deliverables for an explanation of stages). Unlike
the XtreemF'S servers, which is implemented in Java and uses a custom-built
set of classes for managing stages, the client is implemented in C++ and
relies on a third party platform, Yield ? for much of its low-level functionality,
including concurrency control in the form of stages as well as platform-specific
primitives such as files and sockets.

The stage architecture of the XtreemF'S client is depicted in figure 1.1.
Note that this particular configuration of stages is specific to xtfs_mount,
which consists of a set of FUSE entry points and proxy stages for the vari-
ous XtreemF'S servers with which xtfs_mount communicates: the directory
server (DIRProxy), the metadata server (MRCProxy), and one or more object
stores (OSDProxy).

FUSE

xtfs_mount provides a file system interface to applications via FUSE 2, a li-
brary for implementing file systems in userspace. Applications make POSIX
system calls such as open and read into the operating system kernel. A
FUSE kernel module translates these calls into messages (i.e. Remote Pro-
cedure Calls), which are then passed to a FUSE file system via a pipe. The
file system runs as a daemon in an infinite loop, reading and processing
messages from the pipe and sending responses back into the kernel. The
userspace part of the FUSE library handles most of the nitty gritty details

2http://yield.googlecode.com/
3http://fuse.sourceforge.net/

20

http://yield.googlecode.com/
http://fuse.sourceforge.net/

XtreemFS Volume

e

eq Req
(,| DIR Proxy MRC Proxy
1 v !

v Reg v
eq

Q OSD Proxy

v

Figure 1.1: Client stages

of kernel-userspace communication, so that the file system implementator
can concentrate on implementing file system logic. This is typically done
by implementing a set of FUSE callbacks, each of which corresponds to a
POSIX system call (and thus a message on the FUSE pipe as well). The
FUSE library translates messages to calls on the callbacks supplied by the
file system developer and translates return values from the callbacks back
into messages for the FUSE kernel module. These FUSE callbacks are the
main entry points into xtfs_mount.

From a FUSE callback such as mkdir the client makes a series of requests
(messages) through the various stages shown in figure 1.1. The primary
stages in the client are proxies for the servers the xtfs_mount instance is
connected to: typically a single DIR server and a single MRC server and
multiple OSD servers. In the case of mkdir the client would send a request
to the MRCProxy to create the specified directory. Because the FUSE call-
backs are synchronous the initial request from a callback to a stage must
be synchronous, i.e. the sender must wait for the response before doing any
further processing. However, this does not mean that the whole system is
synchronous: only the FUSE callback blocks synchronously on a request,
allowing the stages in the client to communicate asynchronously (and thus
improve performance). Furthermore, since the FUSE callbacks may be mul-
tithreaded and reentrant a stage (such as e.g. the MRCProxy) can process
requests from multiple FUSE callbacks simultaneously. In other words, the

21

concurrency of the client is not limited by the FUSE front end and the num-
ber of threads processing FUSE messages.

1.3.2 Implementation

The XtreemFS client is implemented entirely in C++. Aside from the es-
sential components listed above (FUSE callbacks, server proxies) xtfs_mount
consists of a few support classes such as Path (which wraps XtreemFS volumefile
global paths) and XtreemOS integration code such as a pluggable module

for retrieving user credentials from an XtreemOS AMS server. Most of this
code is shared between the XtreemFS command line tools listed in table 1.1.

As mentioned previously, the XtreemFS client also relies heavily on Yield

for many low-level classes, such as platform-specific file paths and sockets.
The ONC-RPC [11] protocol implementation used to communicate with the
XtreemF'S servers is also a part of Yield.

Generated interfaces

The synchronous request-response messages exchanges between FUSE call-
backs and stages such as the MRCProxy are hidden underneath a function call
interface. The latter is generated from the same IDL interfaces used by the
server. When one of the interface operations is called synchronously on the
MRCProxy a request is created and filled with the function parameters; the
request is sent to the MRCProxy stage, where it is processed asynchronously;
and the caller blocks waiting for the response, which, when it is received, is
unpacked and returned as a normal function return value. The extra level of
abstraction allows the FUSE callback interface to be fully agnostic of mes-
sage sending and receiving, and simply treat the MRCProxy as if it were
making synchronous remote procedure calls. The FUSE callback for mkdir
is shown in figure 1.2.

bool Volume: :mkdir(const YIELD::Path& path, mode_t mode)

{
mrc_proxy.mkdir(Path(this->name, path), mode);
return true;

b

Figure 1.2: FUSE callback for mkdir

22

Lines of code

With much of its low-level functionality in Yield and other libraries the code
base for the XtreemF'S client is quite minimal, with approximately 2800 lines
of hand-written C++ and 4800 lines of C++ automatically generated from
the XtreemFS IDL interfaces.

1.4 RMS - Replica Management Service

One of the most important mechanisms in XtreemFS is the possibility to
have several replicas of a file distributed over the Grid. This feature affords
data-intensive applications achieving better performance as long as: there is
no single access point for the data and mechanisms for parallel access can
be exploited. Besides, replication also provides reliability and availability to
the filesystem, which is of vital importance for a distributed environment.

However, the usage of Grid resources such as network (where data is trans-
fered across) or storage (where data is stored) are finite, shared, and non-free.
Furthermore, the synchronization of the replicas of any given file involves ad-
ditional overheads, so that mechanisms that keep the tradeoff between the
benefits and the extra costs are needed.

For aiming at all of these purposes, we are working on the implementation of
the Replica Management Service. This service concerns about: selecting the
best replicas for the applications, creating and deleting replicas automatically
taking account of how and from where they are accessed and evaluating the
maximum number of replicas of any given file.

1.4.1 Choosing the best replica

When a given client (or an OSD) has to access a file, the question is: which
replica should it access? It should be able to detect which replica will provide
better performance. The idea to solve this problem is to build a virtual 2D
space and locate all replicas, OSDs, and clients in it. The distance between
two different objects (i.e replica, OSD, or client) is an indicator of the distance
(performance wise) of these two objects. Once a client wants to access a file,
it just needs to compute the euclidian distance between itself and all replicas
and choose the closer one.

23

Vivaldi Algorithm

Vivaldi is a light-weight algorithm developed by MIT [3] that allows assigning
a position in a coordinate space to every node in a network, so the distance
between the coordinates of two nodes predicts the real communication latency
between them.

In order to generate a valid coordinate system, it is necessary to determine
which space will be used and which formula will be used to calculate the
distance between two given points. In our case, it is been proved that imple-
menting a 2-D space, where the Fuclidean distance between two coordinates
accurately predicts the latency between their corresponding nodes, generates
valid results with a really small error probability.

For the algorithm to work correctly, it is also necessary that the nodes of the
system keep contacting themselves randomly and indefinitely to re-adjust
their position, so any possible change in the network may be reflected. In
each re-adjustment, a node contacts a different neighbor, gets its coordinates
and modifies its own coordinates, so eventually the Euclidean distance is as
similar as possible to the measured round trip time.

On the other hand, once a group of nodes have established a valid coordinate
system, it is necessary to use some mechanism that helps to reduce the impact
of introducing new nodes, so we avoid them to alter the already stabilized
system. That is why Vivaldi keeps in every node, besides the coordinates, a
local error that informs about how sure a node is about its position. This
way, a node with a steadier position will have a smaller local error and
will influence more the rest of nodes when they contact it to readjust their
position (figure 1.3).

Once the system is adjusted, any node of the network can determine which
nodes are the closest ones with a really simple calculation, in a very short
period of time and without generating extra traffic.

Some already developed implementations of Vivaldi can be found in p2psim
and in Chord. You might also be interested in Ledlie et al.’s work [9].

Vivaldi in XtreemF'S

As we have different kinds of nodes in our architecture, not all of them work
in the same way to integrate Vivaldi. While the clients usually execute during
shorter periods of time, the servers are up and running , so the idea is to let
the OSDs (at this moment they are the only servers that implement Vivaldi)

24

() ()

(X’y)]_ (X!Y)z
E, E,
(x.¥),
(x.y), E,
E

3

Figure 1.3: Nodes keep recalculating their position

establish a permanent coordinate system where a client can move through,
to find its position.

Vivaldi in the OSDs

An OSD has an independent stage responsible of managing Vivaldi on its
side and of providing to the rest of components a couple of valid coordinates
that define the position of the node in the current coordinate system.

The stage keeps running indefinitely and periodically contacts a different
OSD to ask it for its coordinates and its local error. With that data and the
coordinates of the own OSD is possible to compute the Euclidean distance
and to compare it with the real RT'T measured against the contacted node.

The frequency an OSD readjusts its position is defined by the parameters
MIN TIMEOUT RECALCULATE and MAX TIMEOUT RECALCULATE.
Just after performing a readjustment, the stage typically calculates a random
number included in the interval of time defined by those two parameters and
sleeps during that number of seconds until the next iteration. This way we

try to avoid generating traffic peaks where all the nodes send a request at

the same time and to distribute the net use in time.

Larger periods will reduce the overhead in the network but will make the
nodes to adjust more slowly to the possible changes in the environment,
while smaller ones will require more traffic but will produce a more reactive
system.

25

In each iteration, the introduced stage chooses a node to contact to from
a list of available OSDs, which is filled with the information contained in
the Directory Service. This list must be updated somehow so the stage can
always notice a node going offline.

Vivaldi in clients

In our system, the clients usually execute during a much shorter period of
time, so they have to be able to determine their position faster. This can be
done because they do not influence the rest of the nodes and they just take
some needed info from the already placed OSDs to locate themselves.

In Vivaldi, each node is responsible for its own coordinates and typically has
to recalculate them at least a small number of times before they represent the
real position in the coordinate system. Even if the set of OSDs is“adjusted”, a
client will need to recalculate its position (against one single node each time)
several times before having an accurate approximation of its real location.
Vivaldi requires that the nodes of the net generate traffic and communicate
among themselves.

As in the case of the OSDs, a client also has the parameters MIN TIMEOUT -
RECALCULATE and MAX TIMEOUT RECALCULATE that allow defin-
ing the recalculation period. Although the analogue parameters in the OSDs
have the same names, they are different parameters and therefore they all
must be defined in different files.

Finally, it is important to emphasize that after the first boot of the client,
it keeps its coordinates and preserves them among executions, so it remains
well located though it mounts and unmounts a lot of different volumes or
opens and closes a lot of files. The coordinates are not reinitialized until the
client node is rebooted.

Replica Selection with Vivaldi

Until this point we have introduced a mechanism able of establishing a co-
ordinate system where all the nodes of a network have a pair of coordinates
that allows them predicting the round trip time to the rest of neighbors.
Now it is time to analyze how to take advantage of that information and to
describe the current applications of Vivaldi in XtreemF'S.

Sometimes during the execution of certain operations, the client has to choose
which replica access, among several replicas stored in different nodes of the
system. The ideal solution proposes to select always the replica that is stored

26

2.0SD
StausManager

DS > MRC

3.X-locations

1.Heartheat (and coordinates)

Thread

osD | Client

Figure 1.4: Collecting the coordinates

in the closest node, so the accesses can be made within the minimum time.
But the problem is that most of the times measuring the RTT against every
OSD, for each selection, is not computationally feasible.

Using the coordinates provided by Vivaldi, a client can calculate which replica
is the closest one with a practically insignificant delay. At this point the only
remaining problem seems to be how to gather all the coordinates so they can
be available in the exact moment of the replica selection.

As mentioned earlier, in Vivaldi the coordinates are managed independently
by the node they belong to and remain distributed among the different nodes
of the network. In order to let the client take advantage of them, it is
necessary to collect them in the MRC, so they can be included in every list
of x-locations.

In figure 1.4 we show the following process:

1. HeartbeatThread is a component of the OSDs that periodically regis-
ters the OSD in the Directory Service. The information that is up-
loaded each time is determined by the function getServiceData, which
is defined in the main constructor of the class OSDRequestDispatcher.

2. OSDStatusManager is a component of the MRC that regularly queries
the Directory Service for available OSDs.

3. During an open operation, the MRC sends to a client a list of x-
locations, so it can locate the different replicas associated to a cer-

27

tain file. The x-locations include the corresponding coordinates, so the
client can use them to predict the closest replica.

1.4.2 Replica creation

Another important issue regarding replicas is to decide when and where to
create a replica. For this functionality we have three different mechanisms.
The first one is an explicit request from the user. In this scenario, the RMS
will not take any action. The second one is a reactive replica creation. The
system will detect that a replica is needed at a given location and will start a
replica creation. Finally, in the third case, the system will predict the usage
of a file in a location where no replicas are nearby and thus will try to create
the replica before it is used. We call to this third mechanism proactive replica
creation.

In both cases reactive and proactive, we plan to provide a mechanism able
to study the access pattern of files and use it to decide if only a part of
the file needs to be replicated (partial replication). This partial replicas will
speedup the process of replication because only part of the data will need to
be copied to the new location. Nevertheless if we miss-predict the parts of
the replica that will be used, we will always be able to populate the missing
parts on-demand (done directly by the OSDs).

Reactive replica creation with Vivaldi

In this scenario it is detected when replicas are currently needed in other
parts of the Grid. Then, using the distance mechanisms we just described in
Section 1.4.1, we will detect if clients request a replica from large distances.
So in this case Vivaldi could be used to decide a better location for a replica
and create it.

Proactive replica creation with Oraculo

We have implemented a service called Oraculo that carries out data mining on
multi-order context models to analyze the file-access patterns and to compute
future accesses. For the implementation of such multi-order context models,
Oraculo keeps a trie (or prefix tree) as Kroeger et al. did |7, 8] for centralized
environments, where they proved that such structures where effective.

28

Thus, each file access is modeled as a symbol (i.e. the file path) and it is
recorded as a node of the prefix tree with an associated value that represents
how many times the chain pattern from root to that node has ocurred.

Then, in order to interact with Oraculo, it provides a basic interface for:

1. Adding an event to the trie, given a sequence of the last events seen.

2. Getting a prediction from the trie, given a sequence of the last events
seen.

So that when a file access is produced, it can be noticed to Oraculo which
computes which parts of the trie must be modified, adding the new event to
the corresponding branches or simply increasing the counter of the pattern
if it is already present.

Notice that in order to keep the trie scalable Oraculo can prune it in two
ways. First, keeping a predefined maximum number of nodes per branch.
Thus, whenever a new event goes to a full branch all its nodes divide their
corresponding value by two and nodes with a value lower than 1 are deleted
from the trie. In the case that no node has been cleaned, the new event is
not added. But, obviously the nodes in the branch keep the new value (after
the division by two) so in the near future it will be eventually possible to
add new events in that branch.

On the other hand, Oraculo also has a maximum of root-branches (also
called partitions) to keep the horizontal scalability of the trie. Here we apply
a LRU-based algorithm among the partitions taking account of their usage
as well.

Finally, Oraculo can predict future file accesses by applying basic data-mining
on the trie. It only needs to know some previous accesses to look for patterns
based on them. Then, an OSD could eventually use this information to
replicate data in advance.

Furthermore, we will propose a decoupled and off-line aggregation of the
tries. Once in a while (still to be determined), OSDs could contact other
OSDs (only a small subset) to exchange their trie information and build an
aggregated one that has the information of all. This mechanism will allow
all OSDs to have a more or less global view because what is learned by one
OSD will be propagated though several aggregations. We have done some
preliminary tests using this mechanism and seems to work very well with
environments of many thousands of nodes.

Regarding the information of the access pattern of files, in most cases the
information kept by a single OSD will be enough. Nevertheless, whenever we

29

need the full information of the pattern, we can contact all OSDs that have
a replica and aggregate the learned behavior. As we do not expect to keep
many replicas of a file, this procedure seems reasonable and scalable.

Integration of Oraculo with OSDs

Unfortunately, the integration of Oraculo with OSDs could not be done yet
because we are still evaluating it by using GridSim (a well-known Grid sim-
ulator). Once we get significant results with the simulations we will evaluate
them and port Oraculo to the OSDs.

1.4.3 Replica deletion

On the one hand, if we want to be able to replicate files whenever needed but
still maintain the maximum number for replicas per file, it would be inter-
esting to keep the number of replicas a bit smaller than the maximum. This
difference between the maximum and the real number of replicas would allow
the system to create replicas whenever needed. On the other hand, if replicas
are not used, it would also be nice to have them removed automatically to
reduce disk usage in a given node and/or center.

To tackle these two issues we will implement a mechanism that automatically
deletes the less important replicas. To know what replicas are less important
we will use similar mechanisms than the ones used to create replicas. We will
predict future usage using the same kind of tries. In addition we will perform
some kind of preventive removal of replicas, which means that whenever a
node decides to remove a replica it will inform other OSDs that have it to
react accordingly.

1.4.4 Interaction with the Application Execution Man-
agement

The last mechanisms that we will implement to manage replicas consists of
an interaction with the application execution management system (AEM).
This interaction will be done in two steps.

Firstly, AEM analyzes the JSDL of the application and asks to XtreemFS
for the locations (coordinates X,Y) of its files’ references. Thus AEM com-
putes an optimal coordinate around where the job should be executed. This
coordinate is used for AEM to send a request to Resource Selection Service

30

(RSS) for a set of nodes close to it. Of course, RSS also considers other
requirements, such as CPU or memory, to decide the resulting set of nodes.

In the second step, the AEM will inform XtreemF'S on the final destination
of a given job and the files it will use. With this information, the RMS will
decide if new replicas need to be created to improve the I/O performance of
this job. In addition, and in some cases, it might be that the RMS decides to
advance this step from the information obtained in step 1. For instance, this
may happen when the list is made of nodes that are close among themselves
and one or two replicas could do the job.

Although this mechanism is very good in the sense that no prediction needs
to be done, it has a couple of limitations. The first one is that the AEM
might not know the files used by a job (it is not a requirement in the job
description). The second one is that there might not be enough time from
the moment XtreemFS receives the execution location of a job (and the files
it uses) and the moment the job starts running. To solve these two cases we
have proposed the previous prediction mechanisms (1.4.2).

1.5 Testing

Regular and extensive testing is of vital importance for any file system, in or-
der to improve its reliability, scalability, code quality, stability, performance,
etc. Therefore, a new activity inside the WP3.4 has been created, which is
focused on all the aspects of testing. The goal of this task is to evaluate
functionality and performance of XtreemFS, by exploiting some existing file
system test suites.

Nowadays, from a software viewpoint, there are some available tools that
are mainly designed for testing local file systems, but there are no ready-
made tools available for testing Grid File Systems. Thus, in order to test
XtreemFS, either some ad-hoc tools must be developed or some existing
distributed testing tools must be extended.

Currently, there are two main guidelines leading the tests performed on
XtreemFS: the first one is aimed at evaluating the POSIX compliance of
XtreemFS and consequently its functionality; the second one addresses the
performance evaluation by stressing XtreemFS with a set of tests and bench-
marks (in the following we refer to such kind of tests as regression tests).

In the next subsections we will describe both such activities, the tools used
and the results obtained.

31

1.5.1 Testing POSIX compliance of XtreemF'S

One of the goals of XtreemFS is providing a POSIX-compliant filesystem.
In order to evaluate the correctness of functionalities, we initially evaluated
some available test suites aimed at the POSIX compliance testing. Firstly, we
evaluated the "Open Posix Tests Suite" (https://sourceforge.net/projects/posixtest/);
it resulted not very suitable for our tests, because it performs only AIO tests
but nothing else related to the file system; moreover, we encountered some
difficulties during the installation and in particular during the execution of
the tests, and for such reasons we discarded it. A second tool that we eval-
uated was the NTFS-3G suite (http://www.ntfs-3g.org), that is a test suite
available for the most important operating systems; it includes a POSIX
filesystem test environment, the Pawel Jakub Dawidek’s POSIX filesystem
test suite, that immediately seemed more suitable for our purposes than the
first one. For such a reason, we chose to exploit the PJD’s POSIX filesystem
test suite (PJD-fstest) and to run it over XtreemFS. The test suite is avail-
able on the Web under a BSD license and we got it from http://www.ntfs-
3g.org/pjd-fstest.html. PJD-fstest performs almost 3700 regression tests that
exhaustively check a wide amount of different scenarios for the following sys-
tem calls:

e chmod: changes the permissions of a files or directories
e chown: changes the owner of files or directories

e link: creates hard link

e mkdir: creates directories

e mkfifo: creates fifo named pipes

e open: opens a file

e rename: renames files or directories

e rmdir: removes directories

e symlink: creates symbolic links

e truncate: truncates files

e unlink: removes files

32

For each system call, the suite contemplates the execution of a set of scripts.
Each script performs a set of basic operations, like the creation of a direc-
tory, the change of its access rights, the change of its owner, etc., and for
each operation it evaluates its return value. If such a value is different than
that expected, an error is pointed out. Obviously, the scripts performing
the tests for a particular system call are composed of operations targeted for
the evaluation of the (hopefully correct) behaviour of that system call. Our
work consists in the automatic execution of the scripts and in the evaluation
of the failure events. Then, for each failure, we need to interpret the cause
of the problem and reproduce manually the scenario (the sequence of oper-
ations) causing it. After this step (that some time hides some difficulties)
the problem is pointed out in a bug tracker, in order to be scheduled for a
solution.

How to execute the tests

After downloading the tarball of the PJD-fstest, we can simply extract its
contents:

tar xvzf <package>

The most significant contents of the tarball are:

o fstest.c: the source code of the main program. It provides an imple-
mentation of all the syscalls commented before.

o Makefile: the Makefile that we can use to compile the program.

e tests: a directory that contains one subdirectory for every syscall. For
each of this subdirectories, there is a set of scripts that conform the
tests for the corresponding syscall.

Afterwards, we can compile the fstest.c file by executing make.

To execute the tests, we have implemented a tool that basically automatizes
all the process of updating, compiling, and installing XtreemFS, running
a basic scenario with one Directory Service, one MRC and an OSD, and
creating a volume and mounting it on a specific directory.

Once this scenario is up and running, we enter the mount-point where the
volume is mounted and execute the tests by using the command prove as
follows:

sudo prove -r <path_to_pjd_suite>/tests

33

The flag -r specifies that prove should traverse all the directories recursively
(so all the tests are executed). Notice that we need root privileges so we also
need to edit /etc/fuse.conf and add the following line:

user_allow_other

This line allows non-root users to specify the option allow other (or al-
low _root) among the mounting options of fuse.

Results

At the moment, XtreemFS does not support fifos, so mkfifo tests are being
ignored.

The tests corresponding to the rest of the syscalls were executed completely
and the only errors encountered were due to the lack of implementation of
sticky bits on files and directories.

We plan to work on it in next XtreemFS versions, although it is not a very
important feature and currently we have to spend our efforts on other more
significant issues.

1.5.2 Regression Tests

We use a set of regular file system test tools and custom made tests to
automatically check the XtreemFS development version (the svn trunk) every
night. This test environment can also be used to manually run these tests.

The main test script is trunk/bin/xtfs_test and can be executed to run
all tests automatically or to start/stop a test environment.

To start a test environment with all XtreemFS servers and clients, run
> trunk/bin/xtfs_test --start

This script will put all data and logfiles in the current working directory.

After setting up the test environement, the tests in trunk/tests/ can be
executed individually by calling the test scripts in the mounted XtreemF'S
volume.

> python trunk/tests/01_simple_metadata.sh

To shutdown all servers and unmount the clients after testing, execute

34

> trunk/bin/xtfs_test --stop
To clean up all data and logfiles use
> trunk/bin/xtfs_test --clean
If you want to run all tests automatically, run the test script in auto mode

> trunk/bin/xtfs_test --autotest

1.6 Protocol and Interactions

XtreemF'S uses ONC RPC|!1] for executing remote operations. Interfaces
and records are defined in a subset of CORBA IDL. Yidl* is used to generate
the code for the interfaces and records in C++ and Java.

1.6.1 Constants

Globally shared constants are defined in interfaces/constants.idl.

ACCESS_CONTROL_POLICY_NULL don’t use any access policy (on the MRC).
This will allow all users to do everything on the volume.

ACCESS_CONTROL_POLICY_POSIX use standard POSIX permissions (user, group,
others) on the volume.

ACCESS_CONTROL_POLICY_VOLUME similar to POSIX permissions but the per-
mission for the root (/) is used for the entire volume.

ACCESS_CONTROL_POLICY_DEFAULT the policy to use in e.g. mkvol if nothing
is specified.

ONCRPC_SCHEME scheme for URLs.
ONCRPCS_SCHEME scheme for URLs when using SSL.

ONCRPC_AUTH_FLAVOR constant to use for ONC RPC auth flavor to indi-
cate XtreemFS auth. If present, a UserCredentials record is sent in
auth opaque

4http://code.google.com /p/yidl/

35

0SD_SELECTION_POLICY_SIMPLE only OSDs which are alive and which have
more than 2GB free space are used.

OSD_SELECTION_POLICY_DEFAULT the policy to use in e.g. mkvol if nothing
is specified.

REPL_UPDATE_PC_NONE no replication is used
REPL_UPDATE_PC_RONLY read-only replication

SERVICE_TYPE_MRC for DIR service registry, service is an MRC
SERVICE_TYPE_0SD for DIR service registry, service is an OSD
SERVICE_TYPE_VOLUME for DIR service registry, service is a volume
STRIPING_POLICY_RAIDO RAIDO (Striping)

STRIPING_POLICY_DEFAULT the policy to use in e.g. mkvol if nothing is
specified.

STRIPING_POLICY_STRIPE_SIZE_DEFAULT default stripe size in KB to use if
nothing is specified.

STRIPING_POLICY_WIDTH_DEFAULT default striping width (number of OSDs)
to use if nothing is specified.

SYSTEM_V_FCNTL_H_0_... POSIX constants

1.6.2 Types
Globally Shared Types
Globally shared data structures are defined in interfaces/types.idl.

struct UserCredentials

User information sent in the ONC RPC opaque_auth body if XtreemFS
authentication is used. How the userID and groupIDs look like depends on
the policy used in the client which translates the local uid/gid.

user_id globally unique userID

group_ids list of globally unique groupIDs (must contain at least one
entry)

password admin password (in cleartext) required for some operations
(e.g. mkvol)

36

struct VivaldiCoordinates

Structure used to exchange Vivaldi coordinates between components, also
used in UDP packets for measuring latency between XtreemFS clients and
OSDs.

x_coordinate x coordinate
y_coordinate y coordinate
local_error confidence in correctness of x/y coordinates

Types Shared between MRC and OSD

Types that are mainly shared between MRC and OSD are defined in inter-
faces/mrc_osd_types.idl.

struct NewFileSize

Sent by the OSD in response to a file modification operation if the file size has
changed. A client may cache these updates and send them to the MRC when
renewing a capability, on fsync/flush and close. The client needs only to send
the most recent record it received from the OSD for a given file. Most recent
means that: (size_in_bytes’ > size_in_bytes AND truncate_epoch’
== truncate_epoch) OR (truncate_epoch’ > truncate_epoch)

The client should update its local file size cache with the NewFileSize records
received from the OSD. The client should use the locally cached file size on
stat rather than the result from the MRC to ensure that local processes see
their own modifications.

size_in_bytes the new file size in bytes
truncate_epoch truncate epoch in which this operation was executed
(used by the MRC for ordering updates)

struct 0SDtoMRCData

Data sent by the OSD to the client which is expected to pass it on to
the MRC. When the data should be passed to the MRC depends on the
caching_policy. This feature is currently not used.

caching_policy describes how the client is allowed to cache the data
(when to send it to the MRC)
data opaque data

37

struct 0SDWriteResponse

Record containing file size updates and /or OSDtoMRCData. Returned from
all data-modifying operations.

new_file_size contains no record or at most one record if the file size
changed
opaque_data contains 0 or more records

struct StripingPolicy

Describes how a replica (one copy of the file) is split into objects.

policy describes the scheme to use for distributing the objects
among the OSDs, e.g. RAIDO for simple round robin strip-
ing.

stripe_size the size of the objects in kilobytes, must be >= 4

width the number of OSDs to use for striping, must be >= 1.

struct Replica

Describes a single copy of a file.

striping_policy the striping policy to use for this replica.

replication_flags value depends on the replication policy, e.g. to in-
dicate a full or lazy replica.

osd_uuids ordered (!) list of OSDs holding objects of the file.

struct XLocSet

Describes a complete file together with all replicas (copies) and how they are
kept consistent.

replicas list of the file’s replicas (i.e. list of Replica
structs)
version incremented by the MRC on each modification

of the list. Used by the OSD to reject clients
working with outdated lists.
repUpdatePolicy the policy used for keeping replicas in sync.
read_only_file_size the size of the file in bytes, used only for read-
only replication.

38

struct XCap

Security token which is issued by the MRC and authorizes a client to execute
operations on a file at the OSDs.

file_id file for which the capability can be used

access_mode POSIX access mode for which client is authorized
(e.g. read only, delete, write, truncate).

expires_s absolute timestamp when the capability becomes in-

valid (seconds since epoch).

client_identity the client identity set by the MRC, currently the
client’s IP address.

truncate_epoch the file’s current truncate epoch.

server_signature the MRC’s signature for the capability which is used
by the OSD to validate the XCap. Signature is cre-
ated using shared secret specified in the MRC and
OSD configuration.

struct FileCredentials

A record containing the XLocSet and XCap for a file. Required for most
OSD operations.

xlocs the XLocSet
xcap the capability

sequence<FileCredentials> FileCredentialsSet

Used by the MRC to return no or at most one FileCredentials record.

Exceptions

Exceptions that may be thrown in connection with an RPC are defined in
interfaces/exceptions.idl.

exception ProtocolException

Thrown on ONC RPC errors (e.g. GARBAGE ARGS)

accept_stat ONC RPC accept_stat value
error_code POSIX errno, if available
stack_trace optional, for debugging only

39

exception errnoException

Thrown by the MRC to indicate a POSIX error.

error_code POSIX errno, if available
error_message optional text message
stack_trace optional, for debugging only

exception RedirectException

Thrown by the DIR,MRC and OSD to redirect the client to another service.
Use e.g. for master slave replication to direct the client to the current master.

to_uuid service to contact

exception ConcurrentModificationException

Thrown by the DIR if a record was modified by another service on the mean-
time.

stack_trace optional, for debugging only

exception InvalidArgumentException
Thrown by the DIR if an input value is not acceptable.

error_message error message describing the correct values.

1.6.3 Directory Service Interface

The Directory Service interface is defined in interfaces/dir_interface.idl.

struct AddressMapping

Maps a service UUID to protocol, hostname/IP and port. A service can have
multiple mappings for different networks (e.g. inside a cluster with private IP
addresses). At the moment only “*” is supported for match_network which
indicates a match for all networks.

40

uuid the service UUID

version the record’s version, used by the DIR to detect concur-
rent modifications

protocol the protocol used by the service

address resolvable hostname or IP address in text form

port port on which the service listens

match_network for future use, must be *

ttl_s time to live in seconds, indicates how long this record

can be cached before it is re-fetched from the DIR

sequence<AddressMapping> AddressMappingSet

Future releases of XtreemF'S will support multi-network setups to ease the us-
age of XtreemF'S in shared public/private network environments often found
in clusters.

struct Service

Information on a service registered at the DIR.

uuid the service UUID

version the record’s version, used by the DIR to detect concur-
rent modifications

type service type (see 1.6.1)

name human readable name of the service; for volumes: the

unique volume name

last_updated_s timestamp of the last time (in seconds since epoch) the
service updated its entry at the DIR. Used as a coarse-
grained heartbeat-signal.

data a map of additional data which depends on the service
(e.g. MRC of a volume or free space of an OSD)

void xtreemfs_address_mappings_get(string uuid, out AddressMappingSet
address_mappings)

Get an address mapping for the service specified by uuid.

uuid the service UUID
out address_mappings empty, if no mapping exists, one (or more)
records otherwise

41

void xtreemfs_address_mappings_remove(string uuid)
Remove an address mapping from the DIR.
uuid the service UUID

uint64_t xtreemfs_address_mappings_set(AddressMappingSet address_mappings)
Updates the address mappings for a service.

address_mappings the new mappings. The UUID in all records must be
the same. The version must be 0 for a new mapping
or the version obtained with the last read from the

DIR.
returns the new version of the mapping
throws ConcurrentModificationException if the record was

updated (version incremented by DIR) between read-
ing and updating the record.

void xtreemfs_checkpoint ()

Forces the DIR to create a BabuDB checkpoint. This operation does not
block, the checkpoint is created asynchronously. The admin password must
be sent via the XtreemFS authentication.

uint64_t xtreemfs_global_time_s_get ()

Returns the current system time on the DIR in seconds since epoch. Used
to synchronize MRCs and OSDs to the global XtreemFS system time. The
DIR system should be synchronized with a precise clock using e.g. ntp.

returns system time in seconds since UNIX epoch.

void xtreemfs_service_get_by_type(uintl6_t type, out ServiceSet
services)

Get all services of a specific type registered at the DIR.

type the service type to return
out services all matching services

void xtreemfs_service_get_by_uuid(string uuid, out ServiceSet services)

Get the service information for a service with a specific UUID.

uuid the service uuid
out services one record, if the service is registered, empty list otherwise

42

void xtreemfs_service_get_by_name(string name, out ServiceSet services)

Get the service information for a service with a specific name.

name the service’s name
out services one record, if the service is registered, empty list otherwise

uint64_t xtreemfs_service_register(Service service)

Update a service registration at the DIR. Updates the last_update_s field
of the service.

service the service’s data. The UUID must be the service’s UUID, the
version must be 0 for a new service or the version obtained with
the last read from the DIR.

returns the new version of the mapping

throws ConcurrentModificationException if the record was updated
(version incremented by DIR) between reading and updating
the record.

void xtreemfs_service_deregister(string uuid)
Removes the service registry entry for the service from the DIR.

uuid the service uuid

void xtreemfs_service_offline(string uuid)

Sets the 1last_update_s field to 0 which indicates that the service was taken
offline.

uuid the service uuid

void xtreemfs_shutdown()

Shuts down the DIR service, does not force a checkpoint of the database.
The admin password must be sent via the XtreemFS authentication.

1.6.4 Metadata and Replica Catalog Interface
The MRC interface is defined in interfaces/mrc_interface.idl.

43

struct Stat

Contains information about a file, directory or symbolic link that is sent to
the client in response to a getattr request.

mode the file’s current access mode

nlink the number of hard links to the file

uid the numeric UID of the file’s owner (just for compati-
bility reasons, will not be filled)

gid the numeric GID of the file’s owner (just for compati-
bility reasons, will not be filled)

unused_dev (just for compatibility reasons, will not be filled)

size the current file size in bytes

atime_ns the file’s atime in nanos

mtime_ns the file’s mtime in nanos

ctime_ns the file’s ctime in nanos

user_id the XtreemF'S user ID string of the file’s owner

group_id the XtreemF'S group ID string of the file’s owner

file_id the XtreemF'S file 1D

link_target the target path for symbolic links

truncate_epoch the file’s current truncate epoch

attributes a set of Win32 specific file attributes

struct DirectoryEntry

Contains information about a directory entry that is sent to the client in
response to a readdir request.

name the name of the directory entry

stbuf a buffer of type struct Stat that contains information about the
file

struct StatVFS

Contains information about a mounted XtreemFS volume, which is sent to
the client in response to a statvfs request.

bsize the file system’s block size (1024)
bfree the number of free blocks

fsid the file system ID (volume ID)
namelen maximum file name length (1024)

struct Volume

Contains information about a volume.

44

name the volume name

mode the access mode for the volume’s parent di-
rectory

osd_selection_policy the ID of the OSD selection policy for the
volume

default_striping policy the ID of the default striping policy for the
volume

id the volume UUID

owner_user_id the XtreemF'S user ID of the volume’s owner

owner_group_id the XtreemFS group ID of the volume’s
owner

const DEFAULT_ONCRPC_PORT
Constant defining the default MRC ONC RPC port.

const DEFAULT_ONCRPCS_PORT
Constant defining the default MRC ONC RPC port for SSL.

const DEFAULT_HTTP_PORT
Constant defining the default MRC HTTP port.

exception MRCException

Thrown by all MRC operations.

boolean access(string path, uint32_t mode)

Checks access to a file or directory. Responds with true if access is granted,
false, otherwise.

path the path to the file or directory
mode the access flags to check

void chmod(string path, uint32_t mode)

Changes the access mode of a file or directory.

path the path to the file or directory
mode the new access mode

45

void chown(string path, string user_id, string group_id)
Changes the owner of a file or directory.

path the path to the file or directory
user_id the new owner ID
group_id the new owning group ID

void create(string path, string user_id, string group_id)

Creates a new file.

path the path to the new file
mode the initial access mode for the new file

void ftruncate(XCap write_xcap, out XCap truncate_xcap)

Issues a new truncate capability for an open file.

write_xcap a valid Capability with write permissions to the file

out truncate_xcap a new capability with write and truncate permis-
sions, which has to be used for subsequent opera-
tions

void getattr(string path, out Stat stbuf)

Returns information on a file or directory.

path the path to the file or directory
out stbuf a buffer containing information on the file or directory

void getxattr(string path, string name, out string value)
Returns the value of an extended attribute of a file or directory.

path the path to the file or directory
name the name of the attribute
out value the attribute value

void 1ink(string target_path, string link_path)
Creates a new hard link to an existing file.

target_path the path to the existing file
link_path the path defining where the new hard link shall be created

46

void listxattr(string path, out StringSet names)

Returns the set of extended attributes assigned to a file or directory.

path the path to the file or directory
names the list of attribute names assigned to the file or directory

mkdir(string path, uint32_t mode)

Creates a new directory.

path the path to the new directory
mode the initial access mode for the new directory

open(string path, uint32_t flags, uint32_t mode, out FileCredentials
file_credentials)

Opens a file by performing an access check and issuing a new Capability for
OSD access in case of success.

path the path to the file

flags a set of flags specifying the kind of access that
is requested

mode initial access mode for a newly created file in

case flags contains 0_CREAT
out file_credentials a set of file credentials containing the file’s X-
Locations list and the newly issued Capability

readdir(string path, out DirectoryEntrySet directory_entries)
Lists the content of a directory, including all file metadata.

path the path to the directory
out directory_entries a list containing all nested directory entries for
the given directory

void removexattr(string path, string name)

Removes an extended attribute from a file or directory.

path the path to the file or directory
name the name of the attribute to remove

47

void rename(string source_path, string target_path, out FileCredentialsSet
file_credentials)

Renames a path.

source_path the former path to the file or directory

target_path the new path to the file or directory

out file_credentials contains an X-Locations list and deletion Capa-
bility in case the target path was overwritten

rmdir(string path)
Removes an empty directory.

path the path to the directory

void setattr(string path, Stat stbuf)

Sets metadata of a file or directory. Currently, this call is only used to set
the file’s Win32 attributes.

path the path to the file or directory
stbuf a buffer containing the metadata to set

void setxattr(string path, string name, string value, int flags)

Sets an extended attribute of a file or directory.

path the path to the file or directory

name the name of the attribute

value the new value for the attribute

flags a set of system flags associated with the attribute (currently ig-
nored)

void statvfs(string volume_name, out StatVFS stbuf)

Returns information about a volume.

volume_name the volume name
stbuf a buffer containing information about the volume

void symlink(string target_path, string link_path)
Creates a symbolic link.

target_path the target path
link_path the path for the new symbolic link

48

void unlink(string path, out FileCredentialsSet file_credentials)

Unlinks a file from a directory. If no more links to the file exist, file metadata

will be deleted.

path the path to the file

out file_credentials a set of file credentials containing a deletion Ca-
pability and X-Locations list in case file meta-
data needs to be deleted.

void utimens(string path, uint64_t atime_ns, uint64_t mtime_ns,
uint64_t ctime_ns)

Sets the POSIX time stamps of a file or directory.

path the path to the file or directory

atime_ns the new access time stamp in nanos (will be ignored if set to
0)

mtime_ns the new modification time stamp in nanos (will be ignored if
set to 0)

ctime_ns the new change time stamp in nanos (will be ignored if set to
0)

void utimens(string path, uint64_t atime_ns, uint64_t mtime_ns,
uint64_t ctime_ns)

Sets the POSIX time stamps of a file or directory.

path the path to the file or directory

atime_ns the new access time stamp in nanos (will be ignored if set to
0)

mtime_ns the new modification time stamp in nanos (will be ignored if
set to 0)

ctime_ns the new change time stamp in nanos (will be ignored if set to
0)

xtreemfs_checkpoint ()

Enforces the creation of a new database checkpoint. The call blocks until
checkpoint creation has completed.

49

void xtreemfs_check_file_exists(string volume_id, StringSet file_ids,
out string bitmap)

Checks for a set of file IDs whether the given files exist in the given volume.
This call is necessary for cleanup purposes.

volume_id the volume’s UUID

file_ids a list of file IDs to check

out bitmap a string containing ’1’s for each file in file_ids that exists,
and '0’s for each file that does not exist, in the same order
as the file IDs given in file_ids

void xtreemfs_dump_database(string dump_file)
Creates an XML dump of the MRC database on the server.

dump_file the path at which to store XML dump file on the MRC’s local
file system

void xtreemfs_get_suitable_osds(string file_id, out StringSet osd_uuids)

Returns a list of suitable OSDs for the given file. The call can be used to
find OSDs that are suitable for new replicas of a file.

file_id the file ID
out osd_uuids a list of OSD UUIDs that can be used for the file

void xtreemfs_lsvol(out VolumeSet volumes)

Returns a list of all volumes stored on the MRC.
out volumes a list containing information on each volume stored on the

MRC

void xtreemfs_mkvol(Volume volume)
Creates a new volume.

volume information about the volume to create

void xtreemfs_renew_capability(in XCap old_xcap, out XCap renewed_xcap)

Extends the validity of a capability. The capability must be valid in order
to be renewed.
old_xcap the capability to be renewed
renewed_xcap a new capability with the same properties except for an
extended validity period

20

void xtreemfs_replica_add(string file_id, Replica new_replica)
Adds a new replica to a file. The file’s read-only flag must be set to true.

file_id the file ID
new_replica the new replica to be added

void xtreemfs_replica_list(string file_id, out ReplicaSet replicas)

Returns the list of replicas of a file. Information on each of the replicas in
the list includes the striping policy and X-Loc list.

file_id the file ID
out replicas the list of replicas

xtreemfs_replica_remove(string file_id, string osd_uuid, out XCap
delete_xcap)

Removes a replica from a file.

file_id the file ID

osd_uuid the UUID of the head OSD

delete_xcap a capability for deleting the data associated with the
replica on the OSD

xtreemfs_restore_database(string dump_file)

Restores the MRC database from an XML dump. When the operation is
invoked, no volumes may exist in the current database.

dump_file the path to the XML dump file on the MRC’s local file system

xtreemfs_restore_file(string file_path, string file_id, uint64_t
file_size, string osd_uuid, int32_t stripe_size)

Restores a file from the given metadata.

dump_file_path the path associated with the restored file

file_id the ID associated with the restored file
file_size the size associated with the restored file
osd_uuid the OSD on which the file content is stored
stripe_size the stripe size associated with the restored file

ol

void xtreemfs_rmvol(string volume_name)
Deletes a volume, including the metadata of all nested files and directories.

volume_name the name of the volume to delete

void xtreemfs_shutdown()

Gracefully terminates the MRC with all its sub-components.

void xtreemfs_update_file_size(XCap xcap, 0SDWriteResponse osd_write_respons

Updates the size of a file in response to an OSD write operation.

osd_write_response the response from the OSD, which may contain a
new file size

1.6.5 Object Storage Device Interface

The OSD interface is defined in interfaces/osd_interface.idl.

struct InternalGmax

Sent by OSDs to determine the actual file size of a striped file.

epoch the file’s latest truncate epoch the OSD knows
last_object_id last object number known by the OSD
file_size locally known file size in bytes

struct ObjectData

Sent by OSDs to determine the actual file size of a striped file.

data object data (file content)
checksum checksum for data
zero_padding zeros to append to data (padding objects,

POSIX sparse file semantics)
invalid_checksum_on_osd true if the OSD detected corrupted on-disk
data

52

exception OSDException
Thrown by all OSD operations.

error_code see class org.xtreemfs.osd.ErrorCodes for a list of
error codes

error_message optional, human readable error message

stack_trace optional, for debugging only

void read(FileCredentials file_credentials, string file_id, uint64_t
object_number, uint64_t object_version, uint32_t offset, uint32_t
length, out ObjectData object_data)

Reads on object.

file_credentials XLocSet and Capability for the file

file_id the file’s file Id

object_number the object requested (first object is 0)
object_version for future use

offset offset within object

length number of bytes to read (offset+length must be <

object size)
out object_data the object data read from disk. If less data (data +
zero padding) is returned, this indicates an EOF.

void truncate(FileCredentials file_credentials, string file_id,
uint64_t new_file_size, out OSDWriteResponse osd_write_response)

Truncates a file to the specified length. The client must have a capability
valid for truncating. For files which are striped over more than one OSD,
this operation must be executed at the head OSD which is the first OSD in
the replica’s OSD list.

file_credentials XLocSet and Capability for the file
file_id the file’s file Id
new_file_size the new size of the file in bytes to which the

file is truncated

out osd_write_response information which should be passed to the
MRC.

void unlink(FileCredentials file_credentials, string file_id)

Deletes all objects of the file. If the file is currently open (in use) the objects
will be deleted on close. This operation returns immediately, the objects

23

are deleted by the OSD asynchronously. The client must have a capability
valid for deleting. For files which are striped over more than one OSD, this
operation must be executed at the head OSD which is the first OSD in the
replica’s OSD list.

file_credentials XLocSet and Capability for the file
file_id the file’s file Id

void write(FileCredentials file_credentials, string file_id, uint64_t
object_number, uint64_t object_version, uint32_t offset, uint64_t
lease_timeout, ObjectData object_data, out OSDWriteResponse osd_write_respons
Writes an object.

file_credentials XLocSet and Capability for the file

file_id the file’s file Id

object_number the object to write (first object is 0)

object_version for future use

offset offset within object

lease_timeout for future use (timestamp of client lease timeout in
seconds since epoch)

object_data the object data to write into the object;

zero_padding is ignored.

ObjectData xtreemfs_check_object(FileCredentials file_credentials,
string file_id, uint64_t object_number, uint64_t object_version)

Similar to read. The OSD reads the object and validates the checksum but
doesn’t send the actual data. Used by the file system scrubber to check data
integrity.

file_credentials XLocSet and Capability for the file

file_id the file’s file Id

object_number the object requested (first object is 0)
object_version for future use

returns the size of the object in zero_padding and wether

the data is corrupted

InternalGmax xtreemfs_internal_get_gmax(FileCredentials file_credentials,
string file_id)

Returns the locally know truncate epoch, number of objects and file size for
a file. Used by an OSD to determine the file size for a file which is striped
over more than one OSD.

o4

file_credentials XLocSet and Capability for the file
file_id the file’s file Id
returns OSD-local file size information

uint64_t xtreemfs_internal_get_file_size(FileCredentials file_credentials,
string file_id)

Returns the actual file size on the OSD(s). For files which are striped over
more than one OSD, this operation must be executed at the head OSD which
is the first OSD in the replica’s OSD list. Used by file system scrubber tools.
Should be used to update file size before marking a file read-only.

file_credentials XLocSet and Capability for the file
file_id the file’s file Id
returns the actual file size of the file

void xtreemfs_internal_truncate(FileCredentials file_credentials,
string file_id, uint64_t new_file_size,
out OSDWriteResponse osd_write_response)

Used by the head OSD to truncate the file on all OSDs for a file which is
striped across more than one OSD. May only be used by OSDs.

file_credentials XLocSet and Capability for the file
file_id the file’s file Id
new_file_size the new size of the file in bytes to which the

file is truncated
out osd_write_response information which should be passed to the

MRC.

InternalReadLocalResponse xtreemfs_internal read_local(FileCredentials
file_credentials, string file_id, uint64_t object_number, uint64_t
object_version, uint64_t offset, uint64_t length)

Used by OSDs to fetch objects from other OSDs for replicated files. May
only be used by OSDs. This method does not follow POSIX semantics by
add padding data but sends the raw object data from disk.

95

file_credentials XLocSet and Capability for the file

file_id the file’s file Id

object_number the object requested (first object is 0)
object_version for future use

offset offset within object

length number of bytes to read

returns raw object data from disk

void xtreemfs_cleanup_start(boolean remove_zombies,
boolean remove_unavail_volume, boolean lost_and_found)

Starts the cleanup process on an OSD. The cleanup process will check for
all files on the OSD’s disk if they still exist in the MRC. Requires an admin
password in the XtreemF'S authentication data.

remove_zombies delete files which have been deleted on the
MRC

remove_unavail_volume delete files if the MRC holding the volume is
not available (DANGEROUS!)

lost_and_found do not delete files but re-create them in a
lost+found directory

void xtreemfs_cleanup_stop()

Aborts the OSD cleanup process. Requires an admin password in the XtreemFS
authentication data.

void xtreemfs_cleanup_status(out string status)

Returns a human readable status string from the cleanup process. Requires
an admin password in the XtreemFS authentication data.

out status human readable status text (in English)

void xtreemfs_cleanup_is_running(out boolean is_running)

Check if the cleanup process is running. Requires an admin password in the
XtreemF'S authentication data.

out is_running true, if the process is running

26

void xtreemfs_cleanup_get_results(out StringSet results)

Returns a list of messages from the cleanup process. Requires an admin
password in the XtreemFS authentication data.

out results list of messages

void xtreemfs_cleanup_shutdown ()

Shuts down the OSD. Requires an admin password in the XtreemFS authen-
tication data.

1.6.6 Interactions

This section illustrates the interactions between XtreemFS clients and servers.

delete
Files are deleted as described in the following (see Fig. 1.5):

1. The client receives a delete request from the VFS. It removes the file
on the MRC via the unlink operation and receives the file credentials,
which contain the globally unique XtreemF'S fileID, a deletion capabil-
ity and the replica locations list.

2. The client initiates the deletion of file content by invoking the unlink
operation on the head OSD (i.e. the first OSD of a stripe).

3. The head OSD delays the deletion until all clients have closed the file,
i.e. all capabilities known to the head OSD have timed out. In turn,
the head OSD initiates the deletion of file objects on the remaining
OSDs via unlink.

read

Files are read as described in the following (see Fig. 1.6):

1. The client receives an open request from the VFS. It opens the file on
the MRC for reading, and receives the file credentials, which contain
the globally unique XtreemF'S fileID, a read capability and the replica
locations list.

57

o1 [ooz
delete(,,a.txt”3§ | |
| unlink(,volumeA/a.txt“) _

@ Credentials

-
-

unlink(Credentials A FileID)

®

'l
.

unlinhj((Credentials Fj:'LleID)

€

-~
Figure 1.5: Deleting a file

2. The client sends a request for reading Y bytes of data from the offset Z
of the file identified by the fileID. The OSD returns a buffer containing
object data, as well as additional information like checksum failure
notifications or padding flags.

3. If multiple read requests are send, the client has to ensure that the
capability is renewed before it times out, in order to keep the file open.

4. The client reads more data from the file, e.g. another object.

5. The client receives a close call. There is no need to explicitly close
the file on the servers; this is implicitly done when the capabilities in
the OSD cache time out.

write

Files are written as described in the following (see Fig. 1.7):

1. The client receives an open request from the VFS. It opens the file on
the MRC for writing, and receives the file credentials, which contain
the globally unique XtreemF'S fileID, a write capability and the replica
locations list.

o8

__C'Lient { MRC J [0SD 1 J [05D 3 }
| open(,volumeA/a.txt”,"r")

CDA Credentials

-
I

I
o
|]

read (Crf'edentials ,FileID,0ObjectNo, Obj}actVersion , Offse’QLength)

®3 ObjectData

'l
-

renewCapability (XCap)

@ new XCap

-
-

read(Credentials, FileID,ObjedtNo,ObjectVersion , Offset, Lengtrm

@i ObjéctData

'l
-

close(,a.txt")

S

Figure 1.6: Reading a file

2. The client sends a buffer containing the data to the OSD on which
the object is stored. In return, the OSD sends an 0SDWriteResponse,
which must be cached and sent to the MRC when the file is closed
or fsync is called. The client can also decide to send pending filesize
updates from time to time between capability renewals, as the lifetime
of a capability can be in the range of tens of minutes.

3. If multiple write requests are send, the client has to ensure that the
capability is renewed before it times out, in order to keep the file open.

4. The client appends data to the file by sending more write requests,
each being answered with an 0SDWriteResponse.

5. The client receives a close call. It sends any pending 0SDWriteResponses
to the MRC, in order to update the file size. There is no need to ex-
plicitly close the file on the servers; this is implicitly done when the
capabilities in the OSD cache time out.

29

Cow1) [z
i open(,volumeA/a.txt",“w")

@ Credentials

-
(-

write(Credentiaﬂs ,FileID,0bjectNo,0bj ectVersibn ,0ffset, LeaseTmeout ,0bj ectDaté)

@3 OSDWriteResponise

‘-l
a

renewCapability (XCap)

®‘ new XCap

-t

write (Crédentials, FileID,ObjectNo,ObjéctVersion,Offset, ILeaseTimeout , (LbJ ectData)
' i i Lot

@‘ OSDWriteResponse

.

close(,a.txt")

updéteFilesize(XCap,OSDWriteRes@nse)
Figure 1.7: Writing a file

fsync

Files are fsync’ed as described in the following (see Fig. 1.8):

1. The file was opened and modified.

2. The client receives a fsync request from the VFS. If the file is opened
all pending data will be written to the OSD.

3. The client sends any pending 0SDWriteResponses to the MRC, in order
to update the file size.

4. The file is further modified or closed.

60

Cwe) [osi)

fsync(,a.txt") @
R S o]

write(Credentialis ,FileID,0bjectNo,0bj ectVersibn ,0ffset, LeaseTmeout ,0bjectData)

OSDWriteResponise

[
-

@ updateFilesize(XCap,0SDWriteResponse)

Figure 1.8: Synchronizing data with the underlying device

mkvol

New volumes are created as described in the following (see Fig. 1.9):

1. The client receives an mkvol request. In response, it creates the volume
on the MRC.

2. The MRC registers the volume at the DIR.

3. If no problems occur, the MRC responds to the client with an acknowl-
edgment.

rmvol

Volumes are deleted as described in the following (see Fig. 1.10):

1. The client receives a rmvol request from the console. In response, it
removes the volume on the MRC.

2. The MRC deregisters the volume at the DIR.

3. If no problems occur, the MRC responds to the client with an acknowl-
edgment.

61

[Client | [mRc] [DR
mw,) | |

(D mkvol(Volume) o

éerviceRegister(Service)
I —

@ ReturnValue
}4—1

®-

Figure 1.9: Creating a new volume

 mc¢ | [bR |

@3 rmvol(, volumeA*) |
: >

serviceDeregister(Service)
I EEEE——]

@

-

Figure 1.10: Deleting an existing volume

removeReplica

Single replicas of a file are deleted as described in the following (see Fig.
1.11):

1. The client receives a removeReplica request from the console. It sends
a request to the MRC to remove the replica with a matching head OSD.
In response, it receives the file credentials, which contain the globally
unique XtreemFS fileID, a deletion capability and the list of replica
locations.

2. The client initiates the deletion of the replica’s file content by invoking
the unlink operation on the head OSD (i.e. the first OSD of a stripe).

3. The head OSD delays the deletion until all clients have closed the file,
i.e. all capabilities known to the head OSD have timed out. In turn,

62

the head OSD initiates the deletion of file objects on the remaining
OSDs via unlink.

4. If a client finds out that its replica locations list for the file is outdated,
it has to retrieve the new replica locations list from the MRC.

(mRc] [osp1 | [osb2
removeReplica("a.txg“, 3 : 3

UUID of headOSDi}
1 replicaRemove (FileID,UUID)

(::)§ XCap

Ll
.

-

unlink(CredentialsAFileID)

®

'l
]

unlink(Credentials FﬁleID)

®

@

Figure 1.11: Deleting a replica of a file

63

64

Chapter 2

The OSS Developer Guide

2.1 Introduction

The Object Sharing Service (OSS) implements shared objects for grid appli-
cations. OSS is built as a shared library. Linking OSS to user applications
allows sharing of objects residing in volatile memory across multiple nodes
in the grid. An object in this context is a replicated volatile memory region,
dynamically allocated by an application or mapped into memory from a file.

Objects may contain scalars, references, and code. Therefore, OSS handles
concurrent read and write access to objects and maintains the consistency
of replicated objects. Persistence for objects stored in files are provided by
XtreemFS, fault tolerance in contrast is provided by the grid checkpointing
mechanisms developed in WP3.3. Currently, OSS supports IA32 and AMD64
compatible processors.

This report is structured as follows. Section 2.2 describes how OSS imple-
ments the XOSAGA API. Section 2.3 explains OSS’ modular architecture
and its network protocol. Section 2.4 documents the internal interfaces of
the modules. Finally, section 2.5 describes step by step how to extend OSS
with custom consistency models.

2.2 API

OSS’s services are available via the XOSAGA API [I|. Besides, we have
implemented a POSIX support library, which emulates POSIX’s malloc and
free calls for unmodified legacy applications. Both the XOSAGA API and

65

the interface of the POSIX support library are based on the internal OSS
interface which has been described in the OSS interface and user guide |2].

2.3 Architecture

Developed as a modularized system, OSS contains three main modules cache
management, consistency models and network communication (see figure
2.1).

Legacy Applications

XOSAGA API

POSIX Support Library

Cache Management i

29
| Zone I I % ;
g | zWn
| Heap | £
| Object I
5““))) Communication - -) i
1
| Message Exchange | i
1 1
| Overlay Network | E
1
1
1

'| TCP | UDP |

Figure 2.1: OSS architecture

2.3.1 Cache Management

OSS’s cache management allocates objects from a global distributed object
space. At a high level of abstraction, objects are represented as chunks of
memory. The interface to the cache management is modeled after dynamic
memory allocation on the heap, a technique well-known to most program-
mers. OSS does not interprete the content of objects, such that it allows to
share objects in virtually all programming languages using XOSAGA lan-
guage bindings. The cache management comprises object allocation, repli-
cation and basic synchronization services used by the consistency models.

66

2.3.2 Consistency Models

OSS is designed to support multiple consistency models for shared data syn-
chronization. Application developers are able to allocate multiple objects,
each coupled with a consistency model suitable for application semantics.
Currently, OSS supports strong, transactional and explicit consistency.

Strong Consistency

Using the strong consistency memory modifications are immediately visible
on subsequent reads. It is implemented using a modified version of the MESI
cache coherence protocol, where the state Fxclusive has been omitted. Strong
consistent objects (in current OSS version allocated at page granularity) can
obtain the following states (see figure 2.2):

MODIFIED EXCLUSIVE Object is modified and exclusive accessible by one
node

SHARED Object is shared among multiple nodes

INVALID Object is invalid

In general, if a node gains write access to a specific object, it changes into
modified state. Simultaneously, on all other nodes the object changes into
invalid state. Gaining read access instead, the object changes into shared
state. Any other node having exclusive access also changes into shared state.

Transactional Consistency

Transactional consistency also provides strong consistency but multiple op-
erations are bundled into atomic transactions. Possibly occuring conflicts
among transactions will be resolved transparently to applications in the back-
ground. The developer has only to define transaction boundaries by placing
the following two function calls into the program code, defining begin and
end of transactions:

oss_transaction_id_t oss_bot(...)

int oss_eot(oss_transaction_id_t)

Transactional consistent objects can obtain the following states (see figure
2.3):

67

Int. Read/Write

Modified

Exclusive

Ext. Write Ext. Read

Int. Write Int. Write

m
Int. Read
Ext. Read

Ext. Write

Figure 2.2: Finite state machine of strong consistency

UNBOUND Memory page has not been accessed

BOUND READ Memory page has been accessed for reading

BOUND WRITE Memory page has been accessed for writing

Explicit Consistency

Ezplicit consistency is a pseudo consistency model. Memory allocated under
this consistency constraints will never be synchronized and behaves like local
allocated memory (e.g. memory allocation via malloc). But the memory
allocation scheme still follows the semantics of OSS. As in other consistency
models, objects using this consistency model reside at the same memory

address on all peers.

2.3.3 Name Service

OSS contains a simple internal name service, which applications can use to
store and retrieve object IDs. The name service has a tree structure, with

68

Int. Read Int. Write

Bound Bound
Read Write

Int. Write

Figure 2.3: Finite state machine of transactional consistency

slashes (/) separating directory levels. An application or OSS module can set
a value for a name by calling oss_nameservice_set and retrieve a value by
calling oss_nameservice_get. A value that has not yet been set is treated
as object ID NULL.

2.3.4 Network Communication

The network module has two layers. The lower layer implements the binding
of transport protocols like TCP (Transmission Control Protocol) or UDP
(User Datagram Protocol) to the overlay network and assembles incoming
data fragments to PDUs (Protocol Data Units). Furthermore, it implements
fault tolerance mechanisms if not supported by the transport protocol itself.
Currently, OSS uses TCP, only.

The upper layer implements functionality for establishing and managing the
overlay network. Peers will be grouped together, coordinated by one super
peer node which manages inter group communication and group internal
tasks (e.g. transaction validation). The super peer will be elected on the
basis of its properties (e.g. performance, network latency and bandwidth,
average cpu load, ...). Moreover the overlay network routes messages among
nodes and is dynamically reconfigurable by using statistical data collections.

69

The communication module implements an interface to abstract messaging
from the underlying network structure.

For efficiency reasons, OSS implements its own binary request /reply network
protocol. Every PDU begins with a header followed by an optional payload
part. All fields of the PDU are described in detail (see figure 2.4)

Bit
Byte n 0123456 7 8 91011121314151617 1819202122 2324252627 2829 30 31

0 Type Subtype | Options | Result code
4 TTL <reserved>
8 Sequence number
12 Source ID
16 Destination ID
20 Origin Destination ID ™
24 Payload length
28 Payload

(variable length)

Figure 2.4: Structure of Protocol Data Units in OSS

Type Primary type of a network message. This field coincide with the mod-
ules which have registered a specific message type. All messages of a
type are passed to the registered handler of a module. The communica-
tion module distinguishes request and response messages by inspecting
the MSB (Most Significant Bit). An unset bit defines a request mes-
sage, a set bit a response message. A pair of request and response
messages differ only in the MSB referred to the type field.

Subtype Subtype of a network message. This field is used by modules to
distinguish various messages of the same type.

Options Internally used bit field.

Result code In response messages this field carries the result code of the
previously processed network request.

TTL Time-to-Live field, which prevents an endless routing/forwarding of
messages in the overlay network. This field is decremented on every
message routing/forwarding.

Sequence number Consecutive number for assigning reponse to request
messages and to preserve message ordering.

Source ID Node ID of the sender.

70

Destination ID Node ID of the recipient (modified in case of message for-
warding).

Origin dst. ID Node ID of the origin recipient (still unmodified in case of
message forwarding).

Payload length Length of payload.

Payload Payload.

2.4 Internal Interfaces

As mentioned in section 2.2, OSS’ services are available through the XOSAGA
API. The internal interfaces of OSS’ modules are used only inside the shared
library and therefore will not be exported to user applications. The follow-
ing sections describe the module interfaces of cache management and network
communication.

2.4.1 Cache Management

Each object has a unique identifier within the shared object space. To enable
efficient parallel allocation of objects, nodes pre-reserve heaps of objects using
the distributed allocator. The cache management comprises different alloca-
tors to partition the per-node heaps. When creating an object, an application
can specify which allocator to use, depending on the object’s intended usage.
Access control and storage management provide basic mechanisms to keep
objects consistent.

High-level object management (object)

The high-level object management module dispatches object creation and
object deletion to the respective heap. The module’s interface consists of the
following four functions:

e The function memory_alloc reserves memory for the object on a heap,
binds it to the specified consistency model and attributes, and returns
a reference to the newly created object.

e The function memory_free frees the memory pointed to by the refer-
ence.

71

e The function memory_mmap creates an object as a copy-on-write map-
ping of the specified file. If the file is unspecified, the function creates
an anonymous mapping.

e The function memory_munmap destroys an object which is a file mapping
Or an anonymous mapping.

Object allocation (heaps)

During object creation, the high-level object management allows an applica-
tion to choose the heap on which the object will be allocated. OSS currently
implements three heap allocators:

e The page allocator always reserves at least one hardware page (4 KB).
This allocator perfectly avoids false sharing situations, but it incurs a
high memory overhead for small objects.

e The mspaces allocator integrates the standard allocator from GNU/Li-
nux’s standard C runtime library. This allocator is very efficient in
terms of memory usage, but depending on the application’s object ac-
cess pattern, false sharing situations can degrade performance.

e The millipage allocator implements the Multiview /Millipage approach
avoiding false sharing [6]. This allocator tries to avoid false sharing
despite low memory overhead. It uses special features from the access
control module to efficiently place objects.

Access control and storage management (mmu)

The access control and storage management module abstracts from hardware
and operating system features. By means of this module, consistency models
access object data and keep track of object state. The following functions
are related to information about objects:

e The function mmu_get_consistency_model retrieves the consistency
model that a given address is bound to.

e The function mmu_is_valid_address determines whether an address
is known to the local node.

e The functions mmu_set_state and mmu_get_state access an object’s
state as defined by the respective consistency model.

72

e Consistency models can store more information about an object’s state
using the functions mmu_set_data and mmu_get_data.

e The functions mmu_lock, mmu_unlock and mmu_trylock synchronize
access to object metadata.

The following functions manage the physical backing store for several objects:

e The function mmu_alloc is called by the heap allocators to set up the
physical backing store for several objects.

e The function mmu_setup_region sets up a page-aligned memory region
at a specified address. This function applies to locally created regions
as well as to remote regions.

e The function mmu_discover_region discovers a region using the grid
memory allocator and sets it up locally.

e The function mmu_free frees a region from physical backing store.

e The function mmu_foreach_page runs a function for each page in a
memory region.

The storage management functions read or write the content of an object:

e The function mmu_copy_to_shadow creates a backup copy for an ob-
ject, whereas the function mmu_restore_from_shadow restores an ob-
ject from a backup copy. The function mmu_forget_shadow discards
any backup copy for an object.

e Using the functions mmu_copyin, mmu_copyout and mmu_copyout_pre-
fer_shadow, a consistency model can atomically read or write an ob-
ject’s content.

Using the access control functions, a consistency model can request notifica-
tion of read or write operations on objects:

e The function mmu_trap_read_write configures access control such that
the consistency model is notified of reads and writes.

e The function mmu_trap_write configures access control such that the
consistency model is notified of writes.

e The function mmu_trap_none configures access control such that the
consistency model does not receive notifications.

73

Zone allocation (zone)

A zone provides backing store for object heaps. The zone allocator coordi-
nates coarse-grained reservations among the nodes.

e The functions allocator_set_root_memory and allocator_get_root-
_memory access the root memory, which is the basis of the distributed
name service within OSS.

e The function allocator_alloc reserves a memory region in the global
allocator for a node.

e The function allocator_free marks a memory region as unused.

e The functions allocator_discover, allocator_get_size, alloca-
tor_get_consistency_model, allocator_get_allocator and allo-
cator_get_owner retrieve information about memory regions from the
global allocator.

e The function allocator_is_valid_address checks whether an ad-
dress is within the shared object space.

2.4.2 Network Communication

OSS exchanges network messages among nodes to establish and reorganize
the overlay network, synchronize cached objects in memory with respect to
the applied consistency model and configure nodes. The interface supports
sending, forwarding and droping messages. The send functions are catego-
rized into request and response functions, and in blocking and non blocking
functions. When a send function is called, OSS builds a PDU (see figure 2.4)
which is passed to the overlay network.

Request/Response messaging

In general a conversation among nodes follows a request/reply scheme in
which a node sends a request to another node and awaits a response message.
In case a request handler itself needs to request further data from other
nodes to respond the actual request, the network module supports linking
of multiple requests. In particular, if a node receives a request, it is allowed
to start a further request from its request handler. The full processing of
the request may be deferred until the node has processed the response of the

74

second request. The following functions allow a request/reply comunication
among nodes:

e comm_send_sync_req_to sends a request to nodes and blocks until the
node has processed all response messages.

e comm_send_async_req_to is the same as comm_send_sync_req_to but
never blocks. Response messages are processed in the background.

e comm_send_async_linked_req_to sends a new unblocking request from
a network request handler. The actual request is linked to the new re-
quest and will be reprocessed after the node has processed the response
message of the new request. A request handler which calls this function
must return with -E_PDU_LINKED.

e comm_send_sync_resp sends a message in response to a request mes-
sage. This function will never block.

e comm_send_async_resp In the face of response functions will never

block, this is only an alias for comm_send_sync_resp to keep synchro-
nious/asynchronious messaging semantics.

Informational Messaging

If a message exchange does not await a response, OSS supports sending one
way or informational messages.

e comm_send_async_msg_to sends a message to nodes. This function
will never block and does not await any response messages.

Messaging forwarding
OSS allows forwarding of request messages directly from the request handler
of the message itself. It is allowed to forward the same message multiple

times. Response messages will be sent directly to the requester without the
indirection of the forwarding nodes.

e comm_forward_req_to forwards a request to another node.

75

2.5 How to implement Consistency Models

This section describes in a few steps how to implement an own consistency
model in OSS. Consistency models reside in the folder src/consistency,
new implementations should also be stored there. First of all, the developer
should create a new code and header file for his implementation.

For his own implementation the developer can use the implementation of the
null consistency® as a template. The header file starts with an inclusion guard
macro definition which should follow the naming semantics of the already
implemented consistency models. At least one declaration (the pointer table
of the consistency model itself) must be placed in the header file by adding
the following line, where <NAME> is a placeholder for the name identifying the
consistency model.

2.5.1 Function Pointer Table

Every consistency model must define a function pointer table for its callback
functions:

consistency_model_t <NAME>_consistency =

{

.name = "<NAME> consistency", // Name

.id = oss_<NAME>_consistency, // Internal identifier

.init = *ptr, // Ptr to init function or NULL
.fini = *ptr, // Ptr to fini function or NULL
.read_handler = *ptr, // Ptr to read fault handler
.write_handler = *ptr, // Ptr to write fault handler
.event_handler = NULL, // Unused (shall be NULL)
.alloc_handler = *ptr, // Ptr to memory alloc handler
.free_handler = *ptr, // Ptr to memroy free handler
.mspace = NULL // Internally used by mspaces allocator

};

2.5.2 Consistency Model Registration in OSS

To make the consistency model available to user applications, it has to be
registered into OSS. This is done by performing the following steps

IFile: consistency/nc.c (implementation) and consistency/nc.h (declarations)

76

1. Register the consistency model in the consistency control unit?. This
is done by appending the pointer of the consistency model’s local func-
tion pointer table to the global function pointer table in the consistency
control unit. Beware of reordering the table entries. Additional consis-
tency models may only be appended to this table.

2. Add an appropriate named entry in the consistency model enumeration
in OSS’ global header file>. The entries in the enumeration must be
in the same order as in the global function pointer table. The entry
oss_max_consistency must always be the last entry in the enumera-
tion.

2.5.3 Initializer and Finalizer

Code for preinitialization and finalization of the consistency model is placed
in initializer and finalizer functions, called before the application starts and
after the application terminates. These functions will be called automatically
if their function pointers are added to the function pointer table.

static void <NAME>_init() {...}

static void <NAME>_fini() {...}

2.5.4 Register PDU handlers

To participate in network communication, the consistency model must reg-
ister callback functions to handle network request and response messages of
a specific message type. It is recommended to register two different callback
handlers. The developer has to ensure to register only handlers for message
types which have not been registered before, because reregistering a message
type will overwrite any previous handler registration. The following steps
describe the handler registration for a new message type:

1. Add a new request and an appropriate response message type to the
PDU header file*.

#define TYPE_<NAME>_REQUEST

2File: consistency,/consctl.c
3File: oss.h
4File: net/pdu.h

7

#define TYPE_<NAME>_RESPONSE (TYPE_<NAME>_REQUEST ...

2. Include the network communication header file into the implementation
file of the new consistency model

#include "net/comm.h"

3. Register the PDU handlers by calling the following function. It is
recommended to perform the registration in the consistency model’s
initialization function.

pdu_register_handler (xreq_handler, TYPE_<NAME>_REQUEST);
pdu_register_handler (*resp_handler, TYPE_<NAME>_RESPONSE) ;

Registered handlers have the following signature like the example be-
low:

static int req_handler(in_pdu_t *pdu)

2.5.5 Writing PDU handlers

The registered request and response handlers must interprete the subtype
code of the messages and delegate them to the correct subhandler. For a clean
code structure it is recommmended to implement only the interpretation of
subtypes in this function and delegate the messages to subhandlers. A sample
implementation could look like the following code snippet:

switch (pdu->header.subtype) {
case SUBTYPE_<NAME>:
return funcl(pdu);
break;
case ...

default: //ignore messages with unknown subtypes

dbg_printf (0, "invalid pdu subtype\n");
return PDU_SUCCESS;

Subhandlers have the same signature like registered request and response
handlers.

78

2.5.6 PDU subsystem

It is allowed to send new network messages from network handlers. But
messaging in this context is covered by the following restrictions

e no use of blocking message functions

e 10 request messaging from response handlers

Furthermore, network handlers must return immediately after message pro-
cessing, therefore it is not allowed to block within handlers. The return
code of a handler controls the postprocessing of messages. OSS supports the
following return codes:

PDU_SUCCESS Handler processed succesfully. Request PDUs will be removed
from the queue

-E_PDU_LINKED Request has been linked with a new request and will be
deferred for later reprocessing (request PDUs only)

-E_PDU_DEFERRED Request has been deferred for later reprocessing (request
PDUs only)?

2.5.7 Page Fault Handler

The page fault handlers implement the consistency model as a finite state
machine on a per page basis. OSS signals access violations disjoined regard-
ing read and write faults. The finite state machine consists of multiple page
states previously defined by the developer. In conjunction with access right
controlling® and read/write page faults, raised on access violation, the ma-
chine performs its state transitions. The read and write handlers must be
added to the local function pointer table and have the following structure:

static void <NAME>_read_handler(void *addr,
struct ucontext *context)

{

int state = mmu_get_state(addr);

5This return code may be removed soon and therefore shall not be used for new han-
dlers.

6Access rights are configurable for all disjunct virtual memory pages and can al-
low /disallow read and write access to it.

79

switch (state) {
case STATE_1:

break;
case ...

default:

dbg_printf (0, "address %p: unknown state detected (%u)\n",
addr, state);
exit (EXIT_FAILURE) ;

The developer can perform state transitions by controlling the state of the
faulted pages with the following two functions:

int mmu_get_state(void *addr);

void mmu_set_state(void *addr, int state);
Additionally, the access rights of memory pages can be modified via
void mmu_trap_none(void *addr);

void mmu_trap_write(void *addr);

void mmu_trap_read_write(void *addr);

2.5.8 Exporting functions to the API

Functions are exported to the Application Programming Interface by writing
wrapper functions prefixed with oss_. The function declaration must be
included into the global header file of OSS, included by the applications.
The wrapper code must be included in the corresponding source code file”.

File: 0ss.h (declaration) and oss.c (implementation)

30

Index

API, 65

DIR, 6, 7, 36, 40-43, 61
FUSE, 20-22
IDL, 22, 23, 35

MRGC, 5-9, 19-21, 35-43, 45, 50-53,
55-63
MSB, 70

Object, 65

Object Sharing Service, 65

ONC RPC, 7, 8, 35, 36, 39, 45

OSD, 5, 6, 17-19, 21, 36-42, 45, 47,
50-60, 62, 63

0SS, 3, 5, 65

PDU, 69
POSIX, 5, 8, 10, 16, 18-21, 35, 36,
39, 40, 49, 52, 55

TCP, 69
UDP, 19, 37, 69

81

82

Bibliography

1]

2l

13l

4]

[5]

(6]

7]

8]

XtreemOS consortium. Deliverable D3.1.5: Third Draft Specification of
Programming Interfaces. Technical report, XtreemOS consortium, 2009.

XtreemOS consortium. Deliverable D3.4.3: XtreemFS and Object Shar-
ing Service: Second Prototype. Technical report, XtreemOS consortium,
2009.

F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized
network coordinate system. ACM SIGCOMM Computer Communica-
tion Review, 34(4):15-26, 2004.

Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, and Julian
Satran. Object storage: The future building block for storage systems.

In 2nd International IEEE Symposium on Mass Storage Systems and
Technologies, 2005.

Felix Hupfeld, Toni Cortes, Bjoern Kolbeck, Jan Stender, Erich Focht,
Matthias Hess, Jesus Malo, Jonathan Marti, and Eugenio Cesario.
XtreemFS: a case for object-based storage in Grid data management.
In 3rd VLDB Workshop on Data Management in Grids, co-located with
VLDB 2007, 2007.

Ayal Ttzkovitz and Assaf Schuster. Multiview and millipage — fine-grain
sharing in page-based dsms. In OSDI ’99: Proceedings of the third
symposium on Operating systems design and implementation, pages 215—
228, Berkeley, CA, USA, 1999. USENIX Association.

T.M. Kroeger. Predicting File System Actions From Reference Patterns.
PhD thesis, University of California, 1996.

T.M. Kroeger and D.D.E. Long. Design and Implementation of a Predic-
tive File Prefetching Algorithm. Proceedings of the General Track: 2002
USENIX Annual Technical Conference table of contents, pages 105118,
2002.

83

19]

[10]

[11]

[12]

[13]

[14]

J. Ledlie, P. Gardner, and M. Seltzer. Network coordinates in the wild.
In Proc. of NSDI, 2007.

M. Mesnier, G. Ganger, and E. Riedel. Object-based storage. IFEE
Communications Magazine, 8:84-90, 2003.

R. Srinivasan. Rpc: Remote procedure call protocol specification version
2, 1995.

Jan Stender, Bjorn Kolbeck, Felix Hupfeld, Eugenio Cesario, Erich
Focht, Matthias Hess, Jests Malo, and Jonathan Marti. Striping with-
out sacrifices: maintaining posix semantics in a parallel file system. In
LASCO’08: First USENIX Workshop on Large-Scale Computing, pages
1-8, Berkeley, CA, USA, 2008. USENIX Association.

Osamu Tatebe, Noriyuki Soda, Youhei Morita, Satoshi Matsuoka, and
Satoshi Sekiguchi. Gfarm v2: A grid file system that supports high-
performance distributed and parallel data computing. In Proceedings of
the 2004 Computing in High Energy and Nuclear Physics (CHEPO0Y),
2004.

Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for
well-conditioned, scalable internet services. SIGOPS Oper. Syst. Rev.,
35(5):230-243, 2001.

84

	The XtreemFS Developer Guide
	Introduction
	Document Structure

	XtreemFS Servers
	DIR - Directory Service
	MRC - Metadata and Replica Catalog
	OSD - Object Storage Device

	Client
	Architecture
	Implementation

	RMS - Replica Management Service
	Choosing the best replica
	Replica creation
	Replica deletion
	Interaction with the Application Execution Management

	Testing
	Testing POSIX compliance of XtreemFS
	Regression Tests

	Protocol and Interactions
	Constants
	Types
	Directory Service Interface
	Metadata and Replica Catalog Interface
	Object Storage Device Interface
	Interactions

	The OSS Developer Guide
	Introduction
	API
	Architecture
	Cache Management
	Consistency Models
	Name Service
	Network Communication

	Internal Interfaces
	Cache Management
	Network Communication

	How to implement Consistency Models
	Function Pointer Table
	Consistency Model Registration in OSS
	Initializer and Finalizer
	Register PDU handlers
	Writing PDU handlers
	PDU subsystem
	Page Fault Handler
	Exporting functions to the API

