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Abstract. A grid checkpointing service providing migration and trans-
parent fault tolerance is important for distributed and parallel appli-
cations executed in heterogeneous grids. In this paper we address the
challenges of checkpointing and migrating communication channels of
grid applications executed on nodes equipped with different checkpointer
packages. We present a solution that is transparent for the applications
and the underlying checkpointers. It also allows using single node check-
pointers for distributed applications. The measurement numbers show
only a small overhead especially with respect to large grid-applications
where checkpointing may consume many minutes.

1 Introduction

Fault tolerance can be achieved for many distributed and parallel applications,
particularly for scientific ones, using a rollback-recovery strategy [1]. Here, pro-
grams are periodically halted to take a checkpoint that can be used to restart the
application in the event of a failure. As nodes may fail permanently the restart
implementation must support restarting checkpoints on new healthy nodes. The
latter is also important for application migration, e.g. to realize load balancing.
Checkpointing solutions have been available for many years, mainly used in
high performance computing and batch processing systems. As grid applications
are getting into mainstream there is an emerging need for a transparent check-
pointing solution. Right now there is a great variety of different checkpointing
packages such as single node checkpointers, e.g. BLCR (with MPI support) [8],
OpenVZ [9]. Virtual machine technologies, e.g. VMware [4] and XEN [7] are also
used as checkpointers. Furthermore, there are distributed checkpointers such as
LinuxSSI [5], DCR [12] and DMTCP [2]. All these implementations come with
different capabilities and there is no ultimate best checkpointer.
Therefore, we have designed XtreemGCP - a grid checkpointing service capa-
ble of checkpointing and restarting a grid job running on nodes equipped with
different checkpointing packages [13]. Each grid job consists of one or multiple
job units. Each job unit represents a set of processes of a job on one grid node.
Checkpointing a distributed job does not only require to take a snapshot of
all process states on all involved nodes but also to handle in-transit messages
as well. Otherwise, orphan messages and lost messages can lead to inconsistent
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checkpoints. Orphan messages occur if the reception of a message is part of the
receiver side checkpoint, however the message send event is not part of the sender
side checkpoint. In case of a restart the sender will send this message again which
may cause faults.
Lost messages occur if reception of a message is not part of the receiver side
checkpoint, however the message send event is part of the sender side check-
point. During restart this message will not be sent again and the receiver may
block and run into a failure situation. Obviously, in-transit messages need to
be handled by all involved checkpointers. As the latter have not been designed
to cooperate with each other, e.g. BLCR does not cooperate with DMTCP, we
need a subordinated service transparently flushing all communication channels
at checkpoint time avoiding in-transit messages. And this service must also sup-
port channel re-connections in case of a job migration. The contributions of
this paper are the concepts and implementation of a transparent grid channel
checkpointing (GCC) facility for a heterogeneous setup with various existing
checkpointer packages. We address TCP sockets used by a great range of dis-
tributed applications. As UDP communication inherently tolerates lost messages
we do not take care of in-transit UDP messages.
The outline of this paper is as follows. In Section 2 we present an overview of grid
channel checkpointing followed by Section 3 describing the architecture in detail.
The different phases to checkpoint, restart and migrate channels are discussed
in Section 4 followed by an evaluation. Related work is discussed in Section 6
followed by conclusions and future work.
XtreemGCP is implemented within XtreemOS - a Linux-based distributed OS
for next generation grids [3]. This work is funded by the European Commision
under FP6 (FP6-033576).

2 Grid Channel Checkpointing Overview

The main idea of the GCC approach is to flush all TCP channels of a distributed
application before a checkpoint operation in order to avoid lost and orphan mes-
sages. Flushing of TCP channels is achieved by preventing all application threads
from sending and receiving messages as well as from creating new channels dur-
ing the checkpointing operation.
Concurrent GCC protocol execution is achieved by using separate threads for
channel control and flushing. Once, appropriate controller threads have been in-
stalled at both peer processes of an application TCP channel, a marker message
is sent through the channel, signaling the marker receiver that the channel is
empty. Potential in-transit messages received by a controller thread in the con-
text of channel flushing are stored in a so-called channel draining buffer at the
receiver side.
No messages can get lost since all in-transit messages will be assigned to the cur-
rent checkpoint on the receiver side. No orphan message can occur since sending
of application messages is blocked until the checkpoint operation has finished
and all received messages have been recognized as being sent on the sender side.
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To support checkpointers incapable of saving/restoring socket descriptors, sock-
ets may need to be closed before a checkpoint operation and recreated after a
taken checkpoint. A recent version of LinuxSSI failed during restart, since sock-
ets that were open during checkpointing time could not be reconstructed. But
of course, whenever possible we leave sockets up and running for performance
reasons.
Before an application resumes with its normal execution, potentially closed sock-
ets will be recreated and reconnected. Furthermore, any blocked channel cre-
ation system calls and formerly blocked send and recv calls will be released.
Messages formerly stored in the channel draining buffer get consumed by appli-
cation threads before new messages can be received.
Finally, GCC also needs to handle changed IP-addresses caused by job-unit
migration. To handle changing IP-addresses we introduce a GCC manager com-
ponent that can be contacted by all involved GCC controller instances.

3 GCC Architecture

In the following text we describe the Grid Channel Checkpointing (GCC) archi-
tecture and its components in detail. Fig. 1 presents all GCC components.
GCC marks TCP sockets because UDP sockets are not relevant. It also deter-
mines the current socket usage mode, indicating whether being in receive or in
send mode. The socket usage mode may change dynamically as TCP sockets can
be used in a bidirectional fashion. If a process sends and receives messages over
one TCP socket it is called to be in duplex mode.
For application-transparent channel checkpointing network system calls such as
send, recv, connect, accept, listen, etc. must be controlled. Application threads
must neither send or receive messages nor create new channels while check-
pointing is in progress. However, GCC threads must be able to exchange GCC-
messages on application channels (to be flushed) and on GCC control channels.
The library interposition technique is used, to achieve these features in an
application-transparent way. Therefore, we initialize the environment variable
LD PRELOAD with the path to our interposition library. Thus, all network
calls of the application end up in the interposition library. The contained net-
work function wrappers pass the calls to the original library. Therewith we are
able, e.g. to block a send call within the associated function wrapper.
As previously mentioned, sockets may have to be re-connected to new IP ad-
dresses in case of process migration. Sockets must also be closed and recreated
on nodes whose checkpointers are incapable of handling open socket descrip-
tors. Both tasks can be handled using the callback mechanism provided by
XtreemGCP [13]. The latter explicitly executes registered callbacks before and
after a checkpoint or after a restart.
In addition these callbacks are used to integrate the channel flushing protocol.
GCC callbacks are registered in an application-transparent way, realized by a
fork-wrapper included in the above mentioned interposition library.
Two control threads are created per process, the send-controller thread and the
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recv-controller thread, see Fig. 1. If a socket is shared by multiple processes
on one node, the send- or recv-controller thread of one process becomes channel
leader of it. The channel leader exclusively supervises channel flushing and recon-
nection, but relies on cooperation with the remaining controller threads. More

Fig. 1. GCC components

precisely, the send-controller takes control over sockets of TCP channels being
in send mode. At checkpoint and restart time it is in active mode which means
it initiates flushing and reconnection with the remote recv-controller. The recv-
controller takes control over TCP channels being in receive mode. It is in passive
mode and reacts on flushing and reconnection request from a send-controller.
Distinguishing send- and recv-controllers allows handling situations where two
communicating processes are server and client for different channels at the same
time. No deadlock can occur during restart e.g. if one server socket on each side,
recreated by the relevant send-controller, waits for the opposite node to recon-
nect, since the relevant recv-controller is ready to handle a reconnection request.
Migrated sockets must be detected before a controller thread tries to initiate a
socket reconnection. Thus, each socket creation, recreation and any other socket
state changes are registered at the distributed channel manager (DCM). There-
fore, all controller threads can use a TCP control channel to the channel manager.
Currently, we have a central channel manager implementation (one manager for
each grid job) that will be replaced by a distributed version for scalability rea-
sons.
GCC execution is triggered by callbacks triggered before and after checkpointing
and immediately after a restart.
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3.1 Shared sockets

As mentioned before a socket formerly shared by multiple processes must be
recreated with special care, just one process must recreate it. Thus, in a multi-
process application the channel leader exclusively recreates the socket in the ker-
nel within the post-checkpoint or restart callback. For the remaining application
processes to see the newly recreated socket we use the UNIX descriptor pass-
ing mechanism [10]. Using the latter allows the channel leader to pass recreated
socket descriptors to controller threads of other processes using UNIX domain
socket connections, see Fig. 3.1.
The channel manager assigns a unique key per channel to involved controller
threads for a UNIX domain socket connection setup and descriptor exchange.
The key remains the same also after a potential migration. While the descriptor
is sent, a corresponding entry is made in the process-owned descriptor table.
Process socket descriptors assigned to a logical channel must be matched with
those being valid before checkpointing. Socket descriptors are assigned in an in-

Fig. 2. Process-wide shared soclets and descriptor passing

creasing order during normal runtime. If an intermediate descriptor gets closed,
a gap exists, and the highest descriptor number is bigger than the total number
of sockets currently used. During socket rebuild, descriptors will be assigned in
an increasing number, without gaps by taking the association of channel and de-
scriptor number into account saved during pre-checkpoint time and descriptors
will be rearranged to the correct order using the dup2 system call.
Thus, this approach avoids false multiple recreations of a shared socket and the
latter do not need to be reestablished exclusively via process forking and inher-
itance in user space. Additionally kernel checkpointer based process recreation,
which excludes the calling of fork at user space, is supported as well.
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4 GCC Phases

4.1 Pre-Checkpoint Phase

Blocking channel creation: Since there is a short time gap between pre-checkpoint-
callback execution and process synchronization in the checkpoint phase, the cre-
ation of new TCP channels must be blocked. This is realized by blocking the
socket calls accept and connect until the checkpoint operation is finished.
Determining channel leaders: Sending on TCP channels must be prevented to
drain channels in finite time. Two challenges need to be addressed in this con-
text. First, if multiple processes use a shared socket, each of them may send
a marker, many could receive one or multiple markers. Obviously, it is unclear
when the last message has been received. Second, application threads could be
blocking on send and recv calls which would prevent the protocol to start.
This first challenge is addressed by determining a so-called channel leader whose
task is to exclusively treat sockets shared by multiple processes. More precisely,
one send controller will be installed per process and out-going channel, one
recv controller thread will be installed per process and in-coming channel. Each
controller sends a channel-leader-request to the channel manager. Thus, e.g. a
two-process application, whose child inherited socket descriptors of its parent,
sends two requests to the channel manager. The channel manager selects one
of the requesting controller threads as the channel leader and informs all about
this decision.
The second challenge is solved by the controller threads sending a SIGALRM
signal to applications threads blocking on send or recv calls. Application and
controller threads can be distinguished such that just application threads will
be put asleep in the signal handler routine while controller threads can start with
channel draining. Finally, no application thread is able to send or receive mes-
sages along TCP channels anymore until the end of the post-checkpoint phase,
see Section 4.2.
Before channel flushing can be initiated by a send controller, a recv controller
must contact the DCM to learn on which socket it is supposed to listen for
the marker. Both use a handshake to agree on which channel is to be flushed.
Channel flushing: The send controller being the channel leader at the same time
sends a marker. The marker is the last message received by the remote recv con-
troller which is the channel leader on the peer node. Messages received before the
marker are in-transit messages. Marker and in-transit content will be separated.
The latter will be put in a channel draining buffer. The buffer data is assigned to
the appropriate receiving application thread. Usually, just one thread waits for
messages on a peer. However, multiple threads can do so as well. In the latter
case the OS scheduler decides non-deterministically which thread receives the
message. Thus, the channel checkpointing protocol copies received data into the
receive buffer of the application thread that has been listening to this channel
recently. This equals a possible state during fault-free execution.
Marker recognition can be achieved at different levels. Currently, a special marker
message is sent along the application channel, see Fig. 4.1. Since the underlying
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Fig. 3. Channel flushing with marker message

TCP layer fragments application data independent of application semantics a
marker message can overlap with two or multiple TCP packages. Thus, at each
byte reception the recently received and buffered data must be matched back-
wards against the marker. In the future we plan to replace this first approach by
another alternative, e.g. extending each application network packet by a GCC
header which is removed at receiver side or using a socket shutdown to enforce
the sending of a TCP FIN message to be detected in the kernel.
Furthermore, we optionally need to close open sockets for checkpointer pack-
ages that cannot handle them. This is no problem for the application threads as
they are blocked and sockets will be re-opened in the post-checkpoint phase, see
Section 4.2. The final step of the pre-checkpoint phase is saving the association
of socket descriptor and channel key, needed during post-checkpoint and restart
time.

4.2 Post-Checkpoint Phase

Unblocking channel creation: This GCC phase aims at unblocking the network
communication just after a checkpoint has been taken. At first, channel creation
blocking is released, unblocking system calls such as connect and accept.
Recreating (shared) sockets: Sockets need to be recreated only if they had been
closed before checkpointing or in case of a restart. There is no need to adapt
server socket addresses, since no migration took place.
Socket recreation becomes more complex if sockets are shared by multiple pro-
cesses, see Section 4.1.
Release send/recv barriers: The last step of this GCC phase is to unblock for-
merly blocked send and recv calls and to wake up application threads. Further-
more, any buffered in-transit messages need to be consumed before any new
messages.
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4.3 Migration and Restart Phase

The GCC restart is similar to the post-checkpoint phase but both differ from
the location of execution and migration-specific requirements. The first step
here includes the release of the channel creation blockade (unblocking connect
and accept calls). Furthermore, we need to address different checkpointer (CP)
capabilities:

1. CPs capable of saving, restoring and reconnecting sockets (for changed IP
addresses),

2. CPs capable of saving and restoring sockets, but not supporting socket mi-
gration,

3. CPs being unable to handle sockets at all.

Obviously, we need to address cases 2 and 3, only. Here sockets are recreated,
their descriptors are rearranged as described under Section 3.1. Before a client
socket can reconnect to a server socket, we must check if a migration took place
recently and if the server is already listening for reconnections. The latter is the
task of the channel manager which receives any changed server addresses from
the control threads, see Section 3. Thus, a client just queries the DCM to learn
the reconnection state.
The last step in this phase includes releasing any formerly blocked send and recv
calls and waking up application threads.

5 Evaluation

The GCC pre- and post-checkpoint phases have been measured using a synthetic
distributed client server application running on nodes with heterogeneous and
homogeneous checkpointer packages installed. The test application sends peri-
odically 100 Byte packets in five second intervals. At client and server side each
channel is handled by a separate thread.
In the first test case the server part is executed and checkpointed on one node
part of a LinuxSSI cluster (v2.1), the client part on grid node with BLCR (v0.8.2)
installed. The channel manager is executed on a separate node inside the Lin-
uxSSI cluster. In the second test case client and server have been executed and
checkpointed on nodes with BLCR installed.
The testbed consists of nodes with Intel Core 2 DUO E6850 processors (3 GHz)
with 2 GB RAM interconnected with a Gigabit Ethernet network.

5.1 Test Case 1: Heterogeneous checkpointers and GCC

Fig. 4 indicates the times taken at a client and a server for flushing, closing and
reestablishing channels on top of LinuxSSI and BLCR checkpointers (no shared
sockets have been used). The pre-checkpoint phase takes up to 4.25 seconds to
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handle 50 channels. The duration is mainly caused by the serial synchronization
of the send and recv controller threads via the channel manager. An improved
channel manager is on the way handling requests concurrently. Furthermore,
the duration includes memory buffering and consumption of potential in-transit
messages.
Fig. 4 also shows the time needed for the post-checkpoint phase taking about
half of the time as the pre-checkpoint phase. This is due to less interaction with
the channel manager and of course no channels need to be flushed. As expected
if necessary, rebuilding and reconnecting of sockets is costly.
Fig. 5 indicates the times for the same scenario as shown in Fig. 4 but with-
out closing and reestablishing channels. Here the pre-checkpoint phase takes less
time (about 3.25 seconds to handle 50 channels). Furthermore, without socket re-
building and reconnecting this post-checkpoint phase is also significantly shorter
than the one from above just taking about 120 milliseconds for 50 channels.
Another aspect is that GCC is working on top of heterogeneous callback imple-
mentations without major performance drawbacks. While BLCR comes with its
own callback implementation implicitly blocking applications threads, LinuxSSI
does not. For the latter we have to use the generic callback implementation pro-
vided by XtreemGCP.

Fig. 4. GCC behavior on top of
LinuxSSI and BLCR with closing
and reestablishing channels

Fig. 5. Same scenario as in Fig. 5
but without closing and reestab-
lishing channels
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5.2 Test Case 2: Homogeneous checkpointers and GCC

Fig. 6 indicates the times taken for the client and server to flush, close and
reestablish channels based on the mere usage of BLCR checkpointers. The pre-
checkpoint phase takes up to 2.75 seconds to handle 50 channels. It is faster
than the pre-checkpoint phase of test case 1 because both grid nodes run native
Linux there is no SSI-related overhead caused by LinuxSSI. The post-checkpoint
phase is significantly shorter than the one of test case 1 because no native SSI
structures must be updated when sockets are being recreated and reconnected.
Fig. 7 indicates the times taken for a client and server to flush open channels.
It takes less time during the pre- and post-checkpoint phase compared to the
previous setup of test case 2.
Overall we see that the current implementation of GCC consumes more time
when checkpointing more channel connections per grid node. Although we do
not expect thousands of connections per grid node as the typical case we plan
to optimize the GCC solution to be more scalable.
Another aspect is that the amount of messages in-transit to be drained during
checkpointing operation will also influence GCC times. But as the bandwidth
of grid networks is typical several Mbit/s or even more, we do not expect an
extensive time overhead here. Furthermore, though checkpointing communica-
tion channels may consume several seconds we think this is acceptable because
checkpointing large grid applications may take many minutes to save the appli-
cation state to disk.

Fig. 6. GCC with BLCR only,
with closing and reestablishing
channels

Fig. 7. Same scenario as in Fig. 6
but without closing and reestab-
lished channels
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6 Related work

Overall there is only one other project working on checkpointing in heterogeneous
grid environments while there are different projects implementing checkpointing
for MPI applications [11]. However, there are many publications proposing so-
phisticated checkpointing protocols but that are not related to heterogeneity
challenges addressed by this paper.
The CoreGRID grid checkpointing architecture (GCA) [14] proposes a similar
architecture like XtreemGCP aiming to integrate low-level checkpointers. How-
ever, the current GCA implementation supports Virtual Machines (VMs), only,
and does not support checkpointing communication channels of distributed ap-
plications.
The Open Grid Forum (OGF) GridCPR Working Group has published a design
document for application-level checkpointing [6] that is not addressing transpar-
ent channel checkpointing.
DMTCP [2] is most close to the approach proposed in this paper. It is a dis-
tributed library checkpointer able to checkpoint and migrate communication
channels. They also use a marker message to flush in-transit messages but the
latter will be sent back to the original sender at checkpoint time and forth to
the receiver at resume/restart time. In contrast we store in-transmit messages at
the receiver side. Furthermore, DMTCP supports only one specific checkpointer
whereas our approach is designed for heterogeneous grid environments. Finally,
shared sockets are recreated during restart by a root process in user space which
inherits them to children processes created later. In contrast to our approach
processes with disturbed original parent-child relations cannot be recreated.
In [12] communication states are saved by modifying the kernel TCP protocol
stack of the OS. The approach is MPI specific, does not support shared sockets,
and is designed for one checkpointer (BLCR) and not for a heterogeneous setup.

7 Conclusions and future work

Transparent checkpointing and restarting distributed applications requires han-
dling in-transit messages of communication channels. The approach we propose
flushes communication channels at checkpoint time avoiding orphan and lost
messages. The contribution of this paper is not a new checkpointing protocol
but concepts and implementation aspects how to achieve channel flushing in a
heterogeneous grid where nodes have different checkpointer packages installed.
The proposed solution is transparent for applications and existing checkpointer
packages. It also allows to use single node checkpointers for distributed applica-
tions without modifications because GCC takes care of checkpointing communi-
cation channels.
GCC is a user mode implementation not requiring kernel modifications. It also
offers transparent migration of communication channels and supports recreation
of sockets shared by multiple threads of one or more processes. Our measure-
ments show that the current implementation can handle dozens of connections
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in reasonable time, especially with respect to checkpointing times of huge appli-
cations which can be many minutes.
Future goals include implementation optimizations to improve scalability and
channel flushing support for asynchronous sockets.
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