
The XtreemOS JScheduler: Using Self-Scheduling Techniques in Large
Computing Architectures

F. Guim
Barcelona Supercomputing Center

fguim@bsc.es

I. Rodero
Barcelona Supercomputing Center

irodero@bsc.es

M. Garcia
Barcelona Supercomputing Center

marta.garcia@bsc.es

J. Corbalan
Barcelona Supercomputing Center

julita.corbalan@bsc.es

Abstract

Several centralized scheduling solutions have been pro-
posed in the literature for environments composed of sev-
eral independent computational resources, such as cen-
tralized schedulers, centralized queues and global con-
trollers. These approaches use a unique scheduling en-
tity responsible for scheduling all jobs submitted by
users. In our previous work we proposed the use of self-
scheduling techniques to dispatch jobs which are submit-
ted to a set of distributed computational hosts, which
are in turn managed by independent schedulers (such
as MOAB or LoadLeveler). In the ISIS-Dispatcher,
scheduling decisions are made independently for each
job instead of using a global policy where all jobs are
considered.

In this paper we present how the ISIS-Dispatcher tech-
niques can be used in the XtreemOS architecture for
manage the jobs. This system is designed to be deployed
in large scenarios that potentially involve thousands of
resources. In such systems it is not feasible to make the
dispatcher contact to all the systems. It is not realistic to
suppose that the dispatcher stores the information about
all the resources and where they are located. Obviously,
this approach would imply problems of scalability. In
this paper we also evaluate the impact about the amount
of resource information that the dispatcher can collect
during the job scheduling.

1 Introduction

The increasing complexity of local systems has led
to new distributed architectures. These new systems
are composed of multiple computational resources with
different characteristics and policies. In these new
distributed scenarios, traditional scheduling techniques
have evolved into more complex and sophisticated ap-
proaches where other factors, such as the heterogeneity
of the resources [9] or geographical distribution [7], have

been taken into account.
Distributed HPC architectures are usually composed

of several supercomputing centers containing many
hosts. In the job scheduling strategies proposed in the
literature, jobs are submitted to one centralized sched-
uler which is responsible for scheduling all the submit-
ted jobs to all the computational resources available in
the system. Thus, users submit jobs to a scheduler which
schedules the jobs according to a global scheduling pol-
icy. The policy takes into account all the queued jobs and
the resources available in the center to decide which jobs
have to be submitted where, and in what order.

Following a similar approach of the AppLes project
[2], in [10] we proposed replacing the use of a global
scheduler or global structures to manage jobs submitted
in these scenarios, with the use of self-scheduling tech-
niques which dispatch the jobs that users want to sub-
mit to the set of distributed hosts. In this new architec-
ture, jobs are scheduled by their own dispatcher and there
are no centralized scheduling decisions. The dispatcher
is aware of the status of the different resources that are
available for the job, but it is not aware of other jobs that
other users have submitted to the system. Thus, the job
itself decides which is the most appropriate resource for
its execution. The target architectures of our work are
distributed systems where each computational resource
is managed by an independent scheduler (such as MOAB
or SLURM). In contrast to the AppLes approach, we
propose an interaction between the job dispatcher and
the local schedulers. Thus, we propose the use of two
scheduling layers: at the top, the job is scheduled by the
dispatcher (the schedule is based on the information pro-
vided by the local schedulers and their capabilities); and,
once the resource is selected and the job submitted, the
job is scheduled by the local resource scheduler.

In this paper we present how the ISIS-Dispatcher tech-
niques can be used in the XtreemOS (henceforth refer-
enced as XOS) architecture for schedule the submitted
jobs that are submitted to its scheduling entities (jSched-



Figure 1: The Extended ISIS-Dispacher architecture

uler). The XOS system has been designed to be deployed
in large scenarios that potentially involve thousands of
resources. In such systems it is not feasible to make the
dispatcher contact to all the systems. It is not realistic to
suppose that the dispatcher stores the information about
all the resources and where they are located. Obviously,
this approach would imply problems of scalability.

The XOS Application Discovering System (hence-
forth referenced as ADS) component is the responsi-
ble to provide to thejScheduler the information regard-
ing the resource that satisfy the job requirements. In
this paper, we evaluate the impact of the amount of re-
source information the dispatcher receives from the ADS
during the job scheduling. Furthermore, in the evalua-
tion presented, we evaluate our approaches in a possible
XtreemOS architecture: a large computing system com-
posed by 200 different resources containing more than
41000 processors; the computational resources are het-
erogeneous, with different local policies and different
sizes (form 2 processors until 25000 processors). We
demonstrate how our techniques can be successfully used
in this big and heterogeneous systems.

The rest of the paper is organized as follows: section
2 presents the related work; next the XtreemOS archi-
tecture is explained; section 4 describes how the ISIS-
Dispatcher algorithm can be included in the architecture,
and 5 describes how it has been modeled in the Alvio
simulator; next we present the experiments that we de-
signed for evaluated the presented techniques; and finally
sections 7 and 8 present the evaluation and conclusions.

2 Motivation and related work

In the new large distributed systems, as with grids, more
global scheduling approaches are being considered. In
[25], Yue proposes using a global backfilling policy
within a set of independent hosts where each of them is
managed by an independent scheduler. The core idea of
Yue’s algorithm is that the user submits a job to a spe-
cific system, managed by an independent scheduler and
a global controller tries to find out if the job can be back-
filled to another host of the center. Sabin et al. stud-
ied in [9] the scheduling of parallel jobs in a heteroge-
neous multi-site environment. They propose carrying out
a global scheduling within a set of different sites using
a global meta-scheduler where users submit their jobs.
They compare the effect of submitting jobs to the site
with the least instantaneous load to the effect of submit-
ting jobs toK different sites and, once the job is started
in one site, cancelling the rest of the submissions.

In [7] the authors analyze the impact of geographical
distribution of Grid resources on machine utilization and
the average response time. A centralized Grid dispatcher
which controls all resource allocations is used. The local
schedulers are only responsible for starting the jobs after
resource selection has been made by the Grid Scheduler.
A similar approach is presented by Schroeder et al. in
[19], where they evaluate a set of task assignment poli-
cies using the same scenario (one central dispatcher).

In [18] Pinchak et al. describe a metaqueue system
which manages the jobs with explicit workflow depen-
dencies, and involves the use of a centralized scheduling
system. However the submission approach is different
from the one discussed above. Here the system is com-
posed of a user-level metaqueue that interacts with the
local schedulers. In this scenario, instead of the push
model, where jobs are submitted from the metaqueue to
the schedulers, place holding is based on the pull model,
where jobs are dynamically bound to the local queues on
demand.

All the previous enumerated solutions for distributed
architectures are based on the use of centralized schedul-
ing systems where jobs are submitted. The scheduling
policies are centralized. In the AppLes project [2][1]
Berman et al. introduced the concept of application-
centric scheduling, where everything about the system
is evaluated in terms of its impact on the application.
Each application developer schedules his/her application
so as to optimize his/her own performance criteria with-
out regard to the performance goals of other applications
which share the system. The goal is to promote the per-
formance of an individual application rather than to opti-
mize the use of system resources or to optimize the per-
formance of a stream of jobs.

In [10] and [11] we presented the non-centralized job
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oriented scheduling policy implemented by the ISIS-
Dispatcher. It is a scheduling entity that is assigned to
one, and only one, job. As a result, when a user wants to
submit a job, a new dispatcher is instantiated. This new
dispatcher is responsible for submitting the job to the
computational resource that best satisfies the job require-
ments, and which maximizes its response time or other
job metrics. The ISIS-Dispatcher is designed for deploy-
ment in large systems, for example, groups of HPC Re-
search Centers or groups of universities. The core of
the ISIS-Dispatcher algorithm is based on task selection
policies. In the referenced paper we demonstrated how
the new task selection policy (Less-WaitTime) based on
the wait time prediction achieved higher performance
than previously proposed policies. The main advantage
of the new policy is that it takes into account the capac-
ity of the available resources and scheduling informa-
tion while the others do not (i.e: Less-WorkLeft, Less-
Queued-Jobs etc. [19][14]). In [11] paper we proposed
the use of prediction techniques in the ISIS-Dispatcher
architecture as an alternative to the user estimates which
we initially proposed. We described a new evolutive
prediction model based on classification trees and dis-
cretization techniques designed for these distributed en-
vironments. We introduced the modelling of the eco-
nomic cost of using different computational resources.
Furthermore, we proposed two new task assignment poli-
cies which use predicted job run and wait time and whose
objective is to optimize slowdown and the economic cost
of job execution. Furthermore, we propose a variant of
Less-WaitTime which uses predicted runtime rather than
user estimates.

2.1 Data mining and prediction techniques

As will be described later, the prediction system provides
the dispatcher with estimates which allow it to make
more intelligent scheduling decisions. In [11] we de-
scribed a new evolutive prediction model based on clas-
sification trees and discretization techniques designed for
these distributed environments. The prediction model
that we used in our experiments was developed using the
Weka [15] framework. Its goal was to predict the run-
time of a submitted job by using the static information
provided by the user at submission time, and the histori-
cal information regarding the execution of finished jobs.
The main idea is to classify job runtime according to a set
of runtime intervals that have been defined based on his-
torical information. Each of these intervals has an asso-
ciated runtime prediction. Thus, when a job is classified
in a given interval, the predictor returns the runtime asso-
ciated with this interval. In the paper we described how
the model is built during a simulation and we provided
its evaluation. We shown how the described prediction

model can provide accurate job runtime predictions and
how it is able to learn and improve during the life cycle of
the global system. Thus, each time more historical infor-
mation is available, the prediction service is able to make
more accurate predictions with more sophisticated inter-
nal structures. In the evaluation presented in this paper
we present we have used the same prediction system.

The problem of predicting how long a given job will
wait in the queue of a system has been explored by other
researchers in several papers [6][21][22]. A relevant
study in this area is the prediction work presented by Lui
in [16], where the use of the K-Nearest-Neighbor algo-
rithm is used to predict queue wait times. What we pro-
posed in [10] was to use wait time predictions based on
scheduler reservation tables. The reservation is used by
local scheduling policies to schedule jobs and to decide
where and when the jobs will start. Thus, this predic-
tion mechanism takes into account the current scheduling
outcome, the status of the resources, and the scheduling
policy used.

3 The XtreemOS Project

The emergence of Grids enables the sharing of a wide
range of resources to solve large-scale computational and
data intensive problems in science, engineering and com-
merce. While much has been done to build Grid mid-
dleware on top of existing operating systems, little has
been done to extend the underlying operating systems to
enablee and facilitate Grid computing, for example by
embedding important functionalities directly into the op-
erating system kernel.

The XtreemOS [17] (henceforth referenced as XOS)
project aims at investigating and proposing new services
that should be added to current operating systems to build
large Grid infrastructure in a simple way. XtreemOS tar-
gets the Linux well-accepted open source operating sys-
tem extending it to Grid with native support for virtual
organizations. One of the most important challenges in
XtreemOS is the identification of the basic functionali-
ties which are to be embedded in the Linux kernel.

A set of operating system services, extending those
found in the standard Linux distribution, will provide
Linux users with all the Grid capabilities associated with
current Grid middleware, but fully integrated into the OS.
The underlying Linux OS will be extended as needed to
support virtual organizations spanning across many ma-
chines and to supply appropriate interfaces to Grid OS
services.
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3.1 The XtreemOS Scheduling Architec-
ture

The Application Execution Management (AEM) [23] is
the component of the XOS responsible of job and re-
source management. It is mainly divided into two parts:
the user or client side and the server or system side. The
user side basically offers the API to access the AEM ser-
vices. The user/client side includes the implementation
of the command line and third party libraries such as
SAGA to be built on top of the Basic XtreemOS API.
This layer mainly pre-process arguments, calls the sys-
tem side and post-process results.

The system side is mainly composed of the XOSD
(XtreemOS Daemons) and some distributed services
such as the JobDirectory and the jResMatching (for more
information see [23]). Each node (also known as com-
putational resource) of the system has its own XOSD.
It contains a subset of the total amount of information
about jobs actives in the VO (concerning execution man-
agement). Each XOSD manages information about jobs
submitted in the node, running in the node, and about the
node itself (one node is a resource). The main services it
provides are:

• jController holds the job information and its three
main goals are first, to ensure that the scheduling
agreement between the job and the resources is ac-
complished, second, to validate the job is executing
as expected, and third, to act as a gateway for the
job. The jController holds most of the information
associated to the job and it is the only service that
has a global vision of it. It is the service that pro-
vides self-management to XtreemOS jobs.

• jScheduler schedules one job. The jScheduler re-
ceives a pre-selection of resources from the jRes-
Matching (resource matching global service used to
store and gather resource information) based on job
resource requirements and in a second step it per-
forms a negotiation with pre-selected resources in
order to decide the final allocation. The jScheduler
service is stateless and from one job scheduling to a
next one no status is stored.

• jMonitor collects information from all the processes
of the job and adds them in a job basis. One of the
goals of the jMonitor is to provide a monitoring ser-
vice as powerful and flexible as possible, allowing
advanced versions of XtreemOS to add new metrics
without changing either the API or the system ar-
chitecture.

• jExecMng is a distributed service that implements
methods for managing the execution of the job.

In the current architecture (Figure 2), there are two
components that are used by the AEM. Given a job de-
scription, theADS component provides to thejScheduler
lists of K components that satisfy such requirements and
where the job can be submitted. TheResourceManager
is the responsible to provide information to the other
components concerning the host in which they are run-
ning. Thus, thejScheduler, contacts to this component
to gather the information about the resources that can be
used by the job.

As its described in the figure 2, when a job (henceforth
JOB) with a set of requirements (henceforth REQS ) and
characteristics (henceforth CHARS) is submitted to the
XOS system, the following steps are carried out:

1. A jScheduler is created for schedule the job submis-
sion. (1)

2. ThejScheduler contacts to theADS and requires a
resource that satisfy the job requirements and char-
acteristics. TheADS returns the reference toRe-
sourceManager that manages the resource that it
has selected. (2)

3. If the reference is not null, thejScheduler contacts
to the theResourceManager and submits the job.

Something important to is that the ADS abstracts to
the jScheduler about the complexity of the architecture
that is behind him. It is an specialized component that
has been designed for efficiently provide information
about parts of huge systems (potentially composed by
millions of resources) [5].

Figure 2: The current XtreemOS Architecture

4 Including Self-Scheduling techniques in
XreemOS Scheduling Architecture

To include the ISIS techniques in the XtreemOS infras-
tructure very few changes have to be considered. As can
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be observed in the Figure 3 there is only one new ele-
ment that could be considered in the submission system:
the prediction system. This component, given the char-
acterization of the submitted job and a given resource of
the system, it has to estimate the runtime that this job is
expected to experiment in such resource.

Similar as has been doing until the moment, the sub-
mission to the system is done using thejManager. When
the user wants to submit a job (henceforth JOB) with a
set of requirements (henceforth REQS ) and characteris-
tics (henceforth CHARS) the JobManager will still cre-
ate thejScheduler that will decide where the job has to
be submitted. However, in this extension the user will be
able to specify which job metric (henceforth METRIC)
has to be optimized in during the scheduling process (the
available metrics are described in the last section of this
document). In the case that no metric is specified a de-
fault metric will be used. ThejScheduler will follow the
next algorithm:

1. The jScheduler contacts to the appropriate
ADS instance and it request forK resources
{resource1, ..,resourceK} that satisfy the job
REQS and CHARS.

2. For each resource in{resource1, ..,resourceK} the
jScheduler:

(a) It will contact to the prediction system and
will require theEstimatedRuntime for the JOB
in the resource. ThejScheduler will provide
both job requirements and job characteristics.
(This runtime estimation can be also consid-
ered like local resource specific information.
It is runtime in a specific resource).

(b) If local resource specific information, such as
the estimated wait time, is required for com-
pute the metric METRIC that is being to be
optimized, thejScheduler will contact to the
appropriate Resource Manager that manages
the given resource and will gather such infor-
mation. For some metrics, thejScheduler will
have to provide a set of data. (described be-
low).

(c) It will compute the METRICresource using
all the collected information.

3. It will select the resource that optimizes the MET-
RIC. This optimization function is potentially dif-
ferent for each of the available metrics. Usually, it
will be the minimum function (i.e: for selecting the
center with least estimated wait time).

One of the objectives of this paper is to evaluate the
impact of the valueK used in the step1 of the dispatch-
ing process. Obviously, as higherK values are used, the

space of search in which the dispatcher is able to retrieve
information is higher. Thus, the quality of the scheduling
is expected to be higher. However, usingK with high val-
ues implies problems of scalability and performance. In
the evaluation section we provide and study that shows
the impact of this value in the scheduling.

Figure 3: Including the ISIS-Dispatcher in the XreemOS
Architecture

5 The Alvio Simulator

All our experiments were conducted using the C++
event-driven Alvio simulator. The simulator models the
different components which interact in local and dis-
tributed architectures. Conceptually, it is divided into
three main parts: the simulator engine, the scheduling
polices model (including the resource selection policies:
First-Fit, First-Continuous-Fit and LessConsume poli-
cies [13]), and the computational resource model [12].
A simulation allows us to simulate a given policy with
a given architecture. Currently, three different policies
have been modeled: the First-Come-First-Served policy,
the Backfilling policy, and finally, the ISIS-Dispatcher
scheduling policy and the RUA-Backfilling. For back-
filling policies, the different properties of the wait queue
and backfilling queue are modeled (SJF, LXWF and
FCFS) and different numbers of reservations can also be
specified.

The main simulation component is the simulator en-
gine, which manages all the simulation events and in-
stantiates all the events of the simulation. In this model,
when aJOB ARRIVAL is triggered, a newjScheduler en-
tity is created for the job. First, it discovers the different
local systems that are available to it using theADS. In
this new version of the system, thejScheduler decides
which center to submit the job by gathering the schedul-
ing information for the local resource from the different
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ResourceManagers and the runtime estimations from the
prediction system. This last component includes a his-
torical database containing all the information about the
performance variables of jobs which have finished in the
system, and a set of predictors that estimate the job per-
formance variables using different techniques (i.e: sta-
tistical techniques or dataminig techniques). Once the
jScheduler has chosen where to submit the job it contacts
the scheduling component which manage the resource,
and submits the job. At this point, the job becomes
scheduled atthe local scenario. As we have already
outlined in our previous works, this component manages
and allocates jobs based on the reservation table which
models how the computational resources are used (pro-
cessors, memory etc.). Once the job has been executed,
the scheduling component provides information regard-
ing job execution to thejScheduler which is managing its
execution. The dispatcher contacts the prediction service
and provides feedback about the job execution. The pre-
diction service updates its historical database and may
update the prediction models that it is using.

For the evaluations presented in this paper, dispatcher
behaves as thejScheduler and it knows the available
scheduling resources that are available in the system by
contacting to theADS. This new component allows the
dispatcher to dynamically gather the information about
the resources that are available at a given point of time.
In the simulator configuration we can specify the amount
of resources that thejScheduler requires to theADS to
perform the scheduling.

In the presented model, when a job is submitted to
the system, it is assigned randomly to one of theExecu-
tionManager. This manager instantiates the correspond-
ing jScheduler for the job. TheADS component is in-
stantiated at the beginning of the simulation. When the
jScheduler ask forK resources that satisfies the job re-
quirements, the ADS selects theK requested centers us-
ing a random variable that follows a normal distribution
Centerid U [0,n] (wheren is the number of known centers
for theADS).

6 Experiments

In this section we present the metrics, the workloads used
in the simulations and the scenarios that were designed
to evaluate the proposal.

6.1 The task asignament policies

As we have already introduced, the metrics that are used
in the core of the ISIS-Dispatcher algorithm are based
on task selection policies. In this paper we evaluate two
different task assignment policies:

• The Less-WaitTime-pred (LWT-pred) policy mini-
mizes wait time for the job using the predicted run-
time provided by the prediction system. Given a
static description of a job, including the runtime
prediction, the local resource provides the estimated
wait time for the job based on the current resource
state. As in [10], the prediction mechanism uses
a reservation table which simulates the possible
scheduling outcome, taking into account all the run-
ning and queued jobs at each point of time (see be-
low).

• The Less-SlowDown-pred (LSLD-pred) policy
minimizes slowdown for the job. Given the static
description of the job, the dispatcher estimates the
slowdown of the job in a given resource center. To
do this, it asks the prediction system for the job run-
time prediction and then asks the local resource for
an estimate of job wait time in this resource.

In [10] we evaluated different task assignment poli-
cies which other authors proposed in the literature and
the Less-WaitTime policy (LWT). We stated how the
use of prediction techniques for waiting time used in
the new Less-WaitTime policy can substantially improve
the overall performance with regard to other policies. In
[11] we proposed the two policies used in this evaluation.
They shown how the runtime prediction can also provide
good results rather than using the user estimates.

6.2 Workloads

For the evaluations presented in this paper we have used
a set of workloads that we consider representative of the
current HPC infrastructures and that are evaluated. Note
they go from small cluster composed by two processors
until large and power computational resources with 9120
processors. More information about their properties and
characteristics can be found in the workload archive of
Dror Feitelson [8][3]. The workloads used are:

1. The NASA Ames iPSC/860 log.
2. The Los Alamos National Lab (LANL-CM5) log.
3. The San-Diego Supercomputer Center Paragon

(SDSC-Par).
4. The Cornell Theory Center (CTC) SP2 log.
5. The Lawrence Livermore National Lab (LLNL).
6. The Swedish Royal Institute of Technology (KTH)

IBM SP2 log.
7. The San Diego Supercomputer Center (SDSC-SP2)

SP2 log.
8. The LANL Origin 2000 Cluster (Nirvana) log.
9. The OSC Linux Cluster log (OSC).

10. The San Diego Supercomputer Center Blue Horizon
log (SDSC-Blue).

11. The HPC2N log.
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12. The DAS2 5-Cluster Grid Logs.
13. The San Diego Supercomputer Center DataStar log

(SDSC-DataStar).
14. The LPC Log.
15. The LCG Grid log.
16. The SHARCNET log .
17. The LLNL Atlas log.
18. The LLNL Thunder log.

The trace that was used in the evaluation was gener-
ated by fusing the first eight months of each trace. We
chose these workloads because they contained jobs with
different levels of parallelism and with run times that var-
ied substantially.

6.3 The Scenarios

6.3.1 The Local system

We have already emphasized that the goal of this
work was to evaluate the viability of using the ISIS-
Dispatching techniques in large HPC infrastructures. To
do this, we have used more than 17 traces collected from
many HPC and Grid architectures (introduced in the pre-
vious subsection). Furthermore, we have defined a pos-
sible large multi-syte HPC System composed by all the
different resources that are related to the traces. The ar-
chitecture that we have evaluated is presented in the table
1. The system is composed by 200 different computing
elements and it has more than 40.000 processors. Each
of the resources in the table has associated two different
characteristics:

• The Job Scheduling Policy that is used in the local
system. It can be Shortest-Job-Backfilled-First [24]
(SJBF), EASY Backfilling [20], LXWF Backfilling
[4], Shortest Job First (SJF) and First-Come-First-
Served (FCFS).

• The CPU Factor (third column) is used to model
the computational power of each the computational
resources. When the jobα with original run-
timeα{OriginalRunTime,rt} (specified in the SWF trace
used in the simulation) is submitted to the resource
σ the runtime of the job in the center becomes
α{RunTime,rt} = α{OriginalRunTime,rt} ∗CPUFactor.

The scenario defined for this evaluation shows a het-
erogeneous and large multi-site HPC system. Note, that
the resources are are really different in terms of proces-
sors computational power (CPU Factors from 1 until 8),
number of processors (from 2 until 25000) and schedul-
ing policy (from the FCFS until SJBF).

6.3.2 The XtreemOS Architecture

In this paper we have evaluated the described system us-
ing the ISIS-Techniques in theJScheduler. As we have
already introduced, for this paper we have also modeled
the usage of theADS. The different scenarios that we
have evaluated are:

• The task assignment policies: The Less-WaitTime-
pred (LWT-pred) and Less-SlowDown-pred
(LSLD-pred).

• The number of resources that are requested by the
jScheduler to the ADS for a given job. In each ex-
periment we have evaluated the effect of asking to
the ADSK times the number jobs of requested pro-
cessors. We have evaluated all the values included
in the intervalK ∈ [1,55].

7 Evaluation

7.1 The original scenarios

Table 2 shows the performance that each of the centers
has shown evaluating its workload with the properties
presented in the table 1. The last row presents the average
values considering all the centers. It shows the average
and 95th percentile for the slowdown and the wait time.
As can be observed, the performance of the different sys-
tems radically differ. The performance of the scheduling
policies and CPU factors used in each experiment has a
direct impact in the performance values presented in the
table.

The two centers that have worst performance are the
LANL-CM5, DAS2-fs4 and theHPC2N. They show slow-
downs from 221 until 1364. The main reason is that they
use the policy FCSC. On the other hand, theDAS2-f0,
LPC and theSDSC-SP2 shows the best performance, in
terms of slowdown and wait time. These last configura-
tions are using the SJBF policy which has been demon-
strated in the literature that provides a very good perfor-
mance result.

There is also a clear impact of the CPU factor to
the performance of the systems. Thereby, theThun-
der, HPC2N andKTH-SP2 show bad performance val-
ues. Contrary, theDAS-fs0, DAS-fs3 andSDSC-Par show
good performance values. Also, these lasts onces are us-
ing scheduling policies that achieve good performance
and they also have the best CPU factors.

I all the cases, the performance obtained when reduc-
ing the computational power and the policy is not sur-
prising. For instance, using FCSC or reducing by four
the computational power of a given center significantly
increases its slowdown and wait time. Thereby, The ca-
pacity of the resource of execute the same workload was
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Center CPUs Fact. Policy
NASA Ames 128 4 SJBF
LANL-CM5 1024 1 FCFS

SDSC Paragon 416 1 EASY
CTC IBM SP2 512 2 EASY

KTH 100 4 EASY
SDSC SP2 128 4 LXWF

Nirvana 2048 4 EASY
OSC 178 4 SJBF

SDSC-Blue 1024 2 FCFS
HPC2N 240 4 EASY
DAS-fs0 144 4 EASY
DAS-fs1 64 1 SJF
DAS-fs2 64 5 SJBF
DAS-fs3 64 1 SJBF
DAS-fs4 64 5 FCFS

SDSC-DS 184 5
LPC 70 x 2 8 FCFS
LGC 100 x 250 5 EASY

Sharnet
6 x 128 5 SJF
1 x 1068 5 SJF
1 x 1536 5 SJF
1 x 3072 5 SJF
1 x 384 5 SJF

Atlas 1152 3 FCFS
Thunder 1024 8 EASY

CM5 1152 3 FCFS

Table 1: Centers Configuration

reduced four times. Thus, the original scenario cannot
cope with the same job stream. The main concern to use
these configurations was to evaluate later this configura-
tion in the distributed scenario.

7.2 The XtreemOS Architecture

Figures 4 and 5 present the improvement of both aver-
age wait time and bounded slowdown against the orig-
inal scenarios. In the X-Axes the graphic shows theK
value that has been used in the experiment when carry-
ing out the dispatching algorithm (see section 4). For
instance,K = 2 means that the dispatcher has requested
to the ADS2 resources that satisfy the job requirements.
The Y-Axes present the improvement of the presented
variable respect the original scenario. In each figure we
present the improvement of a given metric for the two
task assignment policies presented in the subsection 6.1.

The bounded slowdown (Figure 4) starts improving re-
spected the original scenario fork = 3 using the LWT-
Pred assignment policy andk = 2 using the LSLD-Pred
assignment policy. From thisk the second policy shows

Metric: Wait time Slowdown
Center Avg 95th Avg 95th

CTC-SP2 5249 29586 7,76 39,01
LCG 434,12 4320 4,3 23,32

DAS2-fs0 22,68 135 1,11 1,69
DAS2-fs1 5576 43414 11,71 21,18
DAS2-fs2 29594 99109 6,33 14,44
DAS2-fs3 4,52 100 1,03 3,23
DAS2-fs4 39053 192140 221 934,33
HPC2N 23980 87607 72,05 299,5

KTH-SP2 8864 54222 74,46 571,5
LANL-CM5 126565 308231 1364 4061

LPC 133 1323 1,23 3,42
Atlas 1993 14217 3,18 12,97

Thunder 18891 47758 138 366,8
BLUE 12383 27644 68,80 164,2

Par 453,12 12000 7,32 18,42
OSC 1233,32 25433 5,443 24,43

SDSC-SP2 116,12 1233 1,45 4,22
NASA 232,45 2133 2,43 10,43
Sharnet 649 4432 43,6 749

All 18198 29345 135,5 653

Table 2: Centers Performance

quantitative better results than the other policy. For in-
stance, fork = 10 the LWT-Pred presents an improve-
ment of 3 times, while the LSLD-Pred shows an im-
provement of 10 times. The last values ofK shows
how requesting for 55 times more the number of re-
quested resources for the job the dispatcher is able to
make a qualitative improvement respect the orignal sce-
nario. Thereby, forK = 55 the LWT-Pred improves the
slowdown 26 times and the LBSLD-Pred improves the
slowdown for 37 times. Note, that requesting 55 times
the job requested resources does not imply that the job
will use or reserve all of them. It only means that the
jScheduler will carry out the ISIS-Algorithm to this set of
resources and will select the most appropriate one. This
results shows how using the second assignment policy
the quality of the scheduling, based on the BSDL metric,
has a qualitative improvement fork > 4. On the other
hand, the LWT-Pred shows the similar improvements for
k > 13.

Similar to the BSLD, the wait time improves the per-
formance of the original scenario fork = 2 using the
LWT-Pred assignment policy and fork = 3 using the
LSLD-Pred. However, this metric shows different pat-
tern that the once presented by the bounded slowdown.
For lower K values (k ∈ [1−8]) the first LWT-Pred
shows substantially better wait times than the LSDL-
Pred. From this point the LSLD-Pred shows better wait

8



Figure 4: Improvement of BSLD against the number of
requested resources

times. However, for the lastk values evaluated in this
work both assignment policies start converging with sim-
ilar values.

The evaluations results presented in this section will
be used in the next implementations of thejScheduler to
decide whichK values should be used when dispatching
the submitted job. Based on the experiments, we can
state that lower values are acceptable if it is required. For
example when the system is really loaded, when there
is an small time for carry out the scheduling (i.e: real
time scheduling) or when the job request a high number
of processors. In this last situation (i.e: the job request
2048 processors) thejScheduler should not request for
k = 55 resources. On the other hand we have stated how
this value has to be selected depending also in the metric
that the user has requested to be optimized.

8 Conclusions

In this paper we have presented how the ISIS-Dispatcher
techniques can be used in the XtreemOS architecture for
schedule the submitted jobs (jScheduler). This XOS sys-
tem has been designed to be deployed in large scenarios
that potentially involve thousands of resources. In such
systems it is not feasible to make the dispatcher contact
to all the systems. It is not realistic to suppose that the
dispatcher stores the information about all the resources
and where they are located. Obviously, this approach
would imply problems of scalability. The ADS compo-
nent is the responsible to provide to thejScheduler the
information regarding the resource that satisfy the job re-
quirements. We evaluate the impact of the amount of re-
source information the dispatcher receives from the ADS
during the job scheduling.

The evaluations results have shown that thejSched-
uler can achieve good performance results although not
all the elements of the systems are being evaluated
when carrying out the ISIS-Dispatcher algorithm. The

Figure 5: Improvement of Waittime against the number
of requested resources

bounded slowdown and the wait time obtained in the
original system are improved by one order of magnitude
usingk > 9. Moreover, using ak = [2,4] both metrics are
improved up to the 50% respected the original scenarios.
We have stated how the performance obtained with this
approach depends on the amount of resource informa-
tion available. Furthermore, we have identified that the
value ofk to be used should be defined depending on the
amount of resources that the job requires and the metric
that the user requests to optimize.
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