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Abstract been taken into account.

. : . Distributed HPC architectures are usually composed
Several centralized scheduling solutions have been pro- y P

. : . of several supercomputing centers containing many
posed in the literature for environments composed of sev; . . . .
hosts. In the job scheduling strategies proposed in the

eral independent computational resources, such as cep; . . .
. . iterature, jobs are submitted to one centralized sched-
tralized schedulers, centralized queues and global con-

. . uler which is responsible for scheduling all the submit-
trollers. These approaches use a unique scheduling en-

fity responsible for scheduling all jobs submitted by ted jobs to all the computational resources available in

X the system. Thus, users submit jobs to a scheduler which
users. In our previous work we proposed the use of Self'schedules the jobs according to a global scheduling pol-
scheduling techniques to dispatch jobs which are submit- J 9 g gp

S : . icy. The policy takes into account all the queued jobs and
ted FO a set of dlstnbuteq computational hosts, Wh'Chtﬁe resources available in the center to decide which jobs
are in turn managed by independent schedulers (su

as MOAB or LoadLeveler). In the ISIS-Dispatcher ave to be submitted where, and in what order.
scheduling decisions are made independently for eacE]':OHOWIng a similar approach of the ApplLes project

job instead of using a global policy where all jobs are'”" in [10] we proposed replacing the use of a glopal
considered. scheduler or global structures to manage jobs submitted
in these scenarios, with the use of self-scheduling tech-

In this paper we present how the ISIS-Dispatcher tech-

nigues can be used in the XtreemOS architecture fop d1es which dispatch the jobs that users want to sub-

manage the jobs. This system is designed to be deployercrzl]it to the set of distributed hosts. In this new architec-
: re, jobs are scheduled by their own dispatcher and there

. . . . u
in large scenarios that potentially involve thousands 01‘t . . L :
resources. In such systems it is not feasible to make tha' o centralized scheduling decisions. The dispatcher

dispatcher contact to all the systems. It is not realistic toIS aware of the status of the different resources that are

suppose that the dispatcher stores the information abou vailable for the job, but it is not aware of other jobs that

all the resources and where they are located. Obviousl;?ther users have submitted to the system. Thus, the job

this approach would imply problems of scalability. In itself decides which is the most appropriate resource for
: its execution. The target architectures of our work are

this paper we also evaluate the impact about the amowﬁ. . :
pap b istributed systems where each computational resource

SLrritralzotl:]rg?oL)n;c():rhrgztlljtﬂ:gt.hat the dispatcher can COIIeCtls managed by an independent scheduler (such as MOAB
or SLURM). In contrast to the AppLes approach, we
propose an interaction between the job dispatcher and

1 Introduction the local schedulers. Thus, we propose the use of two
scheduling layers: at the top, the job is scheduled by the

The increasing complexity of local systems has leddispatcher (the schedule is based on the information pro-

to new distributed architectures. These new systemyided by the local schedulers and their capabilities); and,

are composed of multiple computational resources wittonce the resource is selected and the job submitted, the
different characteristics and policies. In these newjob is scheduled by the local resource scheduler.
distributed scenarios, traditional scheduling techrsque In this paper we present how the I1SIS-Dispatcher tech-
have evolved into more complex and sophisticated apniques can be used in the XtreemOS (henceforth refer-
proaches where other factors, such as the heterogeneignced as XOS) architecture for schedule the submitted
of the resources [9] or geographical distribution [7], havejobs that are submitted to its scheduling entitj€sted-



2 Motivation and related work

In the new large distributed systems, as with grids, more
global scheduling approaches are being considered. In
[25], Yue proposes using a global backfilling policy
o . within a set of independent hosts where each of them is
Policy® | managed by an independent scheduler. The core idea of

:]IED: Yue’s algorithm is that the user submits a job to a spe-

3 = Resource B g .
.F B ! cific system, managed by an independent scheduler and
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% :—5;\ Py G| a global controller tries to find out if the job can be back-

g | TIIL filled to another host of the center. Sabin et al. stud-

E : ;\ Resource C : ied in [9] the scheduling of parallel jobs in a heteroge-
e, SR 4 neous multi-site environment. They propose carrying out

St a global scheduling within a set of different sites using

a global meta-scheduler where users submit their jobs.
They compare the effect of submitting jobs to the site
with the least instantaneous load to the effect of submit-
ting jobs toK different sites and, once the job is started
Figure 1: The Extended ISIS-Dispacher architecture in one site, cancelling the rest of the submissions.

In [7] the authors analyze the impact of geographical
distribution of Grid resources on machine utilization and
the average response time. A centralized Grid dispatcher
which controls all resource allocations is used. The local

uler). The XOS system has been designed to be deployesichedulers are only responsible for starting the jobs after
in large scenarios that potentially involve thousands ofresource selection has been made by the Grid Scheduler.
resources. In such systems it is not feasible to make thA similar approach is presented by Schroeder et al. in
dispatcher contact to all the systems. It is not realistic td19], where they evaluate a set of task assignment poli-
suppose that the dispatcher stores the information abouiies using the same scenario (one central dispatcher).

all the resources and where they are located. Obviously, In [18] Pinchak et al. describe a metaqueue system
this approach would imply problems of scalability. which manages the jobs with explicit workflow depen-
dencies, and involves the use of a centralized scheduling

for-'lt—: ie;(gsné%pliafgsg) fg?nvsc?rr\]egn tsi); Sttfg r?sepnocfs-i system. However the submission approach is different
ble to provide to thgScheduler the information regard- from the one discussed above. Here the system is com-

. X . X f r-level m hat inter with th
ing the resource that satisfy the job requirements. | osed of a user-level metaqueue that interacts with the

: ) ocal schedulers. In this scenario, instead of the push
this paper, we evaluate the impact of the amount of re- P

source information the dispatcher receives from the AD odel, where jobs are submitted from the metaqueue to
) . disp ) he schedulers, place holding is based on the pull model,
during the job scheduling. Furthermore, in the evalua-

. . . Yvhere jobs are dynamically bound to the local queues on
tion presented, we evaluate our approaches in a pOSSIb(femand

;(g:: dmt())y Szzg:rgit;g:g;?' r: s!iLgri ecsor:opnutg?n% nsg’;ysr“:g?ei?wrgn AI[ the previous enumerated solutions for'distributed
41000 processors; the computational resources are heqrchltectures are based on the use of centralized schedul-
erogeneous, with different local policies and different
sizes (form 2 processors until 25000 processors). W
demonstrate how our techniques can be successfully us
in this big and heterogeneous systems.
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Ing systems where jobs are submitted. The scheduling
olicies are centralized. In the ApplLes project [2][1]
3erman et al. introduced the concept of application-

centric scheduling, where everything about the system

is evaluated in terms of its impact on the application.
The rest of the paper is organized as follows: sectiorEach application developer schedules his/her application

2 presents the related work; next the XtreemOS archiso as to optimize his/her own performance criteria with-

tecture is explained; section 4 describes how the ISISeut regard to the performance goals of other applications

Dispatcher algorithm can be included in the architecturewhich share the system. The goal is to promote the per-

and 5 describes how it has been modeled in the Alvidformance of an individual application rather than to opti-

simulator; next we present the experiments that we demize the use of system resources or to optimize the per-
signed for evaluated the presented techniques; and finallfigrmance of a stream of jobs.

sections 7 and 8 present the evaluation and conclusions. In [10] and [11] we presented the non-centralized job



oriented scheduling policy implemented by the 1SIS-model can provide accurate job runtime predictions and
Dispatcher. It is a scheduling entity that is assigned tchow itis able to learn and improve during the life cycle of

one, and only one, job. As a result, when a user wants tthe global system. Thus, each time more historical infor-
submit a job, a new dispatcher is instantiated. This newmation is available, the prediction service is able to make
dispatcher is responsible for submitting the job to themore accurate predictions with more sophisticated inter-
computational resource that best satisfies the job requireral structures. In the evaluation presented in this paper
ments, and which maximizes its response time or othewe present we have used the same prediction system.

job metrics. The ISIS-Dispatcher is designed for deploy-

. The problem of predicting how long a given job will
ment in large systems, for example, groups of HPC Re- _. .
X ”» ait in the queue of a system has been explored by other
search Centers or groups of universities. The core o

the ISIS-Dispatcher algorithm is based on task seIectiorﬁes’mr.che.rS n s<_evera| papers [6][21][22]. A relevan'_[
- study in this area is the prediction work presented by Lui
policies. In the referenced paper we demonstrated how .
. ! g in [16], where the use of the K-Nearest-Neighbor algo-
the new task selection policy (Less-WaitTime) based on. : : o
oo L : : rithm is used to predict queue wait times. What we pro-

the wait time prediction achieved higher performance

than previously proposed policies. The main advantag(gOsed in [10] was to use wait time predictions based on

;P ; : Scheduler reservation tables. The reservation is used by
of the new policy is that it takes into account the capac- . . . .
. . oo local scheduling policies to schedule jobs and to decide
ity of the available resources and scheduling informa-

tion while the others do not (i.e: Less-WorkLeft, Less- where and when the jobs will start. Thus, this predic-

Queued-Jobs etc. [19][14]). In [11] paper we proposedﬁon mechanism takes into account the current scheduling

the use of prediction techniques in the ISIS-DiSpatcherogfii?/r?;’e;he status of the resources, and the scheduling

architecture as an alternative to the user estimates which
we initially proposed. We described a new evolutive
prediction model based on classification trees and dis-
cretization techniques designed for these distributed en-
vironments. We introduced the modelling of the eco- .
nomic cost of using different computational resources.3 The XtreemOS Proj ect
Furthermore, we proposed two new task assignment poli-

cies which use predicted job run and wait time and Whosel-he emergence of Grids enables the sharing of a wide

or!ect:)tlve IS t(t)' optlrgzztahslowdown and the economic Ctosgange of resources to solve large-scale computational and
o Job execution. ~Urth€rmore, We propose a variant Ol jntensive problems in science, engineering and com-
Less-WaitTime which uses predicted runtime ratherthar].nerce While much has been done to build Grid mid-
user estimates. dleware on top of existing operating systems, little has

been done to extend the underlying operating systems to
2.1 Datamining and prediction techniques enablee_an(_j facilitate Griq computing, for gxample by

embedding important functionalities directly into the op-
As will be described later, the prediction system provideserating system kernel.

the dispatcher with estimates which allow it to make The XtreemOS [17] (henceforth referenced as XOS)

more intelligent scheduling decisions. In [11] we de- . . ; JN : .
scribed a new evolutive prediction model based on clasP roject aims at investigating and proposing new services

o ; R . . that should be added to current operating systems to build
sification trees and discretization techniques designed f L . :
(1arge Grid infrastructure in a simple way. XtreemOQOS tar-

these distributed environments. The prediction mode : .
: . . ets the Linux well-accepted open source operating sys-
that we used in our experiments was developed using th o S . .
) em extending it to Grid with native support for virtual
Weka [15] framework. Its goal was to predict the run- T : .
organizations. One of the most important challenges in

t|me_of a submitted job by using thg static mformqtlon_XtreemOS is the identification of the basic functionali-
provided by the user at submission time, and the histori-

X . ) X - ; ties which are to be embedded in the Linux kernel.
cal information regarding the execution of finished jobs.
The main idea is to classify job runtime accordingto aset A set of operating system services, extending those
of runtime intervals that have been defined based on higound in the standard Linux distribution, will provide
torical information. Each of these intervals has an assokinux users with all the Grid capabilities associated with
ciated runtime prediction. Thus, when a job is classifiedcurrent Grid middleware, but fully integrated into the OS.
in a given interval, the predictor returns the runtime asso-The underlying Linux OS will be extended as needed to
ciated with this interval. In the paper we described howsupport virtual organizations spanning across many ma-
the model is built during a simulation and we provided chines and to supply appropriate interfaces to Grid OS
its evaluation. We shown how the described predictionservices.



3.1 The XtreemOS Scheduling Architec- In the current architecture (Figure 2), there are two
ture components that are used by the AEM. Given a job de-
scription, theADS component provides to th&heduler
The Application Execution Management (AEM) [23] is |ists of K components that satisfy such requirements and
the component of the XOS responsible of job and rewhere the job can be submitted. TResourceManager
source management. It is mainly divided into two parts:is the responsible to provide information to the other
the user or client side and the server or system side. Thegomponents concerning the host in which they are run-
user side basically offers the API to access the AEM Serning_ Thus, tthChedu|er, contacts to this component
vices. The user/client side includes the implementationp gather the information about the resources that can be
of the command line and third party libraries such asysed by the job.
SAGA to be built on top of the Basic XtreemOS API.  Asits described in the figure 2, when a job (henceforth
This layer mainly pre-process arguments, calls the sysjoB) with a set of requirements (henceforth REQS ) and
tem side and post-process results. characteristics (henceforth CHARS) is submitted to the
The system side is mainly composed of the XOSDXOS system, the following steps are carried out:
(XtreemOS Daemons) and some distributed services
such as the JobDirectory and the jResMatching (for more 1. AjScheduler is created for schedule the job submis-
information see [23]). Each node (also known as com-  sion. (1)
putational resource) of the system has its own XOSD.
It contains a subset of the total amount of information
about jobs actives in the VO (concerning execution man-
agement). Each XOSD manages information about jobs
submitted in the node, running in the node, and about the
node itself (one node is a resource). The main services it

provides are: 3. If the reference is not null, th&cheduler contacts
to the theResourceManager and submits the job.

2. ThejScheduler contacts to theédADS and requires a
resource that satisfy the job requirements and char-
acteristics. TheADS returns the reference tee-
sourceManager that manages the resource that it
has selected. (2)

e jController holds the job information and its three
main goals are first, to ensure that the scheduling Something important to is that the ADS abstracts to
agreement between the job and the resources is athe jScheduler about the complexity of the architecture
complished, second, to validate the job is executinghat is behind him. It is an specialized component that
as expected, and third, to act as a gateway for thénas been designed for efficiently provide information
job. The jController holds most of the information about parts of huge systems (potentially composed by
associated to the job and it is the only service thatmillions of resources) [5].

has a global vision of it. It is the service that pro-
(=)

e jScheduler schedules one job. The jScheduler re-
ceives a pre-selection of resources from the jRes-
Matching (resource matching global service used to
store and gather resource information) based on job
resource requirements and in a second step it per-
forms a negotiation with pre-selected resources in ssishyitg Hajeb bt
order to decide the final allocation. The jScheduler
service is stateless and from one job scheduling to a m
next one no status is stored. -

Resource Resource N

vides self-management to XtreemOS jobs.
JobScheduler

ResourceManager

Resource 1

®
-

) Submision

ResourceManager

e jMonitor collects information from all the processes
of the job and adds them in a job basis. One of the
goals of the jMonitor is to provide a monitoring ser-
vice as powerful and flexible as possible, allowing
advanced versions of XtreemOS to add new metrics ] ) ] ]
without changing either the API or the system ar-4 Including Self-Scheduling techniques in
chitecture. XreemOS Scheduling Architecture

Figure 2: The current XtreemQOS Architecture

e jExecMng is a distributed service that implements To include the ISIS techniques in the XtreemOS infras-
methods for managing the execution of the job. tructure very few changes have to be considered. As can



be observed in the Figure 3 there is only one new elespace of search in which the dispatcher is able to retrieve
ment that could be considered in the submission systemnformation is higher. Thus, the quality of the scheduling
the prediction system. This component, given the charis expected to be higher. However, usigvith high val-
acterization of the submitted job and a given resource ofies implies problems of scalability and performance. In
the system, it has to estimate the runtime that this job ighe evaluation section we provide and study that shows
expected to experiment in such resource. the impact of this value in the scheduling.

Similar as has been doing until the moment, the sub-

Resource 1

(3) For each resource
from the step 2

mission to the system is done using {Manager. When

the user wants to submit a job (henceforth JOB) with a et
set of requirements (henceforth REQS ) and characteris- S
tics (henceforth CHARS) the JobManager will still cre-
ate thejScheduler that will decide where the job has to

ResourceManager

(3.1) Predict Runtime of
the job in fthe resource

LN

be submitted. However, in this extension the user will be - %) Estinate metc %

able to specify which job metric (henceforth METRIC) E) @) = ,g, %,7777&{?5777 ?E

has to be optimized in during the scheduling process (the submison | £ 8L
available metrics are described in the last section of this >

document). In the case that no metric is specified a de- B gt b

req(irements

fault metric will be used. ThgScheduler will follow the

next algorithm: @

1. The jScheduler contacts to the appropriate
ADS instance and it request foK resources
{resourcel, ..,resourceK} that satisfy the job
REQS and CHARS.

ResourceManager

&)

Resource N

Figure 3: Including the 1SIS-Dispatcher in the XreemOS
Architecture

2. For each resource #resourcel, .., resourceK } the
jScheduler:

(a) It will contact to the prediction system and © TheAlvio Simulator

will require theEstimatedRuntime for the JOB i i
in the resource. ThgScheduler will provide All our experiments were conducted using the C++

both job requirements and job characteristics.eyem'driven Alvio simulat_or. '_I'he simL_llator models the
(This runtime estimation can be also consid-d'_ﬁerem components which interact in _Iocgl _and _dls-
ered like local resource specific information. tributed grchnectures. .Conceptually_, it is divided |nt.o
Itis runtime in a specific resource). thrge main par?s: thg simulator engine, thg schedqlmg
e X polices model (including the resource selection policies:
(b) Iflocal resource ;peqﬁc !nformgt|on, such as First-Fit, First-Continuous-Fit and LessConsume poli-
the estlmatedlwalt time, is req.UIred. for com- cies [13]), and the computational resource model [12].
putg t.he metrl'c METRIC t'hat is being to be A simulation allows us to simulate a given policy with
opt|m|zgd, thejScheduler will contact to the given architecture. Currently, three different policies
appropriate Resource Ma_mager that Manageyave been modeled: the First-Come-First-Served policy,
the given resource and. will gather such .|nfor- the Backfilling policy, and finally, the ISIS-Dispatcher
mation. For some metrics, tl]\ﬁcheduler.wnl scheduling policy and the RUA-Backfilling. For back-
have to provide a set of data. (described be'fiIIing policies, the different properties of the wait queue

|°W)_- _ and backfilling queue are modeled (SJF, LXWF and
(c) It will compute the METRICresource using FCFS) and different numbers of reservations can also be
all the collected information. specified.

The main simulation component is the simulator en-
gine, which manages all the simulation events and in-
stantiates all the events of the simulation. In this model,
when aJOB_ARRIVAL is triggered, a neywScheduler en-
tity is created for the job. First, it discovers the differen
local systems that are available to it using &ieS. In

One of the objectives of this paper is to evaluate thethis new version of the system, tigheduler decides
impact of the valu& used in the steft of the dispatch-  which center to submit the job by gathering the schedul-
ing process. Obviously, as high€rvalues are used, the ing information for the local resource from the different

3. It will select the resource that optimizes the MET-
RIC. This optimization function is potentially dif-
ferent for each of the available metrics. Usually, it
will be the minimum function (i.e: for selecting the
center with least estimated wait time).



ResourceManagers and the runtime estimations from the
prediction system. This last component includes a his-
torical database containing all the information about the
performance variables of jobs which have finished in the
system, and a set of predictors that estimate the job per-
formance variables using different techniques (i.e: sta-
tistical techniques or dataminig techniques). Once the
jScheduler has chosen where to submit the job it contacts
the scheduling component which manage the resource,
and submits the job. At this point, the job becomes
scheduled athe local scenario. As we have already
outlined in our previous works, this component manages
and allocates jobs based on the reservation table which
models how the computational resources are used (pro-
cessors, memory etc.). Once the job has been executed,
the scheduling component provides information regard-
ing job execution to thgScheduler which is managing its
execution. The dispatcher contacts the prediction service
and provides feedback about the job execution. The pre-
diction service updates its historical database and may
update the prediction models that it is using.

e The Less-WaitTime-pred (LWT-pred) policy mini-
mizes wait time for the job using the predicted run-
time provided by the prediction system. Given a
static description of a job, including the runtime
prediction, the local resource provides the estimated
wait time for the job based on the current resource
state. As in [10], the prediction mechanism uses
a reservation table which simulates the possible
scheduling outcome, taking into account all the run-
ning and queued jobs at each point of time (see be-
low).

The Less-SlowDown-pred (LSLD-pred) policy
minimizes slowdown for the job. Given the static
description of the job, the dispatcher estimates the
slowdown of the job in a given resource center. To
do this, it asks the prediction system for the job run-
time prediction and then asks the local resource for
an estimate of job wait time in this resource.

In [10] we evaluated different task assignment poli-

cies which other authors proposed in the literature and

For the evalu.ations presente.d in this paper, digpatcheihe Less-WaitTime policy (LWT). We stated how the
behaves as thgScheduler and it knows the available e of prediction techniques for waiting time used in
scheduling resources that are available in the system be ey Less-WaitTime policy can substantially improve
contacting to theADS This new component allows the e gyerall performance with regard to other policies. In
dispatcher to dynamically gather the information about{1 1] we proposed the two policies used in this evaluation.
the resources that are available at a given point of timeyhey shown how the runtime prediction can also provide
In the simulator configuration we can specify the amoumgood results rather than using the user estimates.

of resources that thgscheduler requires to theéADS to
perform the scheduling.

In the presented model, when a job is submitted t
the system, it is assigned randomly to one of Execu-

6.2 Workloads

For the evaluations presented in this paper we have used

tionManager. This manager instantiates the correspond-; set of workloads that we consider representative of the
ing jScheduler for the job. TheADS component is in-  cyrrent HPC infrastructures and that are evaluated. Note
stantiated at the beginning of the simulation. When thqhey go from small cluster composed by two processors
jScheduler ask forK resources that satisfies the job re- yntjl jarge and power computational resources with 9120
quirements, the ADS selects tHerequested centers Us- processors. More information about their properties and
ing a random variable that follows a normal distribution characteristics can be found in the workload archive of
Centerig U[0,n] (wheren is the number of known centers pror Feitelson [8][3]. The workloads used are:
for the ADS). 1. The NASA Ames iPSC/860 log.
2. The Los Alamos National Lab (LANL-CM5) log.
3. The San-Diego Supercomputer Center Paragon

(SDSC-Par).

. . . 4. The Cornell Theory Center (CTC) SP2 log.

In this section we present the metrics, the workloads used 5. The Lawrence Livermore National Lab (LLNL).
in the simulations and the scenarios that were designed 6. The Swedish Royal Institute of Technology (KTH)
to evaluate the proposal. IBM SP2 log.
The San Diego Supercomputer Center (SDSC-SP2)
SP2 log.
The LANL Origin 2000 Cluster (Nirvana) log.
The OSC Linux Cluster log (OSC).
The San Diego Supercomputer Center Blue Horizon
log (SDSC-Blue).
11. The HPC2N log.

6 Experiments

7.
6.1 Thetask asignament policies g
As we have already introduced, the metrics that are used 9.
in the core of the ISIS-Dispatcher algorithm are based10.
on task selection policies. In this paper we evaluate two
different task assignment policies:



12. The DAS2 5-Cluster Grid Logs. 6.3.2 The XtreemOS Architecture

13. The San Diego Supercomputer Center DataStar lo
(SDSC-DataStar).

14. The LPC Log.

15. The LCG Grid log.

16. The SHARCNET log .

17. The LLNL Atlas log.

18. The LLNL Thunder Iog._ _ e The task assignment policies: The Less-WaitTime-
The trac<=T that was us<_ed in the evaluation was gener- pred (LWT-pred) and Less-SlowDown-pred

ated by fusing the first eight months of each trace. We (LSLD-pred).

chose these workloads because they contained jobs with

different levels of parallelism and with run times thatvar- e The number of resources that are requested by the

ied substantially. jScheduler to the ADS for a given job. In each ex-
periment we have evaluated the effect of asking to
the ADSK times the number jobs of requested pro-

6.3 The Scenarios cessors. We have evaluated all the values included
in the intervalK € [1,55].

ﬁw this paper we have evaluated the described system us-
ing the ISIS-Techniques in thiScheduler. As we have
already introduced, for this paper we have also modeled
the usage of théADS. The different scenarios that we
have evaluated are:

6.3.1 Thelocal system

We have already emphasized that the goal of this7 Evaluation

work was to evaluate the viability of using the ISIS-
Dispatching techniques in large HPC infrastructures. To"
do this, we have used more than 17 traces collected fronraple 2 shows the performance that each of the centers
many HPC and Grid architectures (introduced in the prehas shown evaluating its workload with the properties
vious subsection). Furthermore, we have defined a posyresented in the table 1. The last row presents the average
sible large multi-syte HPC System composed by all theyalues considering all the centers. It shows the average
different resources that are related to the traces. The agnd 94" percentile for the slowdown and the wait time.
chitecture that we have evaluated is presentEd inthe tabws can be observed, the performance of the different sys-
1. The system is composed by 200 different computingtems radically differ. The performance of the scheduling
elements and it has more than 40.000 processors. Eagfplicies and CPU factors used in each experiment has a
of the resources in the table has associated two differerfirect impact in the performance values presented in the
characteristics: table.
The two centers that have worst performance are the
e The Job Scheduling Policy that is used in the localLANL-CMS, DAS2-fs4 and theHPC2N. They show slow-
system. It can be Shortest-Job-Backfilled-First [24]downs from 221 until 1364. The main reason is that they
(SJBF), EASY Backfilling [20], LXWF Backfiling ~use the policy FCSC. On the other hand, D&S2-0,
[4], Shortest Job First (SJF) and First-Come-First-LPC and theSDSC-SP2 shows the best performance, in
Served (FCFS). terms of slowdown and wait time. These last configura-
tions are using the SJBF policy which has been demon-
strated in the literature that provides a very good perfor-
mance result.
There is also a clear impact of the CPU factor to

1 Theoriginal scenarios

e The CPU Factor (third column) is used to model
the computational power of each the computational

r_esource_s: Wh_en the Jolx_f_wtljth ohrlgg\';l\;Frun- the performance of the systems. Thereby, Then-
1sed 1y e e t submitted to he resourcete: HPC2N andKTH-S2 show bad performance val-
o the runtime of the job in the center becomes o> Contrary, (nBASTS0, DAS1S3 andSDSC-Par show
good performance values. Also, these lasts onces are us-
O {RunTimert} = O {Original RunTime,rt} * CPU Factor. ing scheduling policies that achieve good performance
and they also have the best CPU factors.

The scenario defined for this evaluation shows a het- 1 all the cases, the performance obtained when reduc-
erogeneous and large multi-site HPC system. Note, thahg the computational power and the policy is not sur-
the resources are are really different in terms of procesprising. For instance, using FCSC or reducing by four
sors computational power (CPU Factors from 1 until 8),the computational power of a given center significantly
number of processors (from 2 until 25000) and schedulincreases its slowdown and wait time. Thereby, The ca-
ing policy (from the FCFS until SIBF). pacity of the resource of execute the same workload was



Center CPUs Fact. | Policy Metric: Wait time Slowdown
NASA Ames | 128 4 SJIBF Center Avg 95 Avg 95h
LANL-CM5 1024 1 FCFS CTC-SP2 | 5249 29586 | 7,76 | 39,01

SDSC Paragon 416 1 EASY LCG 434,12 | 4320 4,3 23,32
CTCIBM SP2 | 512 2 EASY DAS2-fsO | 22,68 135 1,11 | 1,69
KTH 100 4 EASY DAS2-fs1 | 5576 43414 | 11,71 21,18
SDSC SP2 | 128 4 LXWF DAS2-fs2 | 29594 | 99109 | 6,33 | 14,44
Nirvana 2048 4 EASY DAS2-fs3 | 4,52 100 1,03 | 3,23
0OsC 178 4 SJBF DAS2-fs4 | 39053 | 192140| 221 | 934,33
SDSC-Blue | 1024 2 FCFS HPC2N 23980 | 87607 | 72,05| 299,5

HPC2N 240 4 EASY KTH-SP2 | 8864 54222 | 74,46 | 571,5

DAS-fsO 144 4 EASY LANL-CM5 | 126565 | 308231| 1364 | 4061

DAS-fs1 64 1 SJF LPC 133 1323 1,23 | 3,42

DAS-fs2 64 5 SJBF Atlas 1993 14217 | 3,18 | 12,97

DAS-fs3 64 1 SJBF Thunder | 18891 | 47758 | 138 | 366,8
DAS-fs4 64 5 FCFS BLUE 12383 | 27644 | 68,80 | 164,2
SDSC-DS | 184 5 Par 453,12 | 12000 | 7,32 | 18,42
LPC 70x 2 8 FCFS oscC 1233,32| 25433 | 5,443 | 24,43
LGC 100x 250| 5 EASY SDSC-SP2| 116,12 | 1233 1,45 | 4,22
6 x128 5 SJF NASA 232,45 | 2133 2,43 | 10,43
Sharnet 1x1068 | 5 SJF Sharnet | 649 4432 43,6 | 749
1x1536 | 5 SJF All 18198 | 29345 | 135,5| 653
1x3072 | 5 SJF
1x384 5 SJF Table 2: Centers Performance
Atlas 1152 3 FCFS
Thunder 1024 8 EASY
CM5 1152 3 FCFS

quantitative better results than the other policy. For in-
Table 1: Centers Configuration stance, fork = 10 the LWT-Pred presents an improve-
ment of 3 times, while the LSLD-Pred shows an im-
provement of 10 times. The last values kfshows
how requesting for 55 times more the number of re-
reduced four times. Thus, the original scenario cannotjuested resources for the job the dispatcher is able to
cope with the same job stream. The main concern to useake a qualitative improvement respect the orignal sce-
these configurations was to evaluate later this configuranario. Thereby, foK = 55 the LWT-Pred improves the

tion in the distributed scenario. slowdown 26 times and the LBSLD-Pred improves the
slowdown for 37 times. Note, that requesting 55 times
72 The XtreemOS Architecture the job requested resources does not imply that the job

will use or reserve all of them. It only means that the

Figures 4 and 5 present the improvement of both averjScheduler will carry out the 1SIS-Algorithm to this set of
age wait time and bounded slowdown against the origresources and will select the most appropriate one. This
inal scenarios. In the X-Axes the graphic shows the results shows how using the second assignment policy
value that has been used in the experiment when carrythe quality of the scheduling, based on the BSDL metric,
ing out the dispatching algorithm (see section 4). Forhas a qualitative improvement fér> 4. On the other
instanceK = 2 means that the dispatcher has requestethand, the LWT-Pred shows the similar improvements for
to the ADS2 resources that satisfy the job requirements.k > 13.
The Y-Axes present the improvement of the presented Similar to the BSLD, the wait time improves the per-
variable respect the original scenario. In each figure wéormance of the original scenario fédr= 2 using the
present the improvement of a given metric for the twoLWT-Pred assignment policy and fér= 3 using the
task assignment policies presented in the subsection 6.1L.SLD-Pred. However, this metric shows different pat-

The bounded slowdown (Figure 4) starts improving re-tern that the once presented by the bounded slowdown.
spected the original scenario fkr= 3 using the LWT-  For lower K values k € [1—8]) the first LWT-Pred
Pred assignment policy arkd= 2 using the LSLD-Pred shows substantially better wait times than the LSDL-
assignment policy. From thisthe second policy shows Pred. From this point the LSLD-Pred shows better wait
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Figure 4: Improvement of BSLD against the number of Figure 5: Improvement of Waittime against the number
requested resources of requested resources

times. However, for the lak values evaluated in this bounded slowdown and the wait time obtained in the
work both assignment policies start converging with sim-original system are improved by one order of magnitude
ilar values. usingk > 9. Moreover, using & = [2,4] both metrics are
The evaluations results presented in this section wilimproved up to the 50% respected the original scenarios.
be used in the next implementations of {Beheduler to  We have stated how the performance obtained with this
decide whichK values should be used when dispatchingapproach depends on the amount of resource informa-
the submitted job. Based on the experiments, we cation available. Furthermore, we have identified that the
state that lower values are acceptable if it is required. Fovalue ofk to be used should be defined depending on the
example when the system is really loaded, when theramount of resources that the job requires and the metric
is an small time for carry out the scheduling (i.e: realthat the user requests to optimize.
time scheduling) or when the job request a high number
of processors. In this last situation (i.e: the job reques
2048 processors) thé&cheduler should not request for tg Acknowedgements
k = 55 resources. On the other hand we have stated howy, . .
this value has to be selected depending also in the metr;glh's paper has been supported by the Spanish
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