XtreemO§' > BB

Information Society

Enabling Linux T s
for the Grid ; \A./ Technologies

Project no. IST-033576

XtreemQOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Design and Implementation of Node-level VO Support
D2.1.2

Due date of deliverable: November 30", 2007
Actual submission date: December 18,2007

Start date of project: June 1% 2006

Type: Deliverable
WP number: WP2.1
Task number: T2.1.3

Responsible institution: ICT

Editor & and editor’s address: Haiyan Yu
Institute of Computing Technology

No.6 Ke Xue Yuan Nan Lu

100080 Beijing

China

Version 0.11 / Last edited by ICT Team / Nov 28", 2007

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU | Public vV

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services)

Revision history:

Version Date Authors Institution Section affected, comments
0.1 10/03/07 | ICT team ICT Initial draft
0.2 20/03/07 | ICT team ICT Architecture
0.3 26/03/07 ICT team ICT Scenarios, overall modification
0.4 03/04/07 TID Team TID Section on NSSWITCH, some comments added
0.5 10/04/07 | An Qin ICT Architecture and Implementation revising, added PAM
module architecture, authentication mechanism, and
some comments
0.6 01/11/07 An Qin ICT Rewrite chapters of PAM, Interface, Implementation,
add chapters of AMS and Applications
0.7 05/11/07 | Haiyan Yu ICT Major update of main sections for improved organiza-
tion of content
0.8 09/11/07 | Haiyan Yu ICT Overall modification
0.9 12/11/07 | Luis Pablo Prieto TID Proofreading and small modifications throughout the
document
0.10 20/11/07 | Luis Pablo Prieto TID Fixed incoherent part in NSS section
0.11 20/11/07 | Yvon Jégou INRIA Proofreading and small typos
0.12 28/11/07 | Haiyan Yu ICT Incorporate internal reviewers’ comments
Reviewers:

Guillaume Pierre (VUA), Philip Robinson(SAP)

Tasks related to this deliverable:

Task No.

Task description

Partners involved®

T2.1.3

Design and implementation of basic version of node-level VO
support mechanisms

ICT*, INRIA, TID, STFC, CNR, SAP

°This task list may not be equivalent to the list of partners contributing as authors to the deliverable

*Task leader

D2.1.2

Contents

1

2

7

Introduction

Overall Design

2.1 Native VO Support — Where to Start 7
2.2 User Mapping from VOs to Local OS
2.3 User Authentication
2.4 Naming Conversion
2.5 Access Control and Logging
2.6 An Architectural View

XtreemOS PAM Extension

3.1 Overview of the PAM approach.

3.2 Developing the XtreemOS PAM Module

33 HowlItWorks

XtreemOS NSS Extension

4.1 Overview of the NSS approach

4.2 Developing the XtreemOS NSS Module

43 HowltWorks
44 OpenQuestions

Account Mapping Service

5.1 Overview
5.2 User Mapping Management
5.3 Policy Management and Enforcement

Interfaces

6.1 Interfacesfor VOUsers
6.2 Interfaces for Node Administrators
6.3 Interfaces for Developers

Conclusion

Bibliography

1/26

IST-033576

14

......... 14
......... 14
......... 15
......... 16

17

......... 17
......... 18
......... 18

20

......... 20
......... 21
......... 22

24

25

XtreemOS—Integrated Project

IST-033576 D2.1.2

Executive Summary

This document describes the design and implementation of node-level VO sup-
port mechanisms in Linux-XOS, an XtreemOS flavor for stand-alone PC nodes.
The architecture design is presented firstly to give an overview of both internal
working of components for node-level VO support and their interactions with
high-level XtreemOS services. Further detailed design and implementation strate-
gies for each component are discussed subsequently. Lastly, external interfaces to
exploit VO support functionalities are given according to different targeted user
roles, including normal VO users, administrators and developers.

The main objective of node-level VO support is to provide necessary local
user and resource management extensions to enable secure and effective sharing
of a PC node among multiple VOs. The key issues to be addressed are: 1) Linux
system should be able to recognize and process VO user identities and additional
attributes. 2) Multiple VO users’ access of a node must be differentiated and iso-
lated. 3) VO users’ consumption of resources must obey VO-level and node-level
policies of access control and usage constraints. Following the design principles
presented in D2.1.1 [7], several standard Linux system services and utilities are
chosen as extension points for embedding VO support functionalities, avoiding
the patching of kernel code, while providing backward application compatibility.

In current Linux there are two important mechanisms related to user manage-
ment: Pluggable Authentication Module (PAM) and Name Service Switch (NSS).
PAM and NSS are both extensible frameworks that allow new user authentica-
tion methods or name resolving schemes to be plugged into Linux easily. VO
support functionalities are implemented as specific PAM and NSS extensions to-
gether with an auxiliary runtime service, the Account Mapping Service (AMS).
These extensions enable applications to process VO-level user information via
standard PAM and NSS APIs. VO users are dynamically mapped into local user
accounts during PAM conversations, and the mapping information can be fetched
via NSS APIs. AMS is designed to serve as the back-end for PAM and NSS
extensions, which does the actual mapping operations based on local configured
mapping rules. AMS also acts as the local policy engine for enforcing both VO-
level and node-level policies.

As a demonstration and proof-of-concept of our approach, OpenSSH, the
most widely used shell tool for Linux users, is modified to use newly designed
PAM/NSS extensions to allow VO users interactively access a remote XtreemOS
node.

XtreemOS—Integrated Project 2/26

D2.1.2 IST-033576

1 Introduction

In XtreemOS, a VO is a dynamic coupling of multiple Linux nodes for resource
sharing under specific polices. The policies specified by a VO, such as security,
resource usage limitations and scheduling priorities for shared resources, will be
finally checked and ensured at individual nodes by the local Operating System
(OS) instance. The main objective of node-level VO support is to provide neces-
sary local user and resource management extensions that facilitate the secure and
efficient sharing of a local node among multiple (possibly dynamic) VOs. Key
issues to be addressed are:

e The Linux system should be able to recognize and process VO user identi-
ties and additional attributes (e.g. VO user roles). The approach of mapping
from VO user identities to local Linux user identities needs to be scalable
enough to support the dynamic changing of VOs.

e Multiple VO users’ access of a node must be differentiated and isolated. It
is necessary to keep OS objects (e.g. processes, files, IPC resources) owned
by one VO user from interfering with others.

e VO users’ consumption of resources must obey VO-level and node-level
policies of access control and usage constraints. A node can provide re-
sources to multiple VOs at the same time but with different constraints.

Our design principles have already been presented in D2.1.1: i) Changes to
existing Linux codes should be minimized to provide backward compatibility,
especially changes of kernel code must be avoided in the first version, and ii)
The architecture should be designed to be flexible, not only making it possible
to adapt to a diversity of existing or new VO models, but also facilitating code
maintenance.

This document is organized as follows: Section 2 presents the overall architec-
ture design. Sections 3, 4 and 5 discuss the design and implementation strategies
of each component in more detail: the PAM module, the NSS module and AMS,
respectively. Finally, Section 6 details the external user interfaces and section 7
concludes with a roadmap of future works.

2 Overall Design

2.1 Native VO Support — Where to Start ?

As changes to the kernel were ruled out from the beginning, node-level VO sup-
port has to provide mapping from VO-level identities and policies, to their local

3/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

counterparts that can be fully recognized and processed by Linux. While this
mapping could be simply done by a shell script that designates a local user name
(or call useradd to create new one) against a VO user name like a Distinguished
Name (DN), the selected solution must meet the following requirements:

Security The mapping should be done in a secure way. The caller of the mapping
process needs to be a trusted party. VO user’s credentials must be validated
to ensure that the claimed VO user name and attributes are trustworthy. The
mapped local accounts must be bound with kernel-acknowledged security
attributes that conform to VO access control policies. The runtime mapping
information is to be securely maintained to resist various attacks. Processes
launched by the mapped account must be attached with its corresponding
VO user’s identity information, for the sake of non-repudiate tracking and
logging resource usage by the VO user.

Scalability The mapping mechanism should be scalable to support dynamic chang-
ing inside a VO. For example, if participants of a VO or policies of the VO
change during runtime, how does the mapping data (e.g. allocated local
accounts and associated local security configurations) in each participating
node of the VO reflect the change? It would be a nightmare for each node
administrator to manually maintain local system to ensure this kind of con-
sistency.

Flexibility How does the mapping support different types of VO user creden-
tials? Currently XtreemOS adopts a proxy certificate (i.e. XOS-Cert [8])
as the default user credential, but it would be helpful to introduce a flexible
framework that could adapt to other VO models. This could facilitate the
interoperability between XtreemOS and other Grid systems. Another ques-
tion is how are different mapping rules applied? For example, a VO user
could be mapped to an existing local account, or a random allocated ac-
count together with a virtual machine created on the fly. A unified flexible
framework is necessary in such case to make the adopted mapping scheme
independent of applications.

Compatibility How do applications exploit this mapping functionality? Do they
need to change their codes to fit with new APIs? For a legacy Linux appli-
cation (e.g. Apache, or proftp) to provide sharing service for a VO, it
is meaningful to let the application directly authenticate with VO users and
authorize based on VO policies. In such case it may not be a reasonable
choice to force them to modify their implementations to be VO-aware.

To answer the above questions in mind, we have identified several important exist-
ing Linux mechanisms for achieving VO support from the Operating System (OS)

XtreemOS—Integrated Project 4/26

D2.1.2 IST-033576

perspective. Pluggable Authentication Module (PAM) [12], Name Service Switch
(NSS) [6] and Kernel Key Retention Service (KKRS) [3] are important mecha-
nisms tightly related to user and process management in current Linux. PAM has
become a de-facto standard for authenticating users, which could be considered as
the first entry point of user’s access to the local system. User-related information
is processed by 1ibc APIs that could be intercepted by NSS modules. Custom
PAM and NSS modules can be deployed by system administrators without chang-
ing the kernel, and remain compatible with legacy applications. KKRS provides a
facility to store security data in a process’s control block in kernel and keep track-
ing of it across the process’s descendants. These mechanisms provide the required
features for developing new VO support extensions.

2.2 User Mapping from VOs to Local OS

Depending on the VO model, the credentials of VO users might be different (e.g
uid/pwd, long-term/short-term certificates, Shibboleth handles [9], or pass token
like Kerberos tickets [1]). And also how VO users will be mapped onto local ac-
counts varies in many ways (e.g. mapping to temporarily allocated accounts, to
an account pool, or to accounts even bundled with virtual machines). By imple-
menting node-level VO support functionalities as specific PAM/NSS modules, the
local system could accommodate different VO models in a *hot-plugged’ manner.
For example, for dealing with each kind of credential format or mapping scheme,
proper PAM/NSS modules could be choosen by the system administrator.

Scalable management of dynamic changing VOs is made possible in XtreemOS
by dynamic allocation of local UID/GID(s) on nodes, according to user name and
attribute information stored in VO users’ XOS-Certs. The number of local ac-
counts needed is bounded by the number of users simultaneously accessing the
node, regardless of the overall number of VOs and of users per VO. The allocated
local accounts and their bundled local policies will be revoked once the user’s
access terminates, either marked by user’s logging out or termination signals ex-
plicitly sent by job management service. The runtime updating of mappings and
policies could be possible provided that there is a back-end service tracking all
mapping relations and associated user processes.

2.3 User Authentication

PAM integrates multiple low-level authentication technologies (USB dongles, Ker-
beros, SQL-based authentication...) into a common high-level API. Applications
requiring authentication can be developed independently of the underlying au-
thentication mechanism. PAM technology, originally proposed by Sun, is now

5/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

widely used in Linux distributions, and it is exploited by XtreemOS to interface
with the Linux and Grid authentication services.

XtreemOS-specific PAM modules (pam_xos for short) can be developed to
apply sophisticated policies in three phases of service execution: authentication,
authorization and session management. With pam_ xos, VO users are authen-
ticated using their XOS-Cert credentials, and VO policies are enforced during
the authorization phase. Session management in pam_xos implements dynamic
management of local accounts, with automatic housekeeping of local files and
processes, credential management and name service updates. It is noteworthy that
a PAM module is actually a shared library called by applications, i.e. it coex-
ists with applications and does not keep persistent records in a separate space.
Therefore, a special auxiliary service, the Account Mapping Service (AMS), was
designed to serve as the back-end of PAM for runtime management of mappings.

2.4 Naming Conversion

NSS is a mechanism for intercepting queries to traditional Unix file-based infor-
mation databases (e.g. /etc/passwd, /etc/group), substituting them with
other databases, like NIS+, LDAP or (in our case) custom information systems.
NSSwitch has been included in the GNU C library (1ibc) used by Linux.

In XtreemOS, the NSSwitch module translates account-related information
according to the PAM-established mapping. The information is maintained in
databases accessible through the local AMS. By embedding account resolution
into an NSSwitch module, we remain compatible with legacy applications, and
we restrict access to grid user’s account information to authorized users within
the VO.

2.5 Access Control and Logging

Mapping VO users to local accounts allows a degree of isolation among VO users.
Undoubtly the activities of mapped local accounts must be stamped with their
corresponding VO users’ credentials. The KKRS allows caching of authentication
data related to a process within the kernel. Other kernel services, including file
systems, can access this information and delegate operations to authenticated user-
space applications.

During session initialization, the PAM stores the user’s XOS-Cert in the ker-
nel session keyring: this will be associated to all local processes generated from
the user request, and will be retrieved each time the VO user credentials need to
be used. PAM-aware OS services, and XtreemOS ones in particular, can transpar-
ently check VO user authorization, using the credentials from the session keyring.
Local service auditing and resource usage accounting are also possible. The audit

XtreemOS—Integrated Project 6/26

D2.1.2 IST-033576

log must contain references to user credentials and be securely provided to the
resource owner as well as the VO manager.

When the XtreemOS PAM module does a mapping between VO-level cre-
dentials and node-level UID/GIDs, it can add specific information in the kernel
keyrings. Fine grained access control and auditing on operating system objects
(e.g. processes, sockets) requires the support of the kernel, and can be provided,
for example, through LSM (Linux Security Modules). Fine grained access con-
trol is possible even when the application activity generates requests to external
services. This is the case for XtreemFS or NFSv4 filesystems, as pam_xos can
store secondary group lists, tickets, and file-related credentials in the user’s kernel
keyring.

2.6 An Architectural View

Figure 1 shows an architecture overview of node-level VO support. A VO user
would obtain an XOS-Cert from a VO manager (e.g. currently from the Credential
Distribution Authority[8]) and present it to the user application on a PAM-aware
resource node in the VO. XOS-Cert would be checked for validity by the PAM,
and stored in the KKRS, associated with the user process. Thus, this process and
all its children can show that certificate to local and remote services.

Once authentication is over, whenever a process requires user or group infor-
mation (using standard 1ibc calls), it will go through the NSS subsystem. The
NSS module will obtain the authorization information from the KKRS, and ask
the AMS for the requested information. The AMS will grant that information
depending on the authorization data, which is then returned to the process.

7/26 XtreemOS—Integrated Project

VO Management

9LSEE0-LSI

109[01g PRIRISIU[-SOWANY

97/8

>
2. XOS-Cert ’\O
User ‘ X-VOMS
4. authentication
success L
> User application <
7. user information
1. authentication
request
XtreemOS < .
PAM module 2. PAM configured |Ibpam 1. user information
(pam_xos . s0) to use XtreemOS request
NSS subsystem !
2. NSS configured |
) to use XtreemOS XtreemOS
libc NSS module
(libnss_xos.so)
L 3. cert request 5. mapping 6. mapping
Key - request information
> Retention
3. XOS-Cert stored T i .
in key retention service " Oservice Linux kernel V
Previous q
> steps Standard component Mappings
database
Authentication
— > phase D XtreemOS-specific component
Information Account Mapping Service
""""" > request (AMS)

Figure 1: An Architectural View of Node-level VO support

¢lrad

D2.1.2 IST-033576

3 XtreemOS PAM Extension

3.1 Overview of the PAM approach

PAM is designed to allow system developers to add customized authentication
mechanisms into applications without changing application source codes, pro-
vided that these applications are using PAM APIs for authentication, i.e., they are
PAM-aware. PAM is already supported in almost every Linux distribution (it is a
de-facto standard).

The core of PAM consists of a set of abstraction interfaces that cover full stages
(also called services in PAM) of a security checking procedure: authentication,
account management, password management and session management. These in-
terfaces are called by PAM-aware applications, while the actual implementation
of interfaces is done by PAM modules. For each application, the set of PAM mod-
ules to invoke is configured externally in a file, generally within /etc/pam.d/.
Multiple PAM modules can be chained together for a single purpose or service.

3.2 Developing the XtreemOS PAM Module

The task of dealing with VO user identities in a local node is mainly done by a
XtreemOS PAM module, namely pam xos.so. PAM interfaces called by ap-
plications (accordingly, implemented by PAM modules) are described as follows

e pam_ authenticate authenticates a user. Passing application-defined
data between a PAM module and the application could be done via the
pam_conv struct. In the XtreemOS case, user certificate data is passed
from applications to pam_xos . so by this way.

e pam_setcred alters the credentials of the user, after the user has been
authenticated but before a session has been established. Additional infor-
mation about the user can be provided here to a PAM-aware application.
In the XtreemOS case, VO user identity related information is stored into
keyring during this phase.

e pam_acct mgmt performs the task of determining whether the user is
permitted to gain access after the user has previously been authenticated. It
is another place to further check the validity of users with respect to other
information (e.g. whether the claimed account exists or whether the user
is authroized to switch to that account). This interface is important for
XtreemOS as the account mapping is done here.

9/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

e pam open session and pam close session are doing initializa-
tion and cleanup works for a session, respectively. A session is a period of
activities (e.g. from user logged in to logged out) after the user has been
authenticated and granted access. These two interfaces are useful to do
session-wide policy setup/cleanup and allocation/release of temporary re-
sources.

e pam_ chauthtok is used to (re-)set the authentication token of the user
(e.g. changing password).

Almost every PAM interface mentioned above is exploited by pam xos.so to
insert VO support functionality. Any PAM-aware application is able to verify and
process VO user information and attributes, provided that it is configured to use
pam_xos.so.

3.3 How It Works

Fig. 2 illustrates how the PAM module works with internal components as well as
high-level XtreemOS services.

amappedfile

—

NSS H /

Policy.conf

T 45
i ResM
Lo]
J B !!
L)
Pam_xo0s.s0 N I
\\
|Authenticalion|| Acct mgnt |/ \\\I
e : ._Y};;\.
i XtreemFS ! | Set creds ||Sessnon mgnt|< ------- «I— B
L | A n —

quota.conf

Key
retention
sevice

Figure 2: The XtreemOS PAM module

XtreemOS—Integrated Project 10/26

D2.1.2 IST-033576

User Authentication The main loop of a PAM-aware application starts with
the pam_authenticate interface provided by the PAM module, which is de-
signed to verify whether (proxy) certificates of VO users are issued by a trusted
CDA and check whether users are allowed to access the local node according to
the configured VO policy.

e Certificate verification following the standard of RFC3820 [10] is performed
by checking: i) basic certificate information (e.g. signature, validity period,
issuer’s name and subject name), ii) certificate extension (if the ProxyCert-
Info extension exists), and iii) certificate chain. The root of the chain must
be the certificate of a trusted CDA.

o After the verification of user certificate, the PAM module will look up access
control policies specified in a local file policy.conf. Currently, a very
coarse level of access control is supported. The policy specifies whether a
VO user (or a VO group, or a given role) is allowed to access the node.

If any of the above checking fails, the authentication process will terminate im-
mediately with a PAM_AUTH_ERR value returned to the application.

User Mapping To manage the runtime user mappings in a de-coupled way, the
Account Mapping Service (AMS) has been designed. AMS is a daemon service
which performs the actual user mapping actions and serves as the back-end for
the PAM module and the NSS module. After the authentication step, VO user
identity information together with attribute information (e.g. group or role of
the VO user) could be fetched from user certificate and the control logic goes to
another PAM interface pam_acct_mgmt. The PAM module then contacts AMS
via a socket connection by sending all fetched user information. AMS does the
mapping by creating local user accounts (and possibly groups) and responds to
the PAM module with a passwd struct that stores the information of mapped
accounts (e.g. uid/gid(s)). AMS also sets up the local policies when creating local
accounts. Hereafter the PAM module could do some enforcement works in its
logic (e.g. in pam_open_session).

Three configuration files are used by AMS: amappedfile (for account map-
ping rules), gmappedfile (for group mapping rules) and policy.conf (for
local access control and resource usage policies). Currently mapping to a dynam-
ically created account (the default rule) or a pre-allocated account is supported.
Preliminary support of resource usage policy enforcement is considered which
relies on the system call setrlimit () '.

'More fine-grained policy enforcement mechanisms are discussed in Section 5.3

11/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

AMS maintains runtime data of user mappings which could be queried by
NSS APIs. For the sake of security, the direct manipulation of data maintained
in AMS is not possible. The only service trusted by AMS is the PAM module
(pam_xos.so), which is able to modify mapping information. NSS and other
high-level PAM-aware applications can only fetch data from AMS (i.e. read-only
access).

Interactions with high-level XtreemOS services The PAM module stores user
credentials (i.e. XOS-Cert) into kernel key retention service (KKRS), which could
then be accessed by XtreemFS for performing access control on global files. Ac-
cording to the overall architecture of XtreemOS, VO users get their credentials
from security services and pass them to the job management services, namely the
Application Execution Management (AEM). There is a component in AEM, the
Resource Management Service (ResMng in Fig 2), deployed in each node for ne-
gotiating with the local OS. To process VO user information, ResMng is to be
implemented as a PAM-aware application.

Fig. 3 depicts a sequence chart of the collaboration between ResMng and
the PAM module. Firstly ResMng relays user credential to the PAM module.
Then the PAM module checks the validity of user credential in the authentica-
tion part. If the verification process is successfully done, the control goes to ac-
count management part, which contacts AMS for requesting a passwd struct
(i.e. to hold the information about local mapped user). AMS processes the re-
quest by performing the task of user/group mapping and setup local policies asso-
ciated with the mapped users/groups. After the mapping has been accomplished,
pam_setcred puts all related identity information (including XOS-Cred and
mapped uid/gid) into keyring. Lastly ResMng is able to call pam _open_ session
function to start the procedure of granting resource access. The mapped uid/gid
returned to ResMng could be used for launching jobs with local user identity (e.g.
by a setuid program or sudoers).

XtreemOS—Integrated Project 12/26

9T/cl

199[01g pAIRISAU[-SOUWANK

PAM module

| Pam_open_session |

| Pam_close_session | |

AMS

| | Key retention service |

Mapping to local
uid/gid, and setup
local policy

Clear uid/gid and
other maping
information

ResMng | | Pam_authenticate | | Pam_acct_mgnt | | Pam_setcreds |
certificate
Verify certificate DN,VO,ROLE N VOROLE N
Authentication and che?k local certificate
policy >
Setting <DN,VO,ROLE ,subgroup> to ANIS
Return struft passwd, including localfuid/gid, local name
Acct Mgnt <
local uid _| local uid, local name local name |
) L Lad Ll
PAM_ESTABLISH_CRED R
Set Creds '| I Install certificate to keyri
Session Mgnt Load policy
PAM_DELETE_CRED >
Set Creds < ‘I
< Clear keyring
Session Mgnt
clear policy

Figure 3: Integration of ResMng and the PAM module

o)
M
p—
\)

9LSEE0-LSI

IST-033576 D2.1.2

4 XtreemOS NSS Extension

4.1 Overview of the NSS approach

The Name Service Switch (NSS or NSSWITCH) was designed so that the be-
havior of several libc functions that need to retrieve information from databases
could be dynamically controlled and personalized without having to modify any
application’s source code.

When an application needs to obtain information about a user (for instance
its user name, home directory, default shell, etc.), the standard way to obtain this
information is calling the function getpwnam(username). This function is
not a system call but a libc function.

Traditionally, what getpwnam() does is open the file /etc/passwd and
look for the user’s username in this file. With NSS, this behavior can be changed
and this information can be retrieved from many other sources (such as the Net-
work Information Service (NIS), an LDAP directory, a SQL database, and so on).

The following are libc functions whose behavior can be controlled via NSS
and that will be of interest for XtreemOS:

struct passwd xgetpwnam(const char xname)
struct passwd xgetpwuid(uid_ t uid)

struct passwd xgetpwent(void)

struct group *getgrnam(const char xname)
struct group *getgrgid(gid t gid)

struct group xgetgrent(void)

These functions return information about users and groups. Users and groups
can be searched for according to their name (getpwnam() and getgrnam()),
their UID/GID (getpwuid () and getgrgid), or they can just be fetched from
the database one by one (getpwent () and getgrent()).

4.2 Developing the XtreemOS NSS Module

XtreemOS can use NSS to provide applications with coherent information related
to VO users. Whenever applications request information about VO user names
or groups, the request is handled by XtreemOS services and meaningful infor-
mation can be given to the user provided that he/she holds the right permissions.
In this way, legacy XtreemOS-unaware applications can be made VO-aware to
the maximum possible extent without the need to modify their source code. By
using NSS, system commands such as ‘1s -1’ or ‘who’ will show meaningful
information (e.g. the VO user ID instead of the numeric UID) without having to

XtreemOS—Integrated Project 14/26

D2.1.2 IST-033576

be recompiled. This is essential to give the user the impression of being using a
Grid-enabled operating system.

The behavior of NSS will be dependant on the VO-model and policy. Some
VO models will require NSS to return the user’s Distinguished Name(DN) as
username (or more user-friendly an email address), whereas other may require
NSS to return a meaningless user name in order to hide the user’s identity.

XtreemOS-aware applications will be able to access more advanced user in-
formation (such as the current user’s location, running jobs, etc.) via an extended
API such as SAGA.

4.3 How It Works

| getpwuid(uid) I

NSSWITCH

libnss_files.so
v

_nss_files_getpwuid_r(uid,...)

libnss_x0s.s0

false

}I _nss_xos_getpwuid_r(uid,...)

l uid

In passwd file?

get_from_passwd_file(uid) xos_query_local_uid(uid) P '[AMS
 Btrude passwd
<~ =
BDB
v v
Return struct passwd Return struct passwd

Figure 4: Proposed Flowchart of the NSS Module

Due to the concept of global (VO) users, a NSS module is needed by XtreemOS.

It will be necessary to implement (at least) the password and group databases
so that user name and group information about VO users can be retrieved from ap-
plications, by using functions such as getpwuid or getgrgid. The XtreemOS
NSS module will need to communicate with the local mapper service (the AMS),
a local daemon that will be in charge of storing and managing the mapping ta-
ble with all the VO users currently in the system and the UID/GIDs that they are
locally mapped to.

15/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

The NSS module must make use of XtreemOS services with the user’s creden-
tials (which will be stored in his/her keyrings) and be aware of XtreemOS security
mechanisms.

The flowchart in figure 4 shows the inner workings of NSS. When an applica-
tion running on behalf of a global (VO) user queries about a user or group infor-
mation using its name (via getpwnam() or getgrnam()) or its UID/GID (via
getpwuid() or getgrgid()), the call will be handled by one or more NSS
modules, as configured by the local administrator in /etc/nsswitch.conf:

$ vi /etc/nsswitch.conf
passwd: compat xos
group: compat xos

When NSS is configured as shown above, the call is first handled by the usual
compat NSS module, which looks for the information in the local /etc/passwd
and /etc/group files. If the user is found in these files, the information in
those files is returned, making legacy applications to work exactly as on an un-
modified Linux. But, if the user is not found in the local files (and thus, it is a VO
user not mapped to an existing account), the call is forwarded to the xos NSS mod-
ule, which will issue a request to the local system mapper (AMS), to obtain the
necessary information about the global user or the virtual organization. This in-
formation will be mapped to traditional UNIX structures (the struct passwd
or struct group structures) so that the applications can work in the same way
as ever, without changes to their source code.

The configuration shown above is the recommended behaviour of the NSS
subsystem in XtreemOS. It must be noted that the order of the modules (i.e.
compat and xos) is not important, in the case of mapping a global (VO) user to
a pre-existent local account. With the configuration above, the data returned by
NSS will be the local data as stored in /etc/passwd, while changing the order of the
modules will produce the VO information of the user in all mapping cases, even
if the global account is mapped to a local existing account. However, there can
be cases where this behaviour is desired by local administrators, and thus, it has
been left open for them to decide (although the recommended mode is configured
by default).

4.4 Open Questions

Complex format of usernames Some legacy applications may have issues with
usernames containing spaces, commas, and other characters. To handle this, we

XtreemOS—Integrated Project 16/26

D2.1.2 IST-033576

can implement different mappings from DNs to conventional Linux usernames
and let the VO-model or policy choose which mapping strategy best suits their
needs.

getpwent () function The getwpent () function is supposed to return in-
formation about all the users in the system one-by-one. It is possible to enumerate
all VO user information by contacting high-level VO management services, or at
least, the current active VO users maintained in AMS. Moreover this kind of ex-
haustive query must be limited (e.g. limit this function to return users in the same
VO and limit the requester to VO admin).

5 Account Mapping Service

5.1 Overview

The Account Mapping Service (AMS) plays the crucial roles of managing runtime
user mappings and acting as local policy engine for VO access on the node. It
is designed as a separate daemon service running with root privileges so as to
decouple the core VO support functionalities from specific PAM/NSS modules.
The benefits of introducing such a design are:

e The AMS service is a centralized point to ensure the consistency of local
mapping information. As PAM and NSS modules are all shared libraries
that processing data in memory space of their driving applications, it is
necessary to have a back-end service to securely maintain key mapping data
with persistence support (e.g. in a database).

e As AMS could be configured to start at system boot time, user mappings
and local policies handled by AMS could be dynamically changed at run-
time. This could facilitate the support for dynamically changing VOs in
terms of adding/removing resources or adjusting scheduling policies. AMS
itself could be refreshed with an updated configuration file (e.g. by send-
ing SIGHUP) even when any depending applications have already started
running.

e [t allows a graceful integration of VO support functionalities into LinuxSSI.
Only one unique mapping service is needed for nodes of the whole SSI
system, though PAM/NSS modules could be required to be deployed on
each node.

As a summary of aforementioned functionalities, AMS is responsible for the fol-
lowing tasks:

17/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

e map VO users to local ones. According to mapping rules defined by local
system administrator, AMS determines how to allocate local uid, gid(s) and
possibly home directory for a VO user.

e enforce local policies on resource access control and usage constraints.

e maintain the mapping information and local policies to ensure that they are
securely stored and consistent with VO users’ current status.

5.2 User Mapping Management

By default, a VO user is mapped to a dynamically created local account (and asso-
ciated local groups if needed) when a session starts. When the VO user terminates
the session (or the session is closed by a PAM-aware application), the temporary
account is deleted, and local configuration data associated with this account are
cleared. VO users could also be mapped to a pre-existing account.

The current syntax of a rule to specify how VO users are mapped onto local
users is as follows:

<vo-subject> <local-subject> <init-driver>

where vo-subject is an expression (e.g. regular expression or simpler glob
style string) to match VO identities (VO id, user id, groups and roles
carried in XOS-Cert), local-subject is the local account or group onto which
vo-subject is to be mapped, init-driver is an optional callout (e.g. a
script) that helps to set up the local mapped account/group. The local-subject
could be a wildcard character * which means that a random account/group will be
created for the mapping, or it could be an existing local account/group name. If
init-driver is specified, the local mapped account/group information will be
passed into it to perform additional actions (e.g. allocate a virtual machine slice
of the node to the mapped user).

5.3 Policy Management and Enforcement

AMS is an appropriate place to perform local policy management and enforce-
ment. To facilitate the secure and efficient sharing of nodes among VO users,
it is necessary to provide built-in support of policy enforcement of application-
independent OS-aware objects. These objects could be categorized into: CPU,
memory, files (including devices) and network.

XtreemOS—Integrated Project 18/26

D2.1.2 IST-033576

Access control policies Access control policies are mainly related to files (here
we only consider local files, while the access control of global files is handled
by XtreemFS). Besides file permission bits, it is natural to use Access Control
Lists (ACLs) to specify more fine-grained file access policies. Sockets can also
be considered as files. For example, a VO user could be granted with read, write
or listen permissions on a specific range of ports.

To perform the enforcement of access control policies on the node, VO users
must be mapped onto local Linux user accounts first. During the mapping process,
access control policies are populated into local security configurations such as file
permission bits and ACLs, which are bundled with the mapped accounts (and pos-
sible local groups) if necessary. For advanced fine-grained access control on OS
objects, security enhancement mechanisms like SELinux [13] could be leveraged.

The general syntax to describe an access control rule is as follows:

<subject> <object> <permissions>

where subject is a pattern for matching VO users (or groups, subgroups,
roles), object is a pattern for matching OS objects (e.g. files, directories) and
permissions are a composition of access rights (read / write / execute ...) that
subject could have over the object.

Resource usage policies Resource usage policies are mainly related to quotas,
such as CPU time limit, memory limit, disk quota and network bandwidth throt-
tling. Quotas may be absolute values or relative ones. For example, scientific
computing applications are more concerned about the absolute quota of cpu usage
(e.g. a job’s max running time is limited to 1000 cpu hours) whereas commercial
applications like web hosting ones put more focus on relative quota of cpu usage
(e.g. a virtual website can process incoming requests by taking less than 60% of
CPU load of the host machine).

The enforcement of resource usage policies could be partially done via the
system call setrlimit(). For the enforcement of relative quota on resource usage,
more advanced kernel support is required. Fortunately, new isolation and virtual-
ization mechanisms like process containers [5], KVM [2], OpenVZ [4], Xen [11]
are available for use, which would provide extensive support for system resource
partition. Currently which approach will be leveraged by XtreemOS has not been
decided yet.

Similar to an access control rule, the general syntax to describe a resource
usage rule is as follows:

<subject> <object> <quota>

19/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

where subject and object have the same meanings as above, quota
is an expression to specify the usage policy for subject-object pair in the
same line. Besides quota values, there could be other auxiliary information in the
quota expression, such as time frames when the rule is applied or not applied.

Application-specific policies It is necessary to allow local admins to express
application-specific policies about VO users, and integrate local application-specific
policy engines such as the privilege subsystem of a DBMS or scheduling compo-
nents of a batch job manager for policy enforcement.

Nowadays either open-source or commercial job manager software (e.g. PBS,
OAR, Condor, LSF, Maui, etc.) provide very flexible and effective scheduling
policy support for a cluster, though they adopt different proprietary languages to
express the policies. Moreover, applications like SAP Web Application Server use
their own set of security scheme for authentication and authorization. A coarse
but flexible way to link with these software and take advantage of their policy
support is scripting drivers. The syntax of an application-specific policy rule is as
follows:

<subject> <app-policy-driver> <arguments>

where subject has the same meaning as above, app-policy-driver
is the extern callout to establish the specific policy configurations required by
applications. Arguments are used to pass additional information that can only
be recognized by app-policy-driver. When the callout is launched, the
mapped local account information corresponding to subject will be passed into
it.

6 Interfaces

This section describes external user interfaces to exploit VO support function-
alities developed in WP2.1, in terms of command line tools, configuration files
and application programming interfaces (APIs). These interfaces are classified
according to targeted user roles: VO users, node administrators and developers.

6.1 Interfaces for VO Users

Generally speaking, low-level VO support functionalities are hidden from VO
users when accessing grid resources. Normally VO users should only contact
high-level services like Application Execution Management (AEM), which indi-
rectly incorporates node-level VO support mechanisms.

XtreemOS—Integrated Project 20/26

D2.1.2 IST-033576

One exception is the shell tool OpenSSH. OpenSSH is the most widely used
secure shell tool to remotely access Linux/Unix hosts and a straightforward data
moving tool (e.g. scp/sftp) among hosts. OpenSSH encrypts all traffic and
provides secure tunneling capabilities. Most MPI implementations nowadays rely
on ssh for remote startup of processes on nodes. It is natural to turn it to be
VO-aware, i.e., to allow VO users interactively access remote XtreemOS nodes,
provided that they are granted with appropriate rights.

As a demonstration and proof-of-concept of our approach, we modified OpenSSH
to use the newly designed PAM/NSS extensions to authenticate VO users, namely
XOS-OpenSSH. OpenSSH is a PAM-aware application that makes itself easily
configured to use pam_xos. Also, getpwnam and getgrnam functions are
called by OpenSSH to check if a user/group exists, which can be handled by
the XtreemOS NSS module. Currently, we still need to modify source codes of
OpenSSH due to the fact that user credentials need a special handling 2, though
there are few lines of code to be changed.

For VO users to use XOS-OpenSSH, the only thing to provide to xos-ssh
(the ssh client) is the credentials (XOS-Cert). Then, we are able to access any
nodes that participate in the same VO, and that are equipped with xos-sshd
(the ssh server). Also, remote command execution and third-party data transfer-
ring could be securely done within VOs. It is also possible to achieve “zero”
configuration for VO users (e.g. for XOS-OpenSSH users, there is no need to
input password or config traditional public-key pairs in both parties).

6.2 Interfaces for Node Administrators

There are several important configuration files that node administrators may be
concerned with (in the worst case, no configuration means no allowed access for
VOs). A conceptual list of them are as follows (detailed documentation is pro-
vided with the source code releases):

e For a PAM-aware application to use pam_xos, a configuration file needs
to be put into /etc/pam.d/.

e For an application to do naming resolve between VO user ids/attributes and
local uid/gid(s), /etc/nsswitch.conf needs to be modified to add the
XtreemOS NSS module.

e The node administrator needs to configure local policies for VO user access,
as discussed in Section 5.

2Currently proxy certificates are taken as user credentials, which need to be delegated from ssh
client to ssh server

21/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

— whether VO users are granted to access this node (by specifying map-
ping rules as well)

— what access rights VO users will have for a set of local resources

— what resource usage constraints to be put on VO users

There are command-line tools for node administrators to manage runtime user
mappings and change local policies for active VO users.

6.3 Interfaces for Developers

Writing a PAM-aware application to use pam_xos To use pam_ xos, the
standard rules for writing a PAM-aware application are applicable, as documented
in the Linux PAM page (http.://www.kernel.org/pub/linux/libs/pam/). To pass user
credential data from a application to the PAM module, PAM conversation func-
tions should be used. It is an application-defined callback to allow a direct com-
munication between PAM module and the PAM-aware application. In a parameter
of pam_start function with the type of struct pam conv, there is a field named
appdata_ ptr used to pass arbitrary data to the PAM module. A full example
(simulating VO-aware su) can be found in the source distribution.

Get the user mapping information with NSS APIs Standard 1ibc APIs,
getpws* and getgrx could be used to get mapping information between VO
users/groups to local uid/gid(s), when the local system is configured to use the
XtreemOS NSS module. A detailed documentation about NSS is available at
http:// www.gnu.org/software/libc/manual).

Manipulation of user mappings with AMS APIs AMS client APIs can be
used to perform the task of user mappings. Main related functions are:

e amsclient_usermapping Communicates with AMS server to accomplish a
whole mapping process:

— Input: VO user’s identity and attributes
— Output: Mapped user information in struct GPASSWD and GGROUPS,

where GPASSWD contains the dynamically allocated local user infor-
mation, and GGROUPS contains a list of local groups.
e amsclient_clearmapping To clear mapping data of a given VO user:

— Input: VO user’s identity or mapped local user identity

XtreemOS—Integrated Project 22/26

D2.1.2 IST-033576

— Output: none?

Fetching VO users’ security token from the keyring Once granted access to

the local node, VO user’s security token is stored in kernel keyring which can be
manipulated by KKRS APIs. The KKRS provides three new system calls to ma-

nipulate keys in user-space: add_key to create keys, request_key to search

aprocess keyring for a key, and keyct1 to perform various operations for manag-

ing keys. More information is available at http:// Ixr.linux.no/source/ Documentation/keys.txt.
The simplest way to fetch VO user information from the keyring is to use wrapped

APIs, such as:

e xos_KRS_fetch - to get stored security token from current process:

— Input: buffer to hold fetched data, a description key with the format of
x509uk xos_uid,in which uid is the current local user id.

— Output: the input buffer will be filled with VO user’s credential (a
proxy certificate)

Local policy management Local policies can be changed and made effective at
runtime. Currently this part of the interface is under development and subject to
change in the future.

A policy rule is defined in a multi-purposed rule struct, which is capable of
accommodating different types of policy rules: user mapping rule, access control
rule, resource usage rule and application specific policy rule:

struct rule t
{
rule type t type; /% rule type:
MA - Mapping
AC - Access Control
RU - Resource Usage
AP - Application Specific
*x/
subject t subject; /* subject applied by the rule */
object t object; /x object applied by the rule x*/
union
{
permission t permissions; /x for AC rule x/
quota_t quota; /* for RU rule =/

3The return value only indicates success or failure, with setting errno to the failure cause.

23/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

driver t ap_policy_driver; /+ for AP rule x/
driver t ma_init _driver; /% for MA rule =/
}
rule; /* the content of rule =/
/% indicate if the rule is disabled =/
bool valid;
/* indicate the period when the rule is applied =*/
time t time;

The main related interfaces to set and enforce policies are (still under devel-
opment):

e xos_policy_add Adds a new policy rule and puts it into effect:

— Input: a policy rule
— Output: a handle identifier.
e xos_policy_change Changes a policy rule to a new one and updates the
runtime management system to keep up with this change. This interface is

actually a composition of xos_policy_remove and xos_policy_add.

— Input: a handle identifier, a new policy rule

— Output: none

e xos_policy_remove Removes a policy rule and restores object status that
affected by the rule before.

— Input: a handle identifier.

— Output: none
Other interfaces include enumerating current active policies or temporarily
enabling/disabling a policy.
7 Conclusion
To provide native support for dynamically changing VOs in a secure, scalable and

flexible way, we have exploited several existing mechanisms to extend user and
resource management in Linux nodes to a VO scale. These mechanisms include

XtreemOS—Integrated Project 24/26

D2.1.2 IST-033576

PAM, NSS and KKRS, with which VO user identities and policies can be mapped
to local ones that are fully recognized by the Linux OS, in a quite transparent way
for applications.

Without operating system support, it is difficult to differentiate access con-
trolling and auditing among different VO users’ accessing the same node, in a
scalable and flexible manner, as well as preventing one user’s applications from
interfering with the others in terms of performance and other QoS constraints.

OS-level lightweight isolation and enforcement mechanisms, which are al-
ready in or approaching the mainline kernels, will be investigated and evaluated
to be used for better support of VOs. These mechanisms include security enhance-
ments such as Linux Security Module (LSM) framework and Security Enhanced
Linux (SELinux), and virtualization techniques such as process containers and
paravirtualization. Using those approaches, enforcement of VO policies at a fine-
grained level, as well as efficient and thorough isolation of VO accesses, could be
achieved in the local node. Typically these enhancements are done in an incre-
mental manner so as to preserve the semantics and the API provided to normal
Linux applications, ensuring backward compatibility.

Bibliography
[1] Kerberos. http://web.mit.edu/Kerberos/.
[2] Kernel based virtual machine. http://kvm.qumranet.com/.
[3] Kernel key retention service. http://Ixr.linux.no/source/Documentation/keys.txt.
[4] Openvz. http://openvz.org/.

[5] Process containers. http://lwn.net/Articles/236038/.

[6] System databases and name service switch.
http://www.gnu.org/software/libc/manual/html_node/Name-Service-
Switch.html.

[7] XtreemOS consortium. D2.1.1: Linux XOS Specification. November 2006.

[8] XtreemOS consortium. D3.5.4: Second Specification of Security Services.
November 2007.

[9] M. Erdos and S. Cantor. Shibboleth-Architecture DRAFT vO0.5.
http://shibboleth.internet2.edu/docs/draft-internet2-shibboleth-architecutre-
05.pdf.

25/26 XtreemOS—Integrated Project

IST-033576 D2.1.2

[10] Ford W. Housley R., Polk W. and D. Solo. [RFC 3280] Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
2002.

[11] Barham P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar,
L. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of

the nineteenth ACM Symposium on Operating Systems Principles (SOSP),
2003.

[12] V. Samar. Unified login with pluggable authentication modules (PAM). Pro-
ceedings of the 3rd ACM conference on Computer and communications se-
curity, pages 1-10, 1996.

[13] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux
Security Module. NAI Labs Report# 01, 43, 2001.

XtreemOS—Integrated Project 26/26

