XtreemOS
y Information Society

Q.0
Enabling Linux .
for the Grid \A./ Technologies

Project no. IST-033576

XtreemOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Design and implementation of basic checkpoint/restart

mechanisms in Linux
D2.1.3

Due date of deliverable: November 30", 2007
Actual submission date: December 12", 2007

Start date of project: June 1°* 2006

Type: Deliverable
WP number: WP2.1

Responsible institution: INRTA

Editor & and editor’s address: Pascal Le Métayer
IRISA/INRIA

Campus de Beaulieu

35042 RENNES Cedex

France

Version 0.1 / Last edited by Pascal Le Métayer / October 18", 2007

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU | Public v

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services)

Revision history:

Version Date Authors Institution Section affected, comments
0.1 18/10/07 | Pascal Le Métayer INRIA Initial draft
0.2 6/11/07 Pascal Le Métayer INRIA Take comments from Christine into account
0.3 6/11/07 David Margery INRIA Work on executive summary and introduction
0.4 8/11/07 Pascal Le Métayer INRIA Work on executive conclusion
0.5 9/11/07 David Margery INRIA Work on the bibliography and minors revisions, as well
as update to the latest version of the API
0.6 12/11/07 | Pascal Le Métayer INRIA Minor modifications on API description
0.7 26/11/07 | Pascal Le Métayer INRIA Take comments from Jérome into account
0.75 05/12/07 | Pascal Le Métayer INRIA Take comments from Julita into account
0.8 10/12/07 | David Margery INRIA Take comments from Julita into account
0.9 11/12/07 | David Margery and Pascal Le | INRIA Merge last minute corrections
Meétayer
Reviewers:

Jérdme Robert (EADS), Julita Corbalan (BSC)

Tasks related to this deliverable:

Task No.

Task description

Partners involved®

T2.14

Design and implementation of basic checkpointing/restart

mechanisms

INRIA™, NEC

°This task list may not be equivalent to the list of partners contributing as authors to the deliverable

*Task leader

D2.1.3 IST-033576
Contents
1 Executive summary 2
2 Introduction 3
3 Overview of Checkpointing in XtreemOS 3
3.1 The Grid Checkpointer 3
3.2 The System Checkpointer 4
3.3 The Kernel Checkpointer 4
4 Basic checkpoint/restart in Linux: BLCR, a kernel checkpointer 5
4.1 IntroductiontoBLCR 5
4.2 A kernel module architecture oL L. 5
4.2.1 bler_vmadump module (In charge of the underlying dump
oftheprocess) 5
4.2.2 bler module Mainmodule) 6
4.2.3 bler_imports module (In charge of exporting unexported
symbol from the kernel) 10
4.3 The LD_PRELOAD mechanism 10
4.4 The Callback and Critical Sections Mechanism 11
4.4.1 Signal-based callbacks 11
4.4.2 Thread-based callbacks 11
443 Critical sections 11
5 Extending BLCR 12
5.1 Anew setof functionalities 12
5.2 Implemented functionalities 12
6 A common API for Kernel checkpointers 13
6.1 Introduction 13
6.2 File Management 14
6.3 Callback Management 15
6.4 Core checkpointcalls 18
6.5 APIUsageExamples 21
6.5.1 Saving the libraries in the checkpoint 21
6.5.2 Clone the process as checkpoint 21
6.5.3 Setahandler in thread context 21
6.5.4 Get notified that the context has changed 22
7 Conclusion 22
1/23 XtreemOS—Integrated Project

IST-033576 D2.1.3

1 Executive summary

This deliverable describes the internals of basic application unit checkpoint and
restart mechanisms for Linux-XOS. As this task leverages the work done at Berke-
ley Lab on BLCR, this deliverable describes the basic architecture of BLCR’s im-
plementation before focusing on our work.

In the context of XtreemOS, jobs are composed of application units running on
different grid nodes. An application unit is then defined as a collection of processes
under the control of one operating system instance (i.e. a grid node), either Linux-
SSI or Linux-XOS. These processes could be multithreaded.

Due to the dynamic nature of virtual organizations, an application unit running
on a grid node may need to be moved to another node during its execution. In the
same way, a job may need to restart one of its application unit that has experienced
failure of the node it was running on. Therefore Linux-XOS should implement
methods and interfaces to checkpoint and restart applications.

In Linux-XOS, the checkpoint of a tree of processes running on a single node
is based on BLCR (Berkeley Lab Checkpoint Restart). However, BLCR doesn’t
satisfy all the XtreemOS requirements. For instance, BLCR relies on the fact that
all the librairies and the executable used by previously checkpointed processes are
present at restart, which isn’t a reasonable expectation in a migration context.

Therefore, our work has focused on 2 directions : produce an extension to
BLCR to support additional functionality and define an API common to BLCR,
Linux-XOS and Linux-SSI so that higher level software (application execution
management software as well as user written software) can use different imple-
mentations of a kernel checkpointer. This deliverable describes design and imple-
mentation issues of our work.

XtreemOS—Integrated Project 2/23

D2.1.3 IST-033576

2 Introduction

The aim of this document is to present the design and the implementation of ba-
sic checkpoint/restart mechanisms in Linux-XOS. Checkpointing in Linux-XOS is
conceptually seperated in three layers: grid checkpointer, system checkpointer and
kernel checkpointer. This document mainly describes the lower layer, the kernel
checkpointer, as functionality for the system and grid checkpointer. System and
grid checkpointer are being implemented in the framework defined by the Appli-
cation Execution Management work of WP3.3.

The first section of this document presents how checkpoint functionalities can
be decomposed into several layers.

As described in [2], Linux-XOS’ implementation of checkpoint/restart mech-
anisms leverages BLCR checkpoint mechanisms for Linux. Hence, we provide
background on BLCR in section 4. BLCR has been initially designed to check-
point sequential and parallel applications (MPI application, for instance) running
on clusters, but not in a grid context. One goal of Linux-XOS is to modify BLCR
to adapt its uses to a job running on a grid.

Next, we present our work to enhance BLCR with the feature needed in a grid
context, the ability to save executable and librairies linked to the checkpointed tree
of processes.

Finally, this document presents the current iteration of our work on a stable
and common API with the BLCR team. As we aim for the integration of our work
on kernel checkpointing in the BLCR codebase, this API is still subject to changes
after discussions and implementation attempts. Our use cases are also presented in
this last section.

3 Overview of Checkpointing in XtreemOS

In XtreemOS, a job is defined as a set of application units executing on several grid
nodes, and an application unit as a set of processes running on a given node.

Application checkpointing in XtreemOS is hierarchically divided into three
levels: a kernel checkpointer, a system-level checkpointer and a grid-aware check-
pointer. The two former checkpointers are implemented in XtreemOS-F, while the
latter is a service in XtreemOS-G.

3.1 The Grid Checkpointer

The grid checkpointer is a service of the AEM (Application Execution Manager)
responsible for supervision of checkpoints for an application: it applies the check-
pointing strategy to all running application units.

e [t manages resources to store the checkpoints.

3/23 XtreemOS—Integrated Project

IST-033576 D2.1.3

o It detects failure of nodes executing the application units, and takes appropri-
ate actions to restart the application. It must therefore manage the credentials
of the user running the application to enable restart.

e It coordinates taking a checkpoint of a distributed application running on
different nodes.

3.2 The System Checkpointer

The system checkpointer is an AEM service that manages checkpointing for an
application unit. It registers checkpointing strategies and implements them.

o [t offers an implementation of the kernel checkpointer for individual PC (not
belonging to a LinuxSSI cluster), and an implementation of the kernel check-
pointer for LinuxSSI clusters. In this document, we will only talk about
checkpointing in Linux-XOS, based on BLCR. Kernel checkpointing for ap-
plication running on a LinuxSSI cluster is discribed in [7].

o It uses resources given to it to call the kernel checkpointer or request those
resources on behalf of the calling process.

e [t implements periodic checkpointing.

e [t implements staged checkpointing, meaning that a checkpoint could be
seperated into several system calls (if the checkpoint must be coordinated,
for instance).

o It implements checkpoint garbage collection.

3.3 The Kernel Checkpointer

The kernel checkpointer offers a very basic checkpointing interface that enables
e checkpointing of a process,
e notification to the checkpointed process that it is about to be checkpointed,

e registration of callbacks from an application to tailor checkpointing to the
application’s need,

e enabling and disabling of checkpoint from the application if it is written in a
checkpoint aware way.

The callbacks are a mean for the process to extend the boundaries of a checkpoint
as made by the kernel level checkpointer.

XtreemOS—Integrated Project 4/23

D2.1.3 IST-033576

4 Basic checkpoint/restart in Linux: BLCR, a kernel check-
pointer

According to the state-of-art made in the [2] BLCR has been chosen as a starting
point of the kernel checkpointer in the PC flavour of XtreemOS.

4.1 Introduction to BLCR

BLCR [5] [6] [4] is one of the most advanced open source implementation of a
checkpoint/restart system for Linux. BLCR is developed by the Berkeley Lab and
provides checkpoint/restart mechanisms via kernel modules. BLCR provides sup-
port for a wide program features, and support some MPI implementation (Open-
MPI).

Nevertheless, some features (like network resources) are not directly supported
by BLCR. Indeed, BLCR philosophy is that it is preferable not to implement a fea-
ture rather than to implement it only partially or in a way that is not completely
transparent to the application. Thus, BLCR offers users a way to tailor the check-
point of their application via callback mechanisms. In the following sections, we
will give an overview of the architecture of BLCR, of the callback mechanisms,
and how the linkage between BLCR modules and an application has been imple-
mented.

4.2 A kernel module architecture

BLCR is made of three kernel modules, described below :

my_app
b
- BLCR user space library/executabl es
- BLCR main modules
|_| BLCR kernel extension modules
b|Cr_if:P°ft-k0 |:| Linux kemel
KERNMNEL LINUX i

Figure 1: Link between Linux kernel, BLCR modules and BLCR library

4.2.1 bler_vmadump module (In charge of the underlying dump of the pro-
cess)

BLCR decided to begin their work with the VMADump kernel module [4] and
extend and modify it to meet their needs. For historical reasons, the VMADUMP

5/23 XtreemOS—Integrated Project

IST-033576 D2.1.3

module has been kept separated from the “blcr.ko” kernel module.

VMADump is originally a part of Scyld’s Bproc (Beowulf Distributed Process
Space) system. Bproc [1] provides operations to spawn processes on remote nodes,
migrate processes, and send signals to remote processes in a Beowulf-style clus-
ter. Remote spawn and process migration are implemented through VMADump.
VMADump writes process state to a file descriptor. In Bproc, this file descriptor is
a socket connected to a remote node. The other end of this file descriptor reads the
process state as it is sent over the socket, and reconstructs the migrating process.

VMADump is designed mainly for this style of process migration, but can
also be used for checkpoint/restart. Nevertheless, VMADump does not write the
whole process state to the file descriptor. Part of the process state is originally
managed by Bproc, but much of the process state is not transferred at all. Moreover,
process migration in Bproc is voluntary, so that it’s not possible to force a process
to migrate from one node to another without explicit cooperation.

Therefore, for BLCR, VMADump meets only some of their checkpoint/restart
requirements and has been seen as a start point for a more complete checkpoint/restart
mecanisms.

VMADump original module has been enhanced/adapted in order to support
multi-threaded processes: first thread of the checkpointed process which accesses
to the module writes all it can (header, linkage, credential, open files ..), whereas
other threads only write the thread-specific portions of the given task.

4.2.2 blcr module (Main module)

The blcr module is the core module of the BLCR architecture, and behaves as an
“orchestra conductor” during the time of the checkpoint. When the checkpoint
module is first loaded, a special file is created (/proc/checkpoint/status). When it
has been decided that the application should be checkpointed, this file is opened
and an ioctl() call is done on it with a structure argument containing checkpoint
parameters.

The initial effect of checkpoint’s ioctl call is to unblock the callback thread in
the application, which upon returning to user-space runs the application’s thread-
based callback functions, as described in figure 2. Callbacks are functions written
by the user in order to tailor the checkpoint to his need as described in section 4.4.
Once the last thread has finished to execute its callback, a checkpoint signal is sent
to each of the threads in the application. Upon delivery of the signal, a BLCR
library call is invoked. This routine runs any signal-based callbacks the application
has provided, and then enters the kernel via an ioctl() call.

XtreemOS—Integrated Project 6/23

D2.1.3

7/23

d‘|=n:|:|_:ni_r|t

threadl

thr=adZ

Funning mamally

. checkpoint_Teq(]: :F"'"---- ______ s

. pecc cect. fd, ' e Rt
s unblacks handlar lg--.--cssarmmefeemssssmmmneasngeoTns
v thread. .

T I T L L e .

|

Can do othex
ezl

Can =ither poll

aor block fox
checlkpaint
complet iom

R.:-\ap:i.ng lowers
r=foount : cle=anup

P
'
'
'
'
1
'
1
P
i
P
1
'
P
1
]
'
'
P
i
'
'
'
i
'
1
'
'

End of progrom,
oI continue

S5till running
noTrmally
-+

Each r=c signal,
Tuns Iegisteszsd
handlers, then
do=s Swyotem call

!

sives

o

Esrri

H

s

IR EEEIEE NI EINEEEEY R ETAEEmE

¥
'
i
[
cmremdemmmmsmrrsesEEEmemEErTeTsmrEmEmemEEEEmemEmmasrEesammmrea

brssmmm s s m e s s o n

' |

Handl=x= ccmpL=t=,
then normal =x=cution

f
-t

first thrsad re=coxds pazr=nt/child
I:lationship info into £il=

writes sharsd

_ _ _ __barmier
fir=t thr=ad
items mmaps, files,
plus

its own pid/r=qisters.signals

pid.
sdignals anly

tHaxl: q:]'|=n:|:p:r:i.r||: S Cw:hlanE-t:-

S=nd KILL signal to process=s

IST-033576

Harslar_thr

iact Ll i)
sotem call

!
'
i
! Blocksd i
i
i
i

Fun regisctered
thissad=ccops=
hanadler funetians
system call ssnds
signal to othsr
threads: th=n
arEars beyrisr

L=
and

registers,

L pid/reg/eig

{Lawer re=fcount)

if desired

Block

Figure 2: Checkpointing an Application, extract from [5]

XtreemOS—Integrated Project

IST-033576 D2.1.3

Once done, all threads dump their state to the checkpoint file. As described
above, BLCR mainly relies on a patched VMADump module to perform this dump,
but in the original context of the VMADump use, some features were handled by
Bproc. Thus, features that are not managed by VMADump are managed in the
blcr.ko module. The table 3 sums up which functionalities are managed by each
module.

blcr_vmadump.ko blcr.ko
General purpose registers task linkage
Floating point registers credentials
Blocked signals shared-anonymous mapping
sig_action structures opened directory
Address space descriptor opened regular file
Virtual memory area descriptor opened pipes
Shared library name character devices
Modified pages in library
Virtual memory area descriptor
Pages

Figure 3: Managed functionalities

Restarting an application is largely the mirror image of checkpointing one, as
described in figure 4. The restart utility is provided to resume jobs, and takes
the name of a checkpoint file as its main argument. After filling out a structure
containing the file descriptor that points to the opened checkpoint file, the restart
utility performs an ioctl call, which results in a fork of the process which call the
restart utility. The parent of this fork returns to user space, and waits for the restart
to complete, while the child is cloned as many times by the kernel as there are
threads in the application that is being restarted.

XtreemOS—Integrated Project 8/23

D2.1.3 IST-033576

reztart ! + do_forki)
: '

" restart

+

clons ()

firszt thresa<d restorsz sharsd
icems fmmapez, £ile=, =to.)
plus itz own pid/registers/=signalsz

lpid. register=s, and
signals only

_Lpidfregfsig

firzr thread lockz kernsl procsz=g
tahls, and restorez parent/child
relationzhip=z from lookup tabls

zebturn from kernsl

reztart

wadk
on child, threadl

then sxit ¥

thread:z

threads

Threads retuvrn to handler functions, which
Isskbors any sHtra nssdsd sztats, thsn
return to mainlins application cods

Figure 4: Restarting an Application, extract from [5]

9/23 XtreemOS-Integrated Project

IST-033576 D2.1.3

The newly cloned threads then perform a ’thaw’ using VMADump (restore
their state at checkpoint), taking turns as they read their information from the
checkpoint file. One of the threads then uses the data from the checkpoint header to
restore the pids of each of the threads, and their process relationships. At the end,
the processes exit the kernel and enter user space, where their callback functions
return and continue until they exit, after which regular application code is resumed.

4.2.3 blcr_imports module (In charge of exporting unexported symbol from
the kernel)

The Linux kernel’s interface to loadable modules provides less than the full symbol
table used to link the general kernel code. However, to perform its task, BLCR
needs access to both functions and data that are not exported to modules.

BLCR solution is to require that at build time, files System.map or vmlinux
must be available in order to obtain absolute addresses of the needed symbols.
These addresses are then hard-coded into the blcr_imports kernel module, which
exists only to provide a symbol table with these addresses.

4.3 The LD PRELOAD mechanism

The VMADump code, as well as many of the kernel functions on which it and
BLCR rely, implicitly assume that they are operating on the “current” thread - with
only a few exceptions the Linux kernel generally provides no mechanism to read
or modify resources associated with another process. For this reason the preemp-
tion of a process to be checkpointed requires not only stopping all its threads (to
prevent modification from racing with the checkpoint) but also forcing each thread
to invoke a specific system call to allow checkpointing of its own resources.

In addition to the kernel module, which is responsible for the majority of the
checkpoint and restart activity, BLCR is designed with a small shared library that
contains the implementation of BLCR’s extension interface to support callback
mechanisms. Since this library is already a part of the BLCR architecture, the
preemption activity has been combined with the management of callbacks, and a
process which has to be checkpointed must load this library. For applications that
use the callback interface, the library must already be linked explicitly to satisfy
this linkage dependence. For applications that have not explicitly linked the BLCR
shared library, a “cr_run” command is provided, which utilizes the LD_PRELOAD
environment variable to load in the BLCR shared library.

Any process loading the BLCR shared library will automatically run this li-
brary’s initialization function, which registers a signal handler with the lowest pri-
ority real-time signal number. When the kernel, in response to a checkpoint re-
quest, delivers the corresponding signal, this handler runs any callbacks registered
through BLCR’s extension interface and handles the implementation of critical
sections in the interface (allowing atomicity of certain operations with respect to

XtreemOS—Integrated Project 10/23

D2.1.3 IST-033576

checkpoints). Once all registered callbacks are run, the signal handler makes the
required system call to BLCR to allow the checkpoint to proceed.

4.4 The Callback and Critical Sections Mechanism

As it has already been said, BLCR excludes some features from its support list;
however, it offers a simple way for a user point of view to interact with the check-
point/restart mechanisms. Indeed, BLCR provides a way to register user-level call-
back functions, which are triggered whenever a checkpoint is about to occur, and
which continue when a restart is initiated.

4.4.1 Signal-based callbacks

Signal-based callbacks are based on the fact that a signal is sent by BLCR to the
concerned application before doing the call to VMADump (VMADump must oper-
ate on the current thread). Therefore, a way to let the user to execute some tailored
functions before the dump is to register these functions as signal’s handler. One
significant drawback to this implementation is that it requires that user-registered
checkpoint callbacks be able to run within signal handler context. Unfortunately,
a large number of functions are not safe in a signal handler context (POSIX func-
tions, for instance).

4.4.2 Thread-based callbacks

Thread-based callbacks have been implemented in BLCR in order to allow more
flexible implementation of user callbacks. Thread-based callbacks are designed so
that each callback runs in a different user-thread. The regular threads of the appli-
cation are not stopped by BLCR during the execution of the threaded callbacks, to
avoid deadlock. On a user-side, the drawback of such a choice is that the appli-
cation which implements thread-based callbacks has to deal with synchronisation
issues that concurrency between the application and the callbacks may introduce.
One solution recommended by BLCR to cope with such a concurrency is to use a
common ‘“‘checkpoint lock”(reader/writer lock) if there is some concurrent access
by multiple user threads. This lock is grabbed at every API entry, and also ob-
tained (in ’write mode’) by the thread-based callback as its first action, and held
throughout the checkpoint and restart, until the callback completes.

4.4.3 Critical sections

BLCR provides user-level code with “critical sections” in order to allow groups of
instructions to be performed atomically with respect to checkpoints. These critical
sections can be used by the user to guaranty that a section is not interrupted during
its execution by a checkpoint.

11/23 XtreemOS—Integrated Project

IST-033576 D2.1.3

This functionality is useful for instance in order to avoid an interruption of a
network initialization, or to avoid that a checkpoint occurs while an asynchronous
I/O operation is in progress.

5 Extending BLCR

In this part, we present the modifications done on BLCR in order to enhance BLCR
with XtreemOS’ specific needs. This API is both implemented by the LinuxSSI
checkpointer and by the Linux-XOS checkpointer.

5.1 A new set of functionalities

Our aim is to augment BLCR with the following features, needed in the context of
a checkpointer for processes belonging to a grid job:

e add an option to save the shared libraries used by the process in the check-
point, rather than assuming that they are present on the system where the
process is restarted. This is described as the SPMF (Save Private Mapped
File) option in the rest of this document.

e at restart, provide information to the restarted process about the changes in
the environment (process id, IP address, hostname).

e add a more complete strategy for files, i.e. let the possibility for the user
to save a list of the opened files during the checkpoint, and to offer him the
possibility to change the path of these files at restart.

e restart with a new security context (VO specific information) compatible
with the one present in the snapshot of a process.

5.2 Implemented functionalities

In T2.1.4, the SPMF option has been implemented.

Originally, BLCR saves only the filename of libraries and the executable that
are used by the checkpointed process. Therefore, BLCR relies on the fact that these
librairies and executable are at the same place when restart is made.

Goal of the SMPF option is to be able to restart a checkpointed application
even if the libraries it uses or its executable have been moved/erased between the
checkpoint time and the restart time, i.e. to generate a self-consistent snapshot.

This functionality is implemented as follows:

e At checkpoint time, after the dump made by the vma_dump module, a scan
is made on all private/shared/executable maps of each process to detect the
files to be saved.

XtreemOS—Integrated Project 12/23

D2.1.3 IST-033576

e The files corresponding to the counted mapped files during the previous op-
eration are saved into the snapshot file. As processes could have done some
modifications during its execution, so an other scan is made to detect and
save the pages that have changed.

e At restart time, previously saved files are regenerated in the /tmp directory,
and these files are mapped. At least, saved changed pages at the end of the
previous operation are copied in memory.

Three implementations of this option have been produced and sent as patches
to BLCR maintainers. Ths first two where rejected due to insufficient adherence
to BLCR’s code structure. In particular, the way the second implementation inter-
acted with the vma_dump module, responsible for the initial dump and restoration
of the memory of a process was rejected because it added an option to that module
for efficiency reasons instead of scanning the list of memory areas multiple times
in order to avoid modifications to that module. The third patch is currently under
review.

Detecting changes in the environment can easily be implemented as shown in
the use cases described in section 6.5

The API to handle changes to paths for opened files is described in section
6. As this API is still under discussion with BLCR, no implementation work has
begun.

Finally, security context, in the form of tokens stored in a process’s security
keychain are taken from the process requesting the restart and not from the check-
point file. No specific implementation work was needed here. Nevertheless, testing
hasn’t taken place yet as integration work with other tasks and workpackages is still
undergoing.

6 A common API for Kernel checkpointers

6.1 Introduction

Based on BLCR’s structure that has been described in section 4, a first version of
an API for checkpointing was described in [3] and sent for review to the BLCR
authors. We present here a second revision of the envisionned API. All code pre-
sented in this section should be considered as a derived work of BLCR and is thus
released under the same license (GPLv2 or later).

This API is composed of two strongly related parts. The first part of the API
describes the system calls that would need to be added to Linux to support check-
pointing whereas the second part of this API is the one that should be used by
programmers.

Therefore, the API described here should be seen as a set of new system calls
as well as the interface extending the standard library implemented in C (libc) that
will be provided to application programmers. Adding new system calls to Linux

13/23 XtreemOS—Integrated Project

IST-033576 D2.1.3

is a difficult task. Therefore, in order to ease acceptance of our work in the Linux
community, our implementation is likely to add this API by others means than
new system calls, such as the ioctl call often used by modules. Therefore, at first,
implementers of higher level checkpointing layers should rely on the C interface.

6.2 File Management

Correctly managing files in checkpoint/restart context is challenging. First, paths
to files can have changed between the checkpoint and the restart. This happens
in particular for large input files that are stored in a grid-aware file system. Here,
the best strategy would be to save the file name as seen on the initial system as
well as the file pointer. Then, on the system where the restart request takes place,
the restart caller would specify the new location of the file as seen by the local
filesystem. The second case would be that in the same application consuming data
from a large file, a library creates and uses temporary files. These files need to
be saved with the chekpoint file and restored on the system where the restart is
requested.

From these two cases, we conclude that part of the checkpoint/restart process
(file renaming for example) is best handled with some help of userspace and that
there must exist a way for userspace or for the application itself to describe file by
file strategies.

Therefore, at the lower (kernel) level, calls to sys_checkpoint never save the
contents of opened files, but they return a list of files that should be saved with the
application unit checkpoint file. These files will be needed for successful restart. It
is expected that at a higher (library) level, these files will be aggregated to the ap-
plication unit checkpoint file during the checkpoint phase, and that this aggregation
will be considered as the checkpoint file. During the restart phase, these files will
be made accessible on the node running the restart, and a translation table between
their previous and current name will be given as a parameter to the low level restart
call.

In the context of XtreemOS, this help from userspace could be provided by
the AEM layer. The rational for this is that when checkpoint is used to migrate
a process from one node to another, some mechanism needs to be setup in order
to give the migrated process the same view of the filesystem hierachy as on the
node it originated from, if the contents of all files is not saved with the checkpoint
(case of large data files for example). There are many ways of acheiving this, either
by specifying fixed mountpoints for XtreemFS volumes, by specifiying additional
constraints when looking for a node to migrate the process to, or, as made possible
by the interface described here, by providing filename translation.

With this design, there is no need for a node running a checkpoint to access the
complete content of a file that needs saving with the checkpoint. Indeed, the higher
level aggregation mechanism could either save a file containing the location of the
needed files, or request that the filesystem save a snapshot of the file and only save
a reference to the file. Thus, a lot of network traffic can be avoided.

XtreemOS—Integrated Project 14/23

D2.1.3 IST-033576

Moreover, there is no need for the kernel to receive options about specific files
upon checkpoint, as no file contents will be saved by the kernel. All file information
and contents are managed at the library level, except for kernel specific information
such as the corresponding file descriptor, the file pointer, etc... The file’s name is
used as a means of identifying a file in both cases.

Therefore, the following API for files is defined:

To start, a structure is defined to exchange parameters about files between user
space and kernel space :

struct {
char * oldname ; // null terminated string
char * newname ; // null terminated string
int flags ; // options related to that file
int type ; // reserved for extensions

} cr_ren_t

Then, the following call is defined to enable callbacks to notify that a file should
be saved.

void cr_add_saved_file (char x filename) ;

This call should be used for pathological cases where a process is using files present
on disk but not necessarily opened when a checkpoint occurs. For example, in order
to manage a large number of files, the process could keep in its memory a list of
thousands of files that it uses or needs, but with only a subset of this list opened at
a given time.

6.3 Callback Management

The following API for callback management is then defined. Whether threads that
execute callbacks are started by the kernel or at user level is not specified here, but
initial implementation will suppose user-level threads.

First, some types are defined.

//opaque type for callback identification
typedef ... cr_callback_id_t ;

// callback function type

typedef int (xcr_callback_t)(void x) ;

The following system call notifies the system that f{data) should be called be-
fore any checkpoint is taken.

cr_callback_id_t sys_register_callback (cr_callback_t f
, void x data, int flags);

The following options are available for flag:

15/23 XtreemOS—Integrated Project

IST-033576 D2.1.3

o WAIT: This call is blocking until the handler is in place (has called wait_for_checkpoint(
)}

e USER_THREAD: The handlers are managed by user level threads and are
executed in a user level context enabling thread synchronisation.

e IS_SIGHANDLER: Handler is called in signal context; f is seen as a signal
handler.

This function should be called by the user inside any function registered as a call-
back.

pid_t sys_wait_for_checkpoint(void =xf,
void xx pdata,
int timeout) ;

It’s a blocking system call bounded by the timeout value which blocks the threaded
callback into the kernel until a checkpoint is requested.

Once requested, the user specific logic is executed. The following sample code
gives an idea of how user level callback can be used:

int thread_context (void *x some_function) {
cr_callback_t x f = some_function ;
while (true) {
void xx pdata ;
res = sys_wait_for_checkpoint(f, pdata, 0) ;
if (res)
panic("callback _not_registered") ;
f(xpdata) ;
}

return 0 ;

}

int register_user_callback (function_t f, veid x data)
{
pthread_create (thread , attr , thread_context, f) ;
sys_register_callback (f, data, USER THREAD|WAIT) ;
return 0 ;

The figure 5 sums up the callback registration mechanism:

XtreemOS—Integrated Project 16/23

D2.1.3 IST-033576

CheckpointedProcess KERNEL
| H
f
pthread_createl..] -
|
: :
register_user_callbatkl...., WAIT] -’

wmt_’ror_checkpomt!'.‘é

:‘l—
1

Figure 5: Callback registration mechanism

Finally, a callback should call one of those two functions once all preparations
for checkpointing have finished :

// the callback has successfully finished preparing
for checkpoint

// returns CR_DONE if the checkpoint has completed

// CR_RESTARTED if the callback is called in
restart context

int sys_continue_checkpoint() ;

// the callback has failed preparing for checkpoint

// and the checkpoint should be killed.

int sys_abort_checkpoint() ;

In the event a callback needs replaced or cancelled, the following function is
defined

cr_callback_id_t
sys_register_callback (cr_callback_id_t
replaced_callback ,

cr_callback_t f,
void data ,
int flags);

If f is NULL, the corresponding callback is cancelled.
Should a callback need information about the current checkpoint, are defined

struct cr_checkpoint_info {

17/23 XtreemOS—Integrated Project

IST-033576 D2.1.3

int signal ; // signal sent after checkpoint

pid_t requester ; // pid of the process requesting
the checkpoint

pid_t primary_target ; // pid, pgid or sid of the
requested checkpoint

cr_scope_t scope ; //scope of the checkpoint
process ,

process_group , session

b

const struct cr_checkpoint_info =
cr_get_checkpoint_info () ;

6.4 Core checkpoint calls

Finally, the following core checkpoint and restart functions are defined:

// temporarly prevent a checkpoint from starting
// blocks in case a checkpoint is in progress
int checkpoint_disable () ;

// re—enable checkpointing for this process

int checkpoint_enable () ;

The aim of these functions is to allow users to define critical sections in order to
prevent a checkpoint to occur during the execution of the code located between the
checkpoint_disable() and checkpoint_enable() functions.

Then a generic checkpoint request description is defined, as well as its initiali-
sation function:

typedef struct cr_checkpoint_args_t {
cr_version_t cr_version;

cr_scope_t cr_scope ;
pid_t cr_target ;
int cr_fd;

int cr_signal;

unsigned int cr_timeout ;
unsigned int flags ;
cr_ren_t xx files ;
size_t files_size ;

}

// checkpoint handle is an opaque type
// used to identify a checkpoint request
typedef ... cr_checkpoint_handle_t

XtreemOS—Integrated Project 18/23

D2.1.3 IST-033576

void cr_checkpoint_args_init (cr_checkpoint_args_t x
value) ;

void cr_checkpoint_handle_init (cr_checkpoint_handle_t
xvalue) ;

At last, a checkpoint is possible:

pid_t sys_checkpoint (cr_checkpoint_args_t xargs,
cr_checkpoint_handle_t xhandle) ;

A call to checkpoint triggers a checkpoint on the process specified by the pid.
args->cr_fd is an opened file descriptor where checkpoint file will be written. Fol-
lowing flags are available :

e CLONE: The returned pid_t is the pid of a cloned process of pid, which
can be checkpointed to a file descriptor later on, but not run, unless restart is
called with fd pointing to /proc/pid.

e NO_CALLBACKS: No callbacks are run before checkpointing. Useful if
cr_prepare_checkpoint has been called.

e NON_BLOCKING: Default behaviour is that any checkpointing requests
that are made for an application while checkpoints are disabled are queued
until checkpointing is enabled, unless the NON_BLOCKING flag is pro-
vided, in which case taking the checkpoint will fail.

e SPMF: If the SPMF flag is set, binary and library(ies) used by the check-
pointed process are saved in the file descriptor. Default behaviour is to save
only the path of the binary and the library(ies). fd_options and fd_size are
not used for the while, but exist for the reason noticed above.

args->signal specifies the signal to send to the target once the checkpoint has
completed. Sending SIGKILL to the application at the end of the checkpoint pro-
cess could be useful in a migration context. Sending SIGSTOP to the application
at the end of the checkpoint process could be useful if the user wants to get a list
of opened file descriptors via /proc/pid/fd.

*(args->files) points to an array of cr_ren_t describing the files to save with the
checkpoint file written to args->cr_fd to form a complete checkpoint. The size of
this array is *(args->files_size), and it it allocated by the library. Memory should
be freed after usage.

If the checkpoint was non blocking, the following function should be used to
poll for completion:

int checkpoint_poll(cr_checkpointhandle_t xhandle,
struct timeval xtimeout)

19/23 XtreemOS—Integrated Project

IST-033576 D2.1.3

If timeout is null, the call is blocking. If *timeout is 0, the call is non-blocking.
Otherwise, the call waits for checkpoint completion or the specified amount of
time. A negative return value indicates failure, a positive value success and 0 time-
out.

In the event the checkpoint is coordinated, the following function calls all call-
backs, and the process should then be checkpointed with the NO_CALLBACKS
flags.

pid_t sys_checkpoint_prepare (cr_checkpoint_args_t =
args ,
cr_checkpoint_handle_t xhandle) ;

Once the checkpoint has been taken, this function continues the process that was
previously stopped for checkpointing

pid_t sys_checkpoint_continue (cr_checkpoint_args_t =x
args ,
cr_checkpoint_handle_t xhandle) ;

Finally, the restart function, that uses a filename translation array of cr_ren_t
and can consume more that one checkpoint file to enable restarting a process from
more than one context file in the event incremental checkpointing is implemented:

pid_t sys_restart (int fd, int flags ,int x extra_fd,
size_t extra_fd_size ,cr_ren_t x files , size_t
files_size);

A call to restart respawn a previously checkpointed process stored in fd. fd is
an opened file descriptor from where the checkpoint file is read. The followings
flag are available:

e MUST_REUSE_PID: By default, the restarted process uses a different pid
than the one that was used by the previously checkpointed process. The flag
MUST_REUSE_PID indicates that the restarted process should use the same
pid; the restart fails if it’s not possible.

extra_fd, extra_fd_size, fd_options and fd_size are not used for the while.

pid_t poll_checkpoint(pid_t pid, int flag, voidx
result , int timeout) ;

As the checkpoint system call is not always a blocking call, a poll_checkpoint is
provided in order to check/block the completion of a previous checkpoint call.checkpoint

XtreemOS—Integrated Project 20/23

D2.1.3 IST-033576

and poll_checkpoint must be called by the same process, so that only the process
which has initiated the checkpoint can poll it.

e pid: pid of the monitored checkpointed process. If the value of this argument
is —1, the poll is done on all the checkpoint initiated by the process which
calls poll_checkpoint. Otherwise, poll is done on the specified pid.

o flag: By default, poll_checkpoint is a blocking call. If the NON_BLOCKING
flag is set, poll_checkpoint becomes a non blocking call and is seen as a
check operation.

e result: Return value of the checkpoint call.
o timeout: Used for bounding the poll operation.

e returned value: The returned value is the pid of the process which has been
polled. It is useful to know which checkpoint operation has been completed
if the poll is made on a set of processes.

6.5 API Usage Examples
6.5.1 Saving the libraries in the checkpoint

This would be done with a call with the SPMF (for Save Private Mapped Files)
flag on the first call to checkpoint for that process. Subsequent calls can omit that
flags, as the binary and the library files should not have changed. In this case, the
first checkpoint file is kept and used to restore the libraries and the executable file
and the most recent checkpoint file is used to restore all data that has changed in
the address space of the process.

6.5.2 Clone the process as checkpoint

This is done using the CLONE flag during checkpoint. The cloned process can then
be checkpointed to another media with a subsequent call to checkpoint, or restarted
after /proc/pid of the clone process has been opened and given to the restart call.

6.5.3 Set a handler in thread context

This is sample code to give an idea of how user level callback can be used.

int thread_context(void % some_function) {
function_t % f = some_function ;
while (true) {
void xx pdata ;
res = wait_for_checkpoint(f,pdata,0);
if (res)
panic("callback_not_registered");

21723 XtreemOS—Integrated Project

IST-033576 D2.1.3

f(xpdata) ;
}

return 0 ;

}

int register_user_callback (function_t f, void * data)

{

pthread_create (thread , attr , thread_context, f);
register_callback (f, data, USER_THREAD) ;
return 0 ;

6.5.4 Get notified that the context has changed

This can be done for any context parameter with a simple handler written in the
following way:

int callback () {
context_data_t context_data = get_context_info () ;
int restarted = checkpoint_ready () ;
if (restarted) {
context_data_t new_context_data =
get_context_info ()
if (new_context_data != context_data)
notify_context_change () ;

}

return 0 ;

7 Conclusion

Work on checkpoint/restart in Linux-XOS has started late (M14) due to a late re-
cruitment. However, a working checkpointer for XtreemOS-F (BLCR project en-
hanced with SPMF functionalites 6.5.1) is already available [8] for all 2.6 kernels.

Integration of checkpointing mechanisms in XtreemOS-G is in progress: after a
meeting in Barcelona with WP3.3 members in october 2007, a common implemen-
tation strategy has been agreed upon. This strategy implies that grid and system
checkpoint level checkpointing should be implemented in the AEM (Application
Executive Manager).

Next steps of the development will be to integrate patch and propositions about
the API into the BLCR main stream; first steps in this way are promising. This API
is not implemented for the time being as we hope to converge to a common API
with the BLCR project members.

XtreemOS—Integrated Project 22/23

D2.1.3 IST-033576

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

http://bproc.sourceforge.net/.

David Margery, Christine Morin, Luis Pablo Prieto, Haiyan Yu, An Qin, Erich
Focht, Yvon Jégou, Adrien Lebre, Oscar D. Sanchez, and Massimo Coppola.
D2.1.1 linux XOS specification, November 2006.

David Margery and Matthieu Fertré. T2.1.4 detailed specification and work-
plan. Technical report, XtreemOS technical repport, July 2007.

E. Roman. A survey of checkpoint/restart implementations. Technical Report
LBNL-54942, Berkeley Lab Technical Report, 2003.

J. Duell, P. Hargrove, and E. Roman. The Design and Implementation of
Berkeley Lab’s Linux Checkpoint/Restart. Technical Report LBNL-54941,
Berkeley Lab Technical Report, 2003.

Paul H. Hargrove and Jason C. Duell. Berkeley lab checkpoint/restart (blcr)
for linux clusters. In In Proceedings of SciDAC 2006, June 2006.

John Mehnert Spahn. D2.2.3 design and implementation of basic check-
point/restart mechanisms in linuxssi, November 2007.

Yvon Jégou, Haiyan Yu, and Pascal Le Métayer. D2.1.4 prototype of the basic
version of linux-XOS, November 2007.

23/23 XtreemOS—Integrated Project

