Xtreem O§'

Enabling Linux
for the Grid

Information Society
Technologies

Project no. IST-033576

XtreemOS

Integrated Project
BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Design and Implementation of a Customizable Scheduler
D2.2.6

Due date of deliverable: November 30", 2007
Actual submission date: November 30", 2007

Start date of project: June 1°¢ 2006

Type: Deliverable
WP number: WP2.2
Task number: T2.2.6

Responsible institution: XLAB

Editor & and editor’s address: Marko Novak
XLAB d.o.o.

Teslova 30

1000 Ljubljana

Slovenia

Version 1.0 / Last edited by Marko Novak / November 30", 2007

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

PU | Public v

PP | Restricted to other programme participants (including the Commission Services)

RE | Restricted to a group specified by the consortium (including the Commission Services)

CO | Confidential, only for members of the consortium (including the Commission Services)

Revision history:

Version Date Authors Institution Section affected, comments
0.1 28.10.07 Marko Novak XLAB First draft for internal review
0.2 29.10.07 | Marko Novak XLAB Fixed layout of source code.
0.3 8.11.07 Marko Novak XLAB Integrated comments of internal reviewer (Toni Cortes,
BSO).
0.4 16.11.07 Marko Novak XLAB Inserted data about internal reviewers and T2.2.6 task.
0.5 21.11.07 | Marko Novak XLAB Integrated comments of internal reviewer (Carsten
Franke, SAP).
1.0 30.11.07 | Marko Novak XLAB Final version of the deliverable ready.
Reviewers:

Toni Cortes (BSC), Carsten Franke (SAP)

Tasks related to this deliverable:

Task No. | Task description Partners involved®

T2.2.6 Design and implementation of a customizable scheduler XLAB*, INRIA

°This task list may not be equivalent to the list of partners contributing as authors to the deliverable
*Task leader

Abstract

This document presents the work that was done on the implementation of cus-
tomizable scheduler for LinuxSSI-XOS (shorter, LinuxSSI) operating system in
the first implementation phase of XtreemOS project (from month O to month 18).
Scheduler is a component of LinuxSSI which is in charge of placing processes
to different cluster nodes. Its goals are, among others, balancing load across the
cluster, optimization of resource utilization, etc. By migrating processes from one
cluster node to another it takes care of transferring load from overloaded nodes to
less busy ones.

During the first implementation phase, we have successfully implemented dy-
namical loading of probes and scheduling policies. We designed special framework
which we named “Pluggable Probes and Scheduling Policies Framework™ (Plug-
ProPol). PlugProPol is an infrastructure which enables user to write his own probes
and scheduling policies and add them to the system in runtime, without the need
to restart the whole cluster. In this document, we describe main features and archi-
tecture of PlugProPol. We also introduce the three entities that form PlugProPol:
probe, scheduling policy and filter.

The document also contains detailed instructions on how to install and con-
figure LinuxSSI as well as PlugProPol framework and a PlugProPol user’s guide,
where all the PlugProPol commands are described along with their examples of
usage. The user’s guide is followed by the developer’s guide in which we explain
how to write probes, scheduling policies and filters. The developer’s guide also
contains a reference guide for the PlugProPol main functions.

IST-033576 D2.2.6

XtreemOS—Integrated Project 2/51

Contents

1 Introduction

1.1 Terminology e
1.2 LinuxSSI
1.3 Customizable scheduler for LinuxSSI

2 Pluggable Probes and Scheduling Policies Framework (PlugProPol)
2.1 Mainfeatures

2.2 Design and implementation
2.3 Example PlugProPol entities

3 Installation and Configuration

4 User’s guide

401 mkdir
402 rmmdir
403 echo.
404 cat. e e
405 In-s

5 Developer’s guide

5.1 Probes
5.2 Scheduling policies
53 Filters

6 Conclusion and future work

3/51

17

19
19
20
21
22
22

25
25
28
32

39

IST-033576 D2.2.6

XtreemOS—Integrated Project 4/51

Chapter 1

Introduction

1.1 Terminology

In this section, you can find the descriptions of the various terms, which are used
throughout the deliverable. Understanding of the meaning of these terms is very
important for the understanding of the whole deliverable.

Probe: probe is an entity for measuring different resource properties (e.g. CPU
load, CPU speed, total memory, free memory). User can implement these probes
as separate Linux kernel modules and inserts them dynamically into kernel (the
insertion is possible only if the user has root permissions). By doing this, it extends
set of resource properties that are being measured. Probes should be implemented
in a way that each probe monitors resource properties of a single resource.

Scheduling policy: scheduling policy is an implementation of a job schedul-
ing algorithm. In LinuxSSI, scheduling policy is in charge of selecting a proper
node for a particular process. An example of scheduling policy is a load balancing
policy. This policy takes resource properties from one or more probes as an input
and when it senses local node is very heavily used, it is allowed to migrate certain
number of processes to remote nodes.

End port: a part of the scheduling policy which takes care of acquiring re-
source measurement value from remote probe. Each end port of a scheduling pol-
icy can be connected only to one probe attribute. Additionally, the data type of end
port must match the data type of the probe attribute in order to be able to connect
them together.

Scheduler object: in PlugProPol terminology a scheduler object is a ConfigFS
entity which contains scheduling policy (see the description above) and a process
set. A process set is used for storing PID’s of all the processes to which a particular
scheduling policy applies to. So scheduler object is basically used for assigning a
scheduling policies to particular processes.

Filter: filter is an intermediate entity which is used for caching and processing
of probes’ data. A particular filter can be connected to a probe or to another filter
(i.e. filters can be chained). The filters are most frequently used for filtering probes’

5/51

IST-033576 D2.2.6

measurement data on its way from probes towards scheduling policies based on
various thresholds.

Process placement policy: process placement policy takes care of selecting
a node on which a particular process will be placed. This can be used in various
scenarios (e.g., for load balancing, etc.). The process placement policy is used only
once for each process, at the process creation time (i.e. during the “fork™ system
call).

For a practical illustration of the terms above, see the Section 2.3. This section
contains example entities of the different PlugProPol entities.

1.2 LinuxSSI

LinuxSSI is an adaptation of Linux operating system for computer clusters. Its
main goal is to provide Single System Image of a whole computer cluster. Ac-
cording to [3], Single System Image (SSI) is a property of a system to hide the
heterogeneous and distributed nature of the available resources and present them
to users and applications as a single unified computing resource. In other words,
an SSI cluster of 10 uniprocessor computers is seen by the user as a single 10-
processor computer. The advantages of SSI clusters are ease of use (i.e., the whole
cluster is used as a single machine), high availability (i.e., the system continues to
operate even if some failures occurred), automatic load balancing and others.

LinuxSSI is based on Kerrighed project which is a community project led by
a company called Kerlabs (http://www.kerlabs.com). Kerrighed’s, as well
as LinuxSSI’s, main targeted features are:

e cluster-wide process management (cluster-wide PID’s, fork, kill, etc.),
e support for cluster-wide shared memory,

o cluster file system,

e process checkpointing,

e process migration,

e mechanisms for high availability,

e customizable cluster-wide scheduler.

1.3 Customizable scheduler for LinuxSSI

In LinuxSSI, a scheduler is a component which selects a cluster node, to which a
particular process will be placed. There are many types of schedulers, each of them
having unique goal (some schedulers try to minimize average response time, oth-
ers try to optimize resource utilization, etc.). In the first implementation phase of

XtreemOS—Integrated Project 6/51

D2.2.6 IST-033576

XtreemOS project, we were dealing with load balancing schedulers. These sched-
ulers take care of migrating processes from one cluster node to another and thus
transferring load from overloaded nodes to less busy ones. This way, there are less
idle nodes which means that computing power of the whole cluster is better uti-
lized. As a consequence, a cluster with a global scheduler is able to process more
tasks in the same mount of time as a cluster without it. The LinuxSSI scheduler
also takes care of dispatching user-defined jobs to different nodes of the cluster and
enables user to submit jobs, monitor their state and control their execution.

In XtreemOS Description of Work [4] and later in D2.2.1 deliverable [6] we
promised to implement customizable scheduler for LinuxSSI which would enable
user to tune it according to his needs. A user would be able to implement his own
probes and scheduling algorithms, plug them to the scheduler and connect them
in runtime. This way, we would improve the configurability of the old LinuxSSI
scheduler that was inherited from Kerrighed.

Moreover, the whole scheduler should adapt itself to the load in the cluster. For
example, when cluster was heavily loaded, the scheduler could have automatically
prolonged probing period of all its probes in order to induce less overhead due to
measurements. When the load was normal again, it would have set the probing
period back to the original value. Furthermore, a complete scheduling algorithm
could be switched, based on the load of the cluster. This way, we could have
separate scheduling policies for times when cluster is heavily loaded, for normal
load and for situations where load is very light [8, 9].

During the first implementation phase, we have successfully implemented dy-
namical loading of probes and scheduling policies. We designed special framework
which we named “Pluggable Probes and Scheduling Policies Framework™ (Plug-
ProPol). This framework takes care of loading user-implemented resource mea-
surement probes and scheduling policies into the Linux kernel and enabling/dis-
abling them in runtime. The framework can also be utilized by the user to fine-tune
the probes’ and policies’ parameters and thus adapt the scheduler to the current
state of the cluster.

As a part of PlugProPol framework, we also implemented infrastructure for
dynamic selection of process placement policies (see the definition of process
placement policy in the next chapter). The old version of the scheduler provided
only one hard-coded process placement policy, which made it non-adaptable to
the changing state of the cluster. To improve this, we decided to implement the
infrastructure that would enable users to choose proper policy in the runtime.

Our contribution is mostly related to the LinuxSSI-XOS foundation (i.e., clus-
ter version of XtreemOS-F foundation) of the XtreemOS operating system. On the
other hand, by implementing PlugProPol, we enabled XtreemOS-G grid scheduler
to have a better control over the clusters since from now on, it can trigger load-
ing/unloading of probes and scheduling policies.

The deliverable is organized as follows. The 2nd chapter describes main fea-
tures and architecture of PlugProPol, a framework for loading probes and schedul-
ing policies in runtime. In the 3rd chapter, we give detailed information on how

7/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

to install and configure LinuxSSI operating system and PlugProPol after that. In
4th chapter, we list all the commands that can be used with PlugProPol. We also
explain its syntax and give its description and examples of use. In 5th chapter, we
describe the PlugProPol’s API and demonstrate its use by inserting source code of
a simple probe and scheduling policy. Finally, in 6th chapter we conclude and state
our future work.

XtreemOS—Integrated Project 8/51

Chapter 2

Pluggable Probes and Scheduling
Policies Framework (PlugProPol)

Pluggable Probes and Scheduling Policies Framework (PlugProPol) is an infras-
tructure which enables user to write his own probes and scheduling policies and
add them to the system in runtime (without the need to restart the whole cluster).
If a user wants, for example, to monitor disk usage on his local machine, he only
implements a proper probe and plugs it to PlugProPol in runtime. This makes the
scheduling much more configurable since no reboot is needed.

All the probes and scheduling policies are implemented as Linux kernel mod-
ules, they run in kernel space and are able to access kernel data structures directly.
No system calls are needed, which means such infrastructure induces less overhead
than the one where probes and scheduling policies would be implemented in user
space.

2.1 Main features

One of the main goals for our framework was to make it highly configurable despite
the fact that it runs in kernel space. The reason we decided to put it in kernel space,
was the fact that this approach has a couple of important advantages over execution
in user space:

1. measuring resource properties from user space is more complicated than
measuring from kernel space, sometimes even impossible. For example: in
Linux, we have to do a lot of parsing of different proc files if we are trying to
get a number of runnable processes from user space. On the other hand, the
same task can be accomplished very easily from kernel space by invoking a
few proper kernel functions,

2. there is much less overhead induced if we perform measuring in kernel
space: monitoring probe can directly access resource properties in kernel
space, rather than having to use system calls to transfer them to user space.

9/51

IST-033576 D2.2.6

This saves us some CPU time. Since some resources are measured very
frequently, the save is not insignificant.

Concerning configurability, we want the users to be able to plug measurement
probes at any time and immediately start measuring resource properties. No reboot
should be necessary. For example: if a user wanted to monitor disk usage on his
local machine, he would only have to implement a proper probe and plug it to the
framework at runtime. After that, he would be able to start collecting data about
disk usage immediately. This approach enables user to easily change the group of
locally measured resources and adapt it to his current needs, local system load, etc.

We also want to be able to connect scheduling algorithms to all the neces-
sary probes in runtime. This way we are able to detach probes from the rest of
scheduling infrastructure which introduces modularity to our implementation and
thus makes it more robust. Furthermore, users are able to dynamically choose the
probes that will provide data to their scheduling algorithms. Whenever a user wants
to connect an end port (i.e. a part of scheduling policy that is used for acquiring a
value of a single probe attribute) of a scheduling policy to some probe attribute, the
PlugProPol framework itself first checks if their data types match. If a data type
that a particular end port collects doesn’t match the probe attribute’s data type, they
cannot be connected. This prevents a user to connect incompatible entities by mis-
take. Besides dynamically connecting scheduling policies to the probes we also
want the user to be able to specify in what way he would like to receive the data
from that probe. User can choose one of the two ways as specified in the Open
Grid Forum (OGF) specifications [13]:

1. query-response: here, implementation of scheduling algorithm periodically
"pulls" data from probe.

2. publish-subscribe: here, implementation of scheduling algorithm subscribes
to probe’s data and probe "pushes" data to port every time data is changed.

The framework also takes care of executing all its commands cluster-wide:
whenever a particular command (e.g. command for loading a particular probe) is
executed on some node in the LinuxSSI cluster, it immediately gets propagated to
the rest of the nodes in the cluster. This relieves the user of having to manually
load a particular probe on every node in the cluster. The framework itself assures
that a particular command does not succeed unless it has executed successfully on
all the nodes in the cluster.

The security issues are taken care of Linux itself since by default, only root
user can load kernel modules. This prevents malicious users to load probes or
scheduling policies that could crash the system. Furthermore, PlugProPol uses
Linux module infrastructure to monitor dependencies among the kernel modules.
As a consequence, a user cannot remove a probe if it is still used by some schedul-
ing policy.

XtreemOS—Integrated Project 10/51

D2.2.6 IST-033576

2.2 Design and implementation

When designing PlugProPol framework we decided that a user should be able to
implement each probe, as well as scheduling policy, as a separate Linux kernel
module. This would enable him to load and unload different probes and schedul-
ing policies independently of each other which would increase modularity of the
scheduler. Because probes and scheduling policies are kernel modules, they would
be running in kernel space which would enable them to access resource properties
with less overhead, as mentioned in previous section.

In order to achieve high configurability of the framework (i.e. a user should be
able to load probes and scheduling policies from user space in runtime) despite the
fact that it runs in kernel space, we decided to base it on "ConfigFS" pseudo file
system [1], a virtual file system designed for configuring kernel modules from user
space. It is very similar to "sysfs" pseudo file system, since both use directories
as the way of representing objects and files as the way of representing object at-
tributes. The fundamental difference between them is that ConfigFS objects can be
controlled from user space by any user with sufficient permissions, whereas sysfs
objects have to be controlled from kernel modules in kernel space. This makes
ConfigFS more suitable for our framework. If you look at the PlugProPol source
code, you will see that majority of code is related to ConfigFS: initialization of
ConfigFS data structures, registration of ConfigFS objects, implementation of all
the necessary callbacks, etc.

The ConfigFS file system enables our framework to react to different user com-
mands: mkdir, rmdir, In, etc. to load and unload probes, to link scheduling algo-
rithms with probes, etc. ConfigFS has been a part of Linux kernel since version
2.6.17.13. In ConfigFS, probes and scheduling policies are represented as separate
directories.

Filters

Scheduling
Probes (policies

PPSFF

Linux kernel

Figure 2.1: Architecture of PlugProPol framework.

The PlugProPol framework (figure 2.1) consists of three entities (see their de-
scriptions in Section 1.1):

e probes

e scheduling policies

11/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

o filters

Probe

»perform_measurement« function

synchronization lock

periodical measurements infrastructure

Probe attribute 1 Probe attribute N

wcheck_update_preva scheck_update_preve
function function
»gets function agets function
»has_changeds« »has_changed«
function function

Figure 2.2: Architecture of probes.

Figure 2.2 shows architecture of probes. Every probe contains user-defined
attributes (i.e. user adds each attribute programmatically at the implementation
time by calling the “krg_probe_value_create” function of PlugProPol framework)
which are used for storing resource measurements. These attributes are represented
as subdirectories of the probe’s main directory in order to enable symbolic link cre-
ation between a probe and a scheduling policy (in ConfigFS, a symbolic link can
only be created if target is a directory). Each probe has to implements its own
resource measurement function (i.e. the “perform_measurement” function), func-
tions for retrieving attribute values (i.e. separate “get” function for each probe at-
tribute), for showing attribute values (i.e. separate “show” function for each probe
attribute) and for determining if a particular attribute has changed (i.e. separate
“has_changed” function for each probe attribute). Furthermore, it has to allocate
memory for storing the measurement data. When a probe registers with the Plug-
ProPol framework, the framework itself takes care of reconfiguring it and perform-
ing resource measurements.

The purpose of scheduler object (figure 2.3, see definition in Section 1.1) in
PlugProPol framework is basically to assign a particular scheduling policy only
to a subset of processes. As opposed to probes and scheduling policies, a user
can choose arbitrary name to create scheduler object. The most important part of
scheduler object is scheduling policy.

PlugProPol scheduling policy (figure 2.4) is basically implementation of schedul-
ing algorithm. It takes care of deciding when the process migration has to be in-

XtreemOS—Integrated Project 12/51

D2.2.6 IST-033576

Scheduler object

scheduling policy process set

Figure 2.3: Architecture of scheduler object.

Scheduling policy

process migration infrastructure

synchronization lock

»new_task_node« function

End port 1 End port N
wupdate_value« »update_value«
function function
Sink Sink

Figure 2.4: Architecture of scheduling policies.

13/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

voked. It also chooses a process to migrate and a node on which it will bi migrated.
Additionally, scheduling policy also takes care of selecting a node for a newly cre-
ated process.

When scheduling algorithms are connected to probes, they can collect their
data via end ports using one of the two methods mentioned above: query-response
and publish-subscribe. Since both methods don’t need any user space functionality
there is very little overhead when transferring data between probes and scheduling
algorithm implementations. The framework takes care of the whole transferring
procedure, each probe only has to implement “update_value” function for each
end port, which takes care of updating that property’s value. The “update_value”
functions can also contain all the logic for checking if process migration should be
initiated.

Filter

source sink
filtering function

Figure 2.5: Architecture of filters.

The last entities to describe are the filters (figure 2.5). They are used for pro-
cessing and caching the probes’ measurement data and are therefore positioned
between the probes and scheduling policies. Each filter has a source endpoint on
which other entities (filters or scheduling policies) connect in order to be able to ac-
quire data from the filter. It also has a sink endpoint through which it receives data
from other entities (filters or probes). As already mentioned above, filters can also
be chained (a particular filter’s sink can be connected to the other sink’s source)
which means we can apply multiple filtering conditions to the measurement data
of particular probe.

2.3 Example PlugProPol entities

In order to better illustrate the entities presented in the previous section, this section
contains a sample use case of the PlugProPol framework. Let’s say that a user
wants to implement a scheduling algorithm which makes sure that cluster nodes’
CPUs are as equally balanced as possible. We will call this algorithm “CPU load
balancing algorithm”. The PlugProPol entities that need to be implemented in
order to enable this algorithm are shown in Figure 2.6.

First, a user has to implement a CPU probe. This probe is in charge of mea-
suring the load of each CPU of a particular cluster node (note that a particular
probe instance measures only CPU load on local cluster node). So if a user wants

XtreemOS—Integrated Project 14/51

D2.2.6 IST-033576

»cpu_load_receiver«
end port

»cpu_load«
attribute

»Cpu_probe« probe

Figure 2.6: The PlugProPol entities of CPU load balancing algorithm.

15/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

to find out how loaded the CPUs of a particular node are, he only has to read the
the “cpu_load” file in ConfigFS file system. This file is located in “cpu_probe”
directory which represents CPU probe in ConfigFS file system.

After the CPU probe has been implemented, a user has to implement an ac-
tual load balancing algorithm. This algorithm is in charge of migrating processes
from a local node to the remote node with the lowest CPU load. In PlugProPol
framework, the CPU load balancing algorithms is implemented in a form of a
“cpu_balancer” scheduling policy. The “cpu_balancer” policy defines a special
“cpu_load_receiver” end port, which is used for connecting it with “cpu_load” at-
tribute of the “cpu_probe” probe. This way, the CPU load balancing algorithm
collects CPU load measurements. When the load is too high, the process migration
procedure is initiated.

To prevent load balancing algorithm to be executed too frequently and thus in-
duce large overhead, the PlugProPol framework enables user to implement special
filters. These filters receive probe measurement data as their input and process it
in various ways. In this example, we define a “threshold_filter” filter, which col-
lects CPU load measurements from “cpu_probe” and passes them through only if
their value is greater than a given threshold. This way, we make sure that the load
balancing algorithm will be invoked only if the CPU load has risen over a given
threshold.

The second filter in our example is “freq_limit_filter”. This filter makes sure
that a specified time period has passed between subsequent migrations. This way,
we want to prevent two nodes from passing a given process between each other
(for example, node A detects high load and sends process P to node B, which is
less loaded. By doing this, its load decreases substantially. At the same time, the
CPU load on node B rises over a given threshold and load balancing policy de-
cides to send P back to node A. This procedure can repeat many times.) and thus
creating high overhead. The “freq_limit_filter” filter receives data from “thresh-
old_filter” and passes it through only if a given time interval has passed since the
last migration.

PlugProPol framework also enables us to assign the CPU load balancing algo-
rithm to only a subset of the running processes. This can be done via PlugProPol
scheduler object’s process set: we assign it a list of processes, which a particular
policy should be in charge of. If we want a given scheduling policy to handle all
the running processes on a given node, we have to set the “handle_all” attribute of
its process set to 1.

XtreemOS—Integrated Project 16/51

Chapter 3

Installation and Configuration

PlugProPol is distributed as a part of LinuxSSI operating system so in order to
enable it, we have to install LinuxSSI first. The LinuxSSI installation procedure
is described in detail in XtreemOS D2.2.7 deliverable [7]. At the time of writing,
PlugProPol was still under development so certain parts may change in the future.

As mentioned above, the installation of scheduler-enabled LinuxSSI is exactly
the same as in XtreemOS D2.2.7 deliverable [7]. However, a user has to do some
additional things, mostly related to ConfigFS file system, which is used for con-
trolling LinuxSSI scheduler.

First of all, a user has to create a “config” directory (i.e., a target directory
to which ConfigFS is mounted) in the root directory of a diskless nodes’ system
image. In XtreemOS D2.2.7 deliverable [7], this root directory is located in “/NF-
SROOT/LinuxSSI” directory:

chroot /NFSROOT/LinuxSSI
mkdir /config

The next step is to check if the following features are enabled in LinuxSSI
kernel configuration, after we have finished it (if you do not know how to configure
a Linux kernel, consult the proper documentation [12, 15]).

The easiest way to check this is to open the kernel configuration file from the
main directory of LinuxSSI source code (for example, by invoking the “vi <Lin-
uxSSI_src>/kernel/.config” command) and check if the corresponding options are

[T

set to “y””:
o the ConfigFS file system (CONFIG_CONFIGFS_FS=y)

e automatic kernel module loading (CONFIG_KMOD-=y), this feature is needed
to enable PlugProPol framework to load kernel modules

17/51

IST-033576 D2.2.6

The final step is to edit the /etc/fstab file (note that this is actually the “/NFS-
ROOT/LinuxSSl/etc/fstab” file, but since we changed root node to “/NFSROOT/Lin-
uxSSI”, we must disregard that part of the path). This file has to contain the mount
parameters for “configfs” file system, as shown below:

the line below mounts ConfigFS file system which
i1s needed by the PlugProPol framework
none /config configfs defaults 0 0

XtreemOS—Integrated Project 18/51

Chapter 4
User’s guide

Since PlugProPol framework is based on ConfigFS file system, all its operations
such as probes/scheduling policies loading and unloading, linking can be per-
formed from user space using standard Linux commands such as mkdir, rm, In.
This chapter contains a list of Linux commands which can be used with PlugProPol
framework, along with their descriptions and examples of usage. To guarantee se-
curity and stability of the system, these commands can be executed only by a user
with root permissions. As already mentioned in Section 2.1, all the commands are
executed cluster-wide.

4.0.1 mkdir

Syntax: mkdir <module_name | process_PID>

Arguments:

o <module_name | process_PID>: name of the probe/scheduling policy mod-
ule to load. This name must be equal to the name of the module file (the one
with the “.ko” extension) which implements given probe/scheduling policy.
When working with process sets, a PID of a process which we want to add
to process set.

Description: by invoking this command a user requests PlugProPol framework to
load a given probe or scheduling policy. In order to initiate probe loading, user
has to invoke this command in /config/probes directory. Similarly, he has to invoke
the command in /config/schedulers directory if he wants to load scheduling policy.
Alternative, this command can also be used to add PID’s to process sets. Every time
the “make” command is used in the ConfigFS file system, a user-defined callback
function is invoked. In PlugProPol framework, this callback takes care of all the
activities necessary for loading.

Probes and scheduling policies should be implemented as Linux kernel mod-
ules [11] and should register themselves with PlugProPol framework in their ini-

19/51

IST-033576 D2.2.6

tialization function. For an example of how to write a proper probe or schedul-
ing policy see “mem_probe.c” and “echo_policy.c” in the Appendix. Once the
probe/scheduling policy is loaded with PlugProPol the framework itself takes care
of performing measurements (for the probes) and collecting them (for scheduling
policies).

In order for a user to be able to load a particular probe or scheduling pol-
icy module with PlugProPol, he must first register it. This is done by inserting full
path to the module file (the one with the “.ko” extension) to the /lib/modules/<ker-
righed_kernel_version>/modules.dep file, followed by a colon and full path to
“kerrighed.ko” module file. Below you can see example entries for “mem_probe”
and “echo_policy” (note that both path to the probe/scheduling module file and
path to the “kerrighed.ko” file must be written in the same line for each entry):

/lib/modules/2.6.20-krgLinuxSSI/extra/mem_probe.ko:_
/lib/modules/2.6.20-krgLinuxSSI/extra/kerrighed.ko

/lib/modules/2.6.20-krgLinuxSSI/extra/echo_policy.ko:_
/1lib/modules/2.6.20-krgLinuxSSI/extra/kerrighed.ko

Example:

load mem_probe probe
mkdir /config/krg_scheduler/probes/mem_probe

load echo_policy scheduling policy

mkdir /config/krg_scheduler/schedulers/test-scheduler

mkdir /config/krg_scheduler/schedulers/test-scheduler/echo_policy

adding PID to process set

mkdir /config/krg_scheduler/schedulers/test-scheduler/process_set/33465

4.0.2 rmdir

Syntax:

o rmdir <module_name>

o rm -rf <module_name>

Arguments:

o <module_name>: name of the probe/scheduling policy to unload. This
name must be equal to the name of the module file (the one with the “.ko”
extension) which implements given probe/scheduling policy. When working
with process sets, a PID of a process which we want to remove from process
set.

XtreemOS—Integrated Project 20/51

D2.2.6 IST-033576

Description: this command is used for unloading probe or scheduling policy mod-
ule that was loaded with mkdir command. Similarly to mkdir, the rmdir command
has to be invoked either in /config/probes directory for probes or in /config/sched-
ulers directory for scheduling policies. Alternative, this command can also be used
to remove PID’s to process sets. When this command is invoked with a probe, it
will successfully remove it only if there are no scheduling policies that are using it.
Like with “mkdir”, the “rmdir” command triggers its own callback function if in-
voked in ConfigFsS file system. In PlugProPol framework, this function takes care
of all the thing related to unloading.

Example:

ff unload mem_probe probe
rmdir /config/krg_scheduler/probes/mem_probe

f unload echo_policy scheduling policy

rmdir /config/krg_scheduler/schedulers/test-scheduler/echo_policy

f removing PID from process set

rmdir /config/krg_scheduler/schedulers/test-scheduler/process_set/33465

4.0.3 echo

Syntax: echo <value> > <attribute_name>

Arguments:

e <value>: the value which we want to assign to a given attribute. It can be
given either in textual or in numerical form. If the value contains spaces it
has to be surrounded by double quotes (").

o <attribute_name>: the name of the attribute to which we want to assign
the value. The name must be given as an absolute path to the file which
represents the attribute.

Description: this command assigns a value to the attribute specified by the at-
tribute_name filename. Each attribute is represented by a separated file which are
located in of the subdirectories in “/config/probes” or “/config/schedulers” direc-
tory. The command enables user to set probe and scheduling policy parameters in
runtime and thus dynamically tune the scheduler.

Example:

ff set probing period of mem_probe probe to 1 second.
echo 1000 > /config/krg_scheduler/probes/mem_probe/probe_period

21/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

4.04 cat

Syntax: cat <attribute_name>

Arguments:

e <attribute_name>: the name of the attribute whose value we want to re-
trieve. The name must be given as an absolute path to the file which repre-
sents the attribute.

Description: this command retrieves a value of the attribute specified by the at-
tribute_name filename. Each attribute is represented by a separated file which are
located in of the subdirectories in “/config/probes” or “/config/schedulers” direc-
tory. The command enables user to get probe and scheduling policy parameters
and is mostly used for reading properties of resources monitored by the probes.

Example:

f get total memory from mem_probe probe
cat /config/krg_scheduler/probes/mem_probe/ram_total/value

get total memory from echo_policy scheduling policy
cat /config/krg_scheduler/schedulers/test-scheduler/echo_policy/_
port_mem_total/value

4.0.5 In-s

source and sink must be directories (cannot link attributes).
Syntax: [n -s <data_source> <data_sink>

Arguments:

o <data_source>: source endpoint of the link which will provide us the data.
This must be a directory (i.e. we cannot make symbolic links to attributes).

o <data_sink>: sink endpoint of the link which will consume the data. Like
data_source, this must also be a directory (i.e. we cannot make symbolic
links to attributes).

Description: by invoking the “Is -s”” command, a user can connect one PlugProPol
entity to another. By doing this he enables the “sink™ entity to collect data from the
“source” entity.

Only the connections that are defined below are possible:

e scheduling policy to probe,

XtreemOS—Integrated Project 22/51

D2.2.6 IST-033576

o filter to probe,
e filter to another filter,
e scheduling policy to filter.

As soon as particular data source and sink are connected, PlugProPol frame-
work takes care of data transfer between them.

Example:

f link port_mem_total endpoint of echo_policy scheduling policy

f to ram_total endpoint of mem_probe probe

In -s /config/krg_scheduler/probes/mem_probe/ram_total _
/config/krg_scheduler/schedulers/test_scheduler/echo_policy/port_mem_total

f link port_mem_free endpoint of echo_policy scheduling policy

ff to ram_free endpoint of mem_probe probe

In -s /config/krg_scheduler/probes/mem_probe/ram_free _
/config/krg_scheduler/schedulers/test_scheduler/echo_policy/port_mem_free

To further demonstrate the use of PlugProPol commands, we have added con-
tents of the “startup_mosix_scheduler.sh” Bash script in appendix. This script
shows how to enable various probes, filters and special “Mosix Load Balancer”
scheduling policy that user can enable in LinuxSSI. “Mosix Load Balancer” is an
implementation of the same algorithm for load balancing that is present in Mosix
operating system [2].

23/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

XtreemOS—Integrated Project 24/51

Chapter 5

Developer’s guide

In this chapter, we describe API of the PlugProPol framework. Each entity (probe,
scheduling policy, filter) has its own set of function for registering it with Plug-
ProPol. An example source code for a probe, scheduling policy and filter can be
found in the appendix.

5.1 Probes

When implementing a probe, a user has to first reserve memory for storing mea-
surement data and define all the necessary functions: a measurement function, a
callback function for getting measurement data, a callback function for showing
measurement data and a callback function for determining if measurement vari-
ables have changed (see listing 5.1).

Listing 5.1: Macros for defining probe attributes and their callback functions.

VEE

* Convenience macro for defining a typed "get" callback function

* with arguments. This callback is used by the filter/scheduling

x policy to retrieve values from the probe.

*

* @param name name of the probe attribute to which this callback
* will be assigned.

* @param type type of the data a callback returns (eg. int).

* @param ptr name of the type xarg of the method

* @param nr name of the array length parameter of the method
* @param in_type type of the parameters of the method (eg. int)

* @param in_ptr name of the in_type xarg of the method

* @param in_nr name of the parameters array length arg of the

* method

*/

#define DEFINE PROBE_VALUE_GET_WITH_INPUT (name, type, ptr, nr, in_type,
in_ptr, in_nr)

/% %

* Convenience macro for defining a typed "get" callback with no
* arguments. This callback is used by the filter/scheduling

* policy to retrieve values from the probe.

*

25/51

IST-033576 D2.2.6

* @param name name of the probe attribute to which this callback
* will be assigned.

* @param type type of the data a callback returns (eg. int)

* @param ptr name of the type xarg of the method

* @param nr name of the array length parameter of the method
*/

#define DEFINE_PROBE_VALUE GET(name, type, ptr, nr)

/% %

* Convenience macro for defining a callback function which checks if

* value of particular probe attribute has changed. This callback is

* used by the publish—subscribe infrastructure to determine when a

* "value changed" event needs to be triggered.

*

* @param name name of the probe attribute to which this callback
* will be assigned.

*/

#define DEFINE PROBE VALUE HAS_CHANGED (name)

/% %

% Convenience macro which states that a particular probe attribute

* doesn’t have any callback function for checking if its value has

* changed.

*

* @param name name of the probe attribute to which this callback
* will be assigned.

*/

#define DEFINE PROBE VALUE HAS _CHANGED_NULL (name)

/% %

* Convenience macro for defining a "show" callback function.

* This callback is used for displaying the value of a probe attribute

* with the "cat" command.

*

* @param name name of the probe attribute to which this callback
* will be assigned.

* @param page name of the buffer arg of the method

*/

#define DEFINE_PROBE_VALUE SHOW (name, page)

/% %

% Convenience macro which states that a particular probe attribute
* doesn’t have any callback function for showing its value.
*
*

@param name name of the probe attribute to which this callback
* will be assigned.
*/
#define DEFINE PROBE VALUE SHOW_NULL (name)

/% %

% Mandatory macro for defining a probe attribute whose "get"

* callback function requires input arguments. Probe attributes are
* used for exporting measurement values to the filters and

% scheduling policies.

*

* The "get", "has_changed", and "show" callback functions must be
* defined with DEFINE_PROBE_VALUE_x macros.

*

* @param name name of the probe attribute

* @param attrs not used yet

* @param value_type type of the probe attribute (eg. unsigned int)
* @param get_param_type type of the arguments for the "get"”

XtreemOS—Integrated Project 26/51

D2.2.6 IST-033576

* callback
*/
#define PROBE _VALUE_TYPE_WITH_INPUT (name, attrs , value_type, get_param_type)

/% %

* Mandatory macro to defining a probe attribute whose "get" callback
* function doesn’t accept arguments.

*

x The "get", "has_changed", and "show" callback functions must be

% defined with DEFINE_PROBE_VALUE_x macros. Probe attributes are

* used for exporting measurement values to the filters and

* scheduling policies.

*

* @param name name of the probe attribute

* @param attrs not used yet

* @param value_type type of the probe attribute (eg. unsigned int)
*/

#define PROBE_VALUE TYPE(name, attrs , value_type)

VEES

* Mandatory macro to define a probe_type. Probe type contains a

x callback function for performing measurement of particular

* resource along with probe attributes which expose measurement

* values to filters/scheduling policies.

*

* @param name name of the variable containing the probe type.
* @param attrs currently unused

* @param _perform_measurement probe measurement function. This

* function takes care of periodic measurings and subscribers
* refreshment. This function can be NULL.

*/

#define PROBE_TYPE(name, attrs , _perform_measurement)

After the probe type, all the probe attributes and their callback functions have
been defined, a developer can start writing kernel module initialization function
(a.k.a. the “init_module” function). In it he first instantiates all the probe attributes
by invoking “krg_probe_value_create” function for each of them. After that, he
creates probe (by invoking the “krg_probe_create” function), performs first mea-
suring to initialize measurement data and registers probe with PlugProPol frame-
work (by invoking the “krg_probe_register” function). For the definitions of these
function, see listing 5.2.

Listing 5.2: Functions for creating and registering probes.

/% %

* This function allocates memory and initializes a probe value.

*

* @param type Type describing the probe value, defined with

* PROBE_VALUE_TYPE

* @param name Name of the value’s subdirectory in the probe’s
* directory. Must be unique for a given a probe.
*

* @return pointer to the created probe_value, or NULL if
* error occured

*/

struct probe_value x krg_probe_value_create (
struct probe_value_type xtype, const char *xname);

/% %

27/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

* This function frees all the memory taken by the probe value.

*

* @param value pointer to a probe value which memory we

* want to free.
*/

void krg_probe_value_free(struct probe_value xvalue);

/% %

* Function that a probe value should call when the value changes

* and the probe does not have a perform_measurement() method.

* Does nothing if the probe provides a perform_measurement() method.
*

* @param value Value having been updated

*/

void krg_probe_value_notify_update(struct probe_value xvalue);

VEE

* This function is used for registering probe. This function has to

% be called at the end of "init_module" function for each probe’s

* module .

*

* @param probe pointer to the probe we wish to register.

*

* @return 0, if probe was successfully registered.

* —EEXIST, if probe with same name is already
registered .

*/

int krg_probe_register (struct probe xprobe);

/% %

* This function is used for removing probe registration. This
* function can only be called at module unloading (from the
* "cleanup_module" function).

*

*

@param probe pointer to the probe we wish to unregister.
*/
void krg_probe_unregister(struct probe xprobe);
Besides module initialization function, a developer also has to write a mod-
ule cleanup function (a.k.a. “cleanup_module” function) in which it unregisters a
probe and frees all the memory taken by it and its attributes.

Source code of an example probe can be found in the appendix (see the page
44).

5.2 Scheduling policies

As explained earlier in the document, PlugProPol scheduling policies are in charge
of invoking process migration. They select a process to be migrated and a destina-
tion node to which that process will be transferred.

The implementation is very similar to the one of the probes. A developer first
defines all the scheduling policy end ports ((using “SCHEDULER_END_PORT_TYPE”
function)) along with the callbacks for updating their value. End ports are used for
connecting scheduling policies with probe/filter attributes. From these probes/fil-
ters, the scheduling probes later collect the measurement data. After all the end

XtreemOS—Integrated Project 28/51

D2.2.6 IST-033576

ports have been implemented the developer also defines a process placement func-
tion. This function is in charge of selecting the cluster node on which a process
will be created at its “fork” time (see listing 5.3).

Listing 5.3: Macros and data structures for defining scheduling policy attributes,
operation and end ports.

VEE

* Mandatory macro for defining an end port type when

* "scheduler_end_port_get_value" doesn’t require any arguments.

*

* @param name variable name of the port type

* @param update_value callback to notify source’s value updates
* @param value_type type of values which this port can retrieve
* (eg. unsigned int)

*/

#define SCHEDULER_END_PORT TYPE(name, update_value, value_type)

VEE

* Mandatory macro for defining an end port type when

% "scheduler_end_port_get_value" takes input arguments.

*

* @param name variable name of the port type

* @param update_value callback to notify source’s value updates

* @param value_type type of values which this port can retrieve

* (eg. unsigned int)

* @param get_param_type type of input arguments for
"scheduler_end_port_get_value" function

*/

#define SCHEDULER_END_PORT TYPE WITH_INPUT (name, update_value ,
value_type , get_param_type)

VEE
* This struct is used for representing scheduling policies’
% attributes. It contains attribute—specific functions for reading
* attribute and storing value.
*/
struct sched_policy_attribute {
struct configfs_attribute attr;

/%% function for reading attribute’s value. %/
ssize_t (xshow)(struct sched_policy =*, char =*);
/x% function for storing attribute’s value. x/
ssize_t (xstore)(struct sched_policy *, const char x, size_t);

s

VEE

* Struct which contains each policy’s operations.

*/

struct sched_policy_operations {
/+* Sched policy constructor. Creates new instance of scheduling
* policy. x/
struct sched_policy % (*new)(const char xname);
/+* Sched policy destructor. Removes an instance of scheduling
* policy. x*/
void (xdestroy)(struct sched_policy *policy);
/% Process placement function. Called when a task attached to
* this policy creates a new task x/
kerrighed_node_t (xnew_task_node)(struct sched_policy x*policy,

struct task_struct xparent);

29/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

—_—

VEE

* Mandatory macro for defining a scheduling policy type. Can be
* used through the SCHED_POLICY_TYPE macro.

*

* @param owner module defining the sched_policy type

* @param _name unique name for the sched_policy type

* @param _ops sched_policy_operations for this type

* @param _attrs NULL—terminated array of custom

* sched_policy_attribute , or NULL

*/

#define SCHED_POLICY_TYPE_INIT(owner, _name, _ops, _attrs)

/% x

% Convenience macro for defining a scheduling policy type.

*

* @param var name of the variable containing the type

* @param name unique name of the sched_policy type

* @param ops sched_policy_operations for this policy type
* @param attrs NULL—terminated array of custom

* sched_policy_attribute , or NULL

*/

#define SCHED_POLICY_TYPE(var, name, ops, attrs)

Besides the process placement function, the developer also has to implement
the functions for creating and destroying instances of particular scheduling poli-
cies. A particular scheduling policy type can have multiple instances, each belong-
ing to a different scheduler object (e.g. we can have a separate instances of CPU
load balancing policy for I/O-bound processes and for CPU-bound processes). All
instances of a given scheduling policy share the same scheduling algorithm, how-
ever they can have different parameters. The functions for scheduling policy cre-
ation/deletion reserve and free memory for each instance of a given scheduling
policy (see listing 5.4 for a definition of an end port creation and removal func-
tions).

Listing 5.4: Definition of an end port creation and removal functions

/% %

* This function initializes a new scheduling policy. Must be

* called by sched_policy constructors.

*

* @param policy pointer to the sched_policy to init.

* @param name name of the scheduling policy. This name

* must be the one provided as argument to the

* constructor.

* @param type type of the sched_policy

* @param def_groups NULL—terminated array of subdirs of the

* sched_policy directory, or NULL

*

* @return 0 if successul,

* —ENODEV is module is unloading (should not happen!),
* —ENOMEM if not sufficient memory could be allocated.
*/

int krg_sched_policy_init(struct sched_policy =xpolicy, const char xname,
struct sched_policy_type xtype, struct config_group xdef_groups[]);

/% x

XtreemOS—Integrated Project 30/51

D2.2.6 IST-033576

* This function frees all the memory taken by a scheduling policy.

* Must be called by the sched_policy destructor.

*

* @param policy pointer to sched_policy whose memory we want to
* free.

*/

void krg_sched_policy_cleanup (struct sched_policy =*policy);

VEE:

* Create and initialize a new end port that can be included as a
* subdir (see scheduler_end_port_config_group).

* The end port can be connected to a filter (using mkdir in its
x subdir) or directly to a probe value (making a symlink from an
* entry to its subdir).

*

* @param name name of the new end port

* @param update_value callback to notify an update of the end
* port’s source

* @param private any value that the user wishes. It will be passed
* unchanged to the update_value callback.

*

* @return pointer to the new end port, or

* NULL if error

*/

struct scheduler_end_port x

scheduler_end_port_create (const char xname,
struct scheduler_end_port_type xtype,
void *private);

VEES

* Free an end port.

*

* @param port pointer to end port to free

*/

void scheduler_end_port_free(struct scheduler_end_port xport);

After all the necessary functions have been defined, a developer implements
a scheduling policy initialization and cleanup functions. The initialization func-
tion takes care of initializing all the end ports and registering scheduling policy
with PlugProPol framework (when a particular scheduling policy is registered with
PlugProPol framework, the administrator can assign it to different scheduler ob-
jects. This way, he puts it in charge of all the processes that belong to that schedul-
ing object). The cleanup function is used for unregistering scheduling policy and
for releasing all the memory taken by it (see listing 5.5).

Listing 5.5: Functions for initializing end port types, registering and unregistering
scheduling policies.

VEES
Complete initialization of an end port type.

Must be called before any port creation, typically at module init
@param type port type to init

@return 0 if successful, or
negative error code

¥ oK X X X ¥ ¥ ¥

*/
int scheduler_end_port_type_init(
struct scheduler_end_port_type *xtype);

31/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

VEE
* Free all resources allocated for a port type at initiliazation.
* Must be called after all port destructions, typically at module exit
*
* @param type port type to cleanup
*/
void scheduler_end_port_type_cleanup (
struct scheduler_end_port_type xtype);

VEE

* This function is used for registering newly added scheduling

% policy types. Once a type is registered, new scheduling policies

* of this type can be created when user does mkdir with the type

* name.

*

* @param type pointer to the scheduling policy type to register.
*

* @return 0 if successful ,

* —EEXIST if scheduling policy type with the same
* name is already registered.

*/

int krg_sched_policy_type_register(struct sched_policy_type xtype);

VEE

* This function is used for removing scheduling policy

% registrations. This function can only be called at module

* unloading .

*

* @param type pointer to the scheduling policy type to
* unregister.

*/

void krg_sched_policy_type_unregister(struct sched_policy_type =type);

Source code of an example scheduling policy can be found in the appendix (see
the page 46).

5.3 Filters

The process of implementing filters is very similar to the one of probes as well as
scheduling policies. First, a developer has to define filter attributes and their “get”
(), “show” and “update_value” callback functions:

e get: this callback function is used by a scheduling policy/another filter to
retrieve attribute value from a filter,

e show: this callback function is used for displaying the filter attribute value
via the “cat” command,

e update_value: this callback function is used by a probe/another filter to push
data to a filter.

The filter attributes are used for connecting filters with probes/scheduling poli-
cies/other filters. This way, a given filter can acquire measurements data from
probes/other filters and forward it to scheduling policies/other filters.

XtreemOS—Integrated Project 32/51

D2.2.6 IST-033576

After the filter attribute has been defined, functions for creating and destroying
instances of a given filter type. As with scheduling policies, a given filter can have
multiple instances, each belonging to a different scheduler object. Instances oaf a
given filter share the same implementation, they only have different user-defined
parameters. This way, we can use an instance of “cpu_thresh” filter (i.e., the filter
that filters CPU load values if they are smaller than a given threshold) with CPU
threshold set to 0.7 for one group of processes and an instance with CPU threshold
set to 0.9 for the other group.

Next, a developer combines the filter attributes and filter instance construc-
tors/destructors into a filter type by invoking the “SCHEDULER_FILTER_TYPE”
function. A list of macros for defining filters, their attributes and callback functions
can be found in listing 5.6.

Listing 5.6: Convenience macros and data structures for defining filters, their at-
tributes and callback functions.

/% Structure representing a filter attribute in a filter directory x/
struct scheduler_filter_attribute {

/xx configfs super—class x/

struct configfs_attribute config_attr;

/*% callback to show the attribute x/

ssize_t (xshow)(struct scheduler_filter =, char x);

/*% callback to modify the attribute from userspace x/

ssize_t (xstore)(struct scheduler_filter %, const char x, size_t);

—

/% %

* Convenience macro for defining a typed "get" callback function which
* doesn’t accept any arguments. This callback is used by the

* scheduling policy/other filter to retrieve values from the filter.
*

* @param name name of the filter type

* @param filter name of the struct filter xarg of the method

* @param type type of the values output by the filter (eg. int)
* @param ptr name of the type xarg of the method

* @param nr name of the array length arg of the method

*/

#define DEFINE_SCHEDULER_FILTER_GET_VALUE(name, filter , type, ptr, nr)

/% %

% Convenience macro for defining a typed "get" callback function which
* requires input arguments. This callback is used by the

* scheduling policy/other filter to retrieve values from the filter.

*

* @param name name of the filter type

* @param filter name of the struct filter xarg of the method

* @param type type of the values output by the filter (eg. int)
* @param ptr name of the type xarg of the method

* @param nr name of the array length parameter of the method
* @param in_type type of the parameters of the method (eg. int)

* @param in_ptr name of the in_type xarg of the method

* @param in_nr name of the parameters array length arg of the method
*/

#define DEFINE_SCHEDULER_FILTER_GET_VALUE_WITH_INPUT (name, filter ,
type, ptr, nr, in_type, in_ptr, in_nr)

/% %

33/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

* Convenience macro for defining a typed "show" callback function.

* This callback is used for displaying the value of a filter attribute
* with the "cat" command.

*

* @param name name of the filter type

* @param filter name of the struct filter xarg of the method

* @param page name of the buffer arg of the method

*/

#define DEFINE SCHEDULER FILTER_SHOW_VALUE(name, filter , page)

/% x

% Convenience macro which developer uses when a filter doesn’t
* implement any "show" callback function.

*

* @param name name of the filter type

*/

#define DEFINE_SCHEDULER_FILTER_SHOW_VALUE_NULL (name)

/% %
Convenience macro for defining a typed "update_value" callback
function. this callback function is used by a probe/another

filter to push data to a filter.

* ¥ X ¥ X X

@param name name of the filter type

* @param filter name of the struct filter xarg of the method
*/

#define DEFINE_SCHEDULER_FILTER _UPDATE_VALUE(name, filter)

VEES

% Convenience macro which developer uses when a filter doesn’t
* implement any "update_value" callback function.

*

* @param name name of the filter type

*/

#define DEFINE_SCHEDULER_FILTER_UPDATE_VALUE_NULL (name)

/% %

% Convenience macro for defining a typed "remote_get_value"

% callback function which requires input arguments. The

* "remote_get_value" callback is used for retrieving value

* from remote probe/filter.

*

* @param name name of the filter type

* @param filter name of the struct filter xarg of the method

* @param node name of the node arg of the method

* @param type type of the values output by the filter (eg. int)
* @param ptr name of the type xarg of the method

* @param nr name of the array length parameter of the method
* @param in_type type of the parameters of the method (eg. int)
* @param in_ptr name of the in_type xarg of the method

* @param in_nr name of the parameters array length arg of the
* method

*/

#define DEFINE SCHEDULER FILTER GET _REMOTE_VALUE(name, filter , node, type,
ptr, nr, in_type, in_ptr, in_nr)

*

* Convenience macro which developer uses when a filter doesn’t implement
* any "remote_get_value" callback function.
*
*

@param name name of the filter type

XtreemOS—Integrated Project 34/51

D2.2.6 IST-033576

*/
#define DEFINE_SCHEDULER_FILTER_GET _REMOTE_VALUE_NULL (name)

VEX

* Convenience macro to define a trivial get_value method.
x The method is not typed.

*

* @param name name of the filter type

*/

#define DEFINE SCHEDULER_FILTER_GET_VALUE_SIMPLE (name)

/% %

x* Convenience macro to define a trivial show_value method.
*

* @param name name of the filter type

*/

#define DEFINE_SCHEDULER_FILTER_SHOW_VALUE_SIMPLE (name)

/% %

* Convenience macro to define a trivial update_value method.
*

* @param name name of the filter type

*/

#define DEFINE_SCHEDULER_FILTER_UPDATE_VALUE_SIMPLE (name)

/% %

* Convenience macro to define a trivial get_remote_value method.
*

* @param name name of the filter type

*/

#define DEFINE_SCHEDULER_FILTER_GET_REMOTE_VALUE_SIMPLE (name)

/% *

* Convenience macro for defining a filter attribute. The filter

% attributes are used for connecting filters with probes/scheduling

* policies/other filters .

*

* @param var_name name of the scheduler_filter_attribute variable
* @param name name of the attribute entry in the filter directory
* @param mode access mode of the attribute entry

* @param show show callback of the attribute

* @param store store callback of the attribute

*/

#define SCHEDULER_FILTER_ATTRIBUTE(var_name, name, mode, show, store)

VEE:

* Convenience macro for defining a filter type whose "get" callback

* function accepts no arguments. The filter type combines the filter

% attributes and filter instance constructors/destructors.

*

* The "get", "update_value", and "show" callback functions must be

x defined using DEFINE_SCHEDULER_FILTER_x macros.

*

* @param name unique name among schuduler_port_type names. This
* name is used for both the variable and the

* user—visible type name.

* @param new constructor for this filter type

* @param destroy destructor for this filter type

* @param src_value_type

* type of filter’s values (eg. unsigned int)

* @param snk_value_type

* type of lower source’s values (eg. unsigned int)

35/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

* @param attrs NULL—terminated array of custom
* scheduler_filter_attributes , or NULL
*/

#define SCHEDULER_FILTER_TYPE(name, new, destroy, src_value_type,
snk_value_type , attrs)

*

Convenience macro for defining a filter type whose "get" callback
function requires input arguments. The filter type combines the
filter attributes and filter instance constructors/destructors.

The "get", "update_value", and "show" callback functions must be
defined using DEFINE_SCHEDULER_FILTER_x macros.

@param name unique name among schuduler_port_type names. This

type name.

¥ K K K K K K K X X X K K K K K X X ¥ X ¥

@param new constructor for this filter type

@param destroy destructor for this filter type

@param src_value_type type of filter’s values (eg. unsigned int)

@param src_get_param_type type of the parameters for the get_value
method

@param snk_value_type type of lower source’s values (eg. unsigned
int)

@param snk_get_param_type type of the parameters used in
filter’s get_value calls

@param attrs NULL—terminated array of custom

*

scheduler_filter_attributes , or NULL
*/

#define SCHEDULER FILTER_TYPE _WITH_INPUT (name, new, destroy ,

\

src_value_type , src_get_param_type, snk_value_type,

snk_get_param_type , attrs)

VEE

* Convenience macro to define a filter type using whose "get"

% callback accepts arguments only when querying lower source.

* The filter type combines the filter attributes and filter

% instance constructors/destructors.

*

* The "get", "update_value", and "show" callback functions must be

* defined using DEFINE_SCHEDULER_FILTER_x macros.

*

* @param name unique name among schuduler_port_type names. This
* name is used for both the variable and the user—visible
* type name.

* @param new constructor for this filter type

* @param destroy destructor for this filter type

* @param src_value_type type of filter’s values (eg. unsigned int)
* @param snk_value_type type of lower source’s values (eg. unsigned
* int)

* @param snk_get_param_type type of the parameters used in

* filter’s get_value calls

* @param attrs NULL—terminated array of custom

* scheduler_filter_attributes , or NULL

*/

#define SCHEDULER_FILTER_TYPE_WITH_SINK_INPUT (name, new, destroy ,
src_value_type , snk_value_type, snk_get_param_type, attrs)

/% %
* Convenience macro to define a filter type using whose
* callback accepts arguments only when queried.

” "

get

XtreemOS—Integrated Project 36/51

name is used for both the variable and the user—visible

D2.2.6 IST-033576

* The filter type combines the filter attributes and filter

% instance constructors/destructors.

*

x The "get", "update_value", and "show" callback functions must

* be defined using DEFINE_SCHEDULER_FILTER x macros.

*

* @param name unique name among schuduler_port_type names. This
* name is used for both the variable and the user—visible
* type name.

* @param new constructor for this filter type

* @param destroy destructor for this filter type

* @param src_value_type type of filter’s values (eg. unsigned int)
* @param src_get_param_type type of the parameters for the

* get_value method

* @param snk_value_type type of lower source’s values (eg. unsigned
* int)

* @param attrs NULL—terminated array of custom

* scheduler_filter_attributes , or NULL

*/

#define SCHEDULER_FILTER_TYPE_WITH_SOURCE_INPUT (name, new, destroy ,
src_value_type , src_get_param_type , snk_value_type, attrs)

After the filter and its functions have been implemented, a developer only has to
define module initialization and cleanup functions. These functions are very sim-
ple for filters: they are used only for registering (or unregistering) filters with Plug-
ProPol framework. When a particular filter is registered with PlugProPol frame-
work, the administrator can add it to filter chains of different scheduling objects
so it enforces a particular filtering policy to the resource measurement data. The
cleanup function is used for unregistering filter and for releasing all the memory
taken by it (see listing 5.7).

Listing 5.7: Definition of functions for registering and unregistering filters.

VEE:

* Register a new filter type.

*

* @param type type initialized with SCHEDULER_FILTER _TYPE[_INIT]
* to register

*

* @return 0 is successful ,

* —EINVAL if the type is not complete,

* —ENOMEM if not sufficient memory could be allocated,
* —EEXIST if a filter type of the same name is already
* registered

*/

int scheduler_filter_type_register(struct scheduler_filter_type =xtype);

/% %

* Unregister a filter type. Must can only be called at module

* unloading .

*

* @param type The filter type to unregister

*/

void scheduler_filter_type_unregister (struct scheduler_filter_type xtype);

37/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

XtreemOS—Integrated Project 38/51

Chapter 6

Conclusion and future work

In this deliverable, we stated the current progress we made on implementation of
customizable scheduler. We described the structure of PlugProPol framework for
dynamic loading, unloading and connection of probes and scheduling policies from
user space. We also listed PlugProPol’s main features, gave a detailed instruction
on how to install and use it and provided syntax, description and examples of all
the commands that can be used to control it. Finally, we documented PlugProPol’s
API for all the developers that would like to write their own probes and scheduling
policies for it.

As a part of our future work, we are first planning to finish an implementation
of DRMAA [14] interface to the scheduler, which is used for the submission and
control of jobs to one or more Distributed Resource Management (DRM) systems.
This would enable all the applications that support this standard (e.g. all the appli-
cations that are written for the Torque and PBS resource management systems) to
be executed on LinuxSSI. Of course, we will make sure that the SAGA (i.e. Simple
API Grid Application) interface [10, 5] will also be supported, at least the part of
it that is related to job submission. Regarding PlugProPol framework, we are also
planning to implement various probes (e.g. 1/O probes for monitoring hard disk
and network traffic) and scheduling policies (e.g. load policies that are able to han-
dle inter-process dependencies such as IPC or shared memory). Among others, we
are also planning to implement scheduling policies, which will enable applications
to be migrated only to the nodes with certain properties and the ones that would
make sure that some processes are never located on the same cluster node.

Finally, we are planning on extending LinuxSSI scheduler with feedback loops
for self-adaptability just as described in Section 1.3 (the probes should adapt their
probing period and complete scheduling policies could be switched based on the
load in the cluster).

39/51

IST-033576 D2.2.6

XtreemOS—Integrated Project 40/51

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Configfs pseudo file system. http://lwn.net/Articles/148973/,
http://lwn.net/Articles/130342/, http://lwn.net/
Articles/148987/.

A. Barak and A. Shiloh. A distributed load-balancing policy for a multicom-
puter. Softw. Pract. Exper., 15(9):901-913, September 1985.

R. Buyya, T. Cortes, and H. Jin. Single system image. Int. J. High Perform.
Comput. Appl., 15(2):124-135, 2001.

XtreemOS consortium. Annex 1 - description of work. Integrated Project,
April 2006.

XtreemOS consortium. First draft specification of programming interfaces.
Deliverable D3.1.1, November 2006.

XtreemOS consortium. Specification of federation resource management
mechanisms. Deliverable D2.1.1, November 2006.

XtreemOS consortium. Prototype of the basic version of linuxssi. Deliverable
D2.2.7, November 2007.

C. Franke, F. Hoffmann, J. Lepping, and U. Schwiegelshohn. Development
of scheduling strategies with genetic fuzzy systems. Applied Soft Computing
Journal, 8(1):7060-721, January 2008.

C. Franke, J. Lepping, and U. Schwiegelshohn. Genetic fuzzy systems ap-
plied to online job scheduling. In Proceedings of the 2007 IEEE International
Conference on Fuzzy Systems, pages 1573-1578, London, June 2007. IEEE,
IEEE Press.

T. Goodale, S. Jha, T. Kielmann, A. Merzky, J. Shalf, and C. Smith. A Simple
API for Grid Applications (SAGA). Grid Forum Working Draft, Open Grid
Forum, 2006.

O. Pomerantz P. Salzman, M. Burian. The linux kernel module programming
guide. http://www.tldp.org/LDP/lkmpg/2.6/html/bookl.
htm, 2001.

41/51

IST-033576 D2.2.6

[12] Linux Reviews. Kernel configuration. http://linuxreviews.org/
sysadmin/kernel-configuration/, 2008.

[13] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, and
M. Swany. A grid monitoring architecture. Technical Report GWD-PERF-
16-2, Global Grid Forum (OGF), January 2002.

[14] P. Troger, H. Rajic, A. Haas, and P. Domagalski. Standardization of an api
for distributed resource management systems. In Proceedings of the Seventh
IEEE International Symposium on Cluster Computing and the Grid (CCGrid
2007), pages 619-626, Rio de Janeiro, Brazil, May 14-17 2007.

[15] A. Vasudevan. The linux kernel howto. http://linuxreviews.org/
sysadmin/kernel-configuration/, 2008.

XtreemOS—Integrated Project 42/51

Appendix

startup_mosix_scheduler.sh

#!/bin/sh

name of the test scheduler.
SCHEDULER_NAME=test —scheduler
2 seconds between each migration.
MIGRATION_INTERVAL=2000000000

configfs path for loading Mosix load balancer.
POLICY_PATH="schedulers /${SCHEDULER NAME}/configfs —mosix—load—balancer"
configfs path for loading Mosix probe for monitoring CPU load.
MOSIX_PROBE_PATH=probes/configfs —mosix—probe

configfs path for loading migration probe (probe which monitors

if migration is in progress).

MIGRATION_PROBE_PATH=probes/ migration_probe

go to the ConfigFS directory of LinuxSSI scheduler.
cd /config/krg_scheduler

load Mosix probe.

mkdir $MOSIX_PROBE_PATH

load migration probe.

mkdir $MIGRATION_PROBE_PATH

create "test—scheduler" scheduler and load Mosix load balancing
policy .

mkdir —p $POLICY_PATH

create a filter that limits frequency of migrations and attach
it to Mosix load balancer.

mkdir ${POLICY_PATH}/local_load/freq_limit_filter

set a period between subsequent migrations to be at least

MIGRATION_INTERVAL.

echo $MIGRATION_INTERVAL > _
${POLICY_PATH}/local_load/freq_limit_filter/min_interval

create a filter that doesn’t perform migration unless CPU load
is greater than a given threshold. At the same time, attach it
to "freq_limit_filter" filter.

mkdir ${POLICY_PATH}/local_load/freq_limit_filter/threshold_filter

link "last_event" attribute of "freq_limit_filter" filter to
"last_migration" attribute of migration probe.

In —s ${MIGRATION_PROBE PATH}/last_migration _
${POLICY_PATH}/local_load/freq_limit_filter/last_event/migration
link "events_on_going" attribute of "freq_limit_filter" filter
to "migration_on_going" attribute of migration probe.

43/51

IST-033576 D2.2.6

In —s ${MIGRATION_PROBE PATH}/migration_on_going _
${POLICY_PATH}/local_load/freq_limit_filter/events_on_going/ migration
link "process_load" attribute of Mosix load balancer to

"process_load" attribute of Mosix probe.

In —s ${MOSIX PROBE PATH}/process_load _

${POLICY_PATH }/process_load/mosix

link "norm_upper_load" attribute of Mosix load balancer to

"norm_upper_load" attribute of Mosix probe.

In —s ${MOSIX_PROBE_PATH}/norm_upper_load _

${POLICY_PATH }/remote_load/ mosix_upper

link "single_process_load" attribute of Mosix load balancer to

"norm_single_process_load" attribute of Mosix probe.

In —s ${MOSIX_PROBE_PATH}/norm_single_process_load _
${POLICY_PATH}/single_process_load/mosix

link "mosix_mean" attribute of Mosix "threshold_filter" filter to
"norm_mean_load" attribute of Mosix probe.

In —s ${MOSIX_PROBE_PATH }/norm_mean_load _
${POLICY_PATH}/local_load/freq_limit_filter/threshold_filter/mosix_mean

mem_probe.c

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux /mm.h>

#include <scheduler/configfs—probe.h>
#include <scheduler/configfs—const.h>
#include "mem_probe.h"

#define K(x) ((x) << (PAGE_SHIFT -10))

static mem_probe_data_t probe_data;
static mem_probe_data_t probe_data_prev;

static struct probe sxmem_probe;

// define "get" callback function for "mem—free" attribute
DEFINE_PROBE_VALUE_GET (mem_free, unsigned long, value_p, nr)
{

*value_p = K(probe_data.ram_free);

return 1;

}

// define "show" callback function for "mem—free" attribute
DEFINE_PROBE_VALUE_SHOW (mem_free , page)
{

ssize_t ret;

ret = sprintf(page, "%lu\n", K(probe_data.ram_free));

return ret;
}
// define "get" callback function for "mem—total" attribute
DEFINE_PROBE_VALUE_GET(mem_total , unsigned long, value_p, nr)
{

*xvalue_p = K(probe_data.ram_total);

return 1;

XtreemOS—Integrated Project 44/51

D2.2.6 IST-033576

// define "show" callback function for "mem—total" attribute
DEFINE_PROBE_VALUE_SHOW (mem_total , page)
{

ssize_t ret;
ret = sprintf(page, "%lu\n", K(probe_data.ram_total));

return ret;

}

// define probe measurement function
static void measure_mem (void)

{

struct sysinfo meminfo;
si_meminfo(&meminfo);

probe_data.ram_free = meminfo. freeram;
probe_data.ram_total = meminfo.totalram;

}

// define "value_changed" callback function for "mem—total" attribute
DEFINE_PROBE_VALUE_HAS_CHANGED(mem_total)

{
int isChanged = 0;

if (probe_data.ram_total != probe_data_prev.ram_total) {
isChanged = 1;

probe_data_prev.ram_total = probe_data.ram_total;

}

return isChanged;

}

// define "mem—total" probe attribute.
static PROBE_VALUE_TYPE(mem_total, NULL, unsigned long);

// define "value_changed" callback function for "mem—free" attribute
DEFINE_PROBE_VALUE_HAS_CHANGED (mem_free)

{
int isChanged = 0;

if (probe_data.ram_free != probe_data_prev.ram_free) {
// the value has changed
isChanged = 1;
// update the previous value with current value.
probe_data_prev.ram_free = probe_data.ram_free;

}

return isChanged;

}

// define "mem—free" probe attribute
static PROBE_VALUE_TYPE(mem_free, NULL, unsigned long);

static struct probe_value xmem_probe_values[3];

// define memory probe
static PROBE_TYPE(mem_probe_type, NULL, measure_mem);

45/51 XtreemOS—Integrated Project

IST-033576

int init_module ()

{
int err = -ENOMEM;

// create probe attributes

mem_probe_values[0] = krg_probe_value_create(&mem_free,
"mem—free");
mem_probe_values[1] = krg_probe_value_create(&mem_total ,

"mem—total");
mem_probe_values [2]

NULL;

if (mem_probe_values[0]==NULL || mem_probe_values[1]==NULL)
printk (KERN_ERR "error: _cannot _initialize_mem_probe "

"attributes\n");
goto out_kmalloc;

}

// create probe

mem_probe = krg_probe_create(&mem_probe_type , MEM _PROBE NAME,

mem_probe_values);
if (mem_probe == NULL) ({

D2.2.6

printk (KERN_ERR "error:_mem_probe_creation_failed !\n");

goto out_kmalloc;

}

// perform first measurement
measure_mem () ;
probe_data_prev = probe_data;

// register probe with PlugProPol framework
err = krg_probe_register (mem_probe);
if (err)

goto err_register;

return 0;

err_register:
krg_probe_free (mem_probe);
out_kmalloc:
if (mem_probe_values[0] != NULL)
krg_probe_value_free (mem_probe_values[0]);
if (mem_probe_values[1] != NULL)
krg_probe_value_free (mem_probe_values[1]);

return err;

}

void cleanup_module ()
{
int i;
PDEBUG (KERN_INFO "mem_probe_cleanup_function_called !\n");
// unregister probe
krg_probe_unregister (mem_probe);
// destroy probe
krg_probe_free (mem_probe);
for (i = 0; mem_probe_values[i] != NULL; i++)
krg_probe_value_free (mem_probe_values[i]);

echo_policy.c

XtreemOS—Integrated Project

46/51

D2.2.6 IST-033576

#include <linux/kernel.h>
#include <linux/module.h>

#include <scheduler/configfs—sched—policy .h>
#include <scheduler/configfs—end_port.h>
#include "echo_policy.h"

struct echo_policy {
struct sched_policy policy;
struct scheduler_end_port xport_mem_free;
struct scheduler_end_port xport_mem_total;

s

// define "show" callback function for "echo—attr" attribute

static ssize_t sched_policy_attr_echo_show (struct sched_policy xitem,
char xpage) {
ssize_t ret = 0;

ret = sprintf(page, "calling_sched_policy_attr_echo_show !\n");

return ret;

}

// define "echo—attr" attribute
static struct sched_policy_attribute echo_attr = {
attr = |
.ca_owner = THIS_MODULE,
.ca_name = "echo—attr",
.ca_mode = S_IRUGO,
}s
.show = sched_policy_attr_echo_show ,

s

// define a list of policy’s attributes.

static struct sched_policy_attribute xecho_policy_attrs[] = {
&echo_attr ,
NULL,

s

// define "update_value" callback function for "port_mem_free"
// end port of "echo—policy"
static void update_mem_free(struct scheduler_end_port xport, void *xprivate)

{

unsigned long mem_free;

if (SCHEDULER_END_PORT_GET_VALUE(port ,
&mem_free, 1) > 0) {

printk (KERN_INFO "echo_policy:_mem_free=%lu\n", mem_free);
}
else {

printk (KERN_ERR "echo_policy: _cannot_read_mem_free\n");
}

}

// define "port_mem_free" end port
static SCHEDULER_END_PORT_TYPE(port_mem_free_type , NULL,
unsigned long);

// define "update_value" callback function for "port_mem_total”
// end port of "echo—policy"
static void update_mem_total (struct scheduler_end_port xport, void xprivate)

{

47/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

unsigned long mem_total;

if (SCHEDULER _END_PORT GET VALUE(port ,
&mem_total, 1) > 0) {
printk (KERN_INFO "echo_policy:_mem_total=%lu\n", mem_total);

else {
printk (KERN_ERR "echo_policy: _cannot_read_mem_total\n");

}

// define "port_mem_free" end port
static SCHEDULER_END_PORT_TYPE(port_mem_total_type , update_mem_total,
unsigned long);

static struct sched_policy % echo_policy_new (const char xname);
static void echo_policy_destroy (struct sched_policy =xpolicy);

// define constructor and destructor for "echo_policy" scheduling
// policy
static struct sched_policy_operations echo_policy_ops = {

.new = echo_policy_new,

.destroy = echo_policy_destroy ,

1

// define "echo_policy" scheduling policy
static SCHED_POLICY_TYPE(echo_policy_type, "echo_policy",
&echo_policy_ops, echo_policy_attrs);

// define constructor for "echo_policy" scheduling policy
static struct sched_policy * echo_policy_new (const char xname)

{
struct echo_policy =*p;
struct config_group *def_groups|[3];
int err;

p = kmalloc(sizeof (xp), GFP_KERNEL);
if (!p)

goto err_echo_policy;

// create end ports of "echo_policy" scheduling policy

p—>port_mem_free = scheduler_end_port_create ("port_mem_free",
&port_mem_free_type ,
p);
p—>port_mem_total = scheduler_end_port_create ("port_mem_total",
&port_mem_total_type ,
P);

if (p—>port_mem_free==NULL || p—>port_mem_total==NULL)
goto out_def_groups;

// initialize default memory groups.

def_groups[0] = scheduler_end_port_config_group (p—>port_mem_free);
def_groups[1] = scheduler_end_port_config_group (p—>port_mem_total);
def_groups[2] = NULL;

// initialize scheduling policy
err = krg_sched_policy_init(&p—>policy , name, &echo_policy_type,
def_groups);
if (err)
goto err_policy;

return &p—>policy;

XtreemOS—Integrated Project 48/51

D2.2.6 IST-033576

err_policy:
out_def_groups:
if (p—>port_mem_free != NULL)
scheduler_end_port_free (p—>port_mem_free);
if (p—>port_mem_total != NULL)
scheduler_end_port_free (p—>port_mem_total);
err_echo_policy:
printk (KERN_ERR "error:_echo_policy_creation_failed !\n");
return NULL;
}

// define destructor for "echo_policy" scheduling policy

static void echo_policy_destroy(struct sched_policy =*policy)

{
struct echo_policy *p =

container_of (policy , struct echo_policy, policy);

// destroy scheduling policy
krg_sched_policy_cleanup (policy);
// destroy scheduling policy endports
scheduler_end_port_free (p—>port_mem_free);
scheduler_end_port_free (p—>port_mem_total);

kfree(p);
}
int init_module (void)
{
int err;
// initialize scheduling policy end ports
err = scheduler_end_port_type_init(&port_mem_free_type);
if (err)
goto err_mem_free;
err = scheduler_end_port_type_init(&port_mem_total_type);
if (err)
goto err_mem_total;
// register scheduling policy with PlugProPol framework
err = krg_sched_policy_type_register(&echo_policy_type);
if (err)
goto err_register;
out:

return err;

err_register:
scheduler_end_port_type_cleanup(&port_mem_total_type);
err_mem_total:
scheduler_end_port_type_cleanup(&port_mem_free_type);
err_mem_free:
goto out;

}

void cleanup_module (void)

{
// unregister scheduling policy
krg_sched_policy_type_unregister(&echo_policy_type);
// destroy scheduling policy end ports
scheduler_end_port_type_cleanup(&port_mem_total_type);
scheduler_end_port_type_cleanup(&port_mem_free_type);

49/51 XtreemOS—Integrated Project

IST-033576 D2.2.6

threshold_filter.c

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>

#include <scheduler/configfs—filter .h>

struct threshold_filter {
struct scheduler_filter filter;
unsigned long threshold;

}s

#define to_threshold_filter (_filter) \
container_of ((_filter), struct threshold_filter , filter)

// define the "show" callback function of the "threshold" filter
// attribute
static ssize_t threshold_attribute_show (
struct scheduler_filter =filter , char *page)
{
struct threshold_filter *xf = to_threshold_filter(filter);
return sprintf(page, "%lu", f—>threshold);
}

// define the "store" callback function of the "threshold" filter
// attribute
static ssize_t threshold_attribute_store (

struct scheduler_filter xfilter ,

const char xpage, size_t count)

struct threshold_filter xf = to_threshold_filter(filter);
unsigned long new_value;
char xlast_read;

new_value = simple_strtoul (page, &last_read, 0);
f—>threshold = new_value;

printk ("count=%u_read=%d\n", count, last_read — page);
return count;

}

// define a "threshold" filter attribute

static SCHEDULER_FILTER_ATTRIBUTE(threshold_attr , "threshold", 0666,
threshold_attribute_show ,
threshold_attribute_store);

// define a list of filter attributes

static struct scheduler_filter_attribute xthreshold_attrs[] = {
&threshold_attr ,
NULL

s

// defince the "get" callback function for the filter
DEFINE_SCHEDULER_FILTER_GET_VALUE_SIMPLE(threshold_filter);

// defince the "show" callback function for the filter
DEFINE_SCHEDULER_FILTER_SHOW_VALUE_SIMPLE(threshold_filter);

// defince the "update_value" callback function for the filter
DEFINE_SCHEDULER_FILTER_UPDATE_VALUE(threshold_filter , filter)

{
struct threshold_filter *f = to_threshold_filter(filter);

XtreemOS—Integrated Project 50/51

D2.2.6 IST-033576

unsigned long value;
ssize_t ret;

ret = SCHEDULER_FILTER_SIMPLE GET_VALUE(filter , &value, 1);
if (ret > 0 && value >= f—>threshold)
scheduler_filter_simple_update_value(filter);
}
// defince the "remote_get_value" callback function for the filter
DEFINE_SCHEDULER_FILTER_GET_REMOTE_VALUE SIMPLE(threshold_filter);

static struct scheduler_filter * threshold_new (const char xname);
static void threshold_destroy (struct scheduler_filter *port);

// define "threshold_filter" filter
static SCHEDULER_FILTER_TYPE(threshold_filter , threshold_new ,
threshold_destroy ,bunsigned long, unsigned long, threshold_attrs);

// define constructor for "threshold_filter" filter

static struct scheduler_filter % threshold_new (const char xname)

{
struct threshold_filter *f = kmalloc(sizeof (xf), GFP_KERNEL);
int err;

if (!f)
goto err_f;
err = scheduler_filter_init(&f—>filter , name, &threshold_filter);
if (err)
goto err_filter;
f—>threshold = 0;

return &f—>filter ;

err_filter:

kfree (f);
err_f:

return NULL;
}

// define destructor for "threshold_filter" filter
static void threshold_destroy (struct scheduler_filter xfilter)

{
struct threshold_filter xf = to_threshold_filter(filter);
scheduler_filter_cleanup (filter);

kfree (f);
1
static int init_module (void)
{
// register filter with PlugProPol framework
return scheduler_filter_type_register(&threshold_filter);
}
static void cleanup_module (void)
{
// unregister filter
scheduler_filter_type_unregister(&threshold_filter);
}

51/51 XtreemOS—Integrated Project

