XtreemOS: a Grid Operating System Making your Computer Ready
for Participating in Virtual Organizations

Christine Morin*

PARIS Project-team
XtreemOS Scientific Coordinator
IRISA /INRIA
Christine. Morin@irisa.fr

Abstract

The owverall objective of the XtreemOS project is
the design, implementation, evaluation and distribu-
tion of an open source Grid operating system (named
XtreemOS) with native support for virtual organiza-
tions (VO) and capable of running on a wide range
of underlying platforms, from clusters to mobiles. The
approach we propose is to investigate the design of a
Grid OS, XtreemOS, based on the Linux existing gen-
eral purpose OS. A set of system services, extending
those found in the traditional Linuz, will provide users
with all the Grid capabilities associated with current
Grid middleware, but fully integrated into the OS. The
underlying Linux will be extended as needed to support
VOs spanning across many machines and to provide
appropriate interfaces to the Grid OS services. In-
stalled on each participating machine, the XtreemOS
system will provide for the Grid what an operating sys-
tem offers for a single computer: abstraction from the
hardware, and secure resource sharing between differ-
ent users. It would thus considerably ease the work
of users belonging to VOs by giving them (as far as
possible) the illusion of using a traditional computer,
and releasing them from dealing with the complex re-
source management issues of a Grid environment. By
integrating Grid capabilities into the kernel, XtreemOS
will also provide a robust, secure and easy to manage
infrastructure for system administrators.

1 Introduction

Grids [10] enable the sharing, selection, and aggrega-
tion of a wide variety of resources including supercom-
puters, storage systems, data sources, and specialized

*This paper presents the work of the XtreemOS consortium.

devices that are geographically distributed and owned
by different organizations for solving large-scale com-
putational and data intensive problems in science, en-
gineering, and commerce [4]. Virtual organizations [11]
are temporary or permanent alliances of enterprises or
organizations that come together to share resources,
skills, core competencies in order to better respond to
business opportunities or large-scale application pro-
cessing requirements, and whose cooperation is sup-
ported by computer networks.

In the last few years some interesting projects like
Globus [1], Legion [2] and UNICORE [3] were devel-
oped. The a la Globus approaches are designed as
a sum of services infrastructure, in which tools are
developed independently in response to current needs
of users. In particular, Globus started out with the
bottom-up premise that a Grid must be constructed as
a set of tools developed from user requirements, and
consequently its versions (GT2, GT3, GT4) are based
on the combination of working components into a com-
posite Grid toolkit that fully exposes the Grid to the
programmer. However, a risk associated with those
approaches is that, as the number of services grows,
the lack of a common programming interface to com-
ponents and the lack of a unifying model of their in-
teraction can have a negative impact on ease of use.
Typically, these issues must be dealt with by the pro-
grammer, who is forced to spend valuable time on basic
Grid functions (e.g. providing their own mechanisms
for service interoperability), thus needlessly increasing
development time and costs [12].

We believe that the Grid infrastructure must abso-
lutely reduce the burden on the application developer
investing on the open source operating systems and
extending them towards Grid, simplifying the life of
the high-level Grid services implementers because they
could rely on the native services of the operating sys-



tem kernel for tasks such as resource or process man-
agement.

In this paper, we present our approach in designing
the XtreemOS Grid operating system. The key techno-
logical challenges in XtreemOS, compared to the clas-
sical middleware (a la Globus) approaches, are mainly
related to the fact that XtreemOS aims to be a first
step towards the creation of a true open source oper-
ating system for Grid platforms supporting distributed
resources, such as PCs and mobile devices like PDAs
or mobile phones. It is just as a traditional operat-
ing system does for a single computer providing an
abstract interface to its underlying local physical re-
sources. While much work has been done to build Grid
middleware on top of existent operating systems, lit-
tle has been done to extend the underlying operating
systems for enabling and facilitating Grid computing,
for example, by embedding some important basic ser-
vices or functionalities directly into the operating sys-
tem kernel.

In Section 2, we present an overview of XtreemOS
design principles. We detail our approach for secure
application execution in Section 3. The application
execution service which targets efficient and reliable
application execution is described in Section 4. Sec-
tion 5 is devoted to XtreemFS, XtreemOS file system,
which federates collections of data, providing efficient
and transparent access to them. Section 6 concludes.

2 Overview of XtreemOS Design Prin-
ciples

The challenge that XtreemOS project wants to
tackle is to design and implement an Operating Sys-
tem (OS) that will support the management of very
large and dynamic ensembles of resources, capabilities
and information composing virtual organizations. We
propose a Linux-based OS to support Virtual Organi-
zations (VO) across multiple administrative domains.
XtreemOS aims at making VO management easy for
administrators and work within VOs easy for users.
The cost of administering and operating a VO (e.g.,
adding or removing nodes, changing access policy, au-
thenticating and authorizing users) should be mini-
mized to a bounded value rather than simply increase
with the number of users and resources participating
in the VO. Moreover, the dynamicity of users and re-
source usage needs to be handled in a flexible way.
Users and resources are often autonomous, not sub-
ject to the control of a centralized entity. A user or a
resource can join or leave a VO at any time. Such cases
could bring heavy management burdens to administra-
tors, which must be alleviated by the newly designed

mechanisms.

We first introduce the considered model of system.
Then, we present XtreemOS requirements describing a
set of scenarii of use. We finally present an overview of
XtreemOS approach and architecture.

2.1 Model of System

A VO can be seen as a temporary or permanent
coalition of geographically dispersed entities (individ-
uals, groups, organizational units or entire organiza-
tions) that pool resources, capabilities and information
to achieve common objectives. There usually will be le-
gal or contractual arrangements between the entities.
The resources can be physical equipment such as com-
puting or other facilities, or other capabilities such as
knowledge, information or data.

2.1.1 Grid Physical Infrastructure

In a VO, information is stored and services and appli-
cations are executed by a set of computers in a grid.
A grid is assumed to be made of an uncountable num-
ber of computers that are called grid nodes (or simply
nodes). Computers can be clusters, single PCs or mo-
bile devices (MD) such as personal digital assistants
(PDA) or mobile phones. Computers are intercon-
nected through heterogeneous networks in the range
of System Area Networks (SAN), LAN, metropolitan
networks, and WAN; including wireless networks. Net-
works interconnecting grid computers do not exhibit a
uniform quality of service. Mobile devices can only be
considered as access points to the VO resources as they
are only intermittently connected and have a limited
number of resources. The more powerful computers
may act as both an access point to VO resources and a
resource provider for a given VO. Computers will gen-
erally be located in different administrative domains
(belonging to different institutions or not).

2.1.2 Applications and Services

We consider the execution of distributed applications
and services within virtual organizations. A dis-
tributed application is made up of one or several tasks.
A task may be a process or a set of communicating
threads or processes. A task is executed on a single
grid node. Different tasks can be executed on different
grid nodes. Various communication paradigms such as
message passing or data sharing may be used for com-
munication between tasks and within a task.



2.1.3 Virtual Organizations

Virtual Organization (VO) membership agreements are
created as a means of isolating a selected subset of
members from the overall Grid. VO wide agreements
are still dominated by the Grid-wide agreement and
cannot override these terms and conditions. There-
fore, VOs formed within a particular Grid, using its
agreed namespace, services and infrastructure must be
compliant with its regulations. It should not be possi-
ble for VOs to be formed with participants that have
not passed the basic qualification for entry in the Grid
infrastructure.
We make the following assumptions:

e There are one or more organizations that are re-
sponsible for membership in a Grid infrastructure
they sanction the initial membership of entities
in the Grid and provide offline, online or inline
validation of their membership. These authorities
are trusted. Certificate authorities (CA) and real-
world entities (persons, organizations) are not part
of XtreemOS but are involved in the registration
of Grid users.

e Any VO also has an authority or manager that
provides a server for registration and membership
in a VO.

e Organizations or individuals may be members of
multiple VOs, given that they are registered mem-
bers with the overall Grid infrastructure.

e Contracts, agreements and reputations do not
need to be understood explicitly by the OS, but
it is assumed that there are services that provide
proof and assertions of the status of these to OS-
level services.

Key components of a VO are an administrator of the
VO, who is authorized to manage VO membership and
policies, a set of participating users (called Grid users)
in different participating domains, a set of participat-
ing resources in different participating domains, a set
of roles which users/resources can play in the VO, a
set of rules/policies on resource availability and access
control, an (renewable) expiry time of the VO.

A VO and its implementation by an operating sys-
tem can reside in several stages of VO lifecycle: VO
identification, VO formation, VO operation, VO evolu-
tion, and VO dissolution. In each stage a set of security
threats to the overall system exists.

2.2 Scenarii of Use

The following scenarii are intended to give a flavour
of the way XtreemOS will operate, and enable the novel

aspects of XtreemoS to be related to everyday experi-
ence.

2.2.1 VO and Security

Usability In contrast to a toolkit approach such as
Globus, where there are two separate but highly inter-
dependent complex entities to be managed in tan-
dem (the underlying OS and the middleware), the
XtreemOS project adopts an approach in which the
standard operating system running on a machine is a
Grid OS, that is to say, the operating system is fully
Grid-enabled. Once the XtreemOS system has been
installed on a machine, this machine is ready to par-
ticipate in a VO with no need to install additional
system software. Modifications to Linux to natively
support VOs are done with a careful design to keep
backward compatibility while providing build-in VO
management interfaces that are as secure and simple
to use as possible. System services and utilities such
as login and shell programs, together with libraries, are
extended in a modular approach so as to favor VO-level
resource sharing requirements while keeping maximal
transparency to users.

Logging A person who wants, using XtreemOS, to
access resources and services provided by a single node
or a set of nodes which may be affiliated with a VO
first need to register as a Grid user and then to reg-
ister to the given VO. He/she acquires credentials (a
certificate) that will be used to prove her/his identity
on login. The user must have a local account on some
computer where the certificate will be stored but does
not need to have a local account on the nodes he wishes
to use.

Running applications and accessing resources
To run applications or access services, a Grid user
should log into a VO he/she belongs to. If the log-
gin is successful, the user will be provided with a sim-
ple shell that will enable him to issue and respond to
requests (similar to the Linux shell Linux commands
are actually requests to the OS to do something and
the OS can and does refuse some of these commands).
Requests can only be issued in the context of a VO,
and can only be targeted at other members of the VO.
Therefore, in order to access any resources anywhere,
the user must join an appropriate VO.

Resources are owned by an owner and made avail-
able via VOs. The resource owner may make the re-
source available to other VOs. However, while the VO
may have access to the resource, the resource owner
remains in ultimate control of their resource.



Authorization is managed by the VOs. Basically,
membership of a VO provides authorization to use the
resources accessible to the VO, subject to any finer
grain access control policy the VO may implement. At
its simplest, this operates like the Linux group concept.
When a user tries to access a resource, the resource
firstly checks the requestor is a co-member of one of
its VOs, and then uses that VOs policies to decide if
the access is permitted. The resource is also expected
to check with its own base VOs policy before giving
access to anything on the local host.

Security Policies Access security in XtreemOS will
be policy driven. This means that for each resource
(which includes VOs, applications, hosts, etc., in fact
anything that requires protection) there will be a pol-
icy specifying who can access it and what they can do
with it. In the case of a resource such as a file, the
who could be a list of individuals and/or VOs, and
the what could be read, write or execute actions sim-
ilar to the conventional Linux file permissions (with a
VO being considered as a sort of group). However, in a
distributed and VO-based environment access will typ-
ically involve more than one entity, each with its own
policies.

2.2.2 Application Management

Integrated control for execution XtreemOS will
allow users to have a much simple and, at the same
time, powerful environment to control the execution
of their applications. As all layers will be integrated,
the system will be able to offer information about the
progress of the job, accurate monitoring of the used
resources, error information, etc.

In the current Grid world, given that the managers
for the different layers are not integrated, a lot of in-
formation is lost in the way and the one that survives
it is not correlated making it very difficult to use. For
instance, in current Grid systems it is difficult to know
why an application failed, when and with exactly what
resources it run, etc.

The integration of all services in a single OS will
remove the lack of integration and offer users an exe-
cution environment with plenty of monitoring informa-
tion and a powerful control of execution.

Reducing scheduling level In current Grid sys-
tems, there are many scheduling levels and these levels
are not coordinated, which means that decisions made
at one level may be contradictory to decisions made
at a different level. This lack of coordination has two
negative side effects. On the first hand, plenty of time

and resources are lost in scheduling tasks that could be
avoided in an integrated system. On the other hand,
the final schedule is not as good as it could be be-
cause the decisions made by one level are not necessar-
ily taken into account in another level.

The integration of resource management will avoid
these multiple scheduling levels leaving only the neces-
sary ones that will be coordinated.

Accurate accounting Nowadays, accounting is
done by the grid middleware, but the Grid middleware
is not really aware of the resources used, how shared
they were, etc.

In XtreemOS, as the management of resources will
be all integrated, this accounting will be much more
accurate and could be used in a future for usage
billing /compensation without the problems we have to-
day.

2.2.3 Data Management

XtreemF'S, XtreemOS Grid file system, should exhibit
a Unix-like (Posix) behaviour where possible. It should
support extended meta-data, hierarchical names (the
traditional directory structure), private, shared and
collaboration data, and data archives. It should also
support named Grid pipes, used by workflows where
different processes produce data and some others con-
sume it, the various processes being located on different
nodes. Access rights should be managed in a manner
such that file access could be granted to Grid users
according to VO policies.

2.3 Overview of XtreemOS

Current general-purpose operating systems have not
been designed to support VOs. Each OS considers it-
self to be an island, with other systems being consid-
ered minor subsidiary players to be handled individu-
ally and specifically. VO management is usually imple-
mented in Grid middleware.

XtreemOS is designed as an operating system and
facilitates the use and management of VO resources by
making transparent the resource distribution and het-
erogeneity as well as reconfigurations due to the dy-
namic nature of VO (at anytime, a computer may join
or leave a VO voluntarily or consequent to a failure).
Installed on each participating machine, the XtreemOS
system should provide for the grid what an operating
system offers for a single computer: an abstraction of
the hardware and secure resource sharing between dif-
ferent users. It would thus considerably ease the work
of users belonging to VOs by giving them (as far as



Applications and services

XtreemOS

‘ XtreemFS ‘

‘ Application Execution Management

XtreemOS-G

‘ Infrastructure for Highly Available and Scalable Services

‘ ecurity & VO ‘

XtreemOS-F

‘ Linux

Figure 1. XtreemOS architecture

possible) the illusion of using a traditional computer,
thereby releasing them from dealing with the complex
resource management issues of a grid environment.

The XtreemOS operating system is based on Linux,
which is extended rather than replaced (see Figure 1).

Internally, XtreemOS is composed of two parts:
XtreemOS foundation called XtreemOS-F and
XtreemOS high-level OS services called XtreemOS-G.
XtreemOS-F is the modified Linux kernel embedding
VO support mechanisms and providing an appro-
priate interface to implement XtreemOS-G services.
XtreemOS-G is implemented on top of XtreemOS-F
at user level. XtreemOS-G comprises of several Grid
OS distributed services to deal with resource and
application management in VOs. The VO and security
management service is implemented in two tightly
coupled parts: the XtreemOS-G part relies on mech-
anisms implemented in XtreemOS-F as explained in
Section 3. XtreemF'S, the XtreemOS Grid file system,
described in Section 5 and the application execution
management service, presented in Section 4 both rely
on the infrastructure for highly available services [5].
This infrastructure provides a set of building blocks
(such as for instance publish/subscribe, distributed
server, virtual node, directory service) that allow
the upper services to cope with the large scale and
dynamicity of VO.

There are three flavours of XtreemOS-F system, one
for each kind of Grid node: PC, cluster and mobile
device. The cluster flavour of XtreemOS-F relies on
the Kerrighed [14] Linux-based single sytem image. A
cluster thus appears as a single powerful higly reliable
node in the grid, its individual nodes being invisible at
Grid level.

3 Secure Application Execution

The goal of VO support in XtreemOS is to provide
mechanisms to set up and manage VOs in a scalable
and flexible manner, and mechanisms which ensure ac-
cess to various resources with fine-grained, mandatory
access control without sacrificing site autonomy. VO
support functionalities in XtreemOS are realized by
the cooperative activities of VO-level and node-level
management services [7, 8]. Particularily, the main ob-
jectives of node level VO support are:

e to facilitate the administration tasks for a single
PC node to join or leave VOs,

e to enforce VO policies locally with system-level
isolation of multiplexed VO accesses to the same
node,

e to significantly increase the usability of shared re-
sources on local nodes for VO users.

The key challenge here is to reach a harmonisation
between VO-level policies and local policies on nodes
which depend on autonomic domain administrators.
On one hand, the enforcement of multiple VO security
policies should be differentiated, on the other hand,
this kind of enforcement should not be conflicting with
any local policy of nodes and it will not impaire the
usability of resources for grid users.

Node level VO management encompasses two main
tasks:

e User Identity Transferring
The task is to develop an account-based mecha-
nism for the smooth transferring from global grid
identities to local Linux accounts.

e Resource Management and Access Control
The task is to develop resource management
mechanisms compatible with local Linux Discre-
tionary Access Control (DAC) model while sup-
porting required access control specified in VO
policies, which, to the contrary, generally adopt
the Mandatory Access Control (MAC) model.

3.1 Session Management

A grid session on a Linux-XOS node covers all ac-
tivities on beneath the same credentials. A grid ses-
sion starts with the acceptance of the user crendential.
When the session is terminated, no more activity can
exist on behalf this credential. Opening a new session
on a grid node takes the three classical steps: authenti-
cation, authorisation and session creation. These three



steps can be implemented in XtreemOS through PAM
plugins as explained in Section 3.2. Linux-PAM is a
system of libraries that handle the authentication tasks
of applications (services) on the system. The library
provides a stable general interface API that privilege
granting programs (such as login and su) defer to per-
form standard authentication tasks.

Authentication the credentials presented with the
request (ticket, proxy certificate, ...) are checked
and validated: user identity from some certificate
authority, attribute certificates from VOs. De-
pending on the VO model, this phase can necessi-
tate transactions with external grid services.

Authorization after the request has been fully au-
thenticated, further authorization checks can be
taken, for instance that access to this node is not
denied for this user.

Session creation the last step after authentication
and authorization is the creation of a user con-
text. This step involves the selection of a local
UID/GID for the session, the initialisation of the
user environment (from the job description doc-
ument), creating a scratch homedir or mapping
the user homedir from a grid file system, starting
some auditing/logging/monitoring/management
service, storing the proxy certificate in the session
context (keyring), dropping some capabilities and
running the user request.

A session on a grid node can be limited to running a
single process (simple session). It is also possible to in-
teract with the session through the associated manage-
ment service, for instance to start new processes (com-
posite session). XtreemOS API must provide means to
run simple application —a single request for the whole
execution— and to run complex applications —a session
is first opened and then multiple execution requests can
be handled in this session—. Session can be interactive
or not. To facilitate interaction with applications us-
ing GUI interfaces, XtreemOS sessions must provide
secure X11 forwarding as in SSH.

The session is terminated when the application of a
simple session is terminated, the management service
received an end-of-session request, or the proxy certifi-
cate is no more valid.

3.1.1 Local UID Management

In order to run processes on a grid node, a local
UID/GID must be allocated for each session. This
UID/GID can be static (the user owns a local account

on the node) or dynamic (the user is unknown). A dy-
namic UID/GID is returned to the free UID/GID pool
at the end of the session once all corresponding pro-
cesses have terminated and once all local objects (files,
etc.) have been deleted.

The possession of a local account can be managed
in a kind of gridmapfile (a configuration file listing user
Distinguished Names and the local accounts) and anal-
ysed by a session PAM plugin. It should also be pos-
sible to specify the local account identification using
a trusted (by the local domain) attribute of the user
proxy certificate.

3.1.2 Access control

Access control to an object in XtreemOS depends on
whether it is a kernel object or a grid object. Kernel
objects are local files, local processes, local shared seg-
ments, ... on a grid node. Applications access these
objects using native Linux API: open/read/write for
files, signal for processes, ... In order to avoid deep
modifications to the Linux kernel, access control to ker-
nel objects should use the native DAC/ACL system of
Linux in XtreemOS.

Access control to grid objects will be managed in-
side grid services (grid file system, etc.). It is possible
to “cache” grid objects inside the kernel in order to
improve efficiency. This is the case of local grid file
replicas. In the case where many concurrent sessions
open the same grid file, they use the same local replica.
Linux ACLs appears to be the most appropriate tool
for handling this case. Access rights to replicas are re-
moved by the grid file system service when the file is
closed.

3.2 Modification to Linux

Virtual Organizations (VO) support in Linux re-
quires the control, mapping, allocation, monitoring and
enforcement of global, grid and VO visible resources
onto single Linux nodes. Linux is unaware of the global
grid entities therefore mechanisms for recognizing, con-
trolling and enforcing their usage on the Linux ma-
chines should be added. We chose to use existing in-
frastructure in the Linux kernel:

e Global grid entities are mapped to local ones (like
user and group IDs (UID/GID)). Existing mech-
anisms for local entities will be used to enforce
resource control.

e The kernel key retention service will be used for
storing user private keys, certificates and proxies
associated with user processes and sessions in ker-
nel space. This mechanism will avoid the need for



kernel changes for transporting grid-related infor-
mation in process context.

Modifications to Linux mainly reside at system service
level rather than kernel level. The chosen approach
is minimal with respect to core kernel code changes
and tries to keep required kernel changes localized in
dynamically loadable kernel modules. The interaction
between kernel space and user space daemons is done
through existing APIs.

The following extensions are added to facilitate the
use of VO functionalities by users:

e A new PAM module will be developed to take
over the initialization of grid sessions. After au-
thenticating users and getting authorization infor-
mation from higher-level VO services, this PAM
module will do account mapping and translate
VO-level policies into POSIX-compliant local poli-
cies, i.e. UID/GID, ACL and POSIX Capabilities.
This PAM module itself is designed as a pluggable
framework to fit with various high-level VO mod-
els. For example, authentication plugins are ca-
pable of authenticating users with respect to their
PKI certificates, or from a MyProxy repository,
or by interacting with federated identity providers
like Shibboleth. To obtain attributes information
for users, authorization plugins could be devel-
oped to access VOMS servers or role-based ac-
cess control frameworks like Permis. The plu-
gin architecture of this PAM module makes node-
level management mechanisms independent from
higher-level VO frameworks. In XtreemOS, a do-
main system administrator installs the plugins cor-
responding to the VOs having access to the local
nodes. The system is extensible: new plugins cor-
responding to new VO models (or credentials) can
be developed and installed dynamically. Virtual
organizations managed using different VO models
can cohabit on the same node.

e Besides the PAM module guarding the login pro-
cess, there will be runtime services that monitor
and control users’ activities during their grid ses-
sions. The responsibilities of these services include
checking and adjusting resource limits of processes
in a VO context (e.g. by set_rlimit() ), logging re-
source usage of processes, and providing error or
debug information feedback to users.

e System services and utilities such as SSH could be
extended to allow grid users to use remote nodes
interactively without the need of explicitly creat-
ing traditional user accounts. Once login, grid
users with identities like certificates could have a

shell access to remote nodes in a VO. It may favor
the requirements from advanced users who wish
to develop and debug applications on grid nodes
rather than being limited to submit batch jobs.
This modification allows for a mimic approach of
using the Grid as same as using traditional high
performance computers.

Overall, by extending the Linux operating system
with builtin VOs support, XtreemOS can provide out-
standing performance and enhanced security, while
minimizing administration costs of VOs compared with
existing middleware solutions for VO.

4 Efficient and Reliable
Execution

Application

The Application Execution Management (AEM)
system 1is in charge of efficient and reliable job execu-
tion [6]. A job is one or more Linux processes that col-
laborate to achieve a certain goal or objective. The idea
is that a job is a resource allocation unit and resources
are consumed by the processes (or their threads). A
resource is any physical or logical component of lim-
ited availability within a computer system. These re-
sources, besides static characteristics will have some
dynamic ones that will also be used in the allocation
process. Finally, we will have to take into account that
resources can be allocated only partly (some proces-
sors) and that they may belong to different VO.

The AEM system comprises a set of services that
covers necessities of users and jobs in executing new
jobs, controlling their execution, monitoring their exe-
cution from different perspectives (resource consump-
tion, performance, status, etc). The AEM system of
XtreemOS is not targeted to specific users or types of
jobs, so it must be as generic and flexible as possible,
differentiating the services or functionality from details
such as job specification. We take into consideration
what users are expecting from a grid system and what
a grid system has to offer in terms of security, scal-
ability, efficiency, fault tolerance, and management of
dynamicity and heterogeneity.

User Point of View From the point of view of users
(or the job itself), what is expected from the AEM ser-
vices is a set of facilities that allows to efficiently exploit
the advantages of executing jobs in a grid. That is, the
huge amount of resources should be available in an easy
and efficient way. By easy we mean that XtreemOS
must support remote execution of jobs submitted in a
standard UNIX way without modifications in the bi-
nary code, and with minimum user intervention when



submitting it. Obviously, this approach reduces the
amount of information provided to the AEM system to
the default context values. However, our goal is to com-
bine these default values with additional user-provided
hints about resources and scheduling goals in order to
best support the job . We think that hints such as my
job consumes a lot of cpu, or memory are something
that we can expect from users. By easy we also under-
stand that we must provide tools to users (and jobs)
to monitor job execution. These tools must be as easy
to use as executing a UNIX ps command.

Job Point of View From the point of view of a job,
the AEM system should offer an efficient job execution
management, that selects the most appropriate set of
resources, and automatically migrates them in case of
resource failures. The characteristics of the Grid (dy-
namicity and heterogeneity) makes it desirable for the
AEM to hide (as maximum as possible) these issues to
users.

System Point of View From the point of view of
the system, the AEM has to guarantee the access to
authorized resources and their limited utilization. Jobs
are executed in the context of a Grid user and a VO.
The AEM has to ensure the utilization of allocated
resources and should offer the required services by the
jobs. In terms of scheduling, the system has different
goals from the users. Once the job is submitted to the
local system, local scheduling policies will be applied
in order to maintain a certain independence from the
whole system. Local systems expose their resources
but they want to maintain the control.

4.1 Services for Application Execution
Management

We have defined a set of services that allow us to
offer all functionality requested by users and allow a
good level of control (which is not normally the case
in Grid systems). In addition, we have proposed these
services taking scalability into account and thus most
of these services are not long-term running and do not
have a global view of the system. The proposed services
can be summarized as follows:

jScheduler that decides the best resource selection
for the job. It does not have a global view of the system
and is only active from the submission to the queuing
of the job in a resource (or set of resources). There is
no such thing as a global grid scheduler (it would not
scale).

LTScheduler that controls local resources and man-
ages lists of local jobs. This service has a local-system
view and runs permanently. If such a service already
exists in the resource, our version will only implement
a layer interface to negotiate scheduling agreements.

jController that controls scheduling agreements
during the whole life of the job and acts like a gate-
way for the job. It has a local view (the job) and lives
for as long as the job exists. It could take the decision
to start a job migration.

jExecMng that manages the efficient utilization of
the allocated resources. For instance, this process de-
cides the correct placement of processes to resources
to improve performance. It reacts to some jController
decisions. It lives during the job execution.

jMonitor that monitors the status, performance and
resource consumption of the job. It lives during the job
execution.

jEvent that manages events (i.e. Linux signals) to
the job. It lives during the job execution.

JobDirectory that manages a list of jobIDs and the
contact information (jController). This service will be
needed to implement ps-like functionality. This per-
manent service will be the only one that has a global
view of the jobs in a VO.

rMonitor that controls resource dynamic informa-
tion. It runs permanently.

jResourceMatching that performs the matching
between a list of resources and the job requirements,
taking into account the dynamic information of the re-
sources. It lives during the scheduling cycle.

rAllocation that takes care of allocating resources
to a job. It receives requests to allocate resources to a
job and runs permanently.

5 Efficient and Transparent File Access

XtreemFS [9], XtreemOS Grid file system, is de-
signed to allow efficient and transparent access to files
stored in different institutions. We first present the
requirements guiding us for the design for XtreemF'S.
Then, we present an overview of XtreemF'S architec-

ture. Finally, we briefly sketch the functionning of
XtreemF'S.



5.1 Requirements

Fault Tolerance and Scalability As a system run-
ning on standard hardware connected with WAN links,
the system must tolerate hardware outages. More-
over, it must handle amounts of data and requests
that exceed the capacity of single machines. This is
achieved by distributing the system over multiple ma-
chines. Adding more machines to the system should
not involve a disproportional increase in overhead.

Federation XtreemFS will keep data of many insti-
tutions. While it allows a global view on all data avail-
able in the system, it must also guarantee the avail-
ability of data in presence of network disconnections
or institutions leaving the federation of systems.
Institutions should be able to use their local system
with their local data when they are disconnected or
when parts of the overall system are disconnected.

POSIX Compliance To support traditional UNIX
applications, we have to be POSIX compliant. Because
strict POSIX compliance severely restricts scalability
of the file system, we allow XtreemOS-aware applica-
tions to fine tune guarantees in order to improve their
performance.

Name Spaces The main aspects of data manage-
ment in XtreemOS are mainly user and group files and
their sharing for collaboration purposes. Expecting to
handle large numbers of files, it is recognised that the
directory hierarchy and filenames of traditional file sys-
tems are not sufficient. In addition to hierarchical di-
rectory structures, the system hence requires support
for extended meta-data. A semantic naming of files
allows a database-like arrangement of the file system,
including a retrieval of files by means of queries based
on attributes.

Commodity Hardware To be attractive to a wide
audience, the file system is supposed to run on com-
modity hardware. That means it does not assume the
presence of unusual large amounts of main memory (>4
GB), RAID protected drives, etc.

5.2 Overview of XtreemFS Architecture

XtreemFS is a distributed file system structured ac-
cording to the object-based file system approach [13].
Its core abstraction, the object, is the pure content of
a file without its metadata. The system consists of the
following components:

e Object Storage Device (OSD) stores objects and
implements a read/write interface to them.

e Metadata and Replica Catalog (MRC). This com-
ponent stores file metadata (extended and POSIX)
and replica locations of files. It also makes autho-
risation decisions according to access policies.

e Replica Management Service (RMS). This compo-
nent cooperates with other services to decide when
and where replicas are created and when replicas
should be removed from the system.

e The Access Layer consists of a client-side library
and a POSIX compatible file system module. The
library offers access to all XtreemFS features for
XtreemOS aware applications. The file system
module allows mounting of XtreemFS as part of
the traditional UNIX file system layout.

e XtreemFS supports applications with an Object
Sharing Service (OSS). It allows sharing of data
residing in volatile memory with object granular-
ity. In this context, objects are volatile memory
regions containing dynamically allocated objects
and/or memory-mapped file data.

The object-based file system architecture splits files
into their pure content, the objects, which are stored
on so called object storage devices (OSDs), and the file
metadata, which is put on dedicated metadata servers.
XtreemF'S extends the architectural concept of object-
based storage to Grid environments by replacing the
centralised metadata servers with a federation of meta-
data servers in order to ensure independence of partic-
ipating organisations while maintaining a global view
of the system.

In order to achieve scalability and fault toler-
ance, XtreemFS also features replication and partition-
ing/striping for both file metadata and the file content.
Dynamically created communication overlays coordi-
nate concurrent accesses and ensure the data’s consis-
tency in a scalable way. Data can be replicated across
organisation boundaries, and therefore special atten-
tion needs to be paid to the latencies that the connect-
ing wide area networks introduce and to failure cases
like those of possible network partitioning.

Files can not only be placed manually to different
stores, but an automatic system will monitor file access
and resource conditions to automatically optimise data
layout in the Grid. In addition, semantic naming and
advanced query functions allow users to find data in
huge archives, with the aim of overcoming limitations
for the organization of data of traditional hierarchical
file systems.



5.3 XtreemFS in Operation

A look on the events triggered by reading from a file
illustrates how the components of the Grid File Ser-
vice work together. The read function call is mapped
by the user-level system libraries onto a kernel system
call. The kernel figures out that the corresponding file
lives in a Grid file system, and forwards the request to
its user-level driver, the first XtreemOS component in-
volved. The user-level driver asks the replica service for
a location handle of the file. In turn, the replica cata-
logue determines the best available file copy or creates a
new replica if needed. Using the received location han-
dle, the driver contacts the named file access service in-
stance and requests the required data. Advanced func-
tions come into play for determining the ”best” replica
and when successive reads are requested. Determin-
ing the ”"best” replica requires constant monitoring of
all resources that are involved in the data transfer be-
tween the file host and the client, like file host load and
network usage. Successive reads will be monitored by
the file access service to find out distinct read patterns,
which allow the optimization of the subsequent reads,
for example with prefetching data.

6 Conclusion

We presented in this paper an overview of the
XtreemOS Grid Operating system, which is under
design and development in the framework of the
XtreemOS European project. XtreemOS is designed
to provide a native support to virtual organizations.
With XtreemOS installed on their computer, users can
take advantage of Grid resources of a virtual organiza-
tion they belong to while having the illusion to execute
their applications on their local computers. XtreemOS
objective is to make as much as possible the Grid in-
visible allowing efficient, reliable and secure applica-
tion execution in a simple way. XtreemOS extends the
widespread Linux operating system with kernel mod-
ules and a set of user level services. Three flavours of
XtreemOS will be implemented, for PC, clusters and
mobile devices.

Acknowledgement

This work has been partially supported by the FP6
Integrated Project XtreemOS funded by the European
Commission (Contract IST2006-0033576). This paper
presents ideas developed as a result of the work of the
XtreemOS consortium. The author thanks the par-
ticipants in the XtreemOS consortium for the fruitful
discussions about these ideas.

10

References

[1]
2]
3]
[4]

[12]

Globus. http://www.globus.org.
Legion. http://www.cs.virginia.edu/ legion.
Unicore. http://unicore.sourceforge.net.

M. Baker, R. Buyya, and D. Laforenza. Grids and
grid technologies for wide-area distributed com-
puting. Software Parctice and Experience, 2002.

XtreemOS consortium. Design of an infrastruc-
ture for highly-available and scalable grid services.
Deliverable D3.2.1, November 2006.

XtreemOS consortium. Requirements and specifi-
cation of xtreemos services for application execu-
tion management. Deliverable D3.3.1, November
2006.

XtreemOS consortium. Security Requirements for
a Grid-based OS. Deliverable D3.5.2, November
2006.

XtreemOS consortium. Specification of federa-
tion resource management mechanisms. Deliver-
able D2.1.1, November 2006.

XtreemOS consortium. The xtreemos file system
- requirements and reference architecture. Deliv-
erable D3.4.1, November 2006.

I Foster and C. kesselman, editors. The Grid:
Blueprint for a new computing infrastructure.
Morgan Kaufmann, 1999.

I. Foster, C. Kesselman, and S Tuecke. The
anatomy of the grid: Enabling scalable virtual or-
ganizations. International Journal of High Per-
formance Computing Applications, 15(3):200-222,
2001.

A. Grimshaw, M. Humphrey, and A. Natrajan. A
philosophical and technical comparison of legion
and globus. IBM Journal of Research and Devel-
opment, 48(2), March 2004.

M. Mesnier, G. Ganger, and E. Riedel. Object-
based storage. IEEE Communications Magazine,
8:84-90, 2003.

C. Morin, R. Lottiaux, G. Vallée, P. Gallard,
D. Margery, J.-Y. Berthou, and I. Scherson. Ker-
righed and data parallelism: Cluster computing on

single system image operating systems. In Proc.
of Cluster 2004. IEEE, September 2004.



