
1

Abdulrahman Azab

abdulrahman.azab@uis.no

2

What is Grid?

“Grid computing is concerned with coordinated resource sharing and

problem solving in dynamic, multi-institutional virtual organizations.”

Ian Foster & Karl Kesselman , 2001.

VO1

VO2

VO3

B1

B2
B3

3

What is Cloud?

4

The Kiss Rule

Keep it simple, stupid!

5

Grid vs Cloud

•  Grid

Manager(s)

Resource:Hero

I need a Scientific Linux
with 2GB RAM!

I have scientific linux

With 3 GB Ram

Take Hero

User: Ali

6

Grid vs Cloud

•  Cloud

I need 3 high-CPU

windows machines for 2 weeks

Available for 1000$

7

Computational Grid vs. Computational
Cloud

Computational
Grid

Computational
Cloud

Provided service Computational power

Amount of concurrent requests Limited Massive

Transparency Not required Required

Scalability Limited High

VO1

VO2

VO3

I don’t care.

Both are Distributed computing

8

Challenges

•  Many, but we consider:

1.  Stability with scalability

2.  System transparency

9

Stability with Scalability

•  Stability

•  Scalability

•  Stability with scalability

Maintaining throughput under failures

Ability to add more nodes

Maintaining throughput under failure with bigger
Environment

- Achieve load balancing
- Avoid job starvation

10

How?

•  Optimized machine organization
•  Efficient job scheduling
•  Efficient fault tolerance

11

Machine organization

Manager(s)

•  Flat
 (gLite, Condor, Globus,…)

12

Machine organization

•  Flat
 (gLite, Condor, Globus,…)

13

Machine organization

•  Flat
 (NorduGrid, HIMAN, XtreemOS)

14

Machine organization

•  Flat

15

Machine organization

•  Hierarchical
 (UNICORE, GridWay, BOINC,…)

16

Machine organization

•  Hierarchical
 (UNICORE, GridWay, BOINC,…)

17

Machine organization

•  Interconnected
 (Condor (flocking), DEISA, EGEE, NorduGrid)

18

Machine organization

•  Interconnected
 (Condor (flocking), DEISA, EGEE, NorduGrid)

19

Proposal

20

Machine Organization: Cell

21

Scheduling: Cooperative

VO1

VO2
VO3

VO4
 VO5
 Goto vo2 or vo3

•  Minimize scheduling overhead using Fuzzy logic

22

Worker Failures

W1

W2

W3

W4

W5

Checkpoints 1 2 3 4 5 6 7 8 Last Update
Failure 1 Failure 2

W1
W2
W3
W4
W5

23

Broker Failures

24

Broker Failures

25

Broker Failures

26

Simulation Model: PeerSim

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Allocation Protocol

Idle Protocol

Regular Node

Grid CD Protocol

Broker Protocol

Broker

Service
Allocator

Broker Protocol

Broker

Broker
Overlay Grid CD Protocol
Grid CD Protocol

27

Performance Evaluation

•  Validity of the stored resource information.
•  Efficiency of service allocation.
•  Impact of broker failure on resource information

updating.

 N  Total Grid size, M  Number of VOs

28

Performance Evaluation

•  Broker Overlay Topologies

1
2

K

1 2

K

1 2

K

1 2

K

Ring

Hyper-Cube

Fully connected
 Wire-k-out

29

Validity of the stored resource information

•  The deviation of the reading time values of RIDBs
stored in the resource information data set, from the
current cycle in a broker, with the simulation cycles.

•  The deviation value for cycle (c):

30

Validity of the stored resource information

N = 100, M = 20
 N = 500, M = 100 (log scale)

31

Efficiency of Job Allocation

•  One broker periodical allocation.

32

Impact of Broker Failures on Resource
Information Updating (N = 500, M = 100)

Ring Topology

33

System Transparency

System

34

Challenge

•  To submit jobs to a Grid system you need to
learn how to:

1.  Prepare your input files
2.  Write a detailed submission script.
3.  Submit your jobs through the front end.
4.  Monitor the execution.
5.  Collect the results.

Example for 2: condor_submit

Do scientists have time for this ?

35

Current solutions

•  Grid portals (Web-based gateways)
 WebSphere, WebLogic, GridSphere, GridPortlets,..

  Useful for manual submission. In many cases, it
is required to perform job submission
automatically from a user code.

Px

36

Current solutions

•  Web services
 Birdbath (condor), GRAM (Globus), GridSAM, ..

•  APIs
 DRMAA, SAGA, HiLA, CondorAPI, GridR, ..

  The programming language has to support the
technology and the user must have the proper
experience. This is not the case for many low
level special purpose languages and most of the
scientists

37

Our Solution: GAFSI

•  Grid Access File System Interface
 submission and management of grid jobs is
carried out by executing simple read() and
write() file system commands.

  This technique allows all categories of users to
submit and manage grid jobs both manually and
from their codes which may be written in any
language.

Demo

38

GAFSI-File sharing

Condor pool

UCC

Condor_schedd

UNICORE

GAFSI

3

5

5

6

\<GAFSI‐S Watch‐path>

Condor

UNICORE

4

4

2

File Sharing

1

1

7

7
File Sharing

Broker Users

File name: Job$Cluster$R$memory1024$Condor$start

39

GAFSI-SSH

Condor pool

UCC

Condor_schedd

UNICORE

GAFSI

3

5

5

6

\<GAFSI-S Watch-path>

Condor

UNICORE

4

4

2

SFTP

GAFSI‐C

GAFSI‐C

GAFSI‐C

GAFSI‐C

GAFSI‐C

1

1

7

7
SFTP

Broker Users

File name: Job$Cluster$R$memory1024$Condor$start

40

Simple Example: R code

1.  Create the input files:

 for (j in 1:Grid.workers){
 ...
 save(param,dataList,iterationList,file=paste(j,".RData",
sep="")) }

2.  Copy them to the GAFSI watch path:

 for (j in 1:Grid.workers){

 file.copy(paste(j,".RData",
 sep=""),paste(Grid.workers.addresses[j],

 "\\input.RData", sep=""))

 }

41

Simple Example: R code

3. Copy the code file to the same path:

file.copy("worker.apl.kf.R", paste(Grid.mainpath,"\

\","code.R", sep=""))

4. Create the start file to trigger the submission:

file.create(paste(Grid.mainpath,"\\ mytask$cluster$R
$memory300$start", sep=""))

42

Simple Example: R code

5.  Wait for the completion, then collect the result
files:

while(TRUE){
 Sys.sleep(1)
 if(file.exists(Grid.mainpath+
 “mytask$cluster$R$exports=result.RData$memory300$start”))
next

}
//Result collection
for(j in 1:results){
load(Grid.mainpath+”\\result”+j+”.RData”)
}

43

Initial Performance Evaluation

•  CPU utilization of R process during the execution
of a parallel version PSM.estimate() statistical
modeling function on Condor

44

Conclusions and Future work

•  Maintaining stability with scalability together with
achieving system transparancy is a considerable
challenge.

•  We’ve proposed a broker overlay based model as an
infrastructure to maintain stability with scalability.

•  A grid access file system interface is proposed to solve
the concurrency problem. It is currently being
implemented on Condor and UNICORE frameworks.

•  The proposed architecture is to be implemented on
existing Grid frameworks.

•  GAFSI is to be implemented on Linux based on FUSE.

45

Thank You

46

Additional Slides

47

Machine organization: Flat

•  gLite Workload Management System (WMS)

48

Machine organization: Flat

•  Condor Central Manager (CM)

49

Machine organization: Flat

•  Globus
Grid Resource Allocation
& Management (GRAM)

