Twitter workload for NoSQL databases

University of Minho

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Ccontext

@ Social networks applications have taken a big growth.

O MySpace, Facebook, Twitter, His, Orkut, Bebo,
LinkedIn, PatientsLikeMe, Yahoo!360.

() Arein top of the sites with more traffic and have
millions of users worldwide.

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Ccontext

() User’s actions and preferences may affect many
users in their network.

() Pose new challenges to current database servers.

() Use of centralised RDBMS or even a replicated
DBMS is a major bottleneck.

() Social applications are thus exploiting NoSQL
databases.

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Ccontext

& No benchmarks mimicking the workload of a social
network.

() Existent NoSQL benchmarks are naive.

() Standard benchmarks (like TPC-C,...) not suited for
large scale storage system.

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



() Create a benchmark based on a twitter alike
application:

@ Measure performance (throughput, latency, ...).
() Behaviour of databases in face of faults and scalability

@ Workload to simulate as close to real the use of the
application.

() Event based API that allows to evaluate real and
simulated NoSQL databases.

() Architecture compatible with Cloud Environment.

- ' -

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Workload entities

key value

Tweets
name, password, creation date,

userlD followers, following and lastTweetID

key

userlD-tweetID

FriendsTimeLine

value

List<date:tweet|D>

value

List<tweets>

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Workload initialisation

() Social graph
Q small-world network (due to high clustering and small diameter).

Q power—law distribution (few nodes have high degree, while the
majority of nodes have small degree).

() scale-free.

Q) Initial tweets per user.

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Workload ops

() statuses_user_timeline (useriD)
() statuses_friends_timeline (userID)

() statuses_mentions (useriD)

() search_contains_hashtag

() statuses_update (userlID)
() friendships_destroy (userlD)
() friendships_create (userID)

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Workload ops

() statuses_update

Find the next tweet ID for the user
Add the tweet to Tweets entity
for each user’s follower update its timeline

update user’s timeline.

() friendships_create and friendships_destroy

() update the list of followers for the user
() update the list of people following the new or old followed user

() recompute the user’s timeline.

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Workload generation

() The interleaving of operations take into account
previous studies and discussions that took place during
Twitter’s Chirp conference (the Twitter official
developers conference).

() Defines a think-time between operations.

@ Next operation is randomly chosen with following
probabilities per operation:

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Ops Probabilities

Operation Probability

search_contains_hashtag 15%

statuses_mentions

statuses_friends_timeline

statuses_update

friendships_create

friendships_destroy

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Existing Implementations

) Workload already implemented for:

O Voldemort
() Cassandra
O Clouder

O MySQL

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Why Voldemort?

O Voldemort represents a
family of row-based
stores with a simpler
data model and API with
only puts and gets (e.q.
Amazon’s Dynamo).

@ Simple mapping of key
to value.

VOLDEMORT - API
Q Values are treated as bool delete (K key)

opaque array of bytes. Versioned<V> get (K key)

void put (K key, V value)

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



CASSANDRA - API

remove(keyspace, key, column_path, timestamp,
consistency_level)

insert(keyspace, key, column_path, value, timestamp,
consistency_level)

ColumnOrSuperColumn get(keyspace, key,
column_path, consistency_level)

list<ColumnOrSuperColumn> get_slice(keyspace,
key, column_parent, predicate, consistency_level)

map<string,ColumnOrSuperColumn> multiget
(keyspace, keys, column_path, consistency_level)

map<string,list<ColumnOrSuperColumn>>
multiget_slice(keyspace, keys, column_parent,
predicate, consistency_level)

list<KeySlice> get_range_slice(keyspace,
column_parent, predicate, start_key, finish_key,
row_count=100, consistency_level)

i32 get_count(keyspace, key, column_parent,
consistency_level)

© 2010 Francisco Cruz

Why Cassandra?

() dCassandra offers a

different data model:
it is column oriented
(ColumnFamilies,
SuperColumns, etc
much like Google’s
BigTable) .

Offers a higher level
APl with range
operations.

Twitter workload for NoSQL databases



CLOUDER - API

deleteOperation

bool putOperation

multiPutOperation

Object getOperation

Map<K,Object>
multiGetOperation

Set<V> getByTagsOperation

Set<V> getRangeOperation

CreateTableOperation

Why Clouder?

© 2010 Francisco Cruz

() dlouder offers a APl with
puts, gets as well as search
and multi-tuple operations.

() Extends the data model of
previous tuple stores with
tags, that allows to
establish arbitrary relations
among tuples.

() Takes advantage of tuple
correlation in terms of
operations and how
partitioning is made.

- ' -

Twitter workload for NoSQL databases



Why MySQL?

Why MySQL?

() Provides a baseline to compare with NoSQL
databases.

() At the same time, will assess the suitableness of
RDBMS to today’s Social Applications.

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Conclusion and Future Work

O Arealistic workload for simulating today’s high
demanding social applications.

() Easy to adapt to the available databases.

() Compare the different databases, in terms of
performance, scalability and fault tolerance.

() Add another implementation: VoltDB

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



Thank you!

© 2010 Francisco Cruz | Twitter workload for NoSQL databases



