Xtreem OS

Enabling Linux for the Grid

XtreemOS Applications

SAP AG
SAP Research

XtreemOS Summer School 8 July 2010

XtreemOS IP project
is funded by the European Commission under contract IST-FP6-033576

Overview of Applications in the XtreemOS Project

19 applications demonstrating and evaluating XtreemOS from the perspective of industrial and academic end-users

Examples

- jCAE (EADS)
- Elfipole (EADS)
- Rule-Based System Management (SAP)

jCAE (EADS)

- jCAE is a surface 3D mesher
- Create triangles from CAD (NURBS)

Brief Application Description

- The mesher kernel is named Amibe
- Amibe is a command line application
- jCAE is the graphical front end

Brief Application Description

Amibe work can be splitted into distributed jobs

Benefits from XtreemOS

- To create large meshes Amibe must be distributed
- Amibe will benefits from the PC flavor of XtreemOS to:
 - Select best node to start meshing
 - Make input files (CAD) available on the grid
 - Start elementary meshing jobs
 - Gather elementary meshes at the end

Elfipole (EADS)

- Electromagnetic solver (Maxwell equations)
- Main applications are
 - Lighting effects on plane
 - Antenna calculation
- Command line application only
- Rely on third party software for 3D visualization
- Distributed with MPI
- Multi-threaded

Brief Application Description

- Input is a 3D triangle mesh
- Output is a set of values of triangles

Benefits from XtreemOS

- Elfipole benefits from LinuxSSI scheduling and process migration.
- And also LinuxSSI thread migration.

XtreemOS Cloud Deployment with SAP RBSM

Empowering system administrators with useful, reliable tools

SYSTEMATIC THOUGHT LEADERSHIP FOR INNOVATIVE BUSINESS

Bernd Scheuermann SAP Research 08/07/2010

Agenda

1. Automated System Management

- 1.1. Why do we need it?
- 1.2. How does it work?
- 2. Rule-Based System Management
 - 2.1. RBSM architecture
 - 2.2. Implementation aims
- 3. XtreemOS on the Cloud
 - 3.1. Use case
 - 3.2. Demonstration

Why do we need Automated System Management?

A common use case for automated system management is the data centre:

- Large number of nodes
- Provisioning of resources
 - Capacity planning
 - Performance/efficiency balance
- Application deployment
- Resource monitoring
- Fault tolerance

How does Automated System Management work?

Architecture of Rule-Based System Management (RBSM)

Implementation aims

Separation of Management Concerns

Declarative Rules

Action-refinement

Use case: Rapid Cloud deployment of XtreemOS Grid

This use case shows deployment of an XtreemOS Grid infrastructure within a cloud environment. It entails the automated creation of appropriately-sized VMs on the cloud and deployment of XtreemOS images.

Setup phase

- 1. Setup RBSM management system
- Configure Cloud connection (this demo will use our internal cloud using the OpenNebula platform)
- Prepare pre-configured XtreemOS images (Core, Resource)

Deployment phase

- 1. Collect requirements and size Grid (i.e., number of resource nodes required)
- Deploy XtreemOS Core node
- 3. Deploy as many XtreemOS Resource nodes as required

Managed Isolation in XtreemOS using SAP RBSM

Isolation Challenges and Opportunities

- Isolation impacts on performance/ costs
 - Use Isolation mechanism only when required
 - Understand tradeoffs between isolation and performance
- Different isolation solutions for different profiles e.g.
 - Localisation (Isolation/ restriction of network span)
 - Physical Machine (restricted access to machine)
 - Virtualization (e.g. Xen, VMWare)
 - Containers
 - Namespaces
- Improve manageability
 - Consolidated management
 - Finer-grained control of resources
 - Basic security model for distributed resource management

Managed Isolation process and architecture

(1) Query/ Monitor overall system state

- Number of nodes/ CPUs
- Operational capabilities (memory, processing)
- Isolation capabilities (physical, virtual)

(2) Receive installation requests

- Install software
- Number of instances
- Isolation guarantees
- (3) Decision rules: WHEN <Request? & State...?> DO <DeploymentAction...?>
- (4) Select relevant deployment scripts and update parameters
- (5) Execute deployment actions using scripts with parameter values

20