
XtreemOS Grid Operating System
Component Interfaces

Release V2.1

XtreemOS Consortium

March 2010

Contents

1 Introduction 4

2 User Interfaces 4
2.1 The Xterior GUI . 4
2.2 The XOSAGA programming interfaces 5

2.2.1 C++ XOSAGA . 5
2.2.2 Java XOSAGA . 5
2.2.3 Python XOSAGA . 6

3 VO and Security Services 6
3.1 CDA Service . 6
3.2 X-VOMS . 8
3.3 VOLifeCycle . 12
3.4 RCA Client . 12
3.5 RCA Server . 13
3.6 VOPS . 15
3.7 XOS-PAM . 18
3.8 XOS-SSH . 18
3.9 AMS . 19
3.10 Credstore . 20

3.10.1 Introduction . 20
3.10.2 struct creds store funcs documentation 22
3.10.3 Utilities . 25
3.10.4 Installation & Testing 26
3.10.5 Appendix A: Adventages of KRS over User Space Key-

Store . 26
3.10.6 Appendix B: Caveats 27

1

4 AEM 28
4.1 Job directory . 28
4.2 Job Manager . 29
4.3 Execution Manager . 32
4.4 Resource Manager . 32
4.5 Reservation Manager . 33
4.6 Resource Allocator . 34
4.7 Resource Monitor . 36
4.8 XtreemGCP Grid Checkpointing Service 37
4.9 XATI and C-XATI . 38

4.9.1 XATI class . 38
4.9.2 Client access interfaces 40
4.9.3 XML Helper (java) . 41
4.9.4 C-XATI . 41
4.9.5 Enumerations . 42
4.9.6 Error codes . 43
4.9.7 XML Helper (C) . 44

5 SRDS - Resource Discovery 46
5.1 RSS . 46
5.2 ADS . 46

6 XtreemFS 49

7 OSS 50

8 Communication 50
8.1 DIXI . 50

8.1.1 Daemon service . 50
8.1.2 Site class . 51

8.2 Pub/Sub . 51

9 Virtual Nodes 53
9.1 Java RMI-like Application Programmer API 53
9.2 Configuration Parameters . 56
9.3 Implementing a Middleware Layer 57

10 Interfaces Specific to the Cluster Flavour 59
10.1 LinuxSSI . 59

10.1.1 Capabilities . 59
10.1.2 Hotplug . 60
10.1.3 Process management 61
10.1.4 kDFS Kernel Distributed File System 61
10.1.5 Pluggable Probes and Scheduling Policies Framework

(PlugProPol) . 61

2

10.2 DRMAA . 62

11 Interfaces Specific to the Mobile Device Flavour 65
11.1 libxos getcred . 65
11.2 libxos-credagent . 65
11.3 libcdaclient . 67
11.4 libwrapopen . 69

3

1 Introduction

This document describes the interfaces provided by the various XtreemOS
components in XtreemOS 2.1 releases. After a description of the user in-
terfaces in Section 2, we focus in the remainder of the document on the
description of the internal interfaces, ie interfaces provided by a given com-
ponent to the other XtreemOS components.

2 User Interfaces

XtreemOS provides two high-level user interfaces. The Xterior program
offers a graphical user interface for people, while XOSAGA offers an high-
level programming interface for applications.

2.1 The Xterior GUI

Xterior is a GUI application for easily managing files and jobs in a virtual
organization. Xterior is implemented in Java, and uses the Java SAGA
engine underneath to access XtreemOS functionality. Currently, Xterior
only supports file management.

Figure 1: The Xterior file management interface

4

Figure 1 shows the file management interface of Xterior. Users can create
multiple tabs, each showing the contents of two directories. Each tab uses
its own SAGA session. The side pane on the left shows which credentials are
used in each session. New credentials can be added to access different file
systems. Files can be moved and copied between the two directories shown,
either via keyboard shortcuts or by drag and drop. Users can also create,
rename and delete directory entries. Double-clicking on a directory changes
the current working directory, and double-clicking on a file opens it in the
locally associated application.

2.2 The XOSAGA programming interfaces

XOSAGA is the Application Programming Interface (API) of XtreemOS. It
is an XtreemOS-specific extension of the Simple API for Grid Applications
(SAGA). The language-independent specification of SAGA [4] describes a
high-level, object-oriented interface to the functionality of grid systems,
like job submission, file management, security contexts etc. The second
XtreemOS release contains XOSAGA implementations for three different
programming languages: C++, Java, and Python.

2.2.1 C++ XOSAGA

The C++ implementation of XOSAGA extends the C++ reference imple-
mentation of SAGA with XtreemOS-specific adaptors that enable the use
of XtreemOS functionality via the SAGA API. A detailed description of the
C++ SAGA API can be found at http://saga.cct.lsu.edu/cpp/apidoc/.

The C++ XOSAGA implementation currently provides an XtreemOS-
specific file adaptor to access XtreemFS volumes, and an XtreemOS-specific
context for accessing user certificates. The following objects in the SAGA
API therefore have an XtreemOS-specific implementation: saga::ns entry,
saga::ns directory, saga::file, saga::directory and saga::context.

2.2.2 Java XOSAGA

The Java implementation of XOSAGA extends the Java SAGA implementa-
tion developed at the VU University in Amsterdam with XtreemOS-specific
adaptors and APIs. Extensive documentation of the SAGA Java language
binding is available online at http://saga.cct.lsu.edu/java/apidoc/.

Currently, Java XOSAGA offers a file adaptor to access XtreemFS vol-
umes, an XtreemOS-specific context adaptor to access user certificates, and
an job adaptor for job submission using the Application Execution Manage-
ment (AEM) framework. In addition, Java XOSAGA provides an XtreemOS-
specific API for resource reservation, which is implemented on top of AEM.

5

2.2.3 Python XOSAGA

The Python implementation of XOSAGA implements a preliminary version
of the Python SAGA language binding. This language binding is under de-
velopment, and will be candidate for future standardization. The current
version can be found in the XtreemOS Subversion repository:

svn+ssh://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga/python/trunk/doc/

Python XOSAGA is implemented as a wrapper around Java XOSAGA. It
relies on Jython1, a Python interpreter written in Java. Currently, Python
XOSAGA offers the full SAGA API. XtreemOS-specific functionality is
available via adaptors in Java XOSAGA, which offer access to XtreemFS,
XtreemOS user certificates and job submission via AEM.

3 VO and Security Services

3.1 CDA Service

The Credential Distribution Authority service runs on a single core node.
It uses the X-VOMS service.

The CDA generates XOS-Certificates, containing a user’s public key and
VO Attributes.

The core functionality of the CDA service is in two main classes. The
Engine class is used to set up the constant parameters for creating certificates
(such as the root certificate+private key, the CDA’s own certificate+private
key, certificate validity etc), and the XOSCertGenerator class is used to
create an XOS-Certificate for a particular user request.

Other classes are used to implement the communication aspects of the
CDA service, such as creating a service listener, parsing commands from the
CDA client, etc. These classes are not described here.

The Engine class is essentially a high-level interface to the certificate gen-
eration code. The XOSCertGenerator and VOService classes are lower-level
interfaces to this functionality, and will not be called directly by applications
if the Engine class is used.

The constructor for the Engine class takes the credentials needed to sign
a user’s XOS-Certificate with the CDA’s private key.

public Engine(PrivateKey cdaKey, X509Certificate cdaCert,

X509Certificate rootCACert, String signatureAlgorithm,

VOService voService,

int days, int hours, int minutes)

1http://www.jython.org

6

The method generateXOSCert takes the parameters username, voName
and the Certificate Signing Request.

public X509Certificate generateXOSCert(String username, String voName,

PKCS10CertificationRequest userRequest)

The above two methods are the only ones that most applications will
need to create XOS-Certificates.

Low-level classes used by the methods in the Engine class:

The VOService class is a no-constructor helper class containing two meth-
ods.

The method authenticate is used to authenticate a user in the X-VOMS
database:

public boolean authenticate(String username, char[] password)

The method getVOUser retrieves the user’s VO attributes from the X-
VOMS database in a format that can be used by the XOSCertGenerator
class:

public static VOUser getVOUser(String username, String voName)

The constructor for the XOSCertGenerator class takes the CDA’s private
key and public key certificate, and the name of the algorithm used for the
signature applied to the certificate.

public XosCertGenerator(PrivateKey cdaKey,

X509Certificate cdaCert,

String signatureAlgorithm)

The method generateXOSCert does the work of creating the XOS-Certificate
for the user. The parameter serial is used for the serial number of the XOS-
Certificate, hence it must be unique for this particular CDA. The duration
of the certificate’s validity can be expressed in the parameters days, hours,
and minutes - one of these needs to be non-zero to specify a valid duration.

public X509Certificate generateXOSCert(VOUser user, long serial,

PublicKey userKey, int days, int hours, int minutes)

7

3.2 X-VOMS

In the first release, XVOMS provides two types of interfaces to other XtreemOS
components: UserUtil - interfaces for managing users and VOUtil - inter-
faces for managing VOs. Currently, two XtreemOS components - CDA and
VOLife use (part of) these interfaces to interact with XVOMS.

It should be pointed out that both CDA and VOLife have defined addi-
tional APIs to manage their interactions with XVOMS. For example, VO-
Life has defined additional non-native XVOMS APIs for managing VOs,
subpassing those natively provided by XVOMS. When non-native XVOMS
APIs are used, the interactions will not be subject to the native access con-
trol mechanisms and policies defined by XVOMS DB.

User and VO Management Interfaces in XVOMS UserUtil is a gen-
eral interface for managing users in XVOMS. Users access all the VO man-
agement facilities via the XvomsSession interface:

• XvomsSession(): This empty constructor is for demonstration pur-
pose.

• XvomsSession(java.lang.String username, java.lang.String passMD5):
Two parameters should be past to a XVOMS session.

XvomsSession is associated with a XvomsSessionContext, which are de-
scribed as follows:

• XvomsSessionContext(XvomsSession xsession): If the user in the
given session is authenticated, the context (including user, voUtil, and
userUtil objects) will be properly populated.

Within the context, each user operation is checked against the policies.

User Management APIs The followings are a list of APIs that can
be used to manage users via XVOMS:

• User addUser(java.lang.String realname, java.lang.String username,

java.lang.String pass, java.lang.String des): creates a user
entry in the users table of the XVOMS db.

• User addUser(java.lang.String realname, java.lang.String username,

java.lang.String pass, java.lang.String des, VORole vorole,

Actor actor): creates user in the users table of the XVOMS db.

• User getUser(java.lang.String username): gets a user object with
a given username.

8

• java.util.List getUsers(Actor actor): gets a list of users of a
particular actor type.

• java.util.List<User> getUsers(VO vo): returns a list of user ob-
jects of a given VO

• java.util.List getUsers(VOGroup vogroup): returns a list of user
objects of a given vogroup, more precisely, a given vogroup within a
particular vo.

• java.util.List getUsers(VORole vorole): returns a list of user
objects of a given vorole, more precisely, a given vorole of a vogroup
within a particular vo.

• void removeUser(User user, VORole vorole): this API is not be-
ing used and not being tested in the first release.

VO Management APIs The followings are a list of APIs that can
be used to manage VOs via XVOMS:

• Action addAction(java.lang.String name): This method adds an
action to the xvoms db.

• Actor addActor(java.lang.String name, java.lang.String des):
This method adds an actor into the system.

• void addActor2User(User user, Actor actor): assigns an actor
role to a user.

• void addGroup2User(User user, VOGroup vogroup): gives a user
a particular vogroup.

• VOGroup addGroup2VO(VO vo, java.lang.String des): add a vogroup
to a vo

• RCA addRCA(java.lang.String name, java.lang.String desc, User

owner): add a rca into the xvoms db.

• Request addRequest(java.lang.String desc, java.lang.String

type, VO targetedVO): adds a request to the user in the current con-
text.

• Resource addResource(VO vo, java.lang.String desc, RCA rca):
adds a resource from a rca to an existing vo.

• VORole addRole2Group(VOGroup group, java.lang.String des): add
a vorole to a vogroup

9

• void addRole2User(User user, VORole vorole): gives a user a par-
ticular vorole.

• AccessControlRule addRule(java.lang.String desc, Actor actor,

Action action, java.lang.String target): The targetObject means
the table where the action is allowed to perform.

• VO addVO(java.lang.String des, java.lang.String name, User

owner): adds a vo to the X-VOMS db and set its owner to be the given
owner.

• void addVO2User(User user, VO vo): assigns the user to a vo, that
is, a user joins the vo.

• Actor getActor(java.lang.String name): gets an actor object given
a name

• java.lang.Object getObject(java.lang.String name, java.lang.Class

aClass):

• RCA getRCA(java.lang.String name): gets a RCA object given a
name

• java.util.List getRequests(): gets a list of requests belonging to
the current user in the session

• java.util.List<Request> getRequests(VO vo): gets a list of re-
quests belonging to a particular VO

• VO getVO(java.lang.String gvid): gets a VO object given a gvid

• java.util.List getVOAttributes(java.lang.String username): re-
trieve a list of VO attribute array (each array is an order set of VO
attributes, such as [VOGroup, VORole]) of a user within a particular
vo

• java.util.List getVOAttributes(User user): returns a tuple in
the form of [VO’s GVID, VO description, vogroup, vorole, GGID] of
a given user

• java.util.List getVOAttributes(User user, VO vo): retrieves a
list of VO attribute array (each array is an order set of VO attributes,
such as [VOGroup, VORole]) of a user within a particular vo

• java.util.List getVOGroups(VO vo): gets a list of vogroup of the
given vo

• java.util.List getVORoles(VOGroup vogroup): gets a list of vo-
role of the given vogroup

10

• java.util.List<VO> getVOs(): returns all VOs stored in the xvoms
db

• void prettyPrint(java.lang.String username): prints a user’s VO
attributes

• void updateGroup(VOGroup group, java.lang.String des): up-
dates an existing vogroup

• void updateRCA(java.lang.String name, java.lang.String desc):
update the description of the RCA.

• void updateRole(VORole role, java.lang.String des): updates
an existing vorole

• void updateVO(java.lang.String gvid, java.lang.String des):
updates an existing vo, given a gvid

Access Control Interfaces in XVOMS In XVOMS, all user manage-
ment operations (i.e. add, remove, update, get) on user objects are under
policy-based access control. Similarly, all VO management operations (i.e.
add, remove, update, get) on objects (e.g. user, request, vo, voattributes)
are also under policy-based access control. The access control policies are
defined in the rules table (or the AccessControlRule objects) in the XVOMS
db.

Roughly speaking, each policy contains three parts: an actor, an action,
and a target. Finer-grained control can be further introduced: for example,
by adding the validity of each policy and perhaps, or by introducing XACML
like policies to take attributes of actor, action, target into account. Each
policy is associated to an actor. Each user can be assigned to one (or more)
actor. In the current version, each user is only associated with one actor.

All the access control enforcement are based on the two util interfaces:
VOUtil and UserUtil, which only contain a subset of the functionalities of-
fered by VOUtilImpl and UserUtilImpll. Via the XvomsSession, a user
application, for example, the web frontend - VOLife, can only retrieve
the interfaces VOUtil and UserUtil. The differences between VOUtil and
VOUtilImpl (similarly between UserUtil and UserUtilImpl) allows XVOMS
to control the level of functionalities that are available to a calling service.

However, if and only if the access goes via the util interfaces, it will be
subject to the access control. Developers can get around the XVOMS access
control by directly creating VOUtilImpl and UserUtilImpll as follows in
their application:

new VOUtilImpl(null)

new UserUtilImpl(null)

11

By doing so, effectively, it means that the application itself has to incor-
porate authentication and access control into its application logic.

3.3 VOLifeCycle

VOLifeCycle is a web frontend for accessing VO management and security
services including CDA, X-VOMS, VOPS, and RCA. In the second release,
new features of CDA and X-VOMS are supported. The correct working of
VOLifeCycle heavily relies on the stability of interfaces exposed by those
security services.

Currently VOLifeCycle itself does not expose any development interface
to other components. VOLifeCycle has a unified wrapper library around
CDA, X-VOMS, VOPS and RCA client codes. As this is an interal library
it may change without notice.

3.4 RCA Client

The service implementing the Resource Certification Authority client. This
service runs on each node that is capable of providing services or resources
to Virtual Organisations (VO). The service is the node’s counterpart of
the RCA server, providing a convenient way to store and access the local
machine certificates, gather information on the resource (e.g. from the local
ResourceMonitor service), and it also generates new public/private key pair,
the former of which it then sends to the RCAServer for signing.

The class eu.xtreemos.xosd.security.rca.client.RCAClient implements the
service’s API. However, the methods should not be used directly by import-
ing this class. Instead, the following interface should be used:

• eu.xtreemos.xosd.services.SRCAClient in other DIXI services, or

• eu.xtreemos.xati.API.XRCAClient in XATI client (the static meth-
ods of the class).

The interface exposes the following methods:

• public String getMachineCertificateDetails() opens the certifi-
cate currently stored locally and signed by RCA, and returns a string
containing the details on the certificate.

• public X509Certificate getMachineIdentityCertificate() retrieves
the node’s machine identity certificate.

• public RCASignedResponse getMachineAttributeCertificate(String

vo) retrieves the machine’s attribute certificate.

12

• public Boolean requestNewCertificate() generates a new public
and private key pair, then sends the public key for certification to the
RCA server and obtains the signed attribute certificate.

• public Boolean requestAttributeCertificate(String vo) requests
the resource’s attribute certificate providing credentials for the given
VO from the RCA server. It also installs the new certificate if the
request succeeds.

• public Boolean requestServiceCertificate(ArrayList<String>

services) requests the signing of the certificates to represent the given
services to be run on the node.

• public Integer applyForRegistration() obtains or reuses own re-
source details, and send them to RCA derver for resource registration
application.

• public Integer pushVOAttributeCertificate(RCASignedResponse

certResponse) lets the RCA Server service push one or more ma-
chine’s VO attribute certificates that can be installed and used on the
local nod

• public Integer removeVOAttributeCertificate(String vo) lets
the RCA Server remove an attribute VO certificate, notifying the client
about removal from the VO.

• public ResourceDescriptorRecord getResourceDescription() re-
trieves the description currently set to the RCA client’s instance.

• public Boolean setResourceDescription(ResourceDescriptorRecord

descriptor) lets the resource descriptor used by the RCA client’s in-
stance to be assigned to a new value.

3.5 RCA Server

The service implementing the Resource Certification Authority server. The
main purpose of the service is to sign the resource’s identity certificate public
key, and provide a signed attribute certificate to the resource.

The service implements the RCA server and the RCA database that
keeps the collections of the registered resources.

A typical sequence of usage is as follows:

• The resource administrator runs an instance of the RCAClient service
on the node that needs the registration and certification.

• The RCA Client by request or automatically calls applyForRegistration
with the resource’s details to add the resource data to the list of the
resources pending for the registration.

13

• An authorised administrator within an organisation calls confirmRegistration
using the ID of the resource to add to the list of the registered re-
sources.

• The node can then use its instance of the RCAClient to create a private
and public key pair and then call requestCertificate to obtain a
signed identity certificate and a signed attribute certificate.

• The RCA can be added to (or removed from) a VO by calling setVOMembership).
This call influences all the registered resources that automatically be-
come (or stop being) members as well.

• The clients can request the attribute certificate describing which VO
they belong to using requestVOCertificate(ResourceID, X509Certificate,

String). Further, they can obtain a signed VO certificates for the VOs
they are registered for using requestVOCertificate. They can also
obtain service certificates using requestServiceCertificate.

The attribute certificate currently contains the following attributes:

• the number of CPUs in the node,

• the CPU speed

• the physical memory size, and

• a list of services running on the node.

The VO attribute certificate also contains the ID of the VO the resource
is certified to belong to.

The configuration file RCAServerConfig.conf provides a way to con-
figure the type of the attribute certificate (set attributeType to ”V2” for
attribute certificate, or to ”V3” for attributes stored in extensions), the lo-
cation of the trust store, the organisation details that form a part of the
distinguished name (DM) of the issuer, etc.

The class eu.xtreemos.xosd.security.rca.server.RCAServer implements the
service’s API. However, the methods should not be used directly by import-
ing this class. Instead, the following interface should be used:

• eu.xtreemos.xosd.services.SRCAServer in other DIXI services, or

• eu.xtreemos.xati.API.XRCAServer in XATI client (the static meth-
ods of the class).

The interface exposes the following methods:

• public ArrayList<ResourceDescriptorRecord> getRegisteredResources()

returns a list of resource descriptions describing the resources listed in
the RCA DB as registered.

14

• public ArrayList<ResourceDescriptorRecord> getPendingResources()

returns a list of resource descriptions describing the resources listed in
the RCA DB as pending for registration.

• public Integer applyForRegistration(ResourceDescriptorRecord

resource) puts the resource on the list of resources that can be reg-
istered, but need to wait for an authorised administrator to confirm
the registration using the confirmRegistration call before the resource
can have its certificates signed by the RCA.

• public Integer confirmRegistration(ResourceID id) confirms the
registration of a resource that has previously been applied for the reg-
istration using applyForRegistration.

• public ResourceDescriptorRecord unregisterResource(ResourceID

id) removes the resource from the list of registered resources.

• RCASignedResponse requestCertificate(ResourceID id, PKCS10CertificationRequest

certRequest) serves the client’s request for signing the certificate.

• requestVOCertificate(ResourceID id, X509Certificate certificate,

String vo) serves the client’s request for signing a VO certificate.

• RCASignedResponse requestServiceCertificate(ResourceID id,

X509Certificate certificate, ArrayList<String> services) serves
the request for signing service certitificates. The new certificates will
represent the services, one certificate per service in the input param-
eter collection. The passed certificate will be the base for the service
certificates.

• public Integer getResourceStatus(ResourceID id) retrieves the
current status of the resource according to the RCA DB.

• public Integer setVOMembership(String vo, Boolean setMember)

is used to add the RCA into a VO or to remove it from a VO. All the
registered resources are notified about any change.

• public Integer notifyVOMembershipChange(ResourceID id, String

vo, Boolean addition) lets manipulate with the resource’s member-
ship of a VO.

• public ArrayList<String> getVOList() returns a list of the IDs of
the VOs that the RCA is a member of.

3.6 VOPS

The Virtual Organisation Policy Service provides the means to store and
manipulate the VO-level policies. It provides the policy decision point for

15

the resource discovery used by the AEM’s Resource Manager, and employs
the RCA client for obtaining the resource candidate’s public certificates.

The full documentation is available as javadoc in /Support/Documenta-
tion/ in the WP3.3 SVN.

The class eu.xtreemos.xosd.security.vops.VOPS exposes the following meth-
ods:

• public Boolean registerVoAdmin(X509Certificate voAdminsCert)

adds certificate passed as an argument into a list of trusted certificates
(VO admins list). This method is used as a base of access control.

• public Boolean unregisterVoAdmin(Integer index) removes cer-
tificate with specified index from a list of trusted certificates.

• public String listVoAdmins() lists registered VO administrators.

• public String obtainFilterPolicyAEM(Object xosUserCert, String

jsdlContent, String action) obtains policy which will be used in
resource discovery system as a filter (it will help to narrow down pos-
sible resource nodes).

• public ResourceMatching verifyPolicyAEM(Object xos cert, ResourceMatching

resources, String action) used by AEM framework to check if re-
sources listed in comply with policies stored in VO policy storage Pol-
icyFactory.listPolicies().

• public ResourceMatching verifyPolicyCertRes(X509Certificate

xos cert, ResourceMatching resources) is called by consequence
of the verifyPolicyAEM(Object, ResourceMatching, String) method.
Enforces policies - generates XACML request for each of the resource
and checks it against policies residing in policy storage, see PolicyFac-
tory.listPolicies().

• public String createPolicyWithTarget(String policyID, String

description, String target) creates an empty policy containing
target as provided.

• public Boolean removePolicy(String policyId, X509Certificate

userCtx) removes the policy with policyId from policy storage.

• public ArrayList<String> listPolicies(X509Certificate userCtx)

retrieves the list of currently available in the storage. Note that list
of all policies can be very large. See also listFilteredPolicy(String)
listPolicy(String).

• public String listPolicy(String policyId, X509Certificate userCtx)

lists the specific policy with policyId. Returns XACML policy as
String object.

16

• public Boolean addPolicy(String xacmlPolicy, X509Certificate

userCtx) adds XACML policy into policy storage.

• public String addRule(String ruleXML, String policyId) adds
a rule which is passed as XML string to the policy identified by poli-
cyId. Returns rule as String object. See also addXACMLRule(String,
String), where rule is passed in a XACML format.

• public String addXACMLRule(String ruleXACML, String policyId,

X509Certificate userCtx) adds rule which is passed as XML string
to the policy identified by policyId. Returns rule as String object.
See also addXACMLRule(String, String), where rule is passed in a
XACML format.

• public String listFilteredPolicy(String xacmlRequest) returns
a policy comprising rules which comply with the request passed as an
argument.

• public String listFilteredPolicyCert(X509Certificate targetSubjectCertificate)

lists policies which apply to certificate provided.

• public String evaluateRequest(String xacmlRequest) constructs
XACML request from XML passed as request and applies xacml re-
quest against policies stored in policy storage.

• public Boolean removeRuleFromPolicy(String ruleId, String policyId,

X509Certificate userCtx) removes rule from policy with specified
policyId.

• public Boolean writeBack(X509Certificate userCtx) writes back
policies from policy storage in PolicyFactory on to local disk.

• public Boolean reloadVOPS(X509Certificate userCtx) reloads all
policies stored in policy storage.

• public ArrayList<String> getSubjectAttributes() retrieves the
attributes that can be used in XACML policies, requests and rules.

• public ArrayList<String> getResourceAttributes() retrieves the
attributes that can be used in XACML policies, requests and rules.

• public ArrayList<String> getActionAttributes() retrieves the at-
tributes that can be used in XACML policies, requests and rules.

17

3.7 XOS-PAM

XOS-PAM is a Pluggable Authentication Module (PAM) to do mapping
from VO users to local accounts. The module, named pam xos.so, is devel-
oped as a shared module called by PAM-aware applications such as Exec-
Manager in AEM.

To interact with pam xos.so, PAM-aware applications can call the fol-
lowing standard PAM APIs, provided that pam xos.so is configured to use
in application-specific PAM configurations:

• int pam start(const char *service name, const char *user, const

struct pam conv *pam conversation, pam handle t **pamh): Ini-
tialization before invoking PAM module.

• int pam end(pam handle t *pamh, int pam status): Termination
of using PAM.

• int pam set item(pam handle t *pamh, int item type,const void

*item): Setting parameters for given PAM module.

• int pam get item(const pam handle t *pamh, int item type, const

void **item): Get a parameter from previous setting.

• int pam authenticate(pam handle t *pamh, int flags): Authen-
tiate the user.

• int pam acct mgmt(pam handle t *pamh, int flags): Account man-
agment. In several cases, a virtual uid/gid for a VO user may be
allocated in advance.

• int pam setcred(pam handle t *pamh, int flags): Tell the PAM
module how to deal with the user’s credential.

• int pam open session(pam handle t *pamh, int flags):Open a PAM
session.

• int pam close session(pam handle t *pamh, int flags):close a PAM
session.

3.8 XOS-SSH

XOS-SSH is a modied version of OpenSSH to support XtreemOS-specific
certificate. For clients using XOS-SSH, no other special services need to be
launched. The location of XOS-Certicates could be specied when starting
the XOS-SSH client.

To coexist with standard SSH, XOS-SSH has attached suffix ”-xos” to
all the SSH-related commands, such as ”scp-xos”, and the listen port is

18

adjusted to 2222. However, all the usage of standard SSH is inherited by
XOS-SSH. Therefore, users need not to pay additional study burden.

For resource nodes accepting connections from XOS-SSH clients, the
dameon program (i.e. sshd) relies on XtreemOS PAM extension to dy-
namically allocate local user accounts for clients. The XOS-SSH extends
OpenSSH by invoking XOS-PAM extension via standard PAM APIs.

3.9 AMS

The Account Mapping Service (AMS) plays the crucial roles of managing
runtime user mappings and acting as local policy engine for VO access on
the node.

To interact with AMS, applications need to link with AMS client libraries
(-lxos ams, -lxos common, and -lxos db) and include header files include
<xos ams.h> and include <xos protocol.h>. The main interfaces to call
AMS service are containing in following sections.

• Mapping control: The part of interfaces is included in xos ams.h.

– int amsclient usermapping(char *mapped dn, char *mapped vo,char

*mapped role, char *mapped subgroup,AMS GPASSWD * gpwd,

AMS GGROUPS * primarygrp):The function will pass the identity
information to AMS server and told it to finish mapping.

– int amsclient mappinginfo(char *mapped dn, char *mapped vo,char

*mapped subgroup, AMS GPASSWD * gpwd,AMS GGROUPS * primarygrp):Get
mapping information according grid identity information.

– int amsclient clearmapping(char *mapped dn, char *mapped vo,char

*mapped subgroup):Clear mapping information in local database
according to grid identity.

– int amsclient clearuidgid(int clear uid, int clear gid):Clear
mapping information according to local uid / gid .

– int amsclient invmappinginfo(char *username, int user uid,

char *groupname,int group gid, AMS GPASSWD * gpwd,AMS GGROUPS

* ggrp):The function will pass local user identity information
and get back the grid identity information.

• Policy control: The part of interfaces is included in xos ams.h.

– int amsclient ruleput(struct rule t *xrule, char **handler):put
a rule into rule database.

– int amsclient getrulebykey(unsigned int skey, struct rule t

**xrule,char **handler):get a rule by rule key.

– int amsclient getrulebyhandler(char *skey, struct rule t

**xrule):get a rule by rule handler.

19

– int amsclient rulesearch(struct rule t *xrule, char **handler):search
a given rule.

• Container control: The part of interfaces is included in xos cgrp.h.
These interfaces require support from kernel virtualization facilities
(cgroups and namespace). To call these interfaces, additional shared
library need to be linked is -lxos lxc.

– int hd cgroup mountfs(char *subsys): setup a specific sub-
system.

– int hd cgroup umountfs(char *subsys);:uninstall given sub-
system.

– int hd cgroup create(char *name, char *subsys);:create a
container in given subsystem.

– int hd cgroup destroy(char *name, char *subsys):destroy given
container in given subsystem.

• Protocol: The part of interfaces is included in xos protocol.h.

– int amsclient connect open():open the connection with AMS
server.

– int amsclient connect close(int sockfd):close the connec-
tion with AMS server.

– int amsclient connect query(int sockfd, char *message, int

*message len):Send query message to AMS server.

– int amsclient packetmsg(char *message, GPASSWD * gpwd,

GGROUPS * ggrp,int ret) and amsclient unpacketmsg():packaging
function of mapping information.

– int amscient unpacketmsg rule(char *message, struct rule t

*xrule,char *handler, int ret): unpackaging function for pol-
icy rule.

3.10 Credstore

libcredstore: a credential storage abstraction.
The component ’credential storage library’ (a.k.a libcredstore) has

been developed initially for the mobile flavour of Xtreem-OS but it may
also be used within other Xtreem-OS flavours or even in other projects as
necessary.

3.10.1 Introduction

The main application of the libcredstore is to abstract the use of ”Key Re-
tention Service (KRS)” needed by the current implementation of XtreemOS

20

VO support, and allows for the use of other replacements without modify-
ing or recompiling applications. This feature is very important in embedded
devices, as recompiling and replacing the kernel may be a very complex or
impossible task.

• For instance, in the Nokia devices based on the Maemo distribution
(e.g. N800 and N810) users can easily install applications with a sin-
gle click, but supporting KRS would require that the user re-flashes
the mobile device to change the kernel, which should be avoided for
security reasons.

libcredstore by default uses the ”Key Retention Service” if it’s
supported by the runtime kernel, with a new feature: it compresses
and decompresses keys on the fly. It does not require that libkeyutils
package is installed, because it invokes syscalls directly. If the kernel does not
support KRS, libcredstore detects that syscall faults and uses a replacement
consisting in daemons executed in user space.

The usage of the API is very simple: a program just needs to in-
clude credstore.h in the code and invoke get creds store funcs(). This
function returns a struct creds store funcs with pointers to functions
(e.g. delete cred member is used to revoke a key, store cred is used
to save the key, retrieve cred to get the key...). There also exists a
get creds store funcs by impl, in order to retrieve a specific implemen-
tation of the credstore. Current implementations include:

• krs: the usual Key Retention Service-based implementation.

• zkrs: is the same as krs, but in this case store cred compresses the key
and retrieve cred uncompresses it. Compress ratio gain is variable,
but as a reference, the size of /etc/xos/creds/config2.pem example
credential is reduced to 69% of the original size.

• uskeystore: (user-space keytore)] this implementation is based on a
daemon per user (or per session). It is designed to make it easier
to modify the implementation to use a system daemon, instead of a
daemon per user, or to adapt the module to use e.g. the GNOME
keyring2.

Current implementation of get creds store funcs returns zkrs point-
ers if KRS is available, otherwise returns uskeystore function pointers.

Important: To ease debugging, the Makefile compiles libcredstore

with the USE CREDSTORE IMPL ENV variable defined. With this compilation
option, get creds store funcs first tests if environment variable

2The SVN version of gnome-keyring has exciting features like a PCKCS#11 module
or integration with ssh-agent (see http://live.gnome.org/GnomeKeyring/Cryptoki)

21

CREDSTORE IMPL is defined; in this case, it invokes get creds store funcs impl

with the variable value. However, it is safer for a production-strength library
to be compiled without this option (leaving the variable undefined).

3.10.2 struct creds store funcs documentation

The goal of a credstore is to provide a credentials cache, to implement a
Single Sign On mechanism, independent of the real storage system used
(e.g. Kernel Key Retention Service).

A credstore requires the following features:

• Applications can store a key in a credstore common to all ap-
plications of the same user, even if they have been started using
different login sessions.

• Applications can store a key in a session credstore, that is, only
accessible to child processes of an initial process; the key is removed
when this initial process ends. This feature is useful, for example, to
start a shell and that key is only accessible to processes launched from
this shell, during shell life. Unfortunately, security is only guaranteed
with krs and zkrs implementations without additions, because any user
application may spy environment and memory of any other application
of the same user, reading /proc filesystem info, except if program
permissions includes ”execute” but not ”read”. Indeed, this security
problem is present also with KRS, because after key is read, it is
present in process memory, and any process can use ptrace to control
and spy any other process of the same user if it has ”read” permission.
The real usefulness of this feature is to store a key only while the
session is running and without affecting other sessions, that is, session
key isolation is more like a ”key namespace” than a full-fledged security
feature.

• Applications can remove a key from credstore, or set a timeout
after which the key in the cache is no longer valid.

• Only one key by credstore (user or session) is supported, but
application can label the key with a configuration name, to known if
the key currently stored in the cache is the key that user application
want to use. If the application requests a key from other configuration
than the one stored in cache, current key in cache is discarded and the
new key will overwrite it. To limit users to store only a credential is
less comfortable than to allow for multiple credentials simultaneously,
but this policy is more secure because only one key is exposed at a time
(user has the alternative of running different sessions each one with a
single key). This is specially true with embedded devices, where few

22

(if any) unrelated processes run simultaneously. Other reason to allow
only one credential is that KRS space is limited to only 10,000 bytes
per user, but unfortunately if the user launches several simultaneous
sessions this limit is also easily reached.

These are the function pointer members of struct creds store funcs3:

int store cred(char *data in pem format);

This functions stores the credential that the user passes in PEM format
(base64 encoded). If other credential is already stored, the new credential
will overwrite it. Returns 0 on success, -1 on error.

char* retrieve cred (char *config name);

If config name is NULL, this function returns the credential stored in
the credstore (e.g. in Key Retention Service). If config name is not NULL,
first it checks if config name is the current configuration name in the cred-
store; returns NULL if they are different.

int check cred is available (char *config name);

This function is similar to retrieve cred, but returns 1 if the creden-
tial to this config name is available, 0 otherwise (instead of the creden-
tial/NULL).

int set cred timeout (int timeout);

This function sets a timeout (in seconds) after which the credential is
purged from the credstore. A zero value cancels the timeout. Returns 0 on
success, -1 on error.

int delete cred ();

Purges the credential from the credstore. Returns 0 on success, -1 on
error.

char * get current cred configname ();

This function returns the current configuration name of the key stored
in the credstore. The initial value is “default”. Returns NULL on error.

int set current cred configname (char *config name);

This functions sets the current configuration name of the key stored in
the credstore. Returns 0 on success, -1 on error.

char * join new session ();

3This API is not considered stable yet, and could be changed in the future if more
functionality is needed from it.

23

Up to now, all functions operate over the current user credstore. This
function creates a new credstore session and all successive new calls of the
process and its children will use this new credstore session. It is important in
this case to call exit session at the end of the session (although currently
krs and uskeystore do not need it because the session will be killed anyway
when the program ends).

In the KRS implementation, this function invokes the syscall to start a
new session. In the uskeystore implementation, this functions starts a new
daemon using a fork and defines an environment variable with the address
of the socket.

The function returns an environment value that the user must use with
putenv, if launching other processes within the same session. The KRS
implementation returns nothing, but uskeystore needs to modify the envi-
ronment because new session processes use XOS CREDSTORE SOCKET to locate
the socket of the session credstore daemon and to read the cookie and file
handler required to authenticate.

int exit session ();

If a user program calls join new session, it must call this function
to end the session. In the KRS implementation this function does noth-
ing (since the keystore session ends when the program that started the
session ends). In the uskeystore implementation, this function kills the
session credstore daemon, but this call is not needed in Linux because
join new session calls prctl to establish that the credstore daemon re-
ceives a SIGTERM signal when the parent process dies. Returns 0 on success,
-1 on error.

int join default user session ();

If a program changes the UID, it must call this function to change to
the new user credstore. In the KRS implementation, this function invokes
the syscall to change the keystore. In the uskeystore implementation, it
launches a new xos credstored daemon. Returns 0 on success, -1 on error.

Important: If an application changes user, it must change the UID, not
just the EUID, because in KRS the UID is used to select the user keyring4.
With KRS, the FSUID (File system UID, which initially has the same value
as the EUID) is used to assign the owner of a new created entry. If the
program does not need to recover root privileges, the best solution is to
change both the UID and the EUID. If the program needs to recover root
privileges, the best option is continue with EUID=0, and change the UID
with setreuid, and change the FSUID with setfsuid.

4With the uskeystore implementation, actually EUID is used to authenticate the
socket instead of UID, but this is transparent to developers, because the module internally
swaps UID and EUID before connecting with the daemon and restores them afterwards.

24

3.10.3 Utilities

xos dumpcred [<configname>]
If no configname is specified, it returns the credential stored in credstore

(if any). If a configname is specified, first it checks if configname is the
current configuration name of the credstore; then returns nothing if they
are different.

xos storecred [<filename>[<configname>]]
If a filename is specified, this saves in credstore the contents of the file.

If configname is specified, it also fills in the current configuration name with
configname. If no filename is specified, it will read the content from standard
input.

xos deletecred

Delete current credential from credstore, if any.

xos settimeout <seconds>
Set a timeout (in seconds) after which the credential is purged from

credstore. Setting a new timeout always overwrites the previous timeout.
Zero value cancels the timeout.

xos currentconfing

Returns the configuration name assigned to credstore. The initial value
is ”default”.

xos credstored

This executable is the daemon that implements user-space credstore
(uskeystore) implementation. The session credstore does not use this dae-
mon: is implemented as a fork in the the process that invokes join new session().

The daemon is automatically launched when invoking join default user session()
or store cred(), but can be started manually by the user also. It creates a
Unix socket in the user’s home directory, with name ”socket xoscredstore <uid>”.
Only programs with the same uid as xos credstored can use the socket.

Xos credstored daemons run until machine is poweroff, because they are
shared within different sessions of the same user and credentials survives
the session that stores it. But daemon died if timeout end or delete cred is
invoked.

Xos credstored tests that the daemon is not already running. The test
consist in a special request to the daemon using the Unix socket.

25

3.10.4 Installation & Testing

Source package includes a INSTALL file with instructions.
Currently, libcredstore and associate utilities are included in xosmd-

vosupport package, but can be compiled and installed independently of the
other parts of the package. It is possible that in future releases they will be
isolated in a independent package. The only dependency of xosmd-vosupport
that is not required by libcredstore is libpam. The other requisite to compile
the package is libz.

To install the utilities and library, just run ”make install-credstore” (or
run ”make package-credstore.tgz to create a package with the binaries to
install). Software is installed in /usr/local; it may be necessary to invoke
ldconfig or to add /usr/local/lib to /etc/ld.so.conf.

Directory test/ includes two programs to test libcredstore: test credstore
and run credstore session. This test programs are also installed with ”make
install-credstore”.

test credstore first changes the configuration name to ”configtest” and
then retrieves the configuration name; it should show ”configtest”. Then it
stores ”key value” and invokes check cred is available and retrieve cred, with
”configtest” as configuration name; it should show ”true” and ”key value”.
This test is repeated but using ”fake” as the configuration name; it should
show ”false”. And then it does the same without any configuration name: it
should show ”true” and ”key value”. Afterward, it deletes the credential and
invokes check cred is available and retrieve cred; it should return ”false”.
At last, it checks the timeout: first, it inserts a new value (remember that
credential was deleted in last step) and invokes set cred timeout with a
timeout of 4 seconds; then invokes check cred is available and retrieve cred,
after sleeping 2 seconds and then after 2 additional seconds: it must show
”true”, ”key value”, ”false”.

run credstore session is a utility that launches a shell between a call to
join new session and exit session; that is, a new credstore is running until
user runs ”exit”. With the uskeystore implementation, a ”ps” will reveal two
instances of run credstore session: the second one is the credstore daemon.

3.10.5 Appendix A: Adventages of KRS over User Space Key-
Store

• uskeystore requires a daemon by user/session; KRS doesn’t.

• KRS session keystore is hidden from other programs of the same user;
with uskeystore this requires more changes, because /proc filesystem
allows access to the environment of the rest of program by the same
user and the cookie to access credstore is passed as an environment
variable. Indeed, the /proc filesystem also allows to access the memory
space of other programs and search for the secret key; this is a problem

26

also with KRS, but only while the program uses the credential, if the
program fills the key with zeroes of random data after using it.

• uskeystore has not been tested against race conditions.

• uskeystore is sensible to DoS attacks (but only by the user that stores
the cred). The uskeystore implementation only proccesses one request
at a time; thus, a single hostile process may block the daemon. The
implementation establishes a short timeout after a cancel operation.
This model may change in a future.

• KRS stores keys in kernel memory, not accessible from user space
programs and not swappable.

For all this reasons, it is recommended to use KRS if it’s available and
if the 10,000 byte quota per user is not a problem.

3.10.6 Appendix B: Caveats

• Security of any credential cache is weak against malicious applications
from the same user (e.g. a ojan). Although a program with setuid/set-
gid or without read permission could stop ptrace, the problem is that
applications that use the credentials cache need the same protection.
Our implementation does ”best effort” to secure session credstore: au-
thentication between client and credstore checks that both run with
the same UID, that client provides a secret cookie and a open file han-
dler inhered from the application that started the session. The open
file handler is created with socketpair in join new session function, and
authentication is based in these three properties:

– open handlers are heritable: they survive fork & execve.

– open handlers can be transferred using a Unix socket.

– with SO PEERCRED getsockopt, session daemon can test that
received handler is one socket created by its parent (retrieved
credential includes PID of the socket creator); only descendants
inherit this open socket. Of course this requires that file handler
creator don’t accept connections; otherwise any application may
obtain a open socket that returns the same SO PEERCRED cre-
dentials than file handler created with socketpair and inhered by
all children.

• Operations storing credential and setting configuration name should
be joined in one atomic operation to avoid race conditions.

• libcredstore features are limited to the ones that KRS offers. More ad-
vanced features, like allowing only specific registered applications to

27

read credstore, or like setting session credstores as read-only, are not
possible with KRS, because applications could use the KRS API di-
rectly to circumvent libcredstore controls. Perhaps a future implemen-
tation of libcredstore would include functions or options not manda-
tory to implement, and get creds store funcs function would have a
new parameter to set the features that the returned implementation
must provide.

• A good alternative to libcredstore and libxos getcred could be a PKCS#11
module. This module may be implemented as a daemon that is the
only client of a session credstore (a better option is that libcredstore
also offers credstore private to process), and a library that accesses
this daemon using a socket. Of course, it is simpler that the credstore
implements directly the PCKS#11 module (as in the coming release
of gnome-keyring) but with the KRS implementation this implies that
applications that have access to credstore also have access to key di-
rectly.

More info about the specifications of this simple API may be found at
D2.3.4, section 2.7.1 and in the URL: http://xtreemos.wiki.irisa.fr/
tiki-index.php?page=WP2.3+libcredstore&highlight=libcredstore.

4 AEM

4.1 Job directory

Job Directory provides to the Job Manager the means to store and retrieve
the information on the jobs, their owner and execution location. It uses
ADS for the storage and querying.

The best way to see the expanded interfaces is inside /Support/Docu-
mentation/ in AEM SVN.

The class eu.xtreemos.xosd.jobDirectory.JobDirectory exposes the fol-
lowing methods:

• public void addJobToJobDir(String jobId, CommunicationAddress

addrJobMng) adds the job to the jobDirectory

• public void removeJob (String jobId, String userId) Removes
the job from the jobDirectory.

• public CommunicationAddress getJobAddr(String jobId)Gets the
address of the job manager where the job is registered.

• public ArrayList<CommunicationAddress> getJobAddrList(ArrayList<String>

jobId) Gets the list of address of the jobs managers where the jobs
are registered.

28

• public Hashtable<String, CommunicationAddress> getUserJobs(String

userId) Gets the list of jobs (and adresses) of the user.

• public String getJobIDs() Gets the list of JobIds of the Jobdirec-
tory (Not supported with ADS)

4.2 Job Manager

The Job Manager includes all interfaces related to job management. The
interfaces are automatically exported to XATI and C-XATI interfaces to be
used by other components.

The best way to see the expanded interfaces is in /Support/Documen-
tation/ inside AEM SVN.

• public String createJob(String jsdlFile, Boolean startJob,

String reservationID, X509Certificate userCtx) (Synchronous)
Creates a job in the AEM based on the JSDL description. The job can
be automatically scheduled or just created, depending on the value of
startJob. If a reservationId is provided, the job will be scheduled on
that reservation. Otherwise, a negotiation/reservation process will be
started when the job will be scheduled based on resource requirements
and scheduling hints. If calls to VOPS are enabled, policy enforcement
gets into the picture.

• public void runJob(String jobId, String reservationID, X509Certificate

userCtx) (Synchronous) Makes call to resource manager to get all re-
sources and continues in callback. If I am not an owner, I query the
job directory for job address and make runJob call to that node.

• public Integer runJobRes(String jobId, String reservationID,

CommunicationAddress resourceID, X509Certificate userCtx) (Syn-
chronous) Starts the scheduling process of a previously created job. Jo-
bId must be a valid jobId in the system. Starts the scheduling process
of a previously created job. JobId must be a valid jobId in the system.
It will get a ResourceID, (that should be valid in the ReservationID
provided), and run the job on that resource.

• public void jobControl(String jobId, Integer ctrOp, X509Certificate

userCtx) Apply the operation Control to the specific jobId

• public void exitJob(String jobId, Integer exitValue, X509Certificate

userCtx) The job identified by the jobId is finished immediatly (all
the processes of the job) with the exit code provided.

• public String getJobsInfo(ArrayList<String> jobIds, Integer

flags, String infoLevel, ArrayList<String>) Returns the mon-
itoring information of the requested jobs. Any user of the VO can

29

access monitoring data of the job, but if he is not the owner, access
will be restricted to unbuffered system metrics. XML Output, please
check Javadoc and XATI/XATICA samples to see how the user can
process them.

• public String getJobInfo(String jobId, Integer flags, String

infoLevel, ArrayList<String> metrics, X509Certificate userCtx)

Returns the monitoring information of the given job (Deprecated, use
getJobsInfo instead)

• public ArrayList<String> getJobsUser(String userId, X509Certificate

userCtx) Returns the monitoring information of the given job

• public void sendEvent(String jobId, Integer signal, Integer

operation, ArrayList<String> list, X509Certificate userCtx)

Sends an event to a job

• public Integer jobWait(String jobId, X509Certificate userCtx)

Blocks the calling process until the job indicated finishes.

• public void createProcess(String jobId, String JSDL, String

reservationId, CommunicationAddress resource, X509Certificate

userCtx) Creates a process and binds it to the specified jobId.

• public void addDependenceUp(String jobId, String FromJobId,

String TAG, X509Certificate userCtx)Adds a tagged dependence
between two jobs. Direction Up.

• public void addDependenceDown(String jobId, String toJobId,

String TAG, X509Certificate userCtx)Adds a tagged dependence
between two jobs. Direction Down.

• public void deleteDependenceUp(String jobId, String FromJobId,

String TAG, X509Certificate userCtx) Removes a tagged depen-
dence between two jobs. Direction Up.

• public void deleteDependenceDown(String jobId, String toJobId,

String TAG, X509Certificate userCtx) Removes a tagged depen-
dence between two jobs. Direction Down.

• public void addDependence(String FromJobId, String toJobId,

String TAG, X509Certificate userCtx) This function adds a new
job dependence. Dependence will be bidirectional: fromJobId —
DOWN–〉 toJobId and fromJobId 〈– UP— toJobId. Take into account
that inverting parameters makes a difference because of the different

30

up/down lists. Unidirectional dependences might be added with other
methods specified above. We support sets of dependencies identified
by TAG, to be able to use them for different purposes. AEM won’t
interpret these TAGS, just group dependencies of jobs based on them.
AEM won’t check cycles in job dependencies. It is user/job responsi-
bility.

• public void deleteDependence(String FromJobId, String ToJobId,

String TAG,X509Certificate userCtx) Deletes an existing depen-
dece between two specific jobs.

• public ArrayList<String> getListOfDependencies(String jobID,String

TAG, Integer levels, Integer directrion, X509Certificate userCtx)

Returns the list of jobs that have a dependence FROM jobID or TO
jobID.

• public ArrayList<MetricsDesc> getJobMetrics(String jobId, X509Certificate

userCtx) Returns the list of available metrics for a specific job, both
system and user defined.

• public Integer setMetricValue(String jobId, String metricName,

CommunicationAddress resourceID, Integer pid, String value,

X509Certificate userCtx) Sets the value of a Metric. A metric will
be an user-defined attribute of the job. Not all the attributes can be
set, for instance the user time or the status are set by the system, not
by the user.

• public Integer setMonitorBuffering(String jobId, String metricName,

CommunicationAddress resourceID, Integer pid, Integer flags,

X509Certificate userCtx) Switches on and off buffering for the spec-
ified metric. With buffering on, multiple values of a metric are re-
turned, and its timestamps represent the time when the value was
changed. Only metrics defined as ”bufferable” on creation can be
buffered.

• public Integer addJobMetric(String jobId, MetricsDesc metric,

X509Certificate userCtx) Adds a new user defined metric to the
job. Afterwards, user might give values to it through the setMetric-
Value interface and get them with getJobInfo. Metrics are checked for
correctness before insertion. It might communicate with other services
and XOSDs if needed.

• public Integer removeJobMetric(String jobId, String metricName,

X509Certificate userCtx) Removes a user defined metric from the
job. Data associated to the metric is also erased. It might communi-
cate with other services and XOSDs if needed.

31

4.3 Execution Manager

The Exec Manager includes all interfaces related to job execution manage-
ment. The interfaces are automatically exported to XATI and C-XATI
interfaces to be used by other components.

The best way to see the expanded interfaces is inside /Support/Docu-
mentation/ in AEM SVN.

• public ArrayList<Integer> getProcsJob(String jobId) returns
the list of pids of the specified job.

• public String getProcsInfo(String jobId) Returns text informa-
tion about job’s processes.

• public void exitJob(String jobId, Integer exitValue) send a
Term (15) signal to all the processes of the job running in this node
waits 5 seconds and sends kill (9) signal to the processes still alive

• public String getJobSelf(Integer pid) Return the JobId of the
calling process (identified by its pid)

• public String getJobsInfoByResource(CommunicationAddress resource,

X509Certificate certificate) Return the information of the jobs
running in this resource

• public String getJobsInfoResource(X509Certificate certificate)

Return the information of the jobs running in this resource. Certificate
is checked by jobMng on a job basis.

4.4 Resource Manager

A class implementing the Resource Manager service. The service collects
the available computation node and enables the node selection by resource
queries expressed as a part of a job description. The job descriptions are
formed as XMLs using the JSDL schema. Resource Manager queries nodes’
local Resource Monitor service to obtain the resource descriptors formed as
XMLs using the GLUE v.1.2 schema.

The class eu.xtreemos.xosd.resmng.ResMng exposes the following meth-
ods:

• public ArrayList<CommunicationAddress> getResources(String

query, X509Certificate userCtx, Integer howMany) retrieve a col-
lection of resources that match the job’s resource demands.

• public Hashtable<String, String> getResInfo(CommunicationAddress

resource, X509Certificate userCtx) returns the monitoring in-
formation associated with the resource.

32

• public ArrayList<MetricsDesc> getResMetrics(CommunicationAddress

resource, X509Certificate userCtx) returns the list of metrics
available on that resource.

4.5 Reservation Manager

ReservationManager is the class that oversees the creation and management
of the reservations on the grid level. It is an entry point for JobMng and
SAGA / XATI API, and it communicates with the node-level AllocationM-
ngs.

The service is implemented in the
eu.xtreemos.xosd.reservationmanager.ReservationManager class. How-
ever, the class is hosted by DIXI, so it should not be used directly.

Instead, the following interface should be used:

• eu.xtreemos.xosd.services.SReservationManager in other DIXI
services, or

• eu.xtreemos.xati.API.XReservationManager in XATI client (the
static methods of the class).

The interface exposes the following methods:

• public String createEmptyReservation(X509Certificate userCertificate):
Creates an empty reservation and returns its reservation ID.

• public String createReservation(String query, X509Certificate

userCertificate): Creates a reservation based on the JSDL query.

• public String createReservationExplicit(

ArrayList<ReservationRequest> requests, X509Certificate userCertificate):
Creates a reservation based on the list of local allocation requests. If
any of the requests fail, the whole reservation fails.

• public Boolean updateReservation(String reservationId, String

query, X509Certificate userCertificate): Updates the reserva-
tion by adding the local reservations as discovered according to the
JSDL query. The reservation that is to be updated has to be empty.

• public Boolean updateReservationExplicit(String reservationId,

ArrayList<UpdateRequest> requests, X509Certificate userCertificate):
Update previously created reservations.

• public Boolean releaseReservation(String reservationId, X509Certificate

userCertificate): Drop the reservation. The method releases all the
local allocations, then removes the reservation from the directory. If
any of the allocations cannot be released, it keeps them in the direc-
tory, as well as the reservation Id, so that they can be released later.

33

• public Integer attachJob(String reservationId, String jobId,

X509Certificate userCertificate): Attach a job to the reserva-
tion.

• public Integer detachJob(String reservationId, String jobId,

X509Certificate userCertificate): Detach the job from the reser-
vation.

• public String getReservationFromJob(String jobId, X509Certificate

userCertificate): Query the reservation ID that a job is attached
to.

• public ArrayList<eu.xtreemos.xosd.reservationmanager.base.ReservationSlot>

getReservationResources(String reservationId, X509Certificate

userCertificate): Get the list of the resources and the related time
constraints related to the reservation.

• public FreeSlots getAllFreeSlotsFor(CommunicationAddress nodeAddress,

String resourceID, X509Certificate userCert): Returns all free
slots in a timetable for some metric on the node. The call performs
the access rights check.

• public FreeSlots getFreeSlotsFor(CommunicationAddress nodeAddress,

String resourceID, GregorianCalendar from, GregorianCalendar

to, X509Certificate userCert): Returns all free slots for a given
resource and time frame on the node. The call performs the access
rights check.

• public ArrayList<String> getUserReservations(X509Certificate

userCertificate): Retrieve the list of reservation IDs owned by the
user.

4.6 Resource Allocator

• public String createReservation(Request info): Creates a reser-
vation with a given request. Returns new reservation id, if the reserva-
tion succeeds, otherwise, returns null. When reservation fails, coherent
state is restored automatically.

• public Boolean updateReservation(String reservationID, Request

info): Updates a reservation with a request, but leaving the reserva-
tion id intact. Gets true, if all went well, false if it fails. The coherent
state is restored automatically.

• public Boolean updateReservations(ArrayList<UpdateRequest>

requests): Creates a series of reservation updates. Note that if one
fails, all other are nullified also and the state of all TimeTables is
returned to the original state before the call.

34

• public Boolean releaseReservation(String reservationID): Re-
moves all entries regarding a reservation id. Note, that here the only
criteria is a reservation id and not the whole needed info, for example
how much of the resource needs to be freed as well. Use this method
wisely, otherwise, please use create/update reservation methods and
use remove request.

• public ArrayList<String> getReservationResources(String reservationID):
Returns all resources that are used by some reservation.

• public Boolean attachToJob(String jobID, String reservationID):
Associates a job with a reservation id. This is only on a semantic level,
and should be used whenever reservations are dependent.

• public Boolean detachFromJob(String jobID, String reservationID):
Removes connection between a job and reservation id. This is man-
aged by the user/ service and not automatically. Associations betweem
reservations should be used whenever they are dependent.

• public Boolean removeJob(String jobID): Remove any info regard-
ing a job. Managed by the user/service.

• public ArrayList<String> reservationsForJob(String jobID):

• public FreeSlots getAllFreeSlotsFor(String resourceID): Re-
turns all free slots in a timetable for some resource.

• public FreeSlots getFreeSlotsFor(String resourceID, GregorianCalendar

from, GregorianCalendar to): Returns all free slots for a given
time frame for a specific resource.

• public ArrayList<TTElm> selectAvailable(String resourceID,

Integer amount): selects available from all elements (see selectAvailableDT
description)

• public ArrayList<TTElm> selectAvailableDT(String resourceID,

Integer amount, GregorianCalendar from, GregorianCalendar to):
selects all already reserved elements within a timetable for some re-
source (identified by resourceID), where the amount of available re-
source property CurrentAmount is smaller than MaxAmount by more
than given parameter ”amount”. Also, the sharing value of such ele-
ment must not be EXCLUSIVE.

• public Integer initializeResource(String id): In order to make
a new resource available and manageable (the ones that are not ini-
tialized in the startup process), one needs to register them, so that the
system prepares a timetable for the reservations.

35

• public ArrayList<String> getInitializedResources(): returns
all initialized resources

• public Request createRequestsPurgeReservationsBefore(GregorianCalendar

date): creates a request for purging all elements that finish before the
given date. Since it is of no value to the executor and job manager to
have reservations before current real time, all past reservations can be
removed without any loss of info.

• public Integer addResourceProperty(String resID, IResourceProperty

property): dummy method that allows ”on-hand” addition of prop-
erties. Should be replaced by proper initialization system ...

• public ArrayList<TTElm> getSelection(String resID, Hashtable

constraints): get all time table elements with selected attributes for
a resource. The contraints are a map of attribute types and their
values.

• public ArrayList<ReservationSlot> getReservationsInfo(ArrayList<String>

ids): For a list of the IDs obtained from the createReservation(Request),
the method builds a list of reservation slots descriptors, effectively re-
turning the timetable entries usable for the reservations. Get required
information for the ReservationManager about all reservations slots in
the time table regarding some reservation id.

• public ArrayList<String> createReservations(ArrayList<Request>

reservations): creates a massive a sequence of reservations. returns
the ids of reservatins with a 1:1 mapping regarding their place. If one
of the reservations fails, all of them must fail also. If reservation fails,
but restoring succeeds, the empty array is returned, otherwise, if the
restoring fails also, the null object is returned.

• public Boolean restoreForCheckpointBefore(ArrayList<String>

reservationIDs): restores the state of all timetables just before the
creation of the given reservation. If it was already restored or if there
is no info about it, the call fails otherwise, it succeeds.

4.7 Resource Monitor

The Resource Monitor is the AEM’s internal service that provides the in-
terface to the readings from the node’s Ganglia Monitoring daemon for the
RCA client and the Resource Manager.

The full documentation is available as javadoc in /Support/Documenta-
tion/ in the WP3.3 SVN.

The class eu.xtreemos.xosd.resourcemonitor.ResourceMonitor exposes the
following methods:

36

• public Hashtable<String, String> queryResInfo() queries the lo-
cal monitor data provider for machine status and returns the values
of the metrics being monitored on this node.

• public Hashtable<String, Object> query() queries the local mon-
itor data provider for machine status, translates it into GLUE 1.2-
compliant XML and transforms it into a Hashtable.

• public ArrayList<ResourceDescriptorRecord> queryResourceDescriptor()

queries the local monitor data provider for machine status, translates
it into GLUE 1.2-compliant XML and transforms it into a Hashtable.

• public ArrayList<String> getResMetrics() retrieves the list of
currently supported and enabled metrics.

• public Boolean addResAttribute(String attribute) adds the at-
tribute to the list of enabled metrics.

4.8 XtreemGCP Grid Checkpointing Service

The grid checkpointing service consists of a job level (CRJob Manager) and
a job-unit level (CRExec Manager) component. Triggering a job checkpoint
causes to interact with the job-level component only. The job checkpoint-
ing interface allows to checkpoint a single or dependent jobs each of them
consisting of one or multiple job-units. A job checkpoint will be initiated by
the following interface:

• checkpointJobInit(String jobId, Integer resolveJobDependencies,

String mode, String options, X509Certificate userCert)

A checkpoint for a given jobId is issued. Dependencies between jobs can be
resolved via the second parameter. The mode parameter is used to switch
between checkpointing in the migration or in the fault tolerance context.
The options parameter determines a desired checkpointing behaviour e.g.
incremental/full checkpointing, etc. A given certificate allows only autho-
rised actors to issue a checkpoint.
The job restart interface allows to restart a single or dependent jobs each of
them consisting of one or multiple job-units. A job restart will be initiated
by the following interface:

• restartJobInit(String jobId, String checkpointVersion, Integer

restartDependentJobs, ArrayList<String> destinationIP, ArrayList<String>

destinationPort, String mode, X509Certificate userCert)

A restart requires a jobId and a checkpoint image reference. One can switch
between solely restarting one job, or a group of dependent jobs. The third
and fourth parameter must be provided at least for each migrating job-unit

37

to point out on which grid node it is to be restarted. The mode parameter
determines whether to perform a restart in migration or fault tolerance
context. A given certificate allows only authorised actors to issue a restart.
Job migration is based on the sequence job checkpointing, job killing and
job restart. A job migration will be initiated by the following interface:

• migrateJob(String jobId, Integer resolveJobDependencies, String[]

destinationVector, Integer options, X509Certificate userCert)

The jobId references the job to be migrated. Job dependency resolva-
tion can be activated by the second parameter. A formatted string de-
fines which job-unit shall migrate to which destination node (string format:
’JobUnitID:IPAdress-JobUnitID:IpAdress...’). Using the options parameter
a desired checkpointing behaviour can be determined. A given certificate
allows only authorised actors to issue a migration.

4.9 XATI and C-XATI

AEM automatically generates XATI (JAVA) and C-XATI interfaces.
The best way to see the expanded interfaces documentation is the html

javadoc-generated reference inside /Support/Documentation/ for the in-
volved classes or the header files in case of C-XATI.

4.9.1 XATI class

The Java client code consists of the eu.xtreemos.xati.XATI class, and a
set of generated classes for accessing the service calls. The main XATI class
is statically present and used by all the generated classes. It offers some
control of the way the client program communicates with the rest of the
XtreemOS infrastructure. The following properties can be used:

• public static CXATIConfig config: the structure containing the
current configuration used by the current and future service calls. The
XATI reads the values during the static class initialisation. If the
configuration file or the path to the configuration (/.xos by default)
do not exist, it creates them, setting the default values. The following
properties are available:

– CommunicationAddress address: the address of the access point
of the client. While the XATI does not serve service requests, but
it needs to listen for responses of the requests issued by the client
itself.

– CommunicationAddress xosdaddress: the address of the dae-
mon that the requests from the client will be sent to.

38

– String useSSL: Defines whether the SSL will be used for the
communication with the xosd. The node will be identified us-
ing the certificateLocation and privateKeyLocation for the
public/ private key pair. The value can be changed during the
runtime, but to actually make the changes have any effect, the
XATI.restart() needs to be called.

– String certificateLocation: This certificate is for XATI –
XOSD communication and is used for the SSL handshake. It can
either be a .crt file containing the public key of the communication
service, or a full truststore containing the public, private key and
the certification chain. The value can be changed during the
runtime, but to actually make the changes have any effect, the
XATI.restart() needs to be called.

– String userKeyFile: This is where client key is stored. XATI
does not use the option value, but the program using XATI can
use it to load the key. It is up to the programmer using XATI to
check for any changes of the value.

– String privateKeyLocation: This is where the client’s key is
stored. If the useSSL is a .key certificate, then this path points
to the corresponding private key. Otherwise the value is ignored.
The value can be changed during the runtime, but to actually
make the changes have any effect, the XATI.restart() needs to
be called.

– String trustStoreSSL: The path and the filename to the user
certificate that can be used for authentication and authorisation
when submitting a job or performing other tasks from clients
to AEM. XATI does not use the option value, but the program
using XATI can use it to load the certificate and pass it to the
API calls. It is up to the programmer using XATI to check for
any changes of the value.

– String userCertificateFile: The string denoting the network
adapter to be used for listening to connections at, e.g. eth0. If
the value is omitted, then the first non-localhost and non-vmware
adapter will be used.

– String networkInterface: The name of the network interface
to be used by XATI.

– String schemasLocation: Path to the XSDs defined in XATI.

These are the static methods that can be used from XATI:

• public static void restart(): Calls stop, then starts a new set
of communication threads and queues. The command therefore drops

39

any pending transactions, and starts anew. If the config values have
changed, they will be used when connecting to the new values.

• public static void stop(): Stop all communication queues and
communication threads, ending all communication with the xosd.

• public static X509Certificate getUserCertificate(): returns
the user certificate as defined in the XATI configuration file. The XATI
reads the certificate during the static intialisation, so the instance
returned is an in-memory copy.

• public static PrivateKey getPrivateKey(): returns the user’s pri-
vate key as defined in the XATI configuration file. The XATI reads
the key during the static intialisation, prompting the user for the pass-
word, so the instance returned is an in-memory copy.

4.9.2 Client access interfaces

XATI classes and methods are in the package “eu.xtreemos.xati.API“ in-
cluded in xati.jar. The final class adds and “X“ to the class name which
methods are exported.

For example createJob method for JobMng is converted to: static

public String eu.xtreemos.xati.API.createJob(String jsdlFile, Boolean

startJob, String reservationID, X509Certificate userCtx)

• XCDAMng

• XCommon

• XCRExecMng

• XCronDaemon

• XDaemon

• XExecMng

• XJobDirectory

• XJobMng

• XRCAClient

• XRCAServer

• XResAllocator

• XResMng

• XReservationManager

40

• XResourceMonitor

• XSRDSMng

• XVOPS

• XXMLExtractor

• XXMLService

• XXOSQuotaLib

For monitoring output, there are helper classes that transform the XML
into a Java class.

4.9.3 XML Helper (java)

The helper classes are inside the package eu.xtreemos.xosd.utilities.jobinfo
contains JobInfoList class. This class is basically a wrapper for the output
of monitor API. Once constructed with the XML output from getJobInfo,
the user may query it for any job and metric obtaining a MetricValue object:
There are three polymorphic versions of getMetricValue depending on the
scope of the requested metric:

• getMetricValue(jobId, metricName)

• getMetricValue(jobId, resourceId, metricName)

• getMetricValue(jobId, resourceId, pid, metricName)

To make it easier to work with monitor API output, there are three
useful methods that return the list of jobs, resources or pids present in the
XML:

• getJobs()

• getJobResources(String)

• getResourcePids(String, CommunicationAddress)

4.9.4 C-XATI

C-XATI methods are exported to libXATICA, the signature of the methods
exported is similar to Java methods but with the return value as reference.

As an example JobMng.createJob is included in XCJobMng.h and its
signature is:

int createJob(char* jsdlFile,char startJob,char* reservationID,char*

userCtx, char** returnValue)

41

The int return value is an error code, where 0 means no error, and
negative values are defined in xos errno.h header file. There is also a function
in libXATICA to get a textual description from the error codes:

char *xos strerror(int n) Gets the predefined message for the error
code.

Exceptions generated in the java XOSd are translated to this error codes
automatically and attached message can be queried with another function:

char *xos exceptionMsg() Gets the message present in the last excep-
tion.

There are also helper classes that transform the XML into a C struct,
and ArrayList management utilities.

In the next pages, we will list the C enumerations and error codes for
the different C functions.

4.9.5 Enumerations

enum TypeOfInfo {

XOS_BASIC=2,

XOS_JOB_DEFINITION=4,

XOS_RESOURCES_ALLOCATED=8,

XOS_RESOURCES_CONSUMED=16,

XOS_USER_METRICS=32,

XOS_NO_BUFFER=64,

XOS_XTRACE=128,

XOS_ENABLE=256

};

enum InfoLevel {

XOS_JOB=1,

XOS_PROCESS,

XOS_KERNEL

};

enum DependenceDirection {

XOS_UP = 0,

XOS_DOWN

};

enum ControlOperations {

XOS_SUSPENDJOB=19,

XOS_RESUMEJOB=18,

XOS_CANCELJOB=15

};

42

enum MetricType {

XOS_MTINT,

XOS_MTDOUBLE,

XOS_MTCHAR,

XOS_MTSTRING,

XOS_MTTIME

};

enum MetricScope {

XOS_MSJOB,

XOS_MSRESOURCE,

XOS_MSJOBUNIT,

XOS_MSPROCESS,

};

enum MetricBufSize {

XOS_MBSHORT,

XOS_MBMEDIUM,

XOS_MBLONG,

};

4.9.6 Error codes

/* System errors */

#define _xos_syserr_end 1000

#define _xos_syserr_start 900

#define XOS_ECOMMURCV 999

#define XOS_EPARSERCV 998

#define XOS_ECOMMUSND 997

#define XOS_EPARSESND 996

/* System exceptions */

#define XOS_EXGENERIC 1 /* Generic exception */

#define XOS_EXBADRES 2 /* Bad resource */

#define XOS_EXBADATTRCERT 3 /* Bad attribute certificate of the resource */

#define XOS_EXRESNOTREG 4 /* Resource not registered */

#define XOS_EXUNKNOWNDT 5 /* Unknown datatype */

#define XOS_EXUNKNOWNOID 6 /* Unknown OID */

#define XOS_EXBADUSERCERT 7 /* Bad user certificate*/

#define XOS_EXREVDIR 8 /* Reservation directory generic exception */

#define XOS_EXREVDIRALRE 9 /* Reservation directory: job already attached */

#define XOS_EXREVDIRNOEMP 10 /* Reservation directory: not empty reservation */

#define XOS_EXREV 11 /* Reservation generic exception */

#define XOS_EXREVNORES 12 /* Reservation: not enough resources */

43

#define XOS_EXREVNOSLOT 13 /* Reservation: no free slots available */

#define XOS_EXREVLOCALLOC 14 /* Reservation: local allocation error */

#define XOS_EXREVRESELECT 15 /* Reservation: resource selection error */

#define XOS_EXREVACCDENY 16 /* Reservation: access denied */

#define XOS_EXREVNOEXIST 17 /* Reservation: does not exist */

#define XOS_EXJOBNOEXIST 18 /* JobID doesn’t exist */

#define XOS_EXINVCERT 19 /* Invalid certificate */

#define XOS_EXOPNOALLOW 20 /* Operation not allowed */

#define XOS_EXNOACCES 21 /* Permission denied */

#define XOS_EXBADMETRIC 22 /* Bad metric */

#define XOS_EXMON 23 /* Monitor generic exception */

#define XOS_EXREVFUTURE 24 /* Reservation starts in the future */

#define XOS_EXREVEXPIRE 25 /* Reservation expired */

#define XOS_EXNORESAV 26 /* No resource available */

#define XOS_EXNORESPOL 27 /* No resource matches policies */

#define XOS_EXRESNOIREV 28 /* Resource not in reservation */

#define XOS_EXBADSIG 29 /* Bad signature */

#define XOS_EXSVCNORUN 30 /* Service not running */

4.9.7 XML Helper (C)

The usage of the helper is the following:

JobInfoList myJil;

ArrayList jobs;

myJil = XML2JobInfoList(jInfoXML);

if (myJil == NULL){

fprintf(stderr, "parse error\\n");

return -1;

}

int errcode = getJobs(jil, \&jobs);

The different helper methods provided are the next ones, they manage
ArrayList (free - new) of different types and convert between XML and
structs:

ArrayList
ArrayList newArrayList();
void freeArrayList(ArrayList array);
int addToArrayList(ArrayList array, char *el);
char *getFromArrayList(ArrayList array, int elno);
char *ArrayList2XML(ArrayList array);

44

CommunicationAddress
int CommAddress2str(const CommunicationAddress ca, char **str);
int str2CommAddress(const char *str, CommunicationAddress *ca);
int equalsCommAddress(const CommunicationAddress ca1, const Commu-
nicationAddress ca2);
void freeCommAddress(CommunicationAddress ca1);

MetricsDesc
MetricsDesc newMetricsDesc();
MetricsDesc XML2MetricsDesc(const char *xmlin);
char *MetricsDesc2XML(const MetricsDesc md);
void setMetricsDescName(MetricsDesc md, const char *name);
void setMetricsDescDescription(MetricsDesc md, const char *description);
void setMetricsDescScope(MetricsDesc md, enum MetricScope ms);
void setMetricsDescType(MetricsDesc md, enum MetricType mt);
void setMetricsDescBufferable(MetricsDesc md, int bufferable);
void setMetricsDescBufSize(MetricsDesc md, enum MetricBufSize mb);
void freeMetricsDesc(MetricsDesc md);

JobInfoList
JobInfoList XML2JobInfoList(const char *xmlin);
void freeJobInfoList(JobInfoList jil);
int getJobs(const JobInfoList jil, ArrayList *array);
int getJobResources(const JobInfoList jil, const char *jobId, ArrayListCA
*array);
int getResourcePids(const JobInfoList jil, const char *jobId, const Commu-
nicationAddress ca, ArrayListInt *array);

MetricValue
int getMetricValue(const JobInfoList jil, enum MetricScope scope, const
char *jobId, const CommunicationAddress resourceId, const int pid, const
char *metricName, MetricValue *mv);
void freeMetricValue(MetricValue mv);
char *getFirstMetricValue(const MetricValue mv);
char *getFromMetricValue(const MetricValue mv, int elno);
int getMetricValueLength(const MetricValue mv);

ArrayListCA
ArrayListCA newArrayListCA();
int addToArrayListCA(ArrayListCA array, CommunicationAddress el);

45

CommunicationAddress getFromArrayListCA(ArrayListCA array, int elno);
void freeArrayListCA(ArrayListCA array);

ArrayListInt
ArrayListInt newArrayListInt();
int addToArrayListInt(ArrayListInt array, int el);
int getFromArrayListInt(ArrayListInt array, int elno);
void freeArrayListInt(ArrayListInt array);

5 SRDS - Resource Discovery

5.1 RSS

The Resource Selection Service (RSS) provides a simple interface defined
by eu.xtreemos.rss.protocol.QueryForwarder. This interface can be
obtained by invoking a static method start(String configFilename) on
the eu.xtreemos.rss.XtreemRSS class, which creates and starts a local
RSS instance. The QueryForwarder interface contains the following two
methods.

• public void forwardJSDLQuery(String jsdl, RssReply rssReply);

This method submits a JSDL query to the RSS and registers an
RssReply handler which asynchronously receives the results.

• public void forwardJSDLQuery(String jsdl, String xacml, RssReply

rssReply)

This method submits a JSDL query to the RSS together with an
XACML policy filter that specifies additional (security-related) re-
source constraints. Again, the results are asynchronously passed to
the RssReply handler.

The RssReply handler is a user-provided object that implements the
eu.xtreemos.rss.misc.RssReply interface. This interface contains only
one method.

• public void setGlueResponse(String GlueResponse);

This method is invoked on the handler when a query completes and
returns full results. The results are encoded in the GLUE standard.

5.2 ADS

The ADS module provides interfaces for two different services: Job Direc-
tory and Resource Discovery. These interfaces are exposed within XtreemOS

46

through XOSD. The methods that actually access the DHTs are imple-
mented in an asynchronous way.

The class eu.xtreemos.ads.connection.dixi.SRDSMng exposes the
following methods to allow to managing information about jobs.

• public int putJob(String jobID, CommunicationAddress contactPoint,

String userID);

Insert the information regarding a job into the directory.

• public int modifyJobContactPoint(String jobID, CommunicationAddress

newContactPoint);

Change the contact point of a job already present in the directory.

• public int setAttribute(String jobID, Attribute attribute);

Add an attribute to a job, or update the attribute value if it is already
existing.

• public int removeJob(String jobID);

Remove all information about a job from the job directory.

• public long getJobContactPoint(String jobID);

Query the contact point of a job currently in the directory.

• public long getJobsByAttribute(Attribute attribute);

Query the keys that match the attribute pair name and value present
in the attribute parameter.

• public long getJobAttribute(String JobId, String attributeName);

Invoke a query for the attribute value related to the given job.

• public Integer removeJobAttribute(String jobID, String attrName)

Remove an attribute associated to a jobID. This method can be used
only for not reversed attibute such UserID.

The same class eu.xtreemos.ads.connection.dixi.SRDSMng exposes
also the following methods in order to manage the resources information.

• public long resourceQuery(String jsdlDocument, String xacmlDocument,

X509Certificate userXOSDCert);

Invoke a resource discovery process. The content of JSDL query and
the policy are passed as String. Note: at present, ADS does not check
against the policy. The method starts the query in the asynchronous
way. In order to retrieve the results the method getResourceQueryResults(long,
ArrayList) is used.

• public int registerResource(CommunicationAddress hostAddress);

Requests that the host to be added to the directory service. The host

47

address contains the IP of the resource and the port number that the
AEM/DIXI is listening at, and, additionally, an IP of the NAT gate-
way for NAT traversal. Note: ADS does not implement this method
yet.

• public int removeResource(CommunicationAddress hostAddress);

Request that the host is removed from the directory service, effectively
no longer being discoverable. The host contains the IP of the resource
and the port number that the AEM/DIXI is listening at, and, addi-
tionally, an IP of the NAT gateway for NAT traversal. Note: ADS
does not implement this method yet.

The class eu.xtreemos.ads.connection.dixi.SRDSMng exposes also
the following method in order to push informations concerning Vivaldi co-
ordinates and in order to search IPs by passing Vivaldi coordinates and
radius.

• public Integer pushingVivaldiCoordinates(Double X, Double Y,

InetAddress IP);

This method push Vivaldi coordinates concerning an IP into the DHT.
The coordinates are expressed as Double and IP by using InetAddress
type.

• public Integer neighborhoodSearchVivaldiCoords(Double x, Double

y, Double ray, int numberOfResult);

This method takes a couple of values x,y (coordinate vivaldi), a radius
and the required number of answers and searches into the coordinates
grid the IPs situated inside the area bounded by the circle with center
x,y and radius passed as argument.

The ADS module provides RMI interfaces equivalent to the previous,
used mainly for testing purposes.

The Job Directory service RMI interface exposes the following methods:

• public void JDSaddNewJob(String jobId, String JobMng, String

userId)

Add a new Job to the Directory service; it takes care of adding it to
secondary indexes in order to perform reverse queries (i.e. by UserID)

• public void JDSupdateJobAttribute(String jobId, String attrName,

String attrValue)

Update the value of a given attribute for a given Job; the Job must
exist in the DHT.

• public void JDSaddJobAttribute(String jobId, String attrName,

String attrValue)

Add a new pair (attribute, value) to a specified Job

48

• public String JDSgetJobAttributeValue(String jobId, String

attrName)

Retrieve the value of a give attribute for a specified Job; the JobID
and its attribute shall exist.

• public String[] JDSgetJobByAttributeValue(String attrName,

String attrValue)

List the JobIDs of all those Jobs having a given (attribute, value); it
needs to be able to do the reverse query (only possible on UserID, at
the moment); it raises an exception otherwise.

• public void JDSremoveJobAttribute(String jobId, String attrName)

Remove an attribute from an existing Job

• public void JDSremoveJob(String jobId)

Delete any information concerning a given jobID from off the DHT

The Resource Discovery service RMI interface exposes the following
method:

• public String AEMlocate(String jsdlQuery)

Resolve a JSDL query even with dynamic attributes. Call the RSS
module for retrieving informations about the static attributes.

The Vivaldi coordinates manager service RMI interface exposes the fol-
lowing method:

• int pushingCoordinates(Double X, Double Y, InetAddress IP)

Push Vivaldi coordinates concerning IPs

• ArrayList<String> resolveRange(Double x, Double y, Double ray,

int numberOfResult) Search IPs into the circle formed by x,y and
radius ray.

6 XtreemFS

XtreemFS services (MRC, DIR and OSD) do not use other XtreemOS ser-
vices. The communication protocol used by XtreemFS components can be
found in Deliverable D3.4.5. Updated versions will be published in the svn
in trunk/docs. As this is an internal protocol it may change at any time
without further notice.

The XtreemFS client can optionally use the AMS service for account
mappings (amsclient invmappinginfo internal and amsclient mappinginfo internal).
There is also an optional plugin for the MRC that uses Java packages from
org.xtreemos.wp35 to read XtreemOS certificates.

49

7 OSS

The Object Sharing Services (OSS) includes all interfaces related to sharing
of volatile memory objects. The interfaces described below are the internal
interface that are all provided by the XOSAGA API. More information can
be found in deliverables D3.4.4, D3.4.5 and D3.1.5.

• int oss startup(const char *addr, const char *listen port, const

char *bootstrap addr, const char *bootstrap port);

• void *oss alloc(size t size, oss consistency model t consistency model,

oss alloc attributes t *attributes);

• void oss free(void *ptr);

• oss transaction id t oss bot(oss transaction priority t priority,

oss transaction attributes t *attributes);

• int oss eot(oss transaction id t taid);

• int oss abort(oss transaction id t taid, oss ta abort t *type

);

• oss permit abort(oss transaction id t taid);

8 Communication

8.1 DIXI

DIXI (DIstributed eXtreemos Infrastructure) is a framework for hosting
services, which includes facilities for communication between services on
remote hosts, message redirection and secure communications. It does not
have API as such. However, some functionality can be obtained by accessing
service calls of a special service named Daemon. There is also a singleton class
Site that enables access to certain information and additional functionality.

8.1.1 Daemon service

This service maintains the information needed by each daemon process
(xosd) on the services running within the daemon, and the addresses of
access points of other daemons in the network. In the static set-up, this
service also provides the functionality of the service directory.

The interfaces to the service are as follows:

• eu.xtreemos.xosd.services.SDaemon in other DIXI services, or

• eu.xtreemos.xati.API.XDaemon in XATI client (the static methods
of the class).

50

The interface exposes the following methods:

• public java.util.ArrayList<CommunicationAddress> getDaemons():
Retrieve a list of access point addresses of the known DIXI daemons.

• public java.util.ArrayList<String> getServiceList(): Retrieve
the list of the services currently running on this daemon.

• public Integer registerMyServices(): Publish the services of this
daemon to the service directory.

• public java.util.ArrayList<CommunicationAddress> getNodesRunningService(String

serviceName): List the access point addresses running the given ser-
vice.

• public Integer kill(): Unregister this daemon and stop it.

8.1.2 Site class

This class exists as a static singleton whitin the xosd, and can be used by
the services to gain information on the current runtime. It has the following
properties that can be read:

• CommunicationAddress address: The address of the current dae-
mon’s access point. This is the address that accepts incoming service
requests.

• int xmlport: the port number of the XML protocol, used, e.g., by
C-XATI.

• String xosdRootDirectory: the path where the DIXI resides.

• CommunicationAddress rootaddress: the access point of the root
daemon (xosd with service directory).

• KeyStore trustedKeyStoreSSL: the keystore containing the public
certificates of the trusted CAs for the incoming SSL communications.

The class also has utility methods:

• void netSend(CommunicationAddress address, ServiceMessage sm):
sends the service message to the access point at the given address.

8.2 Pub/Sub

The PubSub module provides interfaces for the publish-subscribe service.
The interface is currently exposed within XtreemOS as a Java library.

51

Publishing topics

String topic;
String content;
OtpErlangString otpTopic;
OtpErlangString otpContent;

Scalaris sc = new Scalaris();
sc.publish(topic, content); // publish(String, String)
sc.publish(otpTopic, otpContent); // publish(OtpErlangString,

// OtpErlangString)

For the full example, see de.zib.scalaris.examples.ScalarisPublishExample

Subscribing to topics When an item is published under the regis-
tered topic, an HTTP Request will be made to the registered URL. The
body of the request will contain a small JSON document with the contents
of the published item.

String topic;
String URL;
OtpErlangString otpTopic;
OtpErlangString otpURL;

Scalaris sc = new Scalaris();
sc.subscribe(topic, URL); // subscribe(String, String)
sc.subscribe(otpTopic, otpURL); // subscribe(OtpErlangString,

// OtpErlangString)

For the full example, see de.zib.scalaris.examples.ScalarisSubscribeExample

Unsubscribing from topics Unsubscribing from topics works like
subscribing to topics with the exception of a NotFoundException being
thrown if either the topic does not exist or the URL is not subscribed to the
topic.

String topic;
String URL;
OtpErlangString otpTopic;
OtpErlangString otpURL;

52

Scalaris sc = new Scalaris();
sc.unsubscribe(topic, URL); // unsubscribe(String, String)
sc.unsubscribe(otpTopic, otpURL); // unsubscribe(OtpErlangString,

// OtpErlangString)

Getting a list of subscribers to a topic

String topic;
OtpErlangString otpTopic;

Vector<String> subscribers;
OtpErlangList otpSubscribers;

// non-static:
Scalaris sc = new Scalaris();
subscribers = sc.getSubscribers(topic);
// getSubscribers(String)
otpSubscribers = sc.singleGetSubscribers(otpTopic);
// getSubscribers(OtpErlangString)

9 Virtual Nodes

This section describes the use of the Virtual Nodes library. It is structured in
accordance to the different use cases one might find: developing an applica-
tion using Virtual Nodes’ Java-RMI-like user interface; configuring a Virtual
Nodes instance; and finally, implementing a custom middleware layer. To
clarify things, we develop a simple dictonary application which we use to
explain the usage of the API.

9.1 Java RMI-like Application Programmer API

Virtual Nodes comes with an API that is adapted from Java’s RMI layer.
In this section we present this API and show how to use it.

Implementing a Replicated Service

A service which is to be run replicated using Virtual Nodes has to imple-
ment the interface rmi.RRMIObject5. Furthermore, it has to implement
java.io.Serializable. This is due to the fact that for starting new repli-
cas, the replica state has to be transferred. In consequence the serialisation

5all package names in this document that do not start with java. are relative to
eu.xtreemos.vnode.

53

methods readObject and writeObject have to be implemented accordingly
where neccessary. As an optional step methods can be marked to be read-
only using the rmi.Readonly annotation.

For our example this looks as follows.

public class DictionaryService implements RRMIObject, Serializable, Dictionary {

private final Hashmap<String,String> entries = new Hashmap<String,String>();

@Override @Readonly
public String getEntry(String key) throws NoSuchObjectException {
String val = entries.get(key);
if(val == null) throw new NoSuchObjectException();
return val;
}

@Override
public void addEntry(String key, String value){
entries.put(key, value);
}

}

The Virtual Nodes Registry

In ordernary Java RMI applications one uses the Java registry rmiregistry

or the classes provided by java.rmi.registry. As this registry has some
limitations such as that it is not possible to insert entities from a remote host,
Virtual Nodes come with a wrapper that is located in the rmi.registry

package and can be accessed by rmi.registry.RegistryAccessor. This
registry is not fault-tolerant and constitutes a single point of failures. Thus,
it should not be relied upon. Instead we recommend the use of the XtreemOS
directory service as a persistent reference.

Starting a Replicated Service

Starting a new replica comprehends the following steps.

• Create an instance of the service to be replicated

• Export the instance using rmi.Exporter

• Add the proxy to the registry

In our example this translates to the following lines of code.

54

public static Dictionary startService() throws ExportException,
RemoteException, AlreadyBoundException {

DictionaryService dicts = new DictionaryService();
Remote proxy = (Remote) Exporter.exportObject(dicts).proxy;

Registry reg = RegistryAccessor.INSTANCE.findRegistry();
reg.bind(RegistryAccessor.name, proxy);
return (Dictionary) proxy;

}

Starting a Client

At client-side, the only steps to be taken are to read the reference from the
registry and to cast it to the respective type.

public static Dictionary getClient() throws AccessException,
RemoteException, NotBoundException {

Registry reg = RegistryAccessor.INSTANCE.findRegistry();
Dictionary dict = (Dictionary) reg.lookup(RegistryAccessor.name);

return dict;
}

Starting a New Replica

Starting a new replica is similar to acting as a client. In addition to get-
ting the reference, it is required to cast it to client.AdminMethods, Virtual
Nodes’ administration interface, and then invoke startNewReplica(MiddlewareAdapter
adapter). adapter may be null just as shown in the example code below.
In case it is non-null, the adapter will be invoked each time the group of
replicas changes. This mechanism can be used to update the information in
the registry.

public static void startReplica() throws AccessException,
RemoteException, NotBoundException {

Dictionary dict = getClient();
AdminMethods adm = (AdminMethods) dict;
adm.startNewReplica(null);

}

55

9.2 Configuration Parameters

Virtual Nodes can be configured using a configuration file. The location of
this file is set using the -D switch with vnode.config.file=<filelocation>.
If the value is not set, the framework searches a file called vnode.config in
the ∼/.vnode/ and in /etc/xos/vnode/. Besides the use of a configura-
tion file, all configuration parameters can be set directly using the -D switch.
Parameters set this way always overrule the values of the configuration file.
If neither a configuration file can be found or the configuration file does
not contain a value for a parameter nor the parameter is set via -D, Vir-
tual Nodes will use a default value for that parameter. In the following we
present a list of all configuration options. We distinguish global (g) options
which can only be set for the first replica and will be silently ignored for all
others, and local (l) options which can be set for each replica and client.

• vnode.config.file: the path where the configuration file is located.
If it is not set, the framework looks up the configuration in∼/.vnode/vnode.config
and then in /etc/xos/vnode/vnode.config. Values set as system
property will overrule those set in the configuration file. Setting this
value in the configuration file will has no impact.

• vnode.config.groupcom: determines the group communication to be
used: takes one of the values {JGROUPS, DUMMY} (g)

– JGROUPS provides the following options:

∗ vnode.config.groupcom.jgroups.portrange: the portrange
JGroups is using (l)

∗ vnode.config.groupcom.jgroups.port: the local port Jgroups
tries first (l)

∗ vnode.config.groupcom.jgroups.fdtimeout: the timeout
of the failure detector (l)

∗ vnode.config.groupcom.jgroups.address: the local IP
address to bind to (l)

∗ vnode.config.groupcom.jgroups.groupname: the group-
name to be used (g)

• vnode.config.replication: determines the replication protocol: takes
one of the values {ACTIVE} (g)

• vnode.config.scheduler: determines which scheduling algorithm is
used: takes one of the values {MAT, SEQ}, might be overridden by
the replication protocol (g)

• vnode.config.contact: determines the external communication pro-
tocol: takes one of the values {TCP, DUMMY} (g)

56

– Options for TCP

∗ vnode.config.contact.tcp.address: determines which lo-
cal address to bind to. If not set, the server binds to all local
addresses (l)

∗ vnode.config.contact.tcp.port: determines which port
to use. if not set, the port will be chosen by random (l)

• vnode.config.client.semantics: determines which invocation se-
mantics the client requires: takes one of the values {BEST EFFORT,
AT MOST ONCE} (l)

• vnode.config.client.quantity: determines how many reply the
client requires: takes a positive integer value {1, . . . } (l)

• vnode.config.client.selector: classname of the class used for se-
lecting the next replica to contact to (l)

• vnode.config.client.checker: classname of the class used for se-
lecting the reply (l)

rmi.registry.RegistryAccessor uses the following properties:

• vnode.rmi.registry.accessor.name: the name the stub is bound
to

• vnode.rmi.registry.accessor.host: the host the registry resides
on

• vnode.rmi.registry.accessor.port: the port used by the registry

A list of system properties that are reserved for internal or future use
and must not be set by users:

• vnode.config.done

• vnode.config.groupcom.jgroups.knownhosts: the hosts known to
the Jgroups system (persistent property)

• vnode.config.groupsize: the number of replicas to be used: takes
a positive integer value {1, . . .}

9.3 Implementing a Middleware Layer

The way Virtual Nodes are designed allows for multiple middleware layers
on top of the replication logic. A middleware layer is responsible for pa-
rameter (un)marshalling. In addition, it dispatches methods at server-side
and provides information about the method character, that is, whether an
invokation is read-only or not. The layer has to implement three classes

57

• a dispatcher class that implements execution.ReplicatedObject

• a serialiser implementing ReplicatedObjectSerialiser that is able
to serialise the execution.ReplicatedObject

• a method identifier extending common.MethodId

public interface ReplicatedObjectSerialiser {
public void serialise(ReplicatedObject ro, OutputStream out) throws IOException;
public ReplicatedObject deserialise(InputStream in) throws IOException;

}

public interface ReplicatedObject {

public boolean isReadOnly(MethodId method)
throws UnknownMethodException;

public SingleReply dispatch(ReplicaId id, MethodId method, byte[] arguments)
throws UnknownMethodException;

}

The middleware layer-specific MethodId is created at client-side by the
middleware layer and serialised afterwards by the core. At server-side the
core is not aware which middleware layer is being used and thus, can-
not deserialise the MethodId correctly. Instead, it creates an instance of
common.UnresolvedMethodId containing the required deserialisation infor-
mation. As a consequence the instances of common.MethodId that being
passed to isReadOnly() and dispatch()may also be of type UnresolvedMethodId.
The implementation has to check this and transform it to the correct type if
necessary. In order to avoid multiple transformations UnresolvedMethodId.setMethodId()
allows to set the resolved MethodId. The core will use this one as soon as
the value has been set.

At client-side the middleware layer uses instances of client.ClientBase
in order to provide the necessary funtionality.

public class ClientBase {
public SingleReply sendCall(MethodId methodId, byte[] parameters)

throws ConnectException;

public AdminMethods generateAdminMethodsInstance(ReplicatedObjectSerialiser ser);
}

58

sendCall is used to invocate remote methods provided by the service it-
self. Administration methods are handeled by an instance of AdminMethods
which is cretated by generateAdminMethodsInstance in ClientBase. All
invocations to an administration method have to be relied to this object. In
consequence the middleware layer has to ensure that a service does not offer
methods that conflict with administration methods. How this is done is left
open to the implementor.

10 Interfaces Specific to the Cluster Flavour

In this section, we only mention the interfaces specific to the cluster flavour.

10.1 LinuxSSI

LinuxSSI supports the POSIX API like the vanilla Linux kernel. It also sup-
ports the POSIX thread API. In the next sections we describe the LinuxSSI-
specific API.

10.1.1 Capabilities

• int krg capset (krg cap t * new caps) : Set capabilities new caps

for the current process.

• int krg capget (krg cap t * old caps) : Get capabilities for the
current process into old caps.

• int krg pid capset (pid t pid, krg cap t * new caps) : Set ca-
pabilities new caps for a given process.

• int krg pid capget (pid t pid, krg cap t * old caps) : Get ca-
pabilities for a given process into old caps.

• int krg cap geteffective (krg cap t * cap) : Return the effec-
tive capabilities of the capability structure cap.

• int krg cap getpermitted (krg cap t * cap) : Return the per-
mitted capabilities of the capability structure cap.

• int krg cap getinheritable permitted (krg cap t * cap) : Re-
turn the permitted inheritable capabilities of the capability structure
cap.

• int krg cap getinheritable effective (krg cap t * cap) : Re-
turn the effective inheritable capabilities of the capability structure
cap.

59

10.1.2 Hotplug

• int krg get max nodes(void): Get the maximum number of nodes
in the cluster.

• int krg get max clusters(void): Get the maximum number of sub-
clusters in the cluster. In the current version of LinuxSSI, only one
subcluster is supported.

• void krg clear node set(struct krg node set *item) : Initial-
ize to zero the krg node set item.

• void krg node set add(struct krg node set *item, int n) : En-
able a node in the krg node set structure item.

• int krg nodes add(struct krg node set *node set): Add enabled
nodes in the krg node set structure to the cluster.

• int krg nodes remove(struct krg node set *node set): Remove
enabled nodes in the krg node set structure to the cluster.

• int krg nodes fail(struct krg node set *node set): Declare as
failed enabled nodes in the krg node set structure to the cluster.

• int krg nodes poweroff(struct krg node set *node set): Power
off enabled nodes in the krg node set structure to the cluster.

• struct krg nodes* krg nodes status(void): Get status of all nodes
in the cluster.

• struct krg clusters* krg cluster status(void): Get status of
all subclusters. In the current version of LinuxSSI, only one subcluster
is supported.

• int krg cluster start(struct krg node set *krg node set): Start
enabled nodes in the krg node set structure to the cluster.

• int krg cluster shutdown(int subclusterid): Shutdown the clus-
ter identified by subclusterid. In the current version of LinuxSSI,
only the subclusterid 0 is supported.

• int krg cluster reboot(int subclusterid): Reboot the cluster
identified by subclusterid. In the current version of LinuxSSI, only
the subclusterid 0 is supported.

60

10.1.3 Process management

• int get cpu id(void): Return the node id of the local machine (will
be available as get node id in the next versions of LinuxSSI).

• int get nr cpu(void): Return the number of nodes in the cluster.

• int migrate (pid t pid, int destination node) : Migrate the
process pid to the node destination node.

• int migrate self (int destination node): Migrate the current
process to the node destination node.

• checkpoint infos t application checkpoint from appid (media t

media, long app id, int signal): Checkpoint the application iden-
tified by app id to the media media (disk or memory) and send the
signal signal at the end of the checkpoint.

• checkpoint infos t application checkpoint from pid(media t media,

pid t pid, int signal): Checkpoint the application in which the
process pid is involved to the media media (disk or memory) and send
the signal signal at the end of the checkpoint.

• int application restart (media t media, long app id, int chkpt sn,

int flags): Restart the application identified by app id from the
media media (disk or memory).

10.1.4 kDFS Kernel Distributed File System

Being integrated in the Linux VFS, kDFS supports the standard POSIX file
system interface. kDFS has been checked for POSIX compliance with the
POSIX File System Test Suite6 version 20080412.

10.1.5 Pluggable Probes and Scheduling Policies Framework (Plug-
ProPol)

Pluggable Probes and Scheduling Policies Framework (PlugProPol) is an
infras- tructure which enables user to write his own probes and scheduling
policies and add them to the system in runtime (without the need to restart
the whole cluster). If a user wants, for example, to monitor disk usage
on his local machine, he only implements a proper probe and plugs it to
PlugProPol in runtime. This makes the scheduling much more configurable
since no reboot is needed.

All the probes and scheduling policies are implemented as Linux ker-
nel mod- ules, they run in kernel space and are able to access kernel data
structures directly.

6http://www.ntfs-3g.org/pjd-fstest.html

61

The developers that would like to implement probes and scheduling poli-
cies can find all the information about the PlugProPol framework in [3].

10.2 DRMAA

The best reference documentation for developing DRMAA applications is
certainly the DRMAA specification [1] itself, and the DRMAA C language
binding [2]. They contain detailed descriptions of all the important DRMAA
functions for job submission and control. A summarized description of those
functions can also be found in the “drmaa.h” which is located in the “lib”
subdirectory of the LinuxSSI DRMAA source tree:

• int drmaa init(const char* contact, char* error diagnosis, size t
error diag len): initializes DRMAA library and creates new DR-
MAA sesssion. This function must be called before any other DRMAA
function.

• int drmaa exit(char* error diagnosis, size t error diag len):
disengages from DRMAA library and allows DRMAA library to per-
form any necessary internal cleanup. It ends current DRMAA session,
but doesn’t affect any jobs (e.g. queued and running jobs will remain
queued running).

• int drmaa run job(char *job id, size t job id len, const dr-
maa job template t *jt, char *error diagnosis, size t error diag len):
submits a single job with the attributes defined in the jt job template.
Upon success, up to job id len characters of the submitted job’s job
identifier are stored in the job id buffer.

• int drmaa run bulk jobs(drmaa job ids t **job ids, const dr-
maa job template t *jt, int start, int end, int incr, char *er-
ror diagnosis, size t error diag len): submits a set of parametric
jobs which can be run concurrently. The attributes defined in jt job
template are used for every parametric job in the set. Each job in the
set is identical except for its index. The smallest valid value for start
is 1. The largest valid value for end is 231 − 1. The start value must
be less than or equal to the end value and only positive index numbers
are allowed. On success, an opaque job id string vector containing job
identifiers for all submitted jobs is returned into job ids.

• int drmaa job ps(const char *job id, int *remote ps, char *er-
ror diagnosis, size t error diag len): retrieves the program status
of the job identified by “job id”. The possible values of a program’s
status are defined in “drmaa.h” (look for all the macros with the DR-
MAA PS * prefix).

62

• int drmaa control(const char *job id, int action, char *er-
ror diagnosis, size t error diag len): enacts the action indicated
by “action” parameter on the job identified by “job id”. The possible
values of “action” parameter are defined in “drmaa.h” (look for all the
macros with the DRMAA CONTROL * prefix).

• int drmaa wait(const char *job id, char *job id out, size t
job id out len, int *stat, long timeout, drmaa attr values t
**rusage, char *error diagnosis, size t error diag len): waits
for a job identified by job id to finish execution or fail. If the special
string, JOB IDS SESSION ANY, is provided as the job id, this func-
tion will wait for any job from the session to finish execution or fail.
In this case, any job for which exit status information is available will
satisfy the requirement, including jobs which preivously finished but
have never been the subject of a drmaa wait() call. This routine is
modeled on the “wait3” POSIX routine.

• int drmaa synchronize(const char *job ids[], signed long time-
out, int dispose, char *error diagnosis, size t error diag len):
the drmaa synchronize function causes the calling thread to block un-
til all jobs specified by job ids have finished execution. If job ids con-
tains DRMAA JOB IDS SESSION ALL, then this function waits for
all jobs submitted during this DRMAA session as of the point in time
when drmaa synchronize() is called.

To demonstrate the use of DRMAA library, there are examples available
in the “tests” subdirectory of the LinuxSSI DRMAA source tree. Below,
you will find a list of examples along with the explanation on what they do:

• test-drmaa-init.c: demonstrates how to initialize a new DRMAA ses-
sion and later terminate it,

• test-drmaa-job-template.c: demonstrates how to create a new job tem-
plate which contains all the necessary information about the job the
user wants to submit,

• test-drmaa-job-run.c: demonstrates how to submit job via the DR-
MAA interface,

• test-drmaa-bulk-jobs-run.c: demonstrates how to submit multiple in-
stances of the same job (i.e. a batch job) by invoking a single DRMAA
function. Each job instance invokes the same command, however the
parameters can be different,

• test-drmaa-job-ps.c: demonstrates how to retrieve the status of a job
that was already submitted to the DRM system,

63

• test-drmaa-job-wait.c: demonstrates how to use DRMAA interface to
wait for the completion of a specific job,

• test-drmaa-job-synchronize.c: demonstrates how to use DRMAA in-
terface to wait for the completion of multiple jobs that were submitted
to the DRM system,

• test-drmaa-file-streams.c: demonstrates how to redirect the input to
be read from a file instead of stdin and the output to be written to a
different file instead to stdout.

64

11 Interfaces Specific to the Mobile Device Flavour

In this section, we only mention the interfaces specific to the mobile device
flavour.

11.1 libxos getcred

This API just includes one function:

char * xos_getcred(char *configuration_name);

This function returns a credential in PEM format. The API uses libcredstore
to implement single sign-on: if the credential is stored in the credstore, it
is automatically retrieved, but if the credstore is empty or the credential is la-
belled with other configuration name different from the configuration name

parameter, startxtreemos (actually, /usr/bin/runcredagent that in XtreemOS
is a symbolic link to startxtreemos) is launched (with configuration name

as the paremeter, if not NULL) to obtain a credential that is then saved in
the credstore.

xos getcread reads the configuration file /etc/xos/configname alias

to convert the configuration name from any of its aliases, as defined in that
file.

The configuration name parameter can be NULL. In this case, if the
credstore is not empty, the credential is accepted without checking the con-
figuration name registered. If the credstore is empty, a new credential is
stored with configuration name “default”.

In order to compile an application using this library, use the -lxos getcred

compilation option. The source code must include xos getcred.h.

11.2 libxos-credagent

libxos-credagent is a library to implement a pluggable, modular system
to get credentials. The objective of the library is to allow administrators to
change the method used by applications to get the credentials to authenti-
cate in a Single Sign-On (SSO) system, without source code modification.
The basic interface for this library is:

char *xos_credagent_getcred(char *configuration);

This function returns the credential using the credagent configuration
specified in file /etc/xos/creds/<configuration>.conf. The function re-
turns NULL if there is any error (e.g. the user is not authorized to read the
credential). The returned credential must be free’d by the caller.

Additionally, and in order to read any additional parameters from these
configuration files, applications have the following interface available:

65

int xos_setconfigenv(char *config_name,char *section);

This functions maps all the parameters of the specified section in envi-
ronment variables, which can be read using getenv. The function returns
zero on success.

However, it is recommended that end-user applications do not invoke
libxos-credagent directly, but run a wrapper such as startxtreemos in-
stead. This kind of application has permission to read the
/etc/xos/creds directory.

The advised behavior of applications is to try to obtain the credential
from a cache (a credential store, e.g. using libcredstore, see D2.3.4 and then,
only if it is not available, to run startxtreemos (which in turn invokes
libxos-credagent). This behaviour is implemented in libxos-getcred.

Here is a summarized description of xos credagent.h functions:

• char* xos credagent getcred (char* configuration): get cre-
dential invoking the credagent module associated to configuration name
to get it.

• void xos credagentso destroy (CREDAGENT HANDLE han-
dle): function to freed the handle obtained with xos credagentso instance
when not needed anymore.

• char* xos credagentso getparameter (CREDAGENT HANDLE
handle, char* key): get a parameter value from ”credagent” section
in configuration file.

• CREDAGENT HANDLE xos credagentso instance (char*
config name, char** name): function to obtain a handle needed
to use libxos-credagent API for credagent modules.

• int xos creduiagent ask code (CREDUIAGENT HANDLE
handle, char* message, char** code, int max length, char
retry): Use creduiagent module to ask a text to user. This text is
not asked as a password: the user may see what he/she type.

• int xos creduiagent ask confirmation (CREDUIAGENT HANDLE
handle, char* message): Ask confirmation to user.

• int xos creduiagent ask login password (CREDUIAGENT HANDLE
handle, char* message, char** login, char** password, int
max length, char retry): Use creduiagent module to ask user a
login and password or a password only.

• int xos creduiagent ask login pin (CREDUIAGENT HANDLE
handle, char* message, char** login, char** pin, int length,
char retry): Use creduiagent module to ask user a PIN number and
(optionally) a username.

66

• void xos creduiagent destroy (CREDUIAGENT HANDLE
handle): function to freed the handle obtained with xos creduiagentso instance
when not needed anymore.

• void* xos creduiagent get func (CREDUIAGENT HANDLE
handle, char* name): get a function pointer to a method imple-
mented in creduiagent module.

• char* xos creduiagent getparameter (CREDUIAGENT HANDLE
handle, char* key): get a parameter value from ”creduiagent” sec-
tion in configuration file.

• CREDUIAGENT HANDLE xos creduiagent instance (char*
config name, char** name): function to obtain a handle needed to
use libxos-credagent API for interaction with the creduiagent module
specified in the credential configuration file.

• int xos creduiagent show error (CREDUIAGENT HANDLE
handle, char* message): Show a error message to user using the
specified creduiagent.

• int xos setconfigenv (char* config name, char* section): util-
ity function to set configuration parameters from a section in environ-
ment variables.

11.3 libcdaclient

libcdaclient is a C library developed in order to get a credential from a
CDA server or from a CDAProxy. It is used in several applications such as
cdacclient, cdaproxy and in the xos credagent cdaclient.so module.
A program that uses libcdaclient must include the header cdaclient.h
and be linked with the -lcdaclient option.

The ordinary method to obtain a credential from a CDA server is:

int cda_client(char *hostname,

int port,char *CDAcertfilename,

char *RootCAcertfilename, char *username,

char *password, char *voname,char **credential,

char **certificate);

Where the parameters are:

• The hostname and port of the CDA server (mandatory).

• CDAcertfilename (optional): if not NULL, it should contain the name
of a file containing the server certificate of the CDA server in PEM
format, to test that the SSL connection is really with CDA server and
not with a rogue server (to prevent a man-in-the-middle attack).

67

• RootCAcertfilename (optional): if not NULL, it should be the name
of a file containing the root CA certificate (in PEM format) that signs
the obtained credential. This is used to verify that the credential is
authentic.

• username and password (mandatory): these are used to authenticate
in the CDA server, and in order to indicate the user for whom the
credential will be generated.

• voname (mandatory): the VO to which the user belongs (in this cre-
dential, at least).

• credential (mandatory): a pointer to a variable that will be filled
with the credential in PEM format. If the certificate parameter
is also filled in, only the private key will be stored in credential. If
certificate is NULL, the certificate will also be included in credential.

• certificate (optional): the certificate part of the credential. This
parameter may be NULL, and in that case credential will store the
private key and the certificate.

The function returns zero on success.
A variant of this function is:

int cda_client_defergen(char *hostname,

int port,char *CDAcertfilename,

char *rootCAcertfilename, char *username,

char *password, char *voname,char **credential,

char **certificate);

This function is a variant of previous one. The only difference is that
the RSA private key is generated after connecting and authenticating. This
variant is useful for the implementation of CDAProxy, where the RSA key
is generated by the proxy and the proxy does not authenticate the user but
the CDA server. This is done to avoid denial of service attacks.

int cda_client_nossl(char *hostname,int port,

char *username,char *password,

char *voname, char **credential,

char **certificate);

This function is another variant of the first function, that uses a plain
connection with the CDA server instead of a TLS/SSL one. Currently this
function is not very useful, since the CDA server only accepts TLS/SSL
connections, but could be useful in special cases where the connection with
the CDA is trusted.

The libcdaclient library also supports obtaining credentials through
a CDAProxy. In this case, the interface is slightly different:

68

int cda_client_proxy(char *hostname,

int port,char *Proxycertfilename,

char *RootCAcertfilename, char *username,

char *password, char *voname,char **credential,

char **certificate);

The parameters of this function are similar to those in cda client(),
but in this case the the host and port are those of the proxy, not the CDA
ones. This function returns zero on success.

A variant of this function, for use when connecting to the CDAProxy
through a plain connection (i.e. without TLS/SSL), is also available:

int cda_client_proxy_nossl(char *hostname,int port,

char *username, char *password,

char *voname, char **credential,

char **certificate);

11.4 libwrapopen

This library does not have a specific API, since transparency is its main
objective. In order to use it, an environment variable must be set:

export LD_PRELOAD=/usr/lib/libxos_wrapopen.so

Once this is done, applications which are not SUID nor SGID will be
able to read the credential corresponding to a configuration name whenever
they open the file ::xos:configname or /::xos:configname.

Additionally, libwrapopen can be further automatized to load the creden-
tial specified in the environment variable XOS WRAPOPEN CONFIGNAME when a
directory listed in environment variable XOS WRAPOPEN DIRS (a comma sep-
arated list) is opened. This feature can be very useful for automounting
XtreemFS volumes.

If the application only needs the private key part of the credential then
it should open the following file ::xos::key:configname. However, if the
application only needs the certificate part of the credential then it should
open the following file ::xos::cert:configname.

69

References

[1] DRMAA 1.0 grid recommendation (GFD.133). http://www.ogf.org/

documents/GFD.133.pdf, 2008.

[2] DRMAA C binding v1.0. https://forge.gridforum.org/sf/docman/
do/downloadDocument/projects.drmaa-wg/docman.root.ggf_13/

doc5545, 2008.

[3] XtreemOS consortium. Design and implementation of a customizable
scheduler. Deliverable D2.2.6, November 2007.

[4] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal
Kleijer, Andre Merzky, John Shalf, and Christopher Smith. A Simple
API for Grid Applications (SAGA). Grid Forum Document GFD.90,
2007. Open Grid Forum (OGF).

70

