
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Evaluation Report
D4.2.7

Due date of deliverable: August 31st, 2010
Actual submission date: October 15th, 2010

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP2.2, WP2.3, WP3.1, WP3.3, WP3.4, WP3.5, WP3.6, WP4.2

Task number: T2.2.13, T2.3.8, T3.1.5, T3.3.14, T3.4.10, T3.5.7, T3.6.7, T4.2.4, T4.2.5

Responsible institution: SAP
Editor & and editor’s address: Bernd Scheuermann

SAP Research, CEC Karlsruhe
Vincenz-Prießnitz-Str. 1

76131 Karlsruhe, Germany

Version 7.0 / Last edited by Bernd Scheuermann / 15/10/2010

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

1.0 31/05/2010 Bernd Scheuermann SAP Initial version
2.0 17/09/2010 Maik Jorra, Barry McLarnon,

Philip Robinson, Bernd
Scheuermann

SAP, ZIB Finished insertion of evaluation of XtreemOS for
Cloud Computing

3.0 24/09/2010 Bernd Scheuermann SAP Finished documenation of installation and configura-
tion

4.0 29/09/2010 Marjan Sterk, Guillaume
Pierre, Ales Cernivec, Florian
Müller, Primoz Hadalin, Enric
Tejedor, Santiagi Prietro,
Alvaro Arenas, Alvaro Reol,
Louis Rilling, Matthieu Fertré,
Oriol Fito, John Mehnert-
Spahn, Michael Sonnenfroh,
Roman Talyansky, Matej
Artac, Ronald Fowler, Ian
Johnson, Guillaume Alleon,
Lokendra Singh, Michael
Schöttner, Yvon Jégou, Peter
Iszak, Zhouyi Zhou

BSC, EADS,
ICT, IN-
RIA, KER,
SAP, STFC,
TID, UDUS,
VUA, XLAB

Finished insertion of test documentation for compo-
nents evaluation

5.0 29/09/2010 Massimo Coppola, Barry
McLarnon, Roman Talyansky,
Bernd Scheuermann, Ronald
Fowler, Samuel Kortas, Marjan
Sterk, Santiago Prietro, Maik
Jorra, Guillaume Alleon, Oriol
Fito, Enric Tejedor, Michael
Sonnenfroh, Yvon Jégou

BSC, CNR,
EADS, EDF,
INRIA,
SAP, STFC,
TID, UDUS,
XLAB, ZIB

Finished insertion of application descriptions

6.0 29/09/2010 Bernd Scheuermann SAP Included introductory text and Executive Summary.
Submitted to internal review.

7.0 15/10/2010 all authors all teams Internal review, proof reading, corrections.

Reviewers:
Jan Stender (ZIB)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T2.2.13 Performance evaluation KER∗, INRIA, XLAB, UDUS.
T2.3.8 Integration testing TID∗, INRIA
T3.1.5 Performance evaluation VUA∗

T3.3.14 Performance evaluation BSC∗, XLAB, INRIA, UDUS
T3.4.10 XtreemFS Testing, Performance, Compatibility and Mainte-

nance
BSC,CNR∗,ZIB

T3.5.7 Integration STFC∗, XLAB, INRIA, ICT, SAP, ULM
T3.6.7 Integration and testing TID∗, BSC
T4.2.4 Implementing and porting applications to XtreemOS BSC, EADS, EDF, SAP∗, TID, UDUS, VUA, XLAB,

ZIB
T4.2.5 XtreemOS experiments and evaluation BSC, EADS, EDF, SAP∗, TID, UDUS, VUA, XLAB,

ZIB

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary

The evaluation carried out by WP4.2 has guided the development of the XtreemOS
software, has driven bug fixes and performance improvements and has also given
recommendations for short- and longterm product decisions. As in the previous
deliverable, the evaluation is supplemented by the experiments performed by de-
velopers in SP2 and SP3, in order to have a common evaluation document from the
entire consortium. The work done by WP4.2 focuses on the application-oriented
evaluation from the end-user perspective, whereas the contributions from SP2 and
SP3 put emphasis on measuring the performance on a lower technical level.

The deliverable at hand introduces the extended set of applications which were
used for experiments with XtreemOS. We also report how these applications can
contribute to the dissemination and exploitation of XtreemOS. Subsequently, the
evaluation results are presented sub-divided into three categories: evaluation of in-
stallation and configuration, of XtreemOS components and of XtreemOS as foun-
dation for Cloud Computing. The first category continues the longterm survey of
user experience with XtreemOS packaging in the form of XtreemOS install CDS
starting from the very first release (v1.0) up to the latest release (v3.0 beta 2) at the
date of conducting the last survey. Thereafter the evaluation of XtreemOS compo-
nents comprises in-depth experiments with the following technologies: Node-level
VO support, checkpointing and restart, Linux SSI, DIXI message bus, XtreemOS
API, Resource Selection Service, Application Execution Management, Data Man-
agement, Security Services and the Mobile evice Flavor. In the third category,
we evaluate possible ways of using XtreemOS as a foundation for Cloud Comput-
ing in two scenarios: XtreemOS supporting the management of cloud systems and
XtreemOS as the basis for an exemplary implementation of an online photo archive
in the Cloud.

The documentation of all tests include detailed specifications which shall de-
liver comprehensive and reproducible test setups. The results obtained are analyzed
and corresponding feedback is provided to XtreemOS developers. Finally, the de-
liverable concludes with a summary of the test results.

1

Contents

Executive Summary . 1

1 Introduction 9

2 Application Descriptions 11
2.1 Overview . 11
2.2 Hmmpfam on COMP Superscalar (BSC) 11

2.2.1 Application overview . 11
2.2.2 Application Development and Porting 13
2.2.3 How the Application can Contribute to the

Exploitation of XtreemOS 13
2.2.4 How the Application can Contribute to the Dissemination

of XtreemOS . 14
2.3 SPECweb2005 (BSC) . 14

2.3.1 Application overview . 14
2.3.2 Application Development and Porting 15
2.3.3 How the Application can Contribute to the

Exploitation of XtreemOS 16
2.3.4 How the Application can Contribute to the Dissemination

of XtreemOS . 17
2.4 XOS-GATE Tomographic Application (CNR) 17

2.4.1 Application overview . 18
2.4.2 Application Development and Porting 20
2.4.3 How the Application can Contribute to the

Exploitation of XtreemOS 21
2.4.4 How the Application can Contribute to the Dissemination

of XtreemOS . 22
2.5 Amibe (EADS) . 23

2.5.1 Application overview . 23
2.5.2 Application Development and Porting 24
2.5.3 How the Application can Contribute to the

Exploitation of XtreemOS 25
2.5.4 How the Application can Contribute to the Dissemination

of XtreemOS . 26

2

2.6 OpenFOAM (EADS) . 26
2.6.1 Application overview . 26
2.6.2 Application Development and Porting 26
2.6.3 How the Application can Contribute to the

Exploitation of XtreemOS 27
2.6.4 How the Application can Contribute to the Dissemination

of XtreemOS . 27
2.7 Paraview (EADS) . 28

2.7.1 Application overview . 28
2.7.2 Application Development and Porting 28
2.7.3 How the Application can Contribute to the

Exploitation of XtreemOS 29
2.7.4 How the Application can Contribute to the Dissemination

of XtreemOS . 29
2.8 Elfipole (EADS) . 29

2.8.1 Application overview . 29
2.8.2 Application Development and Porting 30
2.8.3 How the Application can Contribute to the Exploitation of

XtreemOS . 30
2.8.4 How the Application can Contribute to the Dissemination

of XtreemOS . 30
2.9 Maestro (EDF) . 30

2.9.1 Application overview . 30
2.9.2 Application Development and Porting 31
2.9.3 How the Application can Contribute to the Dissemination

of XtreemOS . 31
2.10 OpenTurns (EDF) . 31

2.10.1 Application Development and Porting 32
2.10.2 How the Application can Contribute to the

Exploitation of XtreemOS 32
2.10.3 How the Application can Contribute to the Dissemination

of XtreemOS . 32
2.11 Zephyr (EDF) . 33

2.11.1 Application overview . 33
2.11.2 Application Development and Porting 34
2.11.3 How the Application can Contribute to the

Exploitation of XtreemOS 34
2.11.4 How the Application can Contribute to the Dissemination

of XtreemOS . 35
2.12 SALOME (EDF, INRIA) . 35

2.12.1 Application overview . 35
2.12.2 Application Development and Porting 36
2.12.3 How the Application can Contribute to the

Exploitation of XtreemOS 37

3

2.12.4 How the Application can Contribute to the Dissemination
of XtreemOS . 37

2.13 SAP NetWeaver Search and Classification (SAP) 37
2.13.1 Application overview . 37
2.13.2 Application Development and Porting 38
2.13.3 How the Application can Contribute to the

Exploitation of XtreemOS 39
2.13.4 How the Application can Contribute to the Dissemination

of XtreemOS . 39
2.14 SAP MaxDB Replayer (SAP) . 40

2.14.1 Application overview . 40
2.14.2 Application Development and Porting 40
2.14.3 How the Application can Contribute to the

Exploitation of XtreemOS 40
2.14.4 How the Application can Contribute to the Dissemination

of XtreemOS . 41
2.15 Rule-based System Management (SAP) 41

2.15.1 Application overview . 41
2.15.2 Application Development and Porting 42
2.15.3 How the Application can Contribute to the

Exploitation of XtreemOS 43
2.15.4 How the Application can Contribute to the Dissemination

of XtreemOS . 43
2.16 BioLinux Application mpiBLAST (STFC) 44

2.16.1 Application overview . 44
2.16.2 Application Development and Porting 45
2.16.3 How the Application can Contribute to the

Exploitation of XtreemOS 46
2.16.4 How the Application can Contribute to the Dissemination

of XtreemOS . 46
2.17 Instant Messaging Application (TID) 47

2.17.1 Application overview . 47
2.17.2 Application Development and Porting 48
2.17.3 How the Application can Contribute to the

Exploitation of XtreemOS 48
2.17.4 How the Application can Contribute to the Dissemination

of XtreemOS . 49
2.18 Job Management Application (TID) 49

2.18.1 Application overview . 49
2.18.2 Application Development and Porting 51
2.18.3 How the Application can Contribute to the

Exploitation of XtreemOS 51
2.18.4 How the Application can Contribute to the Dissemination

of XtreemOS . 52

4

2.19 Wissenheim (UDUS) . 52
2.19.1 Application overview . 52
2.19.2 Application Development and Porting 53
2.19.3 How the Application can Contribute to the

Exploitation of XtreemOS 53
2.19.4 How the Application can Contribute to the Dissemination

of XtreemOS . 53
2.20 Cloud Computing (VUA, ZIB) 53

2.20.1 Application overview . 53
2.20.2 Application Development and Porting 54
2.20.3 How the Application can Contribute to the

Exploitation of XtreemOS 54
2.20.4 How the Application can Contribute to the Dissemination

of XtreemOS . 55
2.21 Galeb (XLAB) . 55

2.21.1 Application overview . 55
2.21.2 Application Development and Porting 56
2.21.3 How the Application can Contribute to the

Exploitation of XtreemOS 57
2.21.4 How the Application can Contribute to the Dissemination

of XtreemOS . 57

3 Evaluation of Installation and Configuration 58
3.1 Survey Setup . 58
3.2 Survey Results . 60

3.2.1 Overview . 60
3.2.2 Installation . 62
3.2.3 Configuration . 63
3.2.4 Basic Usage . 64
3.2.5 Documentation . 65

3.3 Summary . 66

4 Evaluation of XtreemOS Components 68
4.1 Evaluation Overview . 68
4.2 Evaluation of Node-level VO Support 70

4.2.1 Test Plan . 70
4.2.2 Test Unit 01: Correctness of account mapping 71
4.2.3 Test Summary Report 72

4.3 Evaluation of Checkpointing and Restart 74
4.3.1 Test Plan . 74
4.3.2 Test Unit 01: Container-based checkpointing / restore mech-

anism with SPECweb . 74
4.3.3 Test Unit 02: Grid Checkpointing and Restart 79
4.3.4 Test Unit 03: Checkpointing on Linux SSI 83

5

4.3.5 Test Summary Report 85
4.4 Evaluation of LinuxSSI . 87

4.4.1 Test Plan . 87
4.4.2 Test Unit 01: Checkpointing and Restart 88
4.4.3 Test Unit 02: Global external IP 93
4.4.4 Test Summary Report 99

4.5 Evaluation of the DIXI Message Bus 101
4.5.1 Test Plan . 101
4.5.2 Test Unit 01: client-server timings 102
4.5.3 Test Unit 02: multi-client timings 105
4.5.4 Test Unit 03: parallel requests in the queue 107
4.5.5 Test Summary Report 109

4.6 Evaluation of XtreemOS API . 111
4.6.1 Test Plan . 111
4.6.2 Test Unit 01: Java XOSAGA – Performance comparison

with AEM . 111
4.6.3 Test Unit 02: Evaluation of Parallel Job Submissions using

XOSAGA . 114
4.6.4 Test Unit 03: XOS MPI – Performance testing 116
4.6.5 Test Summary Report 118

4.7 Evaluation of the Resource Selection Service 119
4.7.1 Test Plan . 119
4.7.2 Test Unit 01: Adaptation to Changes in Node Properties . 121
4.7.3 Test Unit 02: Adaptation to Changes in Query Workload . 123
4.7.4 Test Unit 03: Impact of RSS Self-adaptation on Query de-

livery . 125
4.7.5 Test Unit 04: Self-Adaptation Cost 127
4.7.6 Test Summary Report 128

4.8 Evaluation of Application Execution Management 129
4.8.1 Test Plan . 129
4.8.2 Test Unit 01: SPECweb2005 130
4.8.3 Test Unit 02: Job Submisssion 134
4.8.4 Test Unit 03: AEM Job Submission scalability 136
4.8.5 Test Unit 04: AEM SchedFS Benefits 140
4.8.6 Test Summary Report 141

4.9 Evaluation of Data Management 143
4.9.1 Test Plan . 143
4.9.2 Test Unit 01: Object Sharing Service (OSS) – Wissenheim 146
4.9.3 Test Unit 02: Object Sharing Service (OSS) – Performance

stress test . 147
4.9.4 Test Unit 03: Object Sharing Service (OSS) – Word fre-

quency analysis . 150
4.9.5 Test Unit 04: XtreemFS POSIX Compliance Tests 152
4.9.6 Test Unit 05: Scalability, Stability and Performance of XtreemFS154

6

4.9.7 Test Unit 06: XtreemFS, CEPH and NFS - Comparative
Performance Analysis 160

4.9.8 Test Unit 07: XtreemFS replication for fault tolerance and
performance, by SAP . 164

4.9.9 Test Summary Report 169
4.10 Evaluation of Security Services 171

4.10.1 Test Plan . 171
4.10.2 Test Unit 01: Virtual Organisation Policy Service (VOPS) 172
4.10.3 Test Unit 02: Monitoring features and latency of monitor-

ing notifications . 180
4.10.4 Test Unit 03: Auditing features and latency of history database

queries . 182
4.10.5 Test Unit 04: Isolation Experiments 185
4.10.6 Test Unit 05: Evaluation of CDA Server 187
4.10.7 Test Summary Report 190

4.11 Evaluation of Mobile Device Flavor 191
4.11.1 Test Plan . 191
4.11.2 Test Unit 01: XtreemOS support on ARM architectures . . 192
4.11.3 Test Unit 02: VO support by XtreemOS-MD 194
4.11.4 Test Unit 03: Lightweight security for mobile devices . . . 195
4.11.5 Test Unit 04: Performance comparison with XtreemOS PC

flavor and no-Grid solutions 196
4.11.6 Test Unit 05: Creation of new jobs using JobMA application 202
4.11.7 Test Unit 06: Defining new jobs using JobMA application 204
4.11.8 Test Unit 07: Using JobMA for monitoring jobs 206
4.11.9 Test Unit 08: Using JobMA for viewing info about a job . 208
4.11.10 Test Unit 09: Using JobMA for running a job 209
4.11.11 Test Unit 10: Using JobMA to suspend running a job . . . 211
4.11.12 Test Unit 11: Using JobMA to resume a suspended job . . 212
4.11.13 Test Unit 12: Using JobMA to cancel a job 213
4.11.14 Test Unit 13: IMA and XtreemFS integration 214
4.11.15 Test Unit 14: Using XtreemOS-MD for sharing 3G con-

nection . 215
4.11.16 Test Unit 15: Using XtreemOS-MD for data sharing . . . 216
4.11.17 Test Summary Report 217

5 Evaluation of XtreemOS as Foundation for Cloud Computing 219
5.1 Evaluation of Cloud System Management Automation and Recov-

erability Enhancement with XtreemOS 219
5.1.1 Responsibilities . 221
5.1.2 Evaluation Setup . 221
5.1.3 Evaluation Results . 228
5.1.4 Summary . 232

7

5.2 Evaluation of an Online Photo Archive as Cloud Deployment using
XtreemOS . 232
5.2.1 Test Plan . 232
5.2.2 Test Unit 01: Storage Extension 234
5.2.3 Test Unit 02: XOSAGA-SSH benefit 236
5.2.4 Test Summary Report 238

6 Conclusion 239

7 Acknowledgments 245

8

Chapter 1

Introduction

This deliverable reports on the results of the XtreemOS evaluation which has pro-
vided feedback to developers, packaging providers and project management. The
evaluation is structured into three different categories:

1. evaluation of installation and configuration,

2. evaluation of XtreemOS components,

3. evaluation of XtreemOS as foundation for Cloud Computing.

The first category extends and continues the evaluation of XtreemOS pack-
aging. This evaluation was executed in the form of a long-term end-user survey
gathering their experience with the various XtreemOS install CDs. It started with
the very first public XtreemOS version 1.0, several intermediate releases and the
public release 2.0. In this deliverable, the evaluation is extended including version
2.1.2 and release 3.0 beta 2. The latter version was the latest release at the date of
executing the last survey. The strategy applied allow for monitoring the change of
results as the software evolves during project execution. Furthermore, the survey
collects comments and recommendations for improvements. Results of the sur-
vey have been reported to project management and packaging providers in order to
support development and project planning.

The evaluation of XtreemOS components is devoted to extensive testing of
XtreemOS technology including:

• Node-level VO support

• Checkpointing and restart

• Linux SSI

• DIXI message bus

• XtreemOS API

9

• Resource Selection Service

• Application Execution Management

• Data Management

• Security Services

• Mobile Device Flavor

The emphasis of these experiments is set on evaluating the performance, scalabil-
ity, stability and correctness of the respective developments. In addition to WP4.2,
development work packages in SP2 and SP3 contributed to planning, specification,
execution and documentation of the experiments. Each development work package
introduced a dedicated task (cf. DoW) and devoted manpower to carry out the per-
formance evaluation. In each test unit, we indicate the partners and work packages
responsible. As a general rule, WP4.2 mainly conducts application-centric tests
from the end-user’s view whereas SP2 and SP3 focus on lower-level performance
benchmarking.

In the final category, the evaluation focuses on the benefits of using XtreemOS
technology as foundation for Cloud Computing. The last deliverable D4.2.6 [10]
addressed XtreemOS as a solution for Grid Computing comparing XtreemOS with
competitive Grid Middleware technology. In the deliverable at hand, we give an
assessment of XtreemOS used for enabling (or supporting) the management of
cloud environments and the development of cloud services.

The remainder of this deliverable is structured as follows: Chapter 2 gives an
updated overview of the applications used for end-user oriented experimental eval-
uations during the project execution period. It also introduces new applications that
have been added by various partners during the project extension phase. We give
short descriptions per application, report on application development and porting
work and outline how the applications can contribute to the exploitation and dis-
semination of XtreemOS. The test setup and results of the long term survey of the
evaluation of XtreemOS installation and configuration are provided in Chapter 3.
Chapter 4 gives the test plans, specifications and results of the evaluation of the
various XtreemOS components. The evaluation of XtreemOS as basis for Cloud
Computing is presented in Chapter 5. Finally, the evaluations are re-visited and
summarized in Chapter 6.

10

Chapter 2

Application Descriptions

A wide range of applications from different domains have been used for end-user
oriented experimental evaluations during the project execution period. Further ap-
plications have been added by various partners for the project extension phase. The
following section gives an overview of these applications. Afterwards, we give a
short description per application, address application development and porting as-
pects and finally outline how the application can contribute to the exploitation and
dissemination of XtreemOS.

2.1 Overview

Table 2.1 provides an overview of the current set of applications in WP4.2 . Fur-
ther applications have been added by various partners for experiments during the
project extension phase. These applications are marked by (*). The total set of 22
applications covers a wide spectrum of fields with practical relevance. Hence, the
perspectives of end-users from different industrial and academic domains can be
respected during evaluation.

2.2 Hmmpfam on COMP Superscalar (BSC)

BSC contributes to XtreemOS with a COMP Superscalar (COMPSs) enabled ver-
sion of the hmmpfam application. Both COMPSs and hmmpfam are explained in
the next subsections.

2.2.1 Application overview

Hmmpfam is a bioinformatics application that compares sequences of amino acids
against a database of Hidden Markov Models, which represent protein families,
searching for significantly similar sequence matches with each model. The analysis
performed by hmmpfam is computationally intensive and embarrassingly parallel,
which makes it a good candidate to benefit from COMP Superscalar.

11

Table 2.1: Applications in WP4.2. Applications marked by (*) have been added
for experimentation during the project extension period

Partner Application Name Short Name Application Area
BSC COMP Superscalar COMPSS Bio-informatics
BSC SpecWeb SPECWEB Enterprise solutions
CNR XOS-GATE Tomographic Ap-

plications (*)
XOSGATE Numerical simulations

EADS Amibe/JCAE JCAE Computer aided engi-
neering

EADS openFOAM (*) OPENFOAM Computational Fluid
Dynamics

EADS Paraview (*) PARAVIEW 3D data analysis and vi-
sualization

EADS Elfipole ELFIPOLE Electromagnetics
EDF Moderato/Maestro MODERATO Particle physics
EDF OpenTURNS OPENTURNS Sensitivity and reliabil-

ity analysis
EDF Zephyr ZEPHYR Fluid mechanics
EDF/INRIA Salomé (*) SALOME Numerical simulations
INRIA Environmental Application (*) ENVIRON Environmental simula-

tions
SAP SAP NetWeaver Search and

Classification
TREX Enterprise solutions

SAP SAP MaxDB replayer MaxDB Enterprise solutions
SAP Rule-based System Manage-

ment
RBSM Enterprise solutions

STFC BioLinux Application (*) BIOLINUX Bio-Informatics
TID TID Instant Messaging Appli-

cation
IMA Instant messaging

TID Job Management Application JOBMA XtreemOS job manage-
ment

UDUS Wissenheim WISS Virtual Presence
VUA/ZIB Cloud Computing CLOUD Image Archive
XLAB Galeb GALEB Economics, optimiza-

tion

COMP Superscalar (COMPSs) is a framework that facilitates the development
and execution of Java Grid-unaware applications. In the COMPSs programming
model the user selects some methods of a sequential Java application, which should
be run on the Grid. At execution time, COMPSs will be in charge of automatically
replacing the invocations of these methods by the creation of remote tasks. More-
over, the COMPSs runtime will schedule and control the execution of these tasks
on the available Grid resources, controlling the data dependencies between them.

12

Figure 2.1: Execution of a COMPSs application.

Figure 2.1 depicts the COMPSs application execution scenario.

2.2.2 Application Development and Porting

The original version of the COMPSs was built on top of the JavaGAT API. Jav-
aGAT is the Java version of the Grid Application Toolkit [1], which is a generic
and flexible API for accessing Grid services from application codes, portals and
data management systems. The calls to the GAT API are redirected to specific
adaptors which contact the Grid services, thus offering a uniform interface to nu-
merous types of Grid middleware. COMPSs invokes the JavaGAT API to request
the submission of jobs and the transfer of files. In several series of tests conducted
in the MareNostrum supercomputer [6], the hmmpfam application was proven to
run properly on top of COMPSs.

For COMPSs-hmmpfam to run on XtreemOS, the COMPSs runtime had to
be ported to the XtreemOS APIs. Figure 2.2 shows the architecture of COMPSs-
hmmpfam on top of these APIs.

First, COMPSs was ported to the AEM XATI API, from which it exploited the
job management and resource management features. While the former was present
in JavaGAT, the latter was not supported and so it was a new feature added to the
COMPSs runtime. Second, the COMPSs runtime was ported to XOSAGA, also
exploiting the job and resource management capabilities.

At the end of the project, the hmmpfam application has been successfully tested
on the Grid5000 environment and runs on top of COMPSs, in both the porting to
AEM and SAGA.

2.2.3 How the Application can Contribute to the
Exploitation of XtreemOS

The COMPSs-hmmpfam application, ported to the AEM and SAGA APIs, benefits
from the job management and resource management features offered by XtreemOS.
In addition, the resource management was not implemented before in the COMPSs
runtime, and therefore it is a new feature provided by XtreemOS.

Hmmpfam is a widely used bioinformatics application, and as a result of the
COMPSs porting on top of AEM and SAGA, it can now potentially run in any
cluster where COMPSs and XtreemOS are installed. However, the use of COMPSs

13

Figure 2.2: Architecture of COMPSs-hmmpfam on top of XtreemOS.

in XtreemOS is not limited to hmmpfam; a Java application which is programmed
following the guidelines of the COMPSs would be suitable to run in XtreemOS.

2.2.4 How the Application can Contribute to the Dissemination of
XtreemOS

COMPSs provides a simple programming model for applications to be executed
on top of XtreemOS, exploiting its job management and resource management
features. This exploitation, however, is hidden to the programmer.

Concerning the dissemination of XtreemOS, the COMPSs-hmmpfam applica-
tion appears in a paper about the Application Execution Management of XtreemOS,
which was submitted to the 11th ACM/IEEE International Conference on Grid
Computing (Grid 2010):

• XtreemOS Application Execution Management: A Scalable Approach. R.
Nou, J. Giralt, J. Corbalan, E. Tejedor, J.O. Fito, J.M. Perez and T. Cortes.

2.3 SPECweb2005 (BSC)

2.3.1 Application overview

SPECweb [3] [4] is a benchmark for evaluating the performance of World Wide
Web Servers. It is recognized by the community as a representative benchmark

14

for measuring the system’s ability to behave as a web server. Nowadays, web
applications in general are changing a lot and, for this reason, the SPEC corporation
decided to include many sophisticated and state-of-the-art enhancements to cope
with the modern demand of Web users of today and tomorrow: user think time
between requests (i.e. the time between user interactions), and conditional GET
requests to simulate browser caching effects, among others.

It simulates a web server using dynamic web pages and a backend database.
In fact, it provides three new workloads based on analysis of real web server logs.
This is due to both the high variability in security demands and the differences
in dynamic content in various web server workloads. As a result, SPECweb2005
incorporates three different workloads:

1. Banking, based on Internet personal banking. All requests in this workload
are based on SSL.

2. E-commerce, which represents the workload characteristics of an e-commerce
site. This workload includes SSL and non-SSL based requests.

3. Support, based on the characteristics seen in sites used to download patches
for computer support. Its aim is to test the ability of a web server to download
large files. No SSL is used in this third workload.

Moreover, the benchmark architecture has four major logical components (il-
lustrated in Figure 2.3):

• Client. The clients run the application program, which sends requests to and
receives responses from this one.

• Prime client. This is the component that initializes and controls the be-
haviour of the whole testing process. Therefore, its main actions are to
initialize both web server and back-end simulator, and to collect and store
the results of the benchmark tests.

• Web server or System Under Test (SUT). It is the collection of hardware and
software that handles the requests issued by the clients. Note that we use
Apache Tomcat [41] as the server to be evaluated.

• Back-End Simulator (BeSIM), is the logical component that is aimed to em-
ulate a back-end application server that the web server must communicate
with in order to get back dynamic content needed to complete HTTP re-
sponses.

2.3.2 Application Development and Porting

The SPEC corporation released the SPECweb benchmark (version 2005 [3]) be-
fore the starting of the XtreemOS project. Nowadays, an updated version (i.e.

15

Figure 2.3: SPECweb2005 benchmark architecture.

2009) was released [4]. The only change among these versions is the inclusion of
a power workload, which actually is based on the E-commerce workload, and a
performance/power metric. However, this new workload is not significant for us
because our work in XtreemOS does not include any energy/power issue. As a
result, we use the SPECweb2005 version, but actually all the evaluation performed
would be the same if we were using the new version.

Moreover, the application in question has not needed any new development
in order to be used in the XtreemOS system. In this regard, all the benchmark’s
components are based on Java code and, therefore, its portability to XtreemOS is
immediate. Nonetheless, we have developed a set of scripts with the aim to perform
the tests desired.

2.3.3 How the Application can Contribute to the
Exploitation of XtreemOS

As a matter of fact, and taking into account the complex execution environment
needed by the benchmark, XtreemOS opens a wide range of opportunities. Hence,
we consider this promising Grid system as both an evaluation and hosting platform.
On the one hand, its distributed nature is very useful to run tests using any num-
ber of nodes (thus demonstrating the scalability of XtreemOS), and the resource
discovery for acquiring those resources needed allows us to reduce the time of
configuring whichever execution of any magnitude. On the other hand, XtreemOS
can be used as a hosting platform in which we can scale the amount of resources
that the web server under test has. In this way, the server will be able to scale its
performance according to the scalability of the underlying resources.

Concretely, SPECweb2005 takes benefit from the AEM component of Xtreem-
OS by means of:

• Resource management. We can reserve as many resources as a test of any
dimension need. Additionally, we are able to scale the total amount of re-
sources needed by a single component of the application, i.e. the server to
be evaluated.

16

• Job management. All the components of the benchmark are executed and
monitored by means of the job submission and monitoring mechanisms of
AEM, respectively.

As a result, this benchmark on XtreemOS can be used after the project as an
evaluation and a hosting platform.

In addition, we aim to evaluate the container-based checkpointing / restore
mechanism of XtreemOS (i.e. OpenVZ). In this regard, our goal is to test the
suitability of this mechanism for checkpointing and restoring the web server com-
ponent of the benchmark, namely System Under Test (SUT), that runs inside a Java
Virtual Machine (JVM).

2.3.4 How the Application can Contribute to the Dissemination of
XtreemOS

The XtreemOS features that can be demonstrated by SPECweb2005 are the afore-
said AEM component and the container-based checkpointing mechanism. Regard-
ing dissemination actions, in the General Technical Meeting (March 2009), we
presented a demonstration of how the SPECweb2005 benchmark uses AEM in or-
der to perform web servers testing. A similar demonstration was recorded and the
resulting video was uploaded on the official project’s webpage. In addition, we
contributed to a paper [29] with some of the results obtained from the experimen-
tation carried out.

Obviously, all these results obtained were included in proper WP4.2 deliver-
ables of XtreemOS.

2.4 XOS-GATE Tomographic Application (CNR)

Single photon emission computational tomography (SPECT) is an imaging tech-
nique for the in vivo volumetric analysis of the distributions of radio-pharmaceu-
ticals. The analysis employs radionuclides which emit single or multiple gamma
rays during their diffusion in the living tissues. The distribution of gamma pho-
tons is detected at various positions by using one or more rotating gamma cameras
(see Fig. 2.4(a)), and from this information a 3D image (see Fig. 2.4(b)) is then
reconstructed by software [25].

In the last decade, SPECT imaging has made considerable progress, driven
by the demands from medical and biological research. Simulations of SPECT
acquisitions played a fundamental role, since they allow to design and simulate
cameras in a virtual environment and to avoid the cost of constructing and testing
physical devices.

17

(a) Simulation environment with four
sensor, with a cylindrical sample phan-
tom.

(b) Section of the 3D model resulting
from a SPECT simulation of the phan-
tom with a point-wise gamma source.

Figure 2.4: SPECT experimental settings and an example of final results

2.4.1 Application overview

Our application is in essence an XOS-aware parallelization of the GATE [18] soft-
ware, which is currently widespread in the physics community for single photon
computed emission tomography (SPECT). Our target was to provide enough com-
putational power for (1) a realistic simulation of the whole process, from particle
emission to final 3D reconstruction, and more important (2) a fully computational-
based analysis of Tomographic devices, allowing to compute their system matrix
and to develop and test new analytical methods to derive the system matrix from
simulation data. The latter application contributes to lower the development cost of
commercial SPECT devices, and to the investigation of open problems in applied
physics research.

At a very high level, SPECT analysis is composed by two distinct processes:
acquisition and reconstruction. For both phases there are consolidated computa-
tional techniques, which can be computational demanding depending on the exper-
imental parameters. We focused on the computational simulation of the acquisition
phase, where particle emission, deflection and absorption is reproduced by means
of mathematical models.

The aim of simulating a SPECT analysis is to acquire the system matrix (or
system response matrix) of a device, which depends on the whole device structure
and is essential in order to reconstruct 3D images from the gamma sensor readings.
The system matrix correlates the detection probability of the photons from each
voxel in the image space to their projection bin in the projection space (e.g. the
response measured from a specific pixel of the gamma sensor in a specific position).
Figure 2.5 shows the process of converting the response to a set of point-wise
sources, the point spread function, to a system matrix

The Applied Physics group of the University of Pisa which we collaborated

18

Figure 2.5: From point spread function to System Matrix

with in order to develop the GATE porting on XtreemOS is specifically focusing its
experiment on system matrices of SPECT systems using parallel hole collimators.
Collimators are metallic devices which are placed in front of the gamma cameras
to enhance their directionality at the expense of their sensitivity.

GATE, the Geant4 Application [18], is an advanced open source Monte Carlo
toolkit developed by the international OpenGATE collaboration [14], and it is ded-
icated to numerical simulation in medical imaging. GATE allows modelling of
user-specific applications realistically by an easy and powerful macro language.
It has been designed as to be flexible and precise, but still simulations remain
computation-intensive, the presence of collimators usually increasing the load by
more that two orders of magnitude.

Architectural Overview Monte Carlo simulations of SPECT are CPU-intensive
tasks, most of the work being due to the numerical calculations which simulate
particle transport (ray-tracing) and physical interaction of the high energy photons
with atoms of the subject and of the imaging device. Simulations often take up to
several days or months to complete even with state-of-the-art single-CPU comput-
ers (e.g. in [36], a realistic computation is reported to take up to 25000 machine
hours for producing statistically meaningful results). However, it is also generally
true that long-running Monte Carlo simulations are excellent candidate for paral-
lelization, given a computing platform that is big enough and fault-tolerant.

GATE already sports a parallel version by means of the root tool for splitting
a gate macro into partial simulations. The existing tools only target HPC clusters,
as it is a single-shot spawn of same-size subcomputations without any support for
load balancing, heterogeneous machines, or failure tolerance. A shared file system
and same administrative domain is, of course, also assumed.

We developed a different approach, where job splitting is performed to achieve
a much finer grain, and the resulting set of tasks is dynamically scheduled on top
of a large set of possibly heterogeneous XtreemOS nodes. The mechanisms built,
shown in Fig. 2.6(a), is one implementation of the classical task farm paralleliza-

19

(a) XOS-GATE application architecture (simulation
phase).

(b) 3D reconstruction from an
XtreemOS/G5K run.

Figure 2.6: SPECT architecture and user interface.

tion pattern, often used for so-called embarrassingly parallel problems. The im-
plementation exploits XtreemOS features and can deal with the specific details of
the GATE subcomputations. The high-level application architecture is made up by
an emitter node, a set of worker nodes and a collector node. The emitter allocates
worker nodes from the XtreemOS platform, and acts also as the collector in our
implementation. Several control threads in the emitter dynamically distribute sub-
computations to the worker nodes in an on-demand fashion, and collect the related
output. The on-demand work distribution evens up performance differences among
the computing nodes, which is not unexpected in an XtreemOS platform, and bal-
ances the simulation load among the resources in use whenever network issues or
other computations happen to slow down some of them.

The emitter node, which also acts as a result collector, can deal with miss-
ing results and malfunctioning worker nodes, thus accomplishing a fault tolerant
behaviour. Lost subcomputations due to suddenly unavailable nodes are automati-
cally reissued, and none of the pending tasks is lost even in case of a whole platform
stop. As the intermediate data can reside on the XtreemFS file system, we exploit
its transparent replication and fault tolerance features to keep safe consolidated
results.

The overall fault tolerant behaviour of the XOS-GATE application is also used
to run very long simulations in batches of a few hours, the parallel computation
automatically resuming from its previous state. More computing nodes can be
recruited, if necessary, by leveraging the XtreemOS AEM functionalities.

2.4.2 Application Development and Porting

The existing GATE application and the related tools are available as open source.
While commonly used in the field, the GATE application is used and maintained by
a community relying on powerful symmetric multiprocessor machines or dedicated
clusters. As a consequence, not all LINUX distributions are equally supported in

20

all versions, with many cross-dependences among GATE and other supporting soft-
ware libraries changing from version to version of the application, and interacting
with those supported by the specific LINUX version. Simply recompiling the set of
tools from scratch can thus be an issue, not to mention the fact that heterogeneous
machine configurations are not managed by the program at all.

Porting activities As a first start, the GATE tool have been compiled and used
on a local Ubuntu cluster. Concurrently, GATE porting on top of the XtreemOS
Mandriva LINUX begun.

In order to set up a large enough XtreemOS platform, we resorted to deploying
a large set of XtreemOS virtual machines on top of the Grid5000 (G5K) comput-
ing infrastructure. Since XtreemOS and its deployment on G5K were still evolv-
ing, several sub-steps were needed, porting XOS-GATE first to Debian LINUX on
G5K, then to Mandriva and finally to XtreemOS/G5K. During this activity, several
quirks and bugs of the GATE software were discovered and coped with.

The run-time has been gradually built implementing the emitter node func-
tionalities, introducing the task farm behaviour and its load balancing and FT fea-
tures. It was experimented on the different XOS-GATE prototypes (cluster and
G5K based) as soon as the different platforms were ready, with small-size tests (a
few machine hours) and then with large tests (thousands of machine hours).

Application status The resulting application is compatible with the XtreemOS
distribution. Some system libraries needed have been pushed into XtreemOS 3.0,
so that the application can be directly packaged with it and used as an XtreemOS
demo. XOS-GATE has been used so far for several thousand hours reliably ex-
ploiting an XOS platform on top of G5K. The performance scalability is good, and
results produced (see Fig. 2.6(b)) are being used by a Ph.D. student in Applied
Physics as the base of her current research.

XOS-GATE has also been successfully run for relatively small tests on the
XtreemOS permanent testbeds (development and open). A full test of XOS-GATE,
not constrained to a single HPC platform like G5K (a large heterogeneous one,
or at least a couple of different HPC platforms) needs to be performed for a full
assessment.

2.4.3 How the Application can Contribute to the
Exploitation of XtreemOS

Porting the application onto XtreemOS allowed us to relieve the aforementioned
constraints of the pre-existing parallel version. Instead of building/renting dedi-
cated HPC clusters for long-running simulations, the user can run them on a large
dynamic platform, within a VO administrative domain, and exploiting XtreemFS
to access data. The load balancing and fault tolerance techniques adopted makes
many more hardware configurations available to run experiments that were for-
merly constrained to high-end HPC sites.

21

CNR is going to further develop the parallel management part of the simulation
to extend it to other computational simulation applications which are only available
for HPC clusters. CNR will exploit the work done to port more applications on
top of the XtreemOS platform, and contribute to the development of XtreemOS
as a shared HPC platform. The load balancing technique applied can be further
integrated into the XtreemOS architecture, exploiting also the AEM functionalities
for dynamic job spawning.

The XOS-Gate application just crafted is a tool to design new physical SPECT
devices, that can push XtreemOS adoption among companies who work in the field,
this including a spin-off based in Pisa and designing small size, high resolution
SPECT scanners. In addition to this, the application is already being used on top
of the G5k platform, the data being collected to study new, more efficient analytical
methods to derive the system matrix of devices from computational simulations.

Current plans are to deploy an extension of the XtreemOS platform on top of
the resources of the new IT center of the University of Pisa [30] and exploit those
additional resources to continue the application development and use.

2.4.4 How the Application can Contribute to the Dissemination of
XtreemOS

As it comes out from previous presentation, the XOS-GATE application can demon-
strate several XtreemOS features, mainly:

• VO resource sharing on large platforms, and VO authentication and autho-
rization mechanisms

• resource selection and management through the AEM and SRDS subsystems

• large-scale, transparent and fault tolerant file system access

• large-scale, high-throughput computing

The XOS-Gate application has been applied to produce data for an applied
physics study, which was presented at the XtreemOS symposium co-located with
Europar 2010. A first scientific paper is already in preparation, and more are
planned on the system implementation, experimental evaluation and data analy-
sis topics. We plan to submit works at a couple of upcoming Parallel computing
conferences, but in general the scientific contribution coming from the current ap-
plication will cover both the Computer Science and Applied Physics areas. The
application will be ported and showcased in the IT center of the University of
Pisa [30].

22

2.5 Amibe (EADS)

2.5.1 Application overview

AMIBE is an algorithm that converts geometry data into 3D mesh which is used
in a variety of aerospace simulations. The originial implementation of AMIBE is
obtained from jCAE. The algorithm is designed to create very large meshes and is
able to mesh faulty geometries.

Since, the algorithm is both compute and data intensive, the algorithm is being
ported as a grid-based application on XtreemOS to take advantage of distributed
resources. The application makes use of XOSAGA API, in order to submit, run,
control and monitor the meshing jobs on XtreemOS. The experiments and imple-
mentation were carried out on Grid5000 testbed of XtreemOS-2.1, France.

The algorithm reads OpenCASCADE geometries (BRep, STEP and IGES) and
produces 3D finite element surface meshes.

Figure 2.7: Amibe Algorithm

The flow diagram above explains in detail, how AMIBE creates the 3D meshes
in 3 steps:

1. A descretization of geometrical edges. These are 1D linear elements (beams).

23

2. 2D discretization geometry. These are 2D triangles. Since, this is most costly
step. it is being designed to run in parallel. In order to help in parallel com-
putations, tessellation of different geometry patches are written into seperate
files. Each face can be meshed without interaction from other faces.

3. A 3D discretization geometry: When finished, each mesh is written into
seperate files, and merged to produce final mesh.

2.5.2 Application Development and Porting

The original implementation of Amibe algorithm was actually used to be serial
implementation of the meshing steps, as explained above. In our design, we make
use of parallel descretization of 2D geometry. That is, meshing of every face is
created as a seperate job and submitted in parallel, to the XtreemOS.

For every step of meshing, we have seperate scripts (written in Groovy – A
JVM based scripting language) let’s say ‘mesh1D.groovy’, ‘mesh2D.groovy’ and
‘mesh3D.groovy’. For merging the output of 1D and 2D meshing, a script called
‘merge.groovy’ is used.

A wrapper shell script to execute the above groovy scripts on Grid. Whenever,
any groovy script is to be executed on Grid, a call to this wrapper script is made
with the name of groovy script as argument, and this wrapper script runs that partic-
ular groovy script.The main reason for using a wrapper-shell script is to setup en-
vironment variables and initial configuration like setting up of groovy installation.
(Although, theoretically such configurations can be done by using XOSAGA meth-
ods and setting up of attributes like JobDescription.ENVIRONMENT, we faced
some problems with functioning of these attributes).

In addition, to above scripts, there is one driver groovy script which uses
XOSAGA API to execute the meshing scripts on the grid (by making calls to the
wrapper shell script), monitor the meshing, and retrieving the output back.

All three meshing scripts (mesh1/2/3D.groovy), the wrapper script and the
merging script (merge.groovy) are stored onto the shared filesystem of XtreemOS,
called as XtreemFS. This filesystem is shared by the participating nodes and hence
the scripts which are to be executed on Grid are stored in this shared volume. The
driver script is stored on the submission machine and is responsible for transferring
the meshing, merging, wrapper scripts onto the XtreemFS volume. It then execut-
ing the scripts and finally retrieving the output back on the submission machine.

In addition to the meshing, merging, wrapper and driver scripts, we have ge-
ometry files (BREP, IGES and STEP format). These Geometry files are also stored
onto XtreemFS, so that the meshing scripts can access the Geometry files during
execution.

Steps of execution: 1. Execution starts with running the driver groovy script
on the submission machine

2. The driver script transfers the other scripts (meshing, merging, CAD
files) onto the XtreemFS volume.

24

3. ‘mesh1D.groovy’ is executed on the remote machine by making a call
to wrapper shell script
//Create and Run the Mesh1D

String jobname = “mesh1D”;
Job job = jobService.createJob(jobDesc);
job.run();
monitorJob (job);

4. Once, 1D meshing completes, the result will be stored on the XtreemFS
volume. In the next phase, parallel processing of 2D meshes will take
place. The algorithm counts the total number of faces from mesh1D
result data. It will then submit a job for each face.
//Create the 2D Mesh for all faces

int iFaces = countFaces();
i = 1;
def jobList = [];
while (i <= iFaces) {
jobname = “mesh2D”+i;
Job job = jobService.createJob(jobDesc);
job.run();
jobList.add(job);
}
monitorJobs (jobList)

5. Once, the mesh2D operations have been completed, the results must be
merged. The merging is done by executing the ‘merge.groovy’ on grid.

6. And finally, mesh3D operation takes place. ‘mesh3D.groovy’ is exe-
cuted for 3D meshing

7. The driver script finally, retrieves the output back to the submission
machine.

However, we also discovered that when submitting a large number of jobs in
parallel, simultaneously, on a grid with large number of nodes, the failure rate of
jobs was high. In our scripts, we had a mechanism to re-run a job if it fails, hence
we were able to re-run the failed jobs. So, it is an overhead on both efficiency and
the way in which a software is coded.

2.5.3 How the Application can Contribute to the
Exploitation of XtreemOS

The application had a parallel processing component in 2D meshing. Submitting
the meshing of every face as a seperate job in parallel makes use of the distributed
resources and hence improve the performance.

25

Amibe meshing is a complex algorithm wih respect to computation and mem-
ory requirements. Using distributed resources helps delegating the compute and
data intensive part of algorithm to distributed resources

2.5.4 How the Application can Contribute to the Dissemination of
XtreemOS

The application makes use of XOSAGA API implemented in Java, for submis-
sion/monitoring of jobs, transferring files using Namespace package of SAGA. In
addition, the application utilises the XtreemFS, the high speed shared file system
of XtreemOS, for sharing data between different nodes.

A demo of application on XtreemOS is planned at the Slovene Chamber of
Commerce with a workflow including other applications as well.

2.6 OpenFOAM (EADS)

2.6.1 Application overview

The OpenFOAM (Open Field Operation and Manipulation) CFD Toolbox is a
free, open source CFD software package produced by a commercial company,
OpenCFD Ltd. OpenFOAM has an extensive range of features to solve anything
from complex fluid flows involving chemical reactions, turbulence and heat trans-
fer, to solid dynamics and electromagnetics.

The core technology of OpenFOAM is a flexible set of efficient C++ modules.
These are used to build a wealth of: solvers, to simulate specific problems in en-
gineering mechanics; utilities, to perform pre- and post-processing tasks ranging
from simple data manipulations to visualisation and mesh processing; libraries,
to create toolboxes that are accessible to the solvers/utilities, such as libraries of
physical models.

OpenFOAM is supplied with numerous pre-configured solvers, utilities and
libraries and so can be used like any typical simulation package. OpenFOAM uses
finite volume numerics to solve systems of partial differential equations ascribed on
any 3D unstructured mesh of polyhedral cells. The fluid flow solvers are developed
within a robust, implicit, pressure-velocity, iterative solution framework, although
alternative techniques are applied to other continuum mechanics solvers.

Domain decomposition parallelism is fundamental to the design of OpenFOAM
and integrated at a low level so that solvers can generally be developed without the
need for any parallel-specific coding.

2.6.2 Application Development and Porting

We used Grid5000 as testbed for XtreemOS-based porting of OpenFOAM. Dur-
ing porting of OpenFOAM on Grid000, we discovered that there were some is-
sues with the UserID’s assigned to the grid-user as they were interfering with the

26

OpenFOAM working. Actually, the userId’s assigned by XtreemOS deployment
on Grid5000, use some illegal characters like hyphen (’-’) and (’=’), and Open-
FOAM happens to perform a strict typechecking on the userId. The reason for
such typechecking being, OpenFOAM at the core needs to know some user-home
and user details, so it can more easily know where to tread in a multi-core envi-
ronment. Hence, we had to patch the OpenFOAM (being an open-source tool), to
ignore the specific typechecking on UserID and making it bit XtreemOS specific.

Following are the steps used to deploy OpenFOAM on XtreemOS

1. A definite number of nodes are reserved on Grid5000 and XtreemOS is de-
ployed.

2. The OpenFOAM was installed on each of the participating nodes in the Grid.

3. The OpenFOAM testcases were stored on the grid-user’s home directory on
XtreemFS (The shared file-system of XtreemOS).

4. Along with the test cases, a wrapper shell script is also stored in the grid-
user’s home directory which actually runs the OpenFOAM test cases.

5. The wrapper shell script is submitted and run as job using Groovy script (a
JVM based scripting language) using XOSAGA API. The wrapper script is
actually responsible for running the OpenFOAM test-cases.

The tests for this application were made on the Grid flavor nodes of XtreemOS
on Grid5000, on which it was successfully being ported. Since, there is no parallel
component in the application, we believe that the user running the OpenFOAM
application on a SSI cluster would benefit the most. However, we had issues with
deployement of the SSI flavor of XOS image on Grid5000, so we could not test the
application on a SSI cluster.

2.6.3 How the Application can Contribute to the
Exploitation of XtreemOS

OpenFOAM is an application which typically uses high-memory and high-pro-
cessing requirements. SSI capabilties of XtreemOS allows us to distribute and
delegate the computation requirements over multiple nodes. The deployment of
OpenFOAM on XtreemOS has minimal requirements, and it just uses existing Grid
infrastructure to run OpenFOAM on XtreemOS. Hence, the application is easily
deployable on any XtreemOS grid.

2.6.4 How the Application can Contribute to the Dissemination of
XtreemOS

OpenFOAM porting on XtreemOS discovers the SSI capabilities of XtreemOS,
hence applications similar to OpenFOAM, where parallel processing is inherent in

27

the application or users don’t need to configure a software specifically for parallel
processing, can also make use of distributed resources on XtreemOS using its SSI
flavor.

2.7 Paraview (EADS)

2.7.1 Application overview

ParaView is an open-source, multi-platform data analysis and visualization appli-
cation. ParaView users can quickly build visualizations to analyze their data using
qualitative and quantitative techniques.

The data exploration can be done interactively in 3D or programmatically using
ParaView’s batch processing capabilities. It has an open, flexible, and intuitive user
interface. Furthermore, ParaView is built on an extensible architecture based on
open standards.

ParaView was developed to analyze extremely large datasets using distributed
memory computing resources. It can be run on supercomputers to analyze datasets
of terascale as well as on laptops for smaller data. The capability of Paraview to
be capable of being run on a parallel platform is exploited in its deploymnet on
XtreemOS.

ParaView is designed to work well in client/server mode. For parallel compu-
tations and parallel processing, Paraview uses MPI libraries. Hence, Paraview has
to be built against MPI implementation (MPICH, OpenMPI etc.). The Paraview
server is a parallel MPI program that must be launched as a parallel job, while the
paraview client is a serial application.

2.7.2 Application Development and Porting

XtreemOS enables an user to use an XtreemOS grid as an MPI cluster and al-
lows users to run MPI applications on it. XtreemOS provides some scripts which
act as wrappers to ‘mpirun’. The wrapper script is XOS_mpirun and also the
scripts, mpirun.xtreemosmpi and mpirun.xtreemosmpipg, are provided which are
subsequently called and executed. In addition, XtreemOS also provides a tool,
‘xsubMPI’, as submitting tool on cluster and to be used instead of rsh/ssh.

To run an MPI application on XtreemOS grid, user first needs to reserve re-
quired number of nodes and then use ‘xsubMPI’ and ‘XOS_mpirun’ (provided by
XtreemOS) to submit and run the MPI executable across the nodes.

Hence, to exploit parallel processing capability of Paraview, it is first built
against MPICH. Once, we have MPI enabled Paraview built, the Paraview server,
which is a parallel MPI program, is launched as a parallel job using ‘XOS_mpirun’
(wrapper to mpirun). Once, the server has been started, Paraview client, which is
a serial application, can be used to establish connection with the Paraview server
and makes use of Paraview parallel processing.

28

During the implementation, we discovered that XtreemOS has some issues
with running MPI applications as well as there were issues related with parallel
submission and running of Jobs which will be fixed in version 2.1.2 of XtreemOS.
Hence, with 2.1.2 or higher version of XOS, we will be able to make more con-
crete tests. In our deployment, we used Paraview will be used to visualize results
of OpenFOAM computations.

2.7.3 How the Application can Contribute to the
Exploitation of XtreemOS

The Paraview application inherently uses MPI libraries to parallelize its compu-
tation and XtreemOS allows the deployed grid to be used as MPI cluster with no
additional setup or configurartion. Hence, the MPI applications make use of the
existing infrastructure, user credentials like certificates, and configurations to run
MPI application. This provides another advantage of an XtreemOS grid to be used
as MPI cluster.

The deployment of Paraview on XtreemOS has very minimum requirements.
Its just required to be built against MPICH and using the XtreemOS wrapper
scripts, one can easily run parallel server on a XtreemOS grid.

2.7.4 How the Application can Contribute to the Dissemination of
XtreemOS

The deployment of Paraview on XtreemOS can be used to promote the porting
of many MPI applications, which need a specifically configured MPI cluster and
configuration. Instead, the user can use the existing XtreemOS infrastructure and
directly make use of parallelizations without much additional efforts on setup a
cluster.

2.8 Elfipole (EADS)

2.8.1 Application overview

The ELFIPOLE software is designed to solve Maxwell equations in an unbounded
domain of the space by the Boundary Equations method. The resolution is per-
formed with direct or iterative solvers; in the case of an iterative solver we can
possibly use the Fast Multipole Method (FMM) in order to speed-up the matrix-
vector products.

Elfipole allows the solving of an electromagnetic problem with three kinds of
possible sources:

• Incident plane waves

• Generators

• Spherical waves (the input is an antenna diagram)

29

2.8.2 Application Development and Porting

Running Elfipole in a distributed environment is fairly easy, as the Elfipole executa-
bles are compiled from static libraries and hence, have very minimal dependencies.

Elfipole is an MPI-based application which benefits from an existing MPI in-
frastructure. Hence, to benefit from the MPI based parallel component of Elfipole,
we tried running Elfipole on XtreemOS Grid using the XtreemOS specific MPI
wrapper scripts. But, we faced several issues with running it as MPI application on
XtreemOS.

Finally, we decided to benefit from the kerrighed module of XtreemOS. We
setup a two node SSI cluster, integrated with our XOS Grid.

The Elfipole jobs were submitted using the XOSAGA API to the head node of
SSI cluster which by the benefit of kerrighed, made use of all the resources in the
cluster.

2.8.3 How the Application can Contribute to the Exploitation of
XtreemOS

The application could be a very good demonstration of running MPI tasks on the
XtreemOS Grid, and using the grid as an MPI cluster, if the issues related with
MPI are fixed in later versions of XtreemOS.

Nevertheless, our implementation of the application exploits the Kerrighed
module of XtreemOS to use a set of nodes as Single System Cluster as well as
it benefits from the SAGA API to submit jobs. Hence, it is a good demonstration
of the SSI module of XtreemOS.

2.8.4 How the Application can Contribute to the Dissemination of
XtreemOS

The application mainly benefits from the SSI flavor of XtreemOS and as well as
makes use of the features like XOSAGA and XtreemFS.

The application is part of a CAE workflow and will be demonstrated at Slovene
Chamber of Commerce.

2.9 Maestro (EDF)

2.9.1 Application overview

Maestro was designed to reproduce the footprint of Moderato, a radiographic mod-
eling code – used internally at EDF – that combines a Monte-Carlo and a straight-
line attenuation model. Moderato can simulate the behaviour of each photon by
tracing their route from the light source up to the impact reached on the inspected
object or on the argentic film. The combined result of thousands of these impacts
gives a global image as would be obtained on a photographic film during actual
radiographic inspection.

30

Maestro demonstrate how such simulations behave when launched and moni-
tored using the job manager of XtreemOS.

Maestro is a framework entirely written in python. Through it, the user can
sweep a parametric domain running elementary job for each combination of pa-
rameters possible. Maestro provides a consolidated view to start, stop or monitor
all the jobs as a unique global study.

Maestro was already interfaced with job scheduler like Torque/Maui or LSF.
On a recent workstation, it could also exploit all its cores by automatically detecting
them and running the same number of parallel job. Since the end of 2009, we have
been linking Maestro with the AEM modules.

While the template parametric application is placed in the home directory of
a VO, Maestro create as much jobs as single parametric combination and submit
them to XtreemOS via xsub. Results are stored into the VO home directory shared
by all available resources thanks to XtreemFS.

2.9.2 Application Development and Porting

At this time, Maestro has only been tested with the 2.1 XtreemOS version. We
observed that only a part of the jobs submitted reaches the Done final status, others
stays either in a Running or LocalSubmitted status. This should be corrected in
the last version of XtreemOS that we will tested as soon as we have access to a
well-installed test bed.

2.9.3 How the Application can Contribute to the Dissemination of
XtreemOS

Quite a large number of developers like to use python to test new features or con-
cepts in quickly written mockups.

Maestro will give them a good example of job submission and monitoring from
a python program.

2.10 OpenTurns (EDF)

OpenTURNS is an Open source initiative to treat uncertainties and risk statistics in
a structured industrial approach.

Since the beginning of 2005, a partnership of three companies has been work-
ing on building together a tool designed to perform uncertainty treatment and reli-
ability analysis. Sources are under GNU Lesser General Public License where as
all documentation are under GNU Free Documentation License

OpenTURNS is a Unix/Linux software with three main components :

• a scientific C++ library including an internal data model and algorithms ded-
icated to the treatment of uncertainties. The main function of that library is
to give an application all the functionalities needed to treat uncertainties in

31

studies. Targeted users are all engineers who want to introduce the proba-
bilistic dimension in their so far deterministic studies.

• an independent application with a graphical user interface. This application
was built to become the work environment for the specialist of the treatment
of uncertainties. Targeted users are once again the industrial practitioners:
those who identify the treatment of uncertainties as a full task, which can be
spread to multiple engineering domains.

• a python module with high level operators in the probabilistic and statisti-
cal field. The interest of this language is to be both a powerful scientific
language (capable of using C++ libraries), and a user friendly interpreted
language like Matlab’s one. This python module was designed to make the
development of prototypes easier (in order to test new algorithms and meth-
ods for example), to become an easy-to-use support for educational works.
This module intends to become a natural environment capable of integrating
new developments within the field of uncertainty and sensitivity analysis.
The targeted users are here research centers and the academic community.

OpenTurns is composed of several modules. Our work is to interface the dis-
tribution module with XtreemOS.

2.10.1 Application Development and Porting

Since the 2.0 XtreemOS release, OpenTurns is available with the same features it
has on a regular Linux box. Interested users can already try it to test their study,
running separate execution one after another on the current XtreemOS node they
are logged on.

We are now working on interfacing the distribution module of OpenTurns with
XtreemOS through the XOSAGA interface or by scripting the submission of inde-
pendent jobs directly to AEM.

2.10.2 How the Application can Contribute to the
Exploitation of XtreemOS

Once interfaced, OpenTurns will transparently submit jobs to the XtreemOS grid
and the XtreemOS scheduler should naturally exploit all resources available exe-
cuting several runs in parallel.

2.10.3 How the Application can Contribute to the Dissemination of
XtreemOS

XtreemOS provides a nice distributed environment to handle uncertainty studies
driven by OpenTurns. Once an XtreemOS is correctly set-up, OpenTurns should
install very easily and at once take advantage of all resources available.

32

Figure 2.8: Interfacing OpenTurns with XtreemOS

Some users interested in uncertainties studies have no experience or skills to
put the unused workstations into a coherent distributed test bed that OpenTurns will
address. If the installation of XtreemOS becomes sufficiently easy and automatic,
it might be a clever and affordable mean to install OpenTurns on these machines
and run these studies as fast as possible.

2.11 Zephyr (EDF)

2.11.1 Application overview

Zephyr is a multidomain multigrid Preconditioned Conjuguate Gradient solver ap-
plied on academic 2D Navier Stokes driven cavity problem or 2D Bürgers viscous
transport equation. Used essentially to bench HPC hardware if exists either in a
standalone or distributed MPI version. In this test, we use the standalone one-node
and the MPI version of Zephyr.

Zephyr is packaged as a single program - sequential or MPI - taking a list of

33

parameters describing the problem to solve from an input text file. Parameters
sets the precision of the discretization (number of point in X and Z), the precision
of the numerical scheme (2nd or 4th order), the problem solved, the solver used
(Conjuguate Gradient with different preconditioners with or without multigrid al-
gorithms), and the frequency of result savings.

Zephyr produces result data both on the standard output stream and on demand
in binary result files. Written in Fortran 90, it requires the presence of at least the
“gfortran” compiler, and its wrapping into MPI.

To visualize the obtained result, another process drives a gnuplot session that
regularly reads the current output result and displays it on on screen.

More information on the calculation schemes implemented in Zephyr can be
found in [20], and on their parallel efficiency in [19].

2.11.2 Application Development and Porting

Zephyr was easily ported to numerous HPC machines. The only pre-requisite was
the availability of MPI and a decent access to the filesystem seen by all the nodes
running Zephyr.

Still, it had not yet been ported non-heterogeneous platform or to grid of com-
puter due to the lack of common performant filesystems. XtreemOS architecture
gave us this opportunity taking advantage of the shared filesystems XtreemFS.

During the project, Zephyr correctly compiled under sequential and MPI ver-
sion. At this date, Zephyr has run fine in sequential.

On this code, the Checkpoint/restart XtreemOS feature has been tested and
worked well (see Deliverable 4.2.6). We demonstrated that this mechanism was
easy and natural to use and that its overhead in memory footprint and in time of
calculation was low and grew linearly with the size of the problem solved.

Concerning the MPI version, it has been compiled successfully but we are wait-
ing to access a platform to start testing it extensively.

This should be done by the final defense of the XtreemOS project.
If some testing time is left, we will check if the performances measured on

XtreemOS are comparable with regular MPI use.

2.11.3 How the Application can Contribute to the
Exploitation of XtreemOS

XtreemOS makes the execution of Zephyr possible on an heterogeneous grid of
computer. Zephyr also benefits from the Checkpoint/restart feature with no modi-
fication of the code.

Zephyr is only an application used to benchmark hardware. Still its footprint
matches the one of bigger code like Code_Saturne widely used at EDF R&D to
perform Fluid Dynamics calculation. So any proof of concept made with Zephyr
is easely transfered to Code_Saturne or any MPI intensive application.

34

After project end, eventual further experiments will be held internally on these
targeted codes.

2.11.4 How the Application can Contribute to the Dissemination of
XtreemOS

With this case, the Fortran 90 programming language availability and MPI envi-
ronment under XtreemOS will be proven to be OK.

The porting of Zephyr on XtreemOS demonstrated that Checkpoint/Restarting
of an existing sequential application was possible at virtually no effort.

If XtreemOS gains in influence and disseminates, EDF R&D could envisage to
port Code_Saturne on this platform. That way, Code_Saturne users could transpar-
ently access the aggregated power of single workstations gathered together thanks
to one single Grid Operating System.

2.12 SALOME (EDF, INRIA)

2.12.1 Application overview

SALOME (see Figure 2.9) is an open-source software application that provides a
generic platform for Pre- and Post-Processing for numerical simulations. It is based
on an open and flexible architecture made of reusable components. SALOME can
be used as a standalone application for generation of CAD models, their prepa-
ration for numerical calculations and post-processing of the calculation results.
SALOME can also be used as a platform for integration of external third-party nu-
merical codes to produce a new application for the full life-cycle management of
CAD models. SALOME allows users to:

• create, modify, import, export, repair, and clean CAD models;

• mesh CAD models, edit mesh, check mesh quality, import and export mesh;

• handle physical properties and quantities attached to geometrical items;

• perform computation using one or more external solvers (code-coupling);

• display computation results (scalar and vectorial);

• manage studies (create, save, reload).

The SALOME platform architecture (see Figure 2.10) is based on the model of
distributed components built on CORBA as a distributed objects architecture. Two
main levels can be distinguished:

Lower layer: embeds core functionalities of the kernel (communication between
distributed modules), graphical user interface and management of the stud-
ies. These services are handled by the KERNEL and GUI components.

35

Figure 2.9: Screenshot of the graphical interface of SALOME (fluid mechanics
and thermal study of a T pipe)

Modules layer: higher level components built on the services provided by the
lower layer. Modules perform dedicated services that are needed to reach the
general objective of SALOME. The main modules involved in this layer in-
clude GEOM, MESH, MED, SUPERV, POST-PRO and YACS. Furthermore,
this layer can be enhanced by a number of dedicated end-user modules that
can, for example, encapsulate a numerical solver behavior, simplify input of
initial condition for a computation, etc.

2.12.2 Application Development and Porting

At the end of the XtreemOS project, porting SALOME on XtreemOS is still an
on-going work.

SALOME should not be too complicated to port on XtreemOS thanks to its
modular architecture. The KERNEL component contains the resource manager
which will be specialized to use XtreemOS as a backend (SALOME resource
manager interface will be implemented with XATI). SALOME programs, called

36

Figure 2.10: General architecture of the SALOME platform

schemas, are similar to workflows or dataflows of components. The execution
supervisor wraps these components into containers which run on each resource.
SALOME’s containers will be implemented by XtreemOS jobs.

2.12.3 How the Application can Contribute to the
Exploitation of XtreemOS

If most of the popular scientific applications, like SALOME, are ported to XtreemOS,
engineers will more likely switch to XtreemOS to benefit from large scale grids.

Currently, SALOME’s resource manager cannot deal with failures and is not
scalable. People will choose to run SALOME on XtreemOS because, with XtreemOS,
SALOME will be fault-tolerant, scalable, etc.

SALOME scientific applications are also quite resource demanding and com-
plex software, so it will be a good test for XtreemOS.

2.12.4 How the Application can Contribute to the Dissemination of
XtreemOS

SALOME is an open-source project and the XtreemOS backend will be included
in the SALOME platform as open-source.

2.13 SAP NetWeaver Search and Classification (SAP)

2.13.1 Application overview

SAP NetWeaver Search and Classification provides search and classification ca-
pabilities using functionality of TREX application. TREX application runs over

37

distribute landscape. Figure 2.12 shows the architecture of storage solution of
TREX. The search engine has two main stages it its activities: index construction
and search for documents. At index construction a large collection of documents
is read from a file system and index is written and read from the file system in
several phases. The file system is either NFS or distribute file system allowing an
access to the files from all the nodes of the distributed landscape. Thus the index-
ing stage imposes heavy load to the underlying file system. At the search mode the
index is partitioned into several chunks and loaded into the main memory of the
distributed landscape and the search queries are answered from the main memory,
almost without disk access.

Figure 2.11: TREX - administration window

2.13.2 Application Development and Porting

At the beginning of the project TREX - SAP NetWeaver Search and Classification
engine - was a product generally available to SAP customers. Since the beginning
of the project TREX underwent development, and new features were added, i.e.
enabling managing delta index in the main memory. However those changes do
not significantly change the IO workload at the index construction stage. For this
reason working with the newer version of TREX would not significantly change
TREX setup over XtreemOS.

Our major focus of working with TREX at XtreemOS was testing functional
and performance features of XtreemFS - distributed file system developed under
XtreemOS project. Since TREX assumes POSIX semantics at the underlying file
system and XtreemFS provides this semantics, no porting or additional develop-
ment was needed to run TREX over XtreemFS. However few scripts were devel-
oped mainly to set up XtreemFS at our local SAP cluster.

38

Figure 2.12: TREX - Enterprise Search Engine

2.13.3 How the Application can Contribute to the
Exploitation of XtreemOS

In the document mode, TREX indexes a large collection of documents. At the
indexing stage, one TREX node reads the documents and indexes them, resulting in
a collection of index files that are written onto the distributed file system imposing
write load. At this stage, placing source files on the XtreemFS file system enables
high read throughput of reading the source files, due to the striping capabilities
of XtreemFS. At the write phase of the index creation stage, the index is written
back to XtreemFS, exploiting high write throughput of XtreemFS, once again due
to XtreemFS striping. To summarize, striping capabilities of XtreemFS open the
opportunity of scaling out, as opposed to scaling up with most of the commercial
filer solutions.

TREX team looks for ways to exploit the benefits of a commodity-based dis-
tributed file system to provide the users with the performance that is currently avail-
able under commercial file systems. Under such a setting the TCO of NetWeaver
Search and Classification product can be lowered without jeopardizing the perfor-
mance guarantees for its users. XtreemFS is one of the candidate file systems that
can be used to support TREX IO requirements.

2.13.4 How the Application can Contribute to the Dissemination of
XtreemOS

TREX benefits from the XtreemFS capability to read and write data to the file
system in parallel due to the striping and replication capabilities of XtreemFS. The

39

replication capability of XtreemFS can also be used for high availability of TREX
solutions.

2.14 SAP MaxDB Replayer (SAP)

2.14.1 Application overview

SAP Web Application Server runs over SAP MaxDB database. Thus the IO ac-
cesses generated by MaxDB represent transactional IO load that is applied to
filesystem. SAP Web Application Server is a very complex system and it is hard
to install, maintain and use it directly in performance testing. To avoid those diffi-
culties, MaxDB symptoms are rather recorded in a trace file at the recording stage,
using our Tracy tool, as depicted in Figure 2.13. The symptoms are the actual ac-
cess sequences of MAXDB to the underlying file system. The recorder captures
details of each access as well as the identity of the process and thread that issued
it.

At the replaying stage the trace file is replayed over the distributed file system
using our Tracy tool, thus porting the actual MaxDB load to the tested file system.
To create parallel load on the file system in the distributed landscape of multi-node
cluster, several trace files are replayed in parallel (one trace file on each node of the
distributed system).

Figure 2.13: Enterprise Scenario - MaxDB Replay

2.14.2 Application Development and Porting

2.14.3 How the Application can Contribute to the
Exploitation of XtreemOS

MaxDB uses the XtreemFS component of XtreemOS to achieve high overall through-
put of handling DB accesses due to the striping mechanism of XtreemFS. Cross

40

WAN data access of XtreemFS is used for disaster recovery purpose. The file sys-
tem XtreemFS is also used to provide low-latency access to data across LANs and
WANs. Striping capabilities of XtreemFS enable us to achieve low response times
in case of concurrent accesses to the file system. The replication of XtreemFS may
be used for high availability of MaxDB data. Overall, XtreemFS enables to re-
duce TCO, providing high QoS storage back-end for MaxDB as an alternative to
expensive filer technologies used currently.

MaxDB team looks for ways to exploit the benefits of a commodity-based dis-
tributed file system to provide the users with the performance that is currently
achievable under commercial file systems. Under such a setting the TCO of ap-
plications that use MaxDB can be lowered without jeopardizing the performance
guarantees for its users. XtreemFS is one of the candidate file systems that can be
used to support MaxDB IO requirements.

2.14.4 How the Application can Contribute to the Dissemination of
XtreemOS

MaxDB benefits from the XtreemFS capability to read and write data to the file
system in parallel due to the striping and replication capabilities of XtreemFS. This
feature of XtreemFS can help to achieve high throughput of XtreemFS without
sacrificing the latency. The replication capability of XtreemFS can also be used for
high availability of TREX solutions.

2.15 Rule-based System Management (SAP)

2.15.1 Application overview

Rule-Based System Management (RBSM) is an Automated System Management
tool that provides a powerful administrator interface for rapid application and in-
frastructure deployment and control. Using a set of administrator-defined manage-
ment rules and deployment templates, it enables administrators to automate many
of the routine tasks they perform, making them more predictable and less prone
to error . The main interface can be seen in Figure 2.14. Information on the set
of resources that are under the control of the administrator is shown to the left of
the interface window, allowing the administrator to monitor the current state of the
system landscape. Operations such as software or virtual machine deployment,
node reconfiguration and system migration can be accessed from a secondary tab,
and the administrator provides only the information required, allowing the system
to perform the task itself.

The application consists of a number of discrete components to form a control
loop, which can be seen in Figure 2.15 . In order to gather information on the
current landscape state, a series of probes are deployed on each node, collecting
data on CPU load, memory usage, and other important metrics. These probes com-
municate with a monitoring component, which gathers and aggregates data from

41

Figure 2.14: RBSM Main Administrator interface

across the landscape, creating a live system model, which is used to inform the
administrator and provide input for the rule-engine. Through the main interface,
the administrator can define a request, such as installing a piece of software. The
rule-engine combines the request, with the rules for deployment, which involves
selecting the most suitable resource from a range as defined by the adminstrator.
The output of the rules is a set of Actions, which are interpreted by the deployment
component and used to create a script from a library of templates. A connection
is created between this component and a constantly running daemon on the tar-
get node and the control actions are transmitted and performed on the node, thus
completing the cycle.

2.15.2 Application Development and Porting

Development of the RBSM application began in the 2nd year of the XtreemOS
project and was geared towards taking advantage of the management features of
XtreemOS, as well as enabling rapid deployment of an XtreemOS grid into a cloud
computing environment. As it was built in Java and geared towards portability,
there was no specific work required to enable it to run natively on an XtreemOS
system.

The main components of the application have been completed, and further de-
velopment will focus on expanding the range of control actions available in the
management system.

42

Figure 2.15: RBSM Architecture

2.15.3 How the Application can Contribute to the
Exploitation of XtreemOS

RBSM takes advantage of a number of featuers of XtreemOS that aid in system
management and control of resource deployment. The main features that are used
are the built-in application checkpoint and migration functionality, as well as the
OpenVZ platform for virtualised containers.

Internally, the application is used to deploy the XtreemOS small testbed en-
vironment for the purposes of testing and evaluation of the use of XtreemOS as
part of a cloud computing infrastructure. Externally, it has been used as the basis
of a number of peer-reviewed papers and in demonstration sessions, including the
Euro-Par 2009 conference. The application will allow XtreemOS to continue to
be used as a testing platform for grid applications on our internal cloud computing
infrastructure beyond the end of the project.

2.15.4 How the Application can Contribute to the Dissemination of
XtreemOS

The RBSM application has so far been shown at the following events:

• Internal presentations

• XtreemOS Summer School 2009

• Euro-Par 2009

• XtreemOS Summer School 2010

Work related to the RBSM application was described and presented in a pa-
per accepted at the DEPEND 2010 Conference called “Classification and Impact

43

Analysis of Faults in Automated System Management”. The paper acknowledged
the input gained from the XtreemOS project.

2.16 BioLinux Application mpiBLAST (STFC)

2.16.1 Application overview

The NERC Bio-Linux distribution is a collection of over 500 Open Source pack-
ages for the analysis of biological data built on top of Ubuntu Linux. The latest re-
lease of the software, version 6.0, is based on the current release of the Ubuntu op-
erating system. See http://nebc.nerc.ac.uk/tools/bio-linux for
more details. The applications include:

• Comparison of sequences of proteins and nucleotides searching for statisti-
cally significant matches, e.g. BLAST and Blastx.

• Statistical analysis of many biological processes and data.

• Simulation of biological systems, e.g. Gromacs.

• Work flow management using tools such as Taverna

It is not possible to implement all these packages within XtreemOS since it would
take too long. Debian packages are available for most of the tools and if a Debian
port of XtreemOS is made then most Biolinux tools could be included directly.

Of most interest to XtreemOS are high performance applications requiring
multiple processors and a distributed file system. To this end we have focused
on the Blast series of programs which are used to search for alignments between
biological structures. The Blast site,
http://blast.ncbi.nlm.nih.gov/, describes the purpose of these tools.
Databases are available with increasing size and complexity as new research pro-
vides more data. These are freely available online via web interfaces and as web
services which can be programmatically accessed, e.g. via a perl script.

Scientific task

Following discussions with Dawn Field from the Molecular Evolution and Bioin-
formatics Group in Wallingford, it was decided to define a typical analysis task for
Blast, which would be of interest to scientists. The computational problem is of
modest size to allow for testing on the XtreemOS permanent test bed.

The task selected is the Blast analysis of all the fully sequenced Baculovirus
genomes in terms of their protein lists. Baculoviruses are a class of viruses that
attack certain insects. They have many potential uses including as biopesticides
and in production of human vaccines.

44

http://blast.ncbi.nlm.nih.gov/
http://nebc.nerc.ac.uk/tools/bio-linux

To date 47 complete baculovirus genomes have been determined and included
in the NCBI genome database. These can be downloaded to give the protein se-
quences in the standard FASTA format. Blast or mpiBlast can then be used for
analysis of similarities in the structures. A database of baculovirus proteins was
built using mpiformatdb. This was then used in an all-against-all Blast run. This
compares every protein in the database against each other and produces a list of
those with the greatest similarity.

Architectural overview

For efficient parallel execution mpiBLAST was selected. The package makes uses
of special techniques including:

• Database segmentation. Large databases can exceed the memory of a single
processor and it is useful to split these across a number of processors, so that
all the data can reside in memory.

• Dynamic search partitioning. Typically a Blast search will contain many
different search terms which can be processed independently. mpiBLAST
efficiently partitions the available workload.

• Parallel I/O for output. Blast searches often yield a large amount of output
and parallel I/O can be used to optimize this.

A Blast run returns a list of matches found between sequences. A simple vi-
sualization of the matching sections of two proteins is shown in Figure 2.16, high-
lighting areas of alignment.

2.16.2 Application Development and Porting

mpiBLAST is a well established tool for parallel Blast investigations. It has been
tested on a wide range of Linux systems and shows good scalability. Building the
package under XtreemOS requires a C++ compiler and an MPI library.

The MPI library that has been integrated into XtreemOS is based on the ANL
distribution of mpich-1.2.7. This package has some advantages over other MPI
implementations, e.g. it is open source and has good support for mixed architecture
grids, which are possible within XtreemOS.

Running tests with mpich-1.2.7 on the XtreemOS 2.1 test bed showed some
problems. In particular there was a conflict with running programs due to a back
ported fix from XtreemOS 3.0 that prevented MPI jobs running in the test bed. This
bug has been fixed, but hindered evaluation of this MPI library.

As a result of these difficulties, MPICH-2 from ANL was also installed on the
2.1 test bed. mpiBLAST has been successfully built against both versions of MPI.
In order to run mpiBLAST linked against MPICH2 on XtreemOS, a simple shell
wrapper was developed. It sets up the necessary daemons before the job starts
and closes them down after it is finished. This is not as flexible as the integrated

45

Figure 2.16: A result from mpiBlast on XtreemOS showing areas of two proteins
that are structurally similar

XtreemOS MPI implementation in that it can only run on a single cluster of pro-
cessors, rather than across all nodes of the Grid.

2.16.3 How the Application can Contribute to the
Exploitation of XtreemOS

Within computational biology the BLAST packages are very widely used. The
amount of genome data available is rapidly increasing and fast sequence searching
is vital to exploit this resource. An XtreemOS VO can easily be constructed from
idle processing resources within an institution, or across several institutions, which
can then run mpiBLAST jobs to efficiently search through large databases.

Having shown that mpiBLAST can easily be run on XtreemOS will make the
grid operating system much more attractive to computational biologists who need
access to large databases, but do not have dedicated HPC resources. Users at the
Molecular Evolution and Bioinformatics Group at Wallingford are interested in
future collaborations that could use XtreemOS and mpiBLAST.

2.16.4 How the Application can Contribute to the Dissemination of
XtreemOS

Collaboration with the Molecular Evolution and Bioinformatics Group on analysis
of genome data should lead to a scientific publication of this work and the use of
XtreemOS. The appropriate forum for this has yet to be determined.

46

Figure 2.17: IMA application on a N800

2.17 Instant Messaging Application (TID)

2.17.1 Application overview

IMA is an instant messaging application oriented to facilitate the typical user tasks
related to XtreemOS such as: registration in a VO, storing the configuration files
and logs of the conversations in the Grid (XtreemFS). Advanced features like file
sharing and the possibility of including every member of the VO as contact are also
possible. It is available for mobile devices since XtreemOS 2.1 version.

IMA relies on the full architecture of XtreemOS-MD. IMA is a direct porting
of the well-known Pidgin application [34] (a universal chat client) to XtremOS-
MD. No special modifications have been done to the messaging protocols and/or
user interfaces. However, some small modifications were done in order to integrate
VO, security and XtreemFS services within the application functionality for mobile
devices.

Figure 2.17 shows the IMA application on a N800 where a typical instant mes-
saging conversation is shown. Figure 2.18 shows how the conversations logged
and available at XtreemFS under the user’s volume.

47

Figure 2.18: IMA logs user converstations into XtreemFS mobile device user’s
volume

2.17.2 Application Development and Porting

IMA application is fully based on the well-know Linux Pidgin app. At the be-
ginning of the project Pidgin was only available for Desktop computers but not
for mobile devices. Later on, community ported it to Nokia N800 and recently to
Maemo platforms. Since the first porting to Nokia, we started working on modify-
ing the code so as to make it compatible with the XtreemOS-MD API’s. The final
IMA version is available for Nokia N900 and Ubuntu Netbooks (direct porting of
XtreemOS-MD to Ubuntu).

2.17.3 How the Application can Contribute to the
Exploitation of XtreemOS

IMA is a good example of how an existing application is directly improved by
XtreemOS features, in this case, XtreemFS, VO and security. This application is
useful for XtreemOS Grid developers interested on learning how an existing ap-
plication can be extended with XtreemOS Grid features from a Mobile Device,
that being the main exploitation target. The application is distributed as part of
XtreemOS, hence it is possible to be used by any user who has installed and de-
ployed XtreemOS core elements plus some supported mobile devices. IMA and
XtreemOS-MD software is licenced as GPL and porting to other mobile device

48

platforms by the community should be encouraged and promoted.

2.17.4 How the Application can Contribute to the Dissemination of
XtreemOS

IMA shows how an existing Linux-based messaging application like Pidgin may
be easily ported to Linux-based mobile devices under XtreemOS. In particular, it
shows the integration with security and XtreemFS. The application is available in
the XtreemOS ISOs.

During 2010, several demonstrations were done at Eurosys 2010. In addi-
tion the paper: - “XtreemOS-MD: Grid Computing from Mobile Devices”, Alvaro
Martínez, Santiago Prieto, Noé Gallego, Ramon Nou, Jacobo Giralt, Toni Cortes,
Telefonica I+D and Barcelona Supercomputing Center - was published and pre-
sented at Mobilware 2010, Chicago.

2.18 Job Management Application (TID)

2.18.1 Application overview

JobMA is a graphical job manager application, specifically designed to be used
from mobile devices, where the usual lack of a physical keyboard and, moreover,
the different philosophy of the usual applications, makes it recommendable not to
use only the xsub command-line tool for job management.

JobMA relies on the full architecture of XtreemOS-MD. The user interface is
based on the GTK library and provides an intuitive interface to use the main fea-
tures offered by the Application Execution Manager (AEM), such as job creation
and execution, stop/resume/cancel of running jobs, job monitoring, etc. Once the
job is created (or loaded from a JSDL file), the user can run it in the Grid. To
do this, the user will select the job clicking on it and then will click on the "Run"
option under the "Action" tab in the top menu.

As an example of operation, JobMA offers two different ways of creating jobs.
The first method is performed by defining a job from scratch with basic parameters
as shown in Figure 2.19.

The second method is based on loading a more specific JSDL file with a full
set of parameters. This method is shown in Figure 2.20

In both cases, when the job is loaded, it may be run to the Grid from JobMa
as shown in Figure 2.21. A list of jobs is available and from this window any job
may be suspended, canceled or restarted. The status of each Job is shown in the
main window list and more details are provided by clicking on the job. For more
information please visit the XtreemOS User Guide.

49

Figure 2.19: Defining a new job with Jobma in a Nokia N800 terminal

Figure 2.20: Loading a JSDL to run a job in Jobma with a Nokia N900 terminal

50

Figure 2.21: Running jobs with JobMa

2.18.2 Application Development and Porting

The JobMa reference application has been developed from scratch specially for
mobile devices. It relies on the libraries and API’s of XtreemOS-MD stack. The
application has been developed initially for Nokia N800 and later ported to Nokia
N900, OpenMoko and Ubuntu for Netbooks. The only modifications needed on
each platform are done in the user interface as there are some differences in user
interface development framework’s on each platform.

2.18.3 How the Application can Contribute to the
Exploitation of XtreemOS

JobMa application is a good example of application for mobile devices that shows
the main functionalities of AEM in XtreemOS from the user’s side. This appli-
cation is useful for XtreemOS Grid users interested on managing jobs from the
simplificity of mobile device interface, as such, that is the main exploitation tar-
get. The application is distributed as part of XtreemOS, hence it is possible to be
used by any user who has installed and deployed XtreemOS core elements plus
some supported mobile devices. JobMa and XtreemOS-MD software is licence as
GPL and porting to other mobile device platforms by the community should be
encouraged and promoted.

51

2.18.4 How the Application can Contribute to the Dissemination of
XtreemOS

As explained before, JobMa shows the main functionalities of Application Exe-
cution and Management of XtreemOS from the user’s side. The application is
available in the XtreemOS ISOs.

During 2010, several demonstrations were done at Eurosys 2010. In addi-
tion the paper: - “XtreemOS-MD: Grid Computing from Mobile Devices”, Alvaro
Martínez, Santiago Prieto, Noé Gallego, Ramon Nou, Jacobo Giralt, Toni Cortes,
Telefonica I+D and Barcelona Supercomputing Center - was published and pre-
sented at Mobilware 2010, Chicago.

2.19 Wissenheim (UDUS)

2.19.1 Application overview

Wissenheim is a distributed interactive 3D virtual world for edutainment and en-
tertainment. In contrast to the present massively multiplayer virtual environments
(MMVE) which are using a message passing approach Wissenheim employs a data
centric approach by sharing the dynamic game state via an in-memory data grid.
Every participating node is accessing the game state directly, synchronized by a
variety of different consistency models, like e.g. transactional consistency. In con-
trast to the dynamic game state, media data like meshes, textures or sounds are
loaded from files located in either a local or distributed file system.

Figure 2.22: Wissenheim screenshot.

52

2.19.2 Application Development and Porting

Prior to the XtreemOS project the Wissenheim application was available for the ex-
perimental distributed operating system Plurix, developed at the University of Ulm.
Within the XtreemOS project Wissenheim was ported to XtreemOS/Linux which
involved not only the replacement of the previously used data-centric features pro-
vided by Plurix with Object Sharing Service of XtreemOS, but also porting of the
graphics and threading modules to the X-Window and POSIXruntime. Addition-
ally new content and demonstration scenes for XtreemOS have been added for
demonstration and experimentation purposes. While under Plurix only local area
network had been used, extra efforts had been made to handle the wide area nature
of XtreemOS by introducing e.g. latency hiding mechanism within the application.
In addition to the Object Sharing Service, Wissenheim uses XtreemFS to share its
persistent media data in an efficient and consistent way among the participating
nodes.

2.19.3 How the Application can Contribute to the
Exploitation of XtreemOS

As mentioned in Section 2.19.2 Wissenheim mainly benefits from the grid data
management services provided by XtreemOS, namely XtreemFS and OSS. The
Wissenheim/XtreemOS demo video and live demos are used to promote XtreemOS
inside and outside the Heinrich-Heine University Duesseldorf.

2.19.4 How the Application can Contribute to the Dissemination of
XtreemOS

Wissenheim has been used for various demonstrations like e.g. at the ICS’09
in Hamburg, various review meetings and the XtreemOS summer school in Ox-
ford 2009. Additionally a couple of video captures have been integrated into the
XtreemOS website. The main features demonstrated by Wissenheim are the Object
Sharing Service and the XtreemFS distributed file system.

2.20 Cloud Computing (VUA, ZIB)

2.20.1 Application overview

Zmile is an on-line photo archive, where users are be able to upload and categorize
their photos, as well as browsing and searching images which are available to the
public. It can be found under www.zmile.eu

Zmile consists of modern state of the art web-development software:

• The server-side is written in Java.

• It runs inside a Jetty application sever.

53

file://localhost/Users/slhermit/xtreemos-deliv/WP4.2/D4.2.7/www.zmile.eu

Figure 2.23: The Zmile web-site

• It uses Spring as servlet-framework.

• Hibernate is used to store user data in an PostgreSQL database.

• The website itself uses AJAX and is programmed with the Google-web
toolkit.

Figure 2.24 shows the architecture of Zmile. As one can see it’s nothing to fancy,
rather a standard architecture of a state of the art web application.

2.20.2 Application Development and Porting

Zmile was developed from scratch for the XtreemOS project to demonstrate the
possibility of the OS as a host for modern web-applications.

The main features used from XtreemOS, are the file-system and the XOSAGA-
API to submit jobs. Thanks to the POSIX conformity of XtreemFS the develop-
ment is transparent, as if you would store files in normal directories. Additionally
Since XtreemFS scales so well it is not necessary to implement some nifty storage
pooling solutions on your own.

The current status of Zmile can be described as working, it uses all features
of XtreemOS as planned, but on the GUI side there is still some work to do, it is
almost stable but has some glitches which might confuse the users left. Overall,
the application could be rated as beta version.

2.20.3 How the Application can Contribute to the
Exploitation of XtreemOS

The main benefit from using XtreemOS was the scalable storage solution, if the
storage for the pictures runs short, one can add a new XtreemOS machine which

54

Figure 2.24: The Zmile architecture.

provides an OSD and the storage will transparently be extended.
The application currently runs on servers inside ZIB but is accessible like any

website, everybody can register and use Zmile to manage pictures.

2.20.4 How the Application can Contribute to the Dissemination of
XtreemOS

The purpose of Zmile was to show the usability of XtreemOS to the public, the
web-site is available and freely usable, it also has a section explaining the interested
user how XtreemOS was used to create the web-site and which benefit one get
hosting the own application on an XtreemOS server. So we hope that it will attract
some developers attention from beyond the project group.

As for now, it is planed that Zmile will serve as demonstrator on the final
project review.

2.21 Galeb (XLAB)

2.21.1 Application overview

Galeb is a tool to fit analytical functions to an arbitrary set of data, primarily devel-
oped for financial analysis. It constructs functions from the basic unary (log, exp,
sqrt) and binary operators (+, -, *, /). It uses the genetic algorithm from the GaLib
library1 to minimize the mean squared error of the fitted function.

The command-line version of Galeb is the one that has been ported to and ships
with XtreemOS. The user supplies input data in the text file and, optionally, genetic

1http://lancet.mit.edu/ga/, the GAlib genetic algorithm package, written by Matthew
Wall at the Massachusetts Institute of Technology.

55

http://lancet.mit.edu/ga/

Figure 2.25: A successful run of Galeb on XtreemOS and the result in gnuplot

algorithm parameters such as number of generations, mutation probability etc. The
output is a well fitting analytical function and its mean squared error. The result
can be visualized with gnuplot or any other visualization tool. The screenshot of a
successful run of Galeb on XtreemOS and the result in gnuplot are shown in Figure
2.25.

Being based on a genetic algorithm, Galeb can be trivially parallelized in a
master-with-multiple-slaves fashion by simply splitting it into one or more inde-
pendent runs on each processor and finally selecting the best solution obtained.
While this approach is in general not an optimal parallelization of the genetic algo-
rithm, our tests have shown that it performs well in case of Galeb. It also requires
no communication apart from the initial input distribution and final collection of
results.

2.21.2 Application Development and Porting

Galeb had been ported to the Globus Toolkit before the start of the project. Then,
withing WP4.2, it was ported multiple times to XtreemOS.

1. The earliest port used xos-ssh because it was the only possible way to
submit jobs at the time. XtreemFS was not yet functional at the time so scp
was used instead. Therefore, this cannot be considered a full port.

56

2. The next port was a parallelization for multi-CPU machines using multiple
processes communicating through System V IPC message queues. Although
this port uses no XtreemOS-specific capabilities it is necessary to take ad-
vantage of LinuxSSI clusters.

3. Finally, the availability of XOSAGA allowed the full port of Galeb, in which
the application lets XtreemOS handle resource selection, job submission etc.
This version could also be easily ported to any other SAGA-enabled middle-
ware. The only necessary modification would be to add explicit file staging
because the XOSAGA version relies on XtreemOS for providing the capa-
bility to access input and output files without copying to a local filesystem.

2.21.3 How the Application can Contribute to the
Exploitation of XtreemOS

Galeb had been developed as part of financial modelling research that XLAB did
for an external client. The latter terminated the research multiple years ago and
XLAB decided not to continue developing Galeb. It therefore cannot contribute to
exploitation of XtreemOS.

2.21.4 How the Application can Contribute to the Dissemination of
XtreemOS

Even though, as said above, the development of Galeb stopped, it is in its current
version an ideal application to demonstrate certain technical features of XtreemOS.
Furthermore, it is one of the applications in XtreemOS that have been previously
adapted to run on Globus Toolkit 4.0 and have been ported to XtreemOS in WP4.2
[26]. As such it has been used for comparison of these two Grid paradigms from
the application developer’s point of view [10].

Each run of Galeb uses the XtreemOS grid as an elastic computing infrastruc-
ture, i.e. it lets XtreemOS select resources, run Galeb slave jobs on it and waits for
them to finish. Each run also uses XtreemFS to access input and output files on re-
source nodes. In fact it was the first WP4.2 application that successfully submitted
jobs in XtreemOS, as demonstrated at the general technical meeting in Pisa in June
2007.

Furthermore, the relative simplicity of the application makes it ideal to test
and demonstrate checkpointing and restart as well as migration. In particular the
tests with Galeb have revealed multiple migration and checkpoint/restart bugs in
LinuxSSI.

57

Chapter 3

Evaluation of Installation and
Configuration

Since the first XtreemOS release, WP4.2 carried out a long-term survey to record
the end-user satisfaction with the project’s software releases. The goal is to monitor
and to track the evolution of software and packaging developments throughout
project execution. The degree of end-user satisfaction with the various XtreemOS
install CDs along with comments and recommendations have been gathered using
online questionnaires. The results of the statistical evaluation have been reported
to project management in order to provide support to software development and
project planning. In the following, the survey setup and the statistical results are
presented.

3.1 Survey Setup

The survey setup is identical with the one applied in deliverable D4.2.6, except
for the two additional releases added to the survey. The survey was conducted in
the form of an online questionnaire collecting feedback from XtreemOS end users
regarding their satisfaction and experience with the XtreemOS install CDs and the
accompanying documentation. For each question, user satisfaction was rated on a
scale from 1 (lowest satisfaction) to 6 (highest satisfaction). Experience could be
expressed by additional fields where participants could enter plain text describing
e.g. problems and further recommendations.

The questionnaire is sub-divided into four different categories:

Installation: This category comprises the activities related to the acquirement of
the install media and the subsequent installation process. The question items
are:

• Ease of getting the installation media (CDs/ISOs).

• Ease of installation.

58

• Ease of installing additional packages after install.

• Speed of installation.

Configuration: The activities for this category comprise the configuration and
customization procedure of the installed XtreemOS. The question items cor-
respond to the different types of XtreemOS nodes:

• Ease of configuring core nodes.

• Ease of configuring resource nodes.

• Ease of configuring client nodes.

Basic usage: After successful installation and configuration follow basic usage
activities with the operating system. The respective question items include:

• Stability of the software.

• Ease of managing users.

• Ease of managing VOs.

Documentation: The install CDs are accompanied by user guides. The assessed
properties include:

• Clarity of the documentation.

• Completeness of the documentation.

• Correctness of the documentation.

Test items are different versions of the install CD-ISOs available from the
XtreemOS homepage:

• v1.0: The first public release of XtreemOS.

• v1.1 RC5: An internal release candidate with facilitated installation and con-
figuration procedure.

• v2.0 beta 1: First internal beta release of XtreemOS 2.0

• v2.0 beta 2: Second internal beta release of XtreemOS 2.0

• v2.0: The second public release of XtreemOS.

• v2.1.2: Last improved public release before v3.0

• v3.0 beta 2: Latest internal beta release at the time of submitting this deliv-
erable

59

3.2 Survey Results

A total of 20 end-users from the XtreemOS consortium participated in the survey.
Participants were required to download the install media and to install and config-
ure a small grid of 3 nodes (1 core node, 1 resource node and 1 client node) on
in-house testbeds. They were asked to follow the instructions given in the docu-
mentation and also to keep records of the progress and incidents discovered (feed-
back to developers and packaging providers was given via bug trackers).

3.2.1 Overview

As an average over all categories, Figure 3.1 shows the end-user satisfaction for
all XtreemOS releases examined. The results increase monotonously from a level
of 2.78 for XtreemOS 1.0 to 4.3 for XtreemOS 3.0 beta 2. The improvement from
v1.0 to v2.0 can mainly be attributed to facilitated installation and configuration
tools, automatized setup, enhanced user interfaces (more graphical user interfaces)
and advancement in the documentation. For the two latest releases, the increase
can mainly be explained by further improvements regarding automated installation
process and a more user-friendly documentation.

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00
5,50
6,00

v1.0 v1.1 RC5 v2.0 b1 v2.0 b2 v2.0 v2.1.2 v3.0 b2

av
er

ag
e

sa
tis

fa
ct

io
n

release

Average over all categories

Figure 3.1: Overview of user satisfaction for all test items averaged across all
categories.

Averaging the satisfaction across groups of test items, Figure 3.2 presents the
results for the different survey categories (installation, configuration, basic usage
and documentation). The set of test items has been divided into three groups: all
releases (from v1.0 to v3.0 beta 2), the releases discussed in D4.2.6 (v1.0 to v2.0),
and the two latest releases added to the deliverable at hand (v2.1.2 & v3.0 beta 2).
In all three groups, category installation receives the highest ratings (4.34, 4.06,

60

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00
5,50
6,00

installation configuration basic usage documentation

av
er

ag
e

sa
tis

fa
ct

io
n

category

Average per Category

all releases

v1.0-v2.0

v2.1.2 & v3.0 b2

Figure 3.2: Overview of user satisfaction for all categories averaged across all test
items.

configuration
documentation

basic usage
installation

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

v1.0
v1.1 RC5 v2.0 b1 v2.0 b2 v2.0 v2.1.2 v3.0 b2

av
er

ag
e

sa
tis

fa
ct

io
n

release

Overview all categories

Figure 3.3: Overview of average user satisfaction for all categories and test items.

5.02) as people encountered least problems with the download and matured instal-
lation tools provided for the underlying Linux distribution. However, the config-
uration procedure was rated with the worst average values (2.95, 2.63, 3.74). For

61

the early releases 1.x, this effect can be accounted to many bugs and manual work-
arounds needed in particular. Recently introduced automated configuration scripts
improved the results for v2.1.2 and v3.0 beta 2. Basic usage and documentation are
rated on the second and third rank, respectively. Details and results are discussed
and broken down later in sections 3.2.4 and 3.2.5.

An overview of the average satisfaction level for the different categories and
test items is given in Figure 3.3. From version 1.0, all categories show clearly
increasing trends. The most noticeable leap was made with the introduction of
v2.0, which may originate from improvements in stability, ease of usage and also
supported by a revised documentation.

3.2.2 Installation

The results for the installation procedure, broken per question, are depicted in Fig-
ure 3.4.

Ease of installation
Ease of post-installing additional packages

Speed of installation
Ease of getting the installation media

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

v1.0 v1.1
RC5 v2.0 b1 v2.0 b2 v2.0 v2.1.2 v3.0 b2

av
er

ag
e

sa
tis

fa
ct

io
n

release

Installation

Figure 3.4: User satisfaction for category installation.

Consistently, the ease of getting the install media, namely CD-ISO, has re-
ceived the highest average results. Download speed is very fast and the download
servers work very reliably. Previously recommended improvements (see D4.2.6)
are expected to be implemented with the new XtreemOS homepage such as fa-
cilitating the access to the install media on the XtreemOS home page. On the
present homepage still too many mouse clicks are required to get to the download
link. Ease and speed of installation have improved tremendously with the intro-

62

duction of the two major releases v2.0 and v3.0 beta 2. With respect to v2.0 the
main advantage were the pre-configured node types. Meta-packages for different
node type made the installation process much easier. In the latest releases, installa-
tion was commented to be as easy as any other standard Linux distribution except
for minor problems with country-dependent keyboard selections and the need to
re-install Erlang. Future improvements could involve reducing the number of in-
stallation options for inexperienced users. Some inconsistencies of the installation
steps with the instructions in the user guide(s) have been reported in the earlier ver-
sions. Though these problems have been tackled with the appearance of XtreemOS
2.0 and being further addressed approaching v3.0. Also post-installation of pack-
ages is easier, packages have been made available from the XtreemOS repositories.
Previously it was reported that some packages still fail to install. Upon feedback
to the developers, this problem seems to be resolved now.

3.2.3 Configuration

In Figure 3.5 the improvements in the configuration procedure are similar to those
in the installation procedure.

Ease of configuring core nodes.
Ease of configuring resource nodes.

Ease of configuring client nodes.1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

v1.0 v1.1
RC5 v2.0 b1 v2.0 b2 v2.0 v2.1.2 v3.0 b2

av
er

ag
e

sa
tis

fa
ct

io
n

release

Configuration

Figure 3.5: User satisfaction for category configuration.

Whereas from v1.0 to v2.0 the configuration of core nodes gained most, ver-
sion 2.1.2 and v3.0 beta 2 gained most for the configuration of client and resource
nodes. For core nodes and resource nodes, the configuration used to be a rela-
tively tedious task in the early XtreemOS versions, whereas the configuration of a
client is simpler and caused less problems reflected by the better rating. Thanks
to the improvements in the xosautoconfig tool the configuration was reported to

63

work well and to make the job easy. Probably, the fact that the configuration of
the core node is a bit harder cannot be avoided. Though the difference in user rat-
ings regarding v3.0 beta 2 is rather marginal for the three node types: 3.50 (core),
3.75 (resource) and 4.00 (client). In the earlier evaluations, it was recommended to
further reduce the number of manual steps and work-arounds, e.g. by introducing
configuration scripts (either with default setup or with interactive parameter entry)
and further self-explaining GUIs for the xosautoconfig tool. These recommenda-
tions have been addressed reflected by the better results for v3.0 beta 2. Still there
is space for further improvements. For instance, it would be agreeable to the user
could be with a step-by-step checklist for modifications to be made in various con-
figuration files for core, resource and client nodes. Presumably, such a checklist
would not be big because most of the default configurations need not be changed.
Secondly, it would be beneficial if the configuration of a “pure and real” client
could be facilitated which avoids job to be submitted to clients accidentally. Fi-
nally, the larger-scale configuration could profit from being able to automatically
configure the IP addresses of a given set of nodes granted to a test bed. So a sort of
automatized distributed installation could be envisaged.

3.2.4 Basic Usage

Figure 3.6 shows a remarkable increase in the rating of basic usage actions with
the introduction of release 2.0.

Stability of the software.
Ease of managing VOs.

Ease of managing users.1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

v1.0 v1.1 RC5 v2.0 b1 v2.0 b2 v2.0 v2.1.2 v3.0 b2

av
er

ag
e

sa
tis

fa
ct

io
n

release

Basic Usage

Figure 3.6: User satisfaction for category basic usage.

In particular, the stability of the software gained most. With the two most
recent versions, the stability was reported to be a bit worse than before, random

64

XtreemFS and XOSD crashes may still occur. Issues are known to the developers
and expected to be considered during the preparations for the major public release
3.0. Future XtreemOS releases might benefit from some sort of self diagnosing
tool. It is assumed that the availability of VOLife has contributed to a facilitated
VO management. In early versions, management of users and VOs were reported
to require way too much manual work. Still user management could be improved.
So it should not be required to download the private key to the server. Furthermore,
downloading keys and certificates should be done in consistent ways, and the need
to manually move them to .xos should be avoided.

3.2.5 Documentation

The clear upward trend in user satisfaction also applies to software documentation
as visualized in Figure 3.7.

Completeness

Clarity
Correctness1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

v1.0
v1.1 RC5 v2.0 b1 v2.0 b2 v2.0

v2.1.2
v3.0 b2

av
er

ag
e

sa
tis

fa
ct

io
n

release

Documentation

Figure 3.7: User satisfaction for category documentation.

Probably, issues with the documentation of early XtreemOS versions were one
factor for bad ratings in the other survey categories because the documentation
did not help much to resolve problems. One major issue reported was the lack-
ing synchronization between software development and documentation. This gap
was most evident for the internal version 1.1 which is reflected by the lowest sat-
isfaction values. The documentation was reported to miss required steps for OS
setup, or, some instructions were incorrect or too technical for end-users. As of
XtreemOS 2.0 beta 2 and the subsequent public release the situation has improved
a lot. Primarily, the separation of the XtreemOS guide into an admin and a user
guide has been highly appreciated. The synchronization between development and

65

documentation writing has been streamlined and is reflected in way more consis-
tent instructions. Further progress in documentation quality was made with the
introduction of versions 2.1.2 and v3.0 beta 2. The improved ratings might stem
from the fact that now all documented steps match what is visible on the screen.
The latest recommendations include the wish for a kind of quick install guide how
to setup a Grid with just a few clicks. Also it would help to have a checklist of
the steps to setup a testbed. The majority of suggestions for improvements target
the documentation of XOSAGA. The documentation should show how XOSAGA
works. In particular, it should elaborate on FileTransfer, WorkingDirectory and
Cleanup. The XOSAGA documentation should clarify the abstraction of paral-
lelism and also it would be helpful to visualize the delegation of jobs to various
nodes. Apart from these changes, the documentation is reported to be fine and to
make progress.

3.3 Summary

This survey gathered the experience of end users with seven XtreemOS releases
from XtreemOS 1.0 (released end of 2008) until XtreemOS v3.0 beta 2 (tested
September 2010). This allows for tracing the evolution of user satisfaction and
for transferring feedback to developers in a continuous manner. The satisfaction
was assessed with respect to the categories installation, configuration and basic
usage of the install CDs provided as well as with the accompanying documenta-
tion. In all four categories, one could detect an remarkable upward trend. The
ratings improved almost monotonously along all XtreemOS versions examined,
most noticeable, however, is the leap made with the introduction of the public re-
lease of XtreemOS 2.0. Early major problems with lacking integration, instability,
complicated manual setup, bugs and lacking synchronization between software de-
velopment and documentation have been addressed to a far extend. Advancements
with software integration have been reported and also the automatized installation
and configurations tools have been added which render the adoption of the new OS
much easier. One further major reason for improved satisfaction was the revised
documentation which provides for more clarity, completeness and corrected many
errors. Also the separation into a user and an admin guide is highly appreciated.

Recommendations given in previous surveys were given to developers which
tried to deal with them to a far extent. Also the comments and recommendations
collected for the latest two releases covered by the survey were communicated. Mi-
nor problems with installations could be fixed like issue with country-dependent
keyboard selections and the need to re-install Erlang. For inexperienced users it
would also be nice to reduce the number of installation options. XtreemOS config-
uration cold be further facilitated by a step-by-step checklist for modifications to be
made in various configuration files for core, resource and client nodes. Some assis-
tance for configuring a “pure and real” client would also be appreciated. Also some
support for larger-scale Grid setups could be offered to automatically configure the

66

IP addresses of a set of nodes, i.e. a sort of automatized distributed installation.
Basic usage of XtreemOS could be improved by facilitating and further automat-
ing the management of keys and certificates. Finally, suggestions for improving the
documentation were made like a quick installation guide, an installation checklist
and elaborating on the documentation of XOSAGA.

After four years of research, XtreemOS end-users acknowledged the progress
made in software installation, configuration, basic usage and documentation qual-
ity. This was expressed by ever increasing ratings in all categories. It is highly
appreciated that so many recommendations and comments have been addressed
which leveraged user experience.

67

Chapter 4

Evaluation of XtreemOS
Components

In this chapter, we present the evaluation of various XtreemOS components and
features. Following an introduction to the overall test approach and test overview,
this chapter presents the specifications and results for the experiments conducted.

4.1 Evaluation Overview

The evaluation of XtreemOS components is structured as follows:

• Node-level VO support (Section 4.2)

• Checkpointing and restart (Section 4.3)

• LinuxSSI (Section 4.4)

• DIXI message bus (Section 4.5)

• XtreemOS API (Section 4.6)

• Resource Selection Service (Section 4.7)

• Application execution management (Section 4.8)

• Data management (Section 4.9)

• Security services (Section 4.10)

• Mobile device flavor (Section 4.11)

In this category, the experiments put emphasis on evaluating the performance,
scalability, stability and correctness of the respective XtreemOS developments. As
in deliverable D4.2.6 [10], this chapter collects the experimentation results from

68

the consortium presented in a common place. Apart from WP4.2, further work
packages in SP2 and SP3 contributed to the planning, specification, execution and
documentation of the experiments. For this purpose, each development work pack-
age introduced a dedicated task (as defined in the DoW) and devoted manpower
to organize the performance evaluation. In order to indicate the responsibilities
for each test unit, the respective contributions from the various work packages and
partners are clearly marked. Generally, WP4.2 focuses on the application-centric
evaluation from the end-user’s view whereas SP2 and SP3 put emphasis on lower-
level performance benchmarking.

The following sections present the test documentation. The structure of the test
documentation template is derived from “IEEE Standard for Software Test Docu-
mentation”, IEEE 829-1998 [16]. Accordingly, the documents in these sections
cover the phases test planning, test specification, and test reporting.

Among others the test plan describes the scope, approach, resources, the items
and the features to be tested as well as the test approach. Per XtreemOS compo-
nent, one test plan is provided covering the test setup for all WP4.2 applications
evaluating this feature.

The evaluation of an XtreemOS component is sub-divided into one or more
test units where each test unit consists of exactly one test specification and one test
results document. The test specification enumerates the test items, tested features
and the test approach refinements for the given test unit. It is required that the
specification follows a sound methodological approach which shall be applied to
ensure accuracy, reproducibility and fairness of the tests. Test results have to be
analyzed and presented in a comprehensible manner.

The test summary report summarizes the tests. For each XtreemOS component,
we give a common conclusion for all applications testing it, summarize the results
and outline future test activities.

69

4.2 Evaluation of Node-level VO Support

This section covers the software for node-level VO support. The purpose, architec-
ture and use cases are described in the XtreemOS deliverable D2.1.2 [9].

4.2.1 Test Plan

4.2.1.1 Responsibilities

These tests will be carried out by XLAB.

4.2.1.2 Test Items

The tests shall be done on the latest release of XtreemOS available at the time of
testing, updated with all the patches available.

4.2.1.3 Features to be Tested

This test plan includes testing the mapping of global user identities to local user
identities and group identities.

4.2.1.4 Features not to be Tested

The VOlife VO administration tool will not be tested because its functionality has
not changed since the last tests and no major bugs were found during the last test
suite.

4.2.1.5 Overall Approach

The purpose of these tests is to evaluate the current version of software from the
application and end-user perspective and to provide feedback to developers. We
will thus focus on evaluating the higher-level design, features and usability of each
module rather than covering a large part of possible inputs to each components. To
ensure the feedback will be beneficial to the development, all tests will be done
with the latest version of the software within the current major release version.

As not all of this software is intended to be used directly by the users or appli-
cations, some tests will be done through the application execution manager (AEM).
For example, submitting a whoami job reveals what local account the global user
identity is mapped to.

The tests will allow for assessing improvements with respect to the evaluation
carried out in D4.2.6.

70

4.2.2 Test Unit 01: Correctness of account mapping

4.2.2.1 Responsibilities

The tests in this test unit are to be carried out within WP4.2. The responsible
partner is XLAB.

4.2.2.2 Test Specification

Test Items

This test unit tests the account mapping service.

Features to be Tested

The subject of this test unit is the correctness of the mapping from global VO
user credentials to local groups and accounts on the VO-aware node.

Approach Refinements

This test design covers basic tests, which are best done by submitting jobs that
run command-line utilities like whoami and id.

The input of this test case consists of the sequence in which the involved VO
users submit their jobs and of the job length. The output consists of the username
and group that they are mapped to.

The test will pass if the user is mapped according to her distinguished name
and VO stored in the certificate. No password should be required, except for the
passphrase of user’s private key. The feature fails if:

• an authorized user manages to log into the node, but is mapped incorrectly,
e.g. as root,

• an authorized user is denied access.

Configuration

1. XtreemOS must be installed and configured on the two test nodes so that job
submission is possible.

2. The original state of the XVOMS database must be dumped into a file with
the command
mysqldump -u root xvoms -r xvoms.txt.

71

Set Up Create a VO named VO1, containing Group1, Role1, and User1. Create a
VO named VO2, containing Group2a, Role2a, and User1. Set up the local policies
so that the default account and group mapping is used for the VO users:
xos-policy-admin-am -vo VO_ID --force
xos-policy-admin-gm -vo VO_ID --force
Add a resource to both VO1 and VO2.

Start Execute the following steps, noting the account and group mapping in
each case.

1. User1 logs into the resource node with ssh-xos.

2. User1 submits ’id’, acting as member of VO1.

3. User1 runs a SAGA application that submits 2 jobs on his behalf.

4. User1 runs a SAGA application that submits 20 jobs on his behalf.

Wrap Up No wrap up is required.

4.2.2.3 Test Results

The test was executed by Marjan Šterk, XLAB, on 2010-07-04.

Execution Description The procedure was run on 2010-07-04 following the
above Test Unit desciption.

Results When acting as a local non-privileged user on an XtreemOS client node
posessing an XtreemOS user certificate, the user always successfully logged into
the resource node and submitted into all jobs. He was never mapped incorrectly.
However, there is a bug in the XtreemOS bug tracker: "ssh-xos can map you to a
random user account", ID 0000247. We have not been able to reproduce this error.

When acting as local root on an XtreemOS client node posessing an XtreemOS
user certificate, though, ssh-xos reverts to ssh in certain cases, preventing the use
of XtreemOS credentials. We will investigate this further.

Anomalous Events As mentioned above, when logged in as root into a client
node, ssh-xos reverts to ssh instead of using the XtreemOS credentials.

4.2.3 Test Summary Report

4.2.3.1 Summary of Tests and Results

The account mapping performs as expected in normal usage, except in cases when
logged into the client node as root.

72

4.2.3.2 Conclusion and Directions for Future Work

We can conclude that the components for node-level VO support in XtreemOS
Release 2.1 are adequate, with all major functional requirements met but certain
bugs still to be fixed.

73

4.3 Evaluation of Checkpointing and Restart

4.3.1 Test Plan

4.3.1.1 Responsibilities

Partners and workpackages involved include BSC and XLAB as contributors from
WP4.2, and UDUS as contributor from WP2.1/3.5.

4.3.1.2 Test Items

Test items include:

• Container-based checkpointing and restore mechanism of XtreemOS PC fla-
vor

• XtreemOS grid checkpointing service (GCS)

• LinuxSSI checkpointing and restart

4.3.1.3 Features to be Tested

• With respect to Container-based checkpointing and restore, the tested fea-
tures include the migration of virtual environments

• For XtreemOS GCS, the tested features include the CGS overhead, dis-
tributed checkpoint/restart and channel flushing

• For Linux SSI, checkpointing and restart the processes of a master-slave
application was tested

4.3.1.4 Overall Approach

The three subsequent test units will cover the entire spectrum of checkpointing and
restart stack of XtreemOS from kernel up to grid checkpointing of virtual envi-
ronments and native applications considering the PC as well as the cluster flavor.
The goal is to validate that the components work as expected and to measure the
performance as well as the performance overhead. More details are given in the
repective test specifications below.

4.3.2 Test Unit 01: Container-based checkpointing / restore mecha-
nism with SPECweb

4.3.2.1 Responsibilities

WP4.2, J. Oriol Fitó from Barcelona Supercomputing Center (BSC).

74

4.3.2.2 Test Specification

Test Items
In the past deliverable D4.2.6 [10] we tested the container-based checkpointing/re-
store mechanism as stand-alone feature in a conventional linux environment. Now,
this feature has already been integrated into XtreemOS and we aim to both test this
integration and perform some performance measurements of it.

Features to be Tested
The main goal here is the testing of the XtreemOS feature “checkpointing and
restore”. Specifically, we want to evaluate the OpenVZ container-based check-
pointing / restore feature that has been incorporated into the XtreemOS system.

OpenVZ [32] is a container-based virtualization for Linux. It is free open
source software, available under GNU GPL. In particular, OpenVZ creates mul-
tiple secure and isolated containers, i.e. Virtual Environments (VE), under a single
kernel instance. Thus, a given container can be rebooted independently and it has
root access, users, IP addresses, memory, processes and applications, among oth-
ers.

Additionally, OpenVZ checkpointing allows the “live” migration of a VE to
the same or another physical server. The VE is “frozen” and its complete state
is saved into a disk file. Afterwards, this file can be used to “unfreeze” (restore)
the previously checkpointed VE. The whole process takes a few seconds and from
the client’s point of view it looks like a delay in processing, since the established
network connections are also checkpointed/restored. Going more in detail, the
OpenVZ checkpointing procedure consists of the following three stages:

1. Freeze processes, which moves processes to previously known state and dis-
able network.

2. Dump the container, which collects and saves the complete state of all the
container’s processes and the container itself to a dump file.

3. Stop the container, which kills all the processes and unmount container’s file
system.

The restore procedure performs the same stages in an inverse mode.
Note that OpenVZ comes with a high-level command-line interface, i.e. vzctl,

which is used to manage the Virtual Environments.

Approach Refinements
Concerning the application used, SPECweb2005 bechmark [3], we decided to use
the Apache Tomcat (v5.5) [41] as the web server to be checkpointed and restored.
Actually, this is the System Under Test (SUT) component of the aforesaid bench-
mark, and we have to checkpoint the Java Virtual Machine (JVM) in which this
web server is encapsulated. In addition, it should be noted that this server has to be
previously submitted, as an XtreemOS job, to an OpenVZ container.

75

We will consider the success of the feature if, at least, we are able to check-
point and restart a container in which the Tomcat server has been submitted, i.e.
it is deployed and running. In addition, we will use SPECweb2005 benchmark to
validate that the checkpointing/restore operation is successfully performed. This
means to check that the state of the web server after a restore operation is the same
than before the checkpointing action. This fact is easy verifiable because we will
be able to check the benchmark results (i.e. web server performance) when per-
forming a checkpointing/restore operation during the benchmark execution. Note
that we don’t test the migration of the container to another physical machine due to
a constraint with the SPECweb2005 benchmark, which specifies that a web server
under test must be into the same node during all the execution time of a given test.
Nevertheless, this migration operation is based on the checkpointing and restore
procedures tested here, so it is tested implicitly.

In a nutshell, we will present the time taken to submit the SUT component
(web server) of SPECweb benchmark into an OpenVZ container, as well as the
time needed to checkpoint and restore it.

Configuration The configuration needed to perform this evaluation is composed
mainly by two components: the OpenVZ mechanism and the SPECweb2005 bench-
mark. On one hand, we have the XtreemOS support for different virtualization
technologies, such as KVM and OpenVZ. It is based on libvirt [21] in order to
handle this multiple types of virtual machines. On the other hand, we have config-
ured the needed environment for running the benchmark. In particular, it is com-
posed by the System Under Test (SUT), a Back-end database SIMulator (BeSIM),
the clients required to perform the input load to the web server under test, and an
special client (namely prime client) that controls the benchmark execution.

Set Up First of all, and due to contraints in the current release (3.0) of XtreemOS,
we want to remark that we use the 2.1.1 version with the code needed for the
integration of OpenVZ on XtreemOS. Once this simple integration has been made,
the set up process must follows the following steps for configuring the OpenVZ
support needed:

• Make sure that the “OpenVZ” modules for checkpoint and restore are in the
kernel:

– modprobe vzcpt

– modprobe vzrst

• Properly configure the /etc/sysctl.conf file with the following lines:

– net.ipv4.ip_forward=1

– kernel.sysrq = 1

– net.ipv4.icmp_echo_ignore_broadcasts=1

76

– net.ipv4.conf.all.send_redirects = 0
– net.ipv4.conf.default.rp_filter=1
– net.ipv4.conf.all.rp_filter=1
– net.ipv4.conf.default.proxy_arp=0
– net.ipv4.conf.eth0.proxy_arp = 1
– net.ipv4.conf.default.forwarding=1
– net.ipv4.conf.default.send_redirects = 1

• Install a template (e.g. Debian) for OpenVZ containers, so jobs inside con-
tainers will run in the default Debian environment

– Specify in the /etc/vz/vz.conf file this aforesaid template as the one to
be used when creating OpenVZ containers

Afterward, the tests are performed as described below:

• Specify that we want to submit the XtreemOS job to an OpenVZ container

– Add <Checkpointer> OpenVZ </Checkpointer> to the “JobDescrip-
tion” field of the JSDL

– The AEM reads this JSDL tag and performs the following actions:
∗ Creates a new OpenVZ container
∗ Sets up the network IP address of this container, as well as its

hostname, DNS server address and root password
∗ Start the container
∗ Spawns the job

• Checkpoint (vz chkpnt <container_id>) and restore (vz restore <container_id>)
the container

• Check that the web server is still accessible at the same container and that its
state is the same

Start The actions necessary to begin the test are:

• Check that OpenVZ kernel, the application-level utilities (i.e. vzctl, vzprocps
and vzquota), and the OpenVZ kernel modules (vzcpt and vzrst) have been
successfully installed

• Configure the SPECweb2005 benchmark environment

• Prepare the appropriate JSDL to allow the job to be submitted into an OpenVZ
container

Wrap Up There are no special actions to restore the environment.

77

Contingencies We have no estimation of any anomalous situation.

4.3.2.3 Test Results

This evaluation complements the one presented in D4.2.6 [10], where we showed
the evaluation of the OpenVZ scalability and performance overhead. In fact, those
results, obtained in a native linux environment, are the same as if using the OpenVZ
in a XtreemOS system. Due to this fact, XtreemOS doesn’t introduce any perfor-
mance loss when performing OpenVZ operations.

In this section we present the analysis and evaluation of the OpenVZ capabil-
ity of checkpointing / restoring a container in which a Tomcat (v5.5) web server
has been deployed. Note that the tests were performed using a machine with the
following hardware:

• Intel Core 2 CPU @ 2.33GHz

• 4GB of RAM memory

OpenVZ performance measurements In Table 4.1 we present the results re-
garding the time needed to: (1) submit a job to be executed natively, (2) submit
a job into an OpenVZ container, and (3) to checkpoint/restore such a job. We re-
peated these operations ten times and we present the 95% confidence interval on
the mean. Note that this job is a Tomcat web server encapsulated into a Java virtual
machine with 1GB of memory.

Operation Time (seconds) 95% interval confidence
XtreemOS native Job submission 23.29 ± 2.98

OpenVZ Job submission 129.41 ± 3.54
Container checkpointing / restore 6.45 ± 0.28

Table 4.1: OpenVZ performance measurements.

As you can see, there is a significant difference between the time taken for a na-
tive job submission and for the OpenVZ one. This is mainly due to, in the second
case, the AEM, which is responsible for performing XtreemOS job submissions
and has to create a new OpenVZ container where the job in question will be exe-
cuted. Moreover, the time taken to checkpoint and restore a container with 1GB of
memory is quite promising.

Conclusions The experimentation conducted shows us the success of the OpenVZ
container-based checkpointing mechanism of XtreemOS. In fact, this is confirmed
by the performance results obtained. Although the time taken to submit a job to
an OpenVZ container is 5.5x greater than the one needed for native submissions,

78

the chance to execute them into containers seems to be very profitable for jobs that
need isolation, for instance.

Implicitly to experimentation is the fact that we were able to submit a Tom-
cat web server in an OpenVZ container, and checkpoint/restore such a job. In
this sense, XtreemOS provides transparency for submitting a job to an OpenVZ
container, instead of executing it natively, which is very promising. In addition,
through executions of SPECweb2005 benchmark we checked the success of these
mechanisms.

Finally, these results presented herein complement the OpenVZ scalability tests
and loss of performance presented in D4.2.6 [10]. According to all of them, we
hope that its final integration will be a reality in the third release of XtreemOS.

4.3.3 Test Unit 02: Grid Checkpointing and Restart

4.3.3.1 Responsibilities

WP2.1, WP3.3, John Mehnert-Spahn (UDUS)

4.3.3.2 Test Specification

Test Items

Features to be Tested

Approach Refinements

4.3.3.3 Test Results

GCA overhead The diagrams in figure 4.1 show the times for a checkpoint op-
eration with native BLCR, MTCP and SSI. The diagrams in figure 4.2 show the
corresponding times of GCS-based checkpointing with BLCR, MTCP and SSI.
As expected the checkpoint duration increases with the memory footprint of the
test application. Native BLCR, MTCP and SSI outperform GCS-based checkpoin-
ting towards A10, A50, A100 and A500. However, the GCS overhead is within
milliseconds. In A1000 there are differences in the range of seconds caused by
dynamic network traffic behavior and non-linear disk access for these large check-
point file images.
For the checkpoint operation the overhead introduced by GCS is negligible. The
GCS-based checkpointing operation is longer because the native checkpointing
process needs to be split into several phases: prepare, stop, checkpoint and resume.
The latter is required to provide consistent checkpoints for distributed applications
in the context of coordinated checkpointing.

79

Figure 4.1: Checkpointing with native BLCR (l), MTCP (m) and SSI (r)

Figure 4.2: GCA Checkpointing with modified BLCR (l), MTCP (m) and SSI (r)

Finally, the diagrams in figure 4.3 and 4.4 show native and GCS initiated restart
times. The difference between native and GCS-based restart is also within mil-
liseconds for A10, A50 and A100. For A500 and A1000 however within multiple
seconds. These differences are again caused by the underlying file system and seek
times of the disk to read this large scattered checkpoint-images. Furthermore, the
GCS-based restart also requires the phases rebuild and resume whereas the native
restart not.
Obviously, checkpoint image input and output performance depends on the under-
lying network and disk infrastructure. Having a network bandwidth of 134 MB/s
and NFS server disk with a write speed of 300 MB/s (asynchronous mode) and
read speed of 120 MB/s explain the measured numbers.
Summarized, the overhead introduced by GCS is negligible both for the check-
pointing and restart operation.

Distributed checkpointing/restart Figures 4.5 and 4.6 show measurements of
coordinated checkpointing of a distributed application - a job consisting of nine
and fifteen job-units. Nine job-units are used in the SSI-MAX configuration fea-
turing seven SSI checkpointers (seven two-node clusters) and one BLCR and one
MTCP. The x-axis shows the accumulated checkpointing time of all nine job-unit
checkpoints (9 units x A10 = 90 MB, 9 units x A50 = 450 MB, ...). Fifteen job-

80

Figure 4.3: Restart with native BLCR (l), MTCP (M) and SSI (r)

Figure 4.4: GCA restart using BLCR (l), MTCP (M) and SSI (r)

units are used in the SSI-MIN configuration featuring one SSI checkpointer and
seven BLCR and seven MTCP. No channel flushing is included in these tests.
The checkpointing time in SSI-MIN is larger then the one for SSI-MAX because
of SSI-MIN includes more nodes resulting in a larger checkpointing image size.
While SSI-MIN requires 60 sec to save 15 GB does SSI-MAX take 30 s for 9 GB.
Despite a node relation of 9:16 does SSI-MIN take twice as long as SSI-MAX.
Thus, it is obvious that the native SSI checkpointer is more efficient than MTCP
and BLCR. Additionally, the increased NFS transfer and storage overhead of fif-
teen job-units impacts the measurements, too.
Figures 4.7 and 4.8 show the restart times of a job consisting of nine and fifteen job-
units. The long restart times for 4.5 GB and 9 GB memory footprint at SSI-MAX
and 7.5 GB and 15 GB at SSI-MIN are strange. While 630 seconds are required
to restart a 9 GB image with SSI-MAX, SSI-MIN takes 2350 seconds for a 15 GB
image. Obviously, handling fifteen restart requests (SSI-MIN) takes longer than
nine (SSI-MAX). These values can be explained by the disk and network traffic
relation. While each NFS client may take advantage of a network bandwidth of
134 MB/s, the NFS server in turn must handle fifteen / nine incoming and outgo-
ing data streams. Thus, the disk read and write bandwidth is the bottleneck and
responsible for the tremendous overhead associated with SSI-MIN.

81

Figure 4.5: Checkpointing with SSI-
MAX configuration

Figure 4.6: Checkpointing with SSI-MIN
configuration

Figure 4.7: Restart with SSI-MAX con-
figuration

Figure 4.8: Restart with SSI-MIN config-
uration

82

Figure 4.9: Grid channel saving with channel closure and reestablishment

Channel flushing The XtreemOS channel flushing component has been described
under [24]. In-transit messages of reliable communication channels must be taken
into account during checkpointing to guarantee consistent snapshots.
CF has been evaluated using a client-server application. The server periodically
sends messages with varying message lengths and in varying time intervals. Fig-
ure 4.9 shows the measurement results if sockets are closed before checkpointing
operation. This approach is required for some checkpointing packages which do
not support open sockets during checkpointing operation.
Figure 4.9 shows the average duration of the pre- and post-checkpoint phase for
a server (left) and fifteen clients (right). Obviously, the pre-checkpointing phase
takes longer than the post-checkpointing phase. Pre checkpointing covers the most
of the work associated with CF, such as channel control threads coordination, the
actual channel flushing and the channel removal. Post checkpoint has a minor
workload, it merely covers socket recovery and input of buffered messages which
requires less coordination with control threads.
The message length does not impact the pre-checkpoint phase time, it remains at
about 0.048 seconds with 1, 4, 16 kB message sizes. Clearly, the high bandwidth
available in the testbed does not cause any bottleneck here. The server requires
approximately the same time as the clients due to concurrent programming (each
channel is handled by a dedicated server thread to avoid blocking). Figure 4.10
shows the measurement values for the pre- and post-checkpointing phases whereas
channels are not closed and reconstructed. Pre-checkpointing still takes longer than
post-checkpointing because it covers most of the channel checkpointing complex-
ity as described above. The impact of not saving and recreating channels is evident
since both phases take less than in figure 4.9.

4.3.4 Test Unit 03: Checkpointing on Linux SSI

4.3.4.1 Responsibilities

The responsible partner for this test unit is XLAB.

83

Figure 4.10: Grid channel saving without channel closure and reestablishment

4.3.4.2 Test Specification

Test Items

The test item is LinuxSSI as distributed with XtreemOS release 2.1.2.

Features to be Tested

This tests will evaluate the checkpoint and restart feature in LinuxSSI.

Approach Refinements

We will checkpoint and restart two versions of Galeb, a command-line function
fitter based on a genetic algorithm:

• the serial version,

• the multicore version, consisting of one master process and multiple slave
processes communicating over System V IPC message queues.

The tests with the serial version consist of simply running an application,
checkpointing it, saving its results, restarting, and comparing the results of the
restarted version with the original. The multicore tests will be done in a similar
fashion. However, they will stress LinuxSSI more because the slave processes will
be distributed over multiple nodes of the SSI cluster. Furthermore, the checkpoints
will be taken at various points of the execution - before launching the slave pro-
cesses, during the calculation, and after calculation but before reading the results
from the message queue.

84

4.3.4.3 Test Results

The first requirement for this test was setting up a two-node testbed. Unfortunately
this step failed, thus the test could not be executed.

We followed all the steps in the instructions in the Administrator Guide. We
noticed that installing kanif was redundant because it is a dependency of
task-xtreemos-linuxssi. Then, when executing the command
start_linuxssi on the core node, the connection to the other node failed, even
though before issuing this command the network connectivity in both directions
was checked. We have submitted bug no. 312 to the tracker.

We also tried starting the cluster with modprobe kerrighed ; krgadm
cluster start, which resulted in a partially working cluster. The console of
the head node was frozen, although top on the other node did show the CPUs and
RAM of both machines.

We then re-installed both machines from scratch, this time omitting the X desk-
top and checking LinuxSSI during installation. However, LinuxSSI did not actually
install (submitted bug no. 311) and could also not be installed later because of a
missing kerrighed module.

The installation will be repeated once these bugs are fixed and the planned tests
will be done once the installation succeeds.

4.3.5 Test Summary Report

4.3.5.1 Summary of Tests and Results

The openVZ container checkpointing mechanisms could be executed successfully.
The time taken to submit a job to an openVZ container is around 5.5 times greater
than native submissions. Still the execution in a container may be profitable for ap-
plications demanding a high degree of isolation. The scalability test of openVZ
checkpointing integrated into XtreemOS reveal practically no difference to the
openVZ checkpointing on native Linux.

Tests with the XtreemOS Grid Checkpointing Service (GCS) show that GCS
overhead is negligible. Only in one case there are differences in the range of sec-
onds caused by dynamic network traffic behavior and non-linear disk access for
these large checkpoint file images and also seek times of the disk to read this large
scattered checkpoint-images. Long restart times could be measured for restarting
large images which could be explained by the bottleneck wrt. disk read and write
bandwidth which is responsible for the tremendous overhead. Also the average du-
ration of the pre- and post-checkpoint phase was measured. The pre-checkpointing
phase takes longer than the post-checkpointing phase. Pre checkpointing covers
the most of the work associated with channel flushing, such as channel control
threads coordination, the actual channel flushing and the channel removal. Post
checkpoint has a minor workload, it merely covers socket recovery and input of
buffered messages which requires less coordination with control threads. No sig-
nificant correlation could be found between the message length the pre-checkpoint

85

phase time.
Tests with checkpointing on the current LinuxSSI failed because the setup of

the appropriate testbed could not be prepared. Bugs were reported accordingly and
it is planned to repeat the tests when fixes have been released.

86

4.4 Evaluation of LinuxSSI

LinuxSSI is the base component for the XtreemOS cluster flavor and is developed
within WP2.2. LinuxSSI is composed of the Kerrighed cluster operating system
providing Single System Image, and additional advanced features. The Single Sys-
tem Image property of Kerrighed allows application programmers and users, as
well as administrators to use a cluster as if it were a standard standalone Linux
PC. This section presents the evaluation of the latest advanced features, that were
developed during the last year of the project. Those evaluations were done under
the responsibility of Kerlabs in Task 2.2.13.

4.4.1 Test Plan

4.4.1.1 Responsibilities

WP2.2, Kerlabs, XLAB

4.4.1.2 Test Items

The software tested is Kerrighed 3.0.0-xos, which will be packaged for XtreemOS
3.0. Kerrighed 3.0.0-xos consists of Kerrighed 3.0.0, released to the public in June
2010 and available on Kerrighed’s community web site[8], and advanced features
(global IP and dynamic streams) that will appear in later releases of Kerrighed.

4.4.1.3 Features to be Tested

The following features of Kerrighed 3.0.0-xos should be tested:

• Checkpointing and restart of System V IPC objects.

• Global external IP address, that is the ability to access the cluster through a
unique IP address without making communications go through a front-end
node.

4.4.1.4 Features not to be Tested

• Advanced scheduling of applications on a cluster. An evaluation of this fea-
ture was already presented in Evaluation Report D4.2.6[10], Section 4.8.9,
and the scheduling components had no significant changes since this evalu-
ation.

• Dynamic streams with checkpointing, which is the ability to efficiently mi-
grate and checkpoint applications communicating through sockets inside the
cluster. A stabilization phase was planned for this feature during the exten-
sion period of the XtreemOS project but this feature could not be stabilized
enough to present an evaluation.

87

4.4.1.5 Overall Approach

The tested features (System V IPC checkpoint / restart and global external IP
address) are unparalleled. For this reason, we evaluate them performance-wise
through micro-benchmarks.

4.4.2 Test Unit 01: Checkpointing and Restart

4.4.2.1 Responsibilities

WP2.2, Kerlabs

4.4.2.2 Test Specification

Test Items

In this section, the LinuxSSI kernel checkpointer is evaluated. LinuxSSI kernel
checkpointer provides fault tolerance for applications running on top of XtreemOS
SSI based flavor. We have tested the LinuxSSI kernel checkpointer both in com-
pleteness and performance.

The LinuxSSI kernel checkpointer is installed as a part of LinuxSSI kernel
and utilities, which are an installation option within the XtreemOS installation.
Installing and configuring LinuxSSI is outlined in the XtreemOS Administration
Guide.

Features to be Tested

As part of this test unit, we will measure the following LinuxSSI checkpointer
characteristics:

• The impact of application memory footprint size variation on checkpoint/re-
start execution time

• The performance of checkpoint/restart of Inter-Process Communication (IPC)
objects. IPC objects are kernel persistent objects that do not offer backup or
copy interfaces. Those objects implement various mechanisms useful for
synchronization and communication of several processes in a workflow. The
LinuxSSI checkpointer implements checkpoint/restore interface for the fol-
lowing IPC objects : System V shared memory segment, System V message
queue, System V semaphore.

Approach Refinements

To check the completeness of LinuxSSI checkpointer and study the impact
of application memory footprint on the time needed to checkpoint / restart the

88

application, we have chosen to use Blender as a practical example of application.
Blender is a 3D graphic multi-threaded application that can be used for modeling,
rendering and simulation.

During the execution of the test, Blender instance is rendering a 3D scene into a
range of PNG files. To change the memory footprint, the resolution of the rendered
images have been configured differently for different runs. Anyway, since Blender
allocates/frees memory dynamically during the computation, its memory footprint
is not constant during a run. We have measured around fifty times the time needed
to checkpoint Blender instance. Between each checkpoint, the application is pro-
gressing and we have checked that the results of the application equal the results
of a run without interruption. After reboot of all cluster nodes, to avoid file-system
cache effect, we have measured the times to restore the application from each pre-
vious checkpoint.

We have measured the time needed to checkpoint and to restart IPC SYSV
shared memory segment. For different sizes of the segment (1MB, 10MB, 100MB,
200MB, 1024MB), we have taken 10 measures. By default, size of shared memory
segment is limited to 35MB. This limit has been increased for the test. Check-
point is triggered from a node on which no process has used the segment. Shared
memory segments have been created using command ipcshm-tool provided with
standard distribution of Kerrighed. Average time and standard deviation have been
computed for both checkpoint and restart.

We have measured the time needed to checkpoint and to restart IPC SYSV
semaphore array with different number of semaphores per array (1, 100, 250,
1000). By default, the maximum number of semaphores per array is 250. This
limit has been extended for the test. Semaphore arrays have been created using
command ipcsem-tool provided with standard distribution of Kerrighed. Average
time and standard deviation have been computed for both checkpoint and restart.

We have studied the impact of variation of the size and number of messages on
the checkpoint and restart time of message queues. We have changed the number
of messages and the size of each messages to have a message queue that always
measure 16384 bytes, which is the default maximum size. For each configura-
tion, we have measured checkpoint and restart times 10 times. Message queues
and their messages have been created using command ipcmsg-tool provided with
standard distribution of Kerrighed. Average time and standard deviation have been
computed for both checkpoint and restart.

The test unit has been realised on a four nodes cluster running LinuxSSI 3.0,
each having the following specifications:

• Dell Optiplex 330

• Intel Core 2 Duo E4400 2 GHz

• 2 GB RAM

• Gigabit Ethernet

89

Checkpoint files are read/written from/to a NFS file-system shared by a fifth
node.

All checkpoint and restart execution durations have been measured from user-
space using the time command.

4.4.2.3 Test Results

Figure 4.11: Checkpoint/restart execution duration of Blender instance

The checkpoint and restart execution durations are presented in figure 4.11.
Memory footprint increasing interval is not perfectly regular because we do not
control Blender memory application. As expected, the duration increases with the
memory footprint. Checkpoint and restart durations are very similar, meaning than
extracting data from the kernel and writing it to stable storage takes approxima-
tively the same time as reading data from stable storage and recreate the kernel
structures from the data. Peaks of both checkpoint and restart execution durations
for the same checkpoint are explained by unusual in-kernel structures complexity
that make the structures parsing and restoration cost more.

Figure 4.12 and table 4.2 report results of checkpoint and restart of shared
memory segments. As expected, checkpoint and restart duration increases with
size of the checkpoint. Checkpoint is slower than disk throughput because we have
tested the worst case, where no pages of the shared memory segment are locally

90

Figure 4.12: Average shared memory segment checkpoint and restart execution
duration

shm size (MB) checkpoint duration (s) restart duration (s)
average standard

deviation
average standard

deviation
1 0,18 0,09 0,03 0,03

10 0,91 0,38 0,03 0,06
100 8,48 2,81 0,12 0,08
200 16,49 6,05 0,66 0,46

1024 67,40 27,60 1,11 1,77

Table 4.2: Average and standard deviation of shared memory segment check-
point/restart execution duration

91

Figure 4.13: Average message queue checkpoint and restart execution duration

number of
messages

message
size (bytes)

checkpoint duration (s) restart duration (s)

average standard
deviation

average standard
deviation

2 8192 0.08 0.02 0.10 0.05
4 4096 0.08 0.02 0.07 0.04
8 2048 0.09 0.03 0.11 0.04

16 1024 0.08 0.02 0.09 0.03
32 512 0.10 0.02 0.10 0.06
64 256 0.13 0.03 0.09 0.03

256 64 0.26 0.03 0.10 0.04
1024 16 0.76 0.03 0.10 0.04
4096 4 2.80 0.02 0.13 0.04
8192 2 5.53 0.12 0.03 0.04

16384 1 10.96 0.12 0.02 0.04

Table 4.3: Average and standard deviation of message queue checkpoint/restart
execution duration

92

Number of
semaphores
in the array

Checkpoint duration (s) Restart duration (s)

1 0.01 0.01
100 0.01 0.01
250 0.01 0.01

1000 0.02 0.04

Table 4.4: Average and standard deviation of semaphore array checkpoint/restart
execution duration

available on the node from which the checkpoint is triggered.
Figure 4.13 and table 4.3 present measurements of checkpoint and restart of

message queue. As shown, the checkpoint size mostly depends on the number
of messages in the message queue which is consistent with the implementation.
Indeed, when checkpointing a message queue hosted on a remote node, at least
one network packet is received for each message, leading to a bad throughput in
case there are a lot of small messages in the message queue.

The checkpoint and restart execution durations of IPC semaphores are pre-
sented in table 4.4. It is really fast and does not depend much on number of
semaphores in the array, which is not surprising since a semaphore is basically
one byte only.

4.4.3 Test Unit 02: Global external IP

4.4.3.1 Responsibilities

WP2.2, Kerlabs

4.4.3.2 Test Specification

Test Items

In this test unit we test the global external IP feature using Kerrighed 3.0.0-
xos, provided by packages kerrighed-kernel and kerrighed-tools in
XtreemOS 3.0. The users and installation guides are available in the
kerrighed-tools package.

Features to be Tested

Global external IP.

Approach Refinements

93

The goal of this test is to evaluate the performance of communicating with a
Kerrighed cluster through the global external IP. To this end we used a standard
benchmark for networking called Netperf. Version 2.4.4 was used and is available
on Netperf’s website[15] as well as in major Linux distributions. Performance
comparisons were also done with a vanilla Linux 2.6.30 kernel, on which the Ker-
righed 3.0.0 kernel is based, and available from Linux kernel’s website[40].

Netperf provides two classes of tests, allowing to benchmark the bandwidth
and latency between a client and a server over an IP network. The bandwidth is
benchmarked as the bulk unidirectional data transfer rate, in the TCP_STREAM
(using TCP) and UDP_STREAM (using UDP) tests. The tests output the data
transfer rate in 106 bits per second. Parameters that can be tuned are the send
and receive socket buffers size on both sides (client and server), the size of the
messages sent through the send() system call (sender side), and the size of the
buffer passed to the recv() system call (receiver side).

The latency is benchmarked as the request-response rate, in the TCP_RR (us-
ing TCP) and UDP_RR (using UDP) tests. The client sends a request to the server
(beginning of a transaction), and wait for the server’s response (end of the transac-
tion) before sending the next request. The tests output the request-response rate in
number of transactions per second. Parameters that can be tuned are the send and
receive socket buffers size on both sides (client and server), and the request and
response size.

In order to evaluate the performance observed and thus to evaluate the impact
of Kerrighed on the network performance, we ran the netperf benchmark in four
different cases reflecting the different levels of impact brought by the Kerrighed
patch on Linux 2.6.30. The levels of impact result from the current design of Ker-
righed, that builds an SSI cluster out of Linux containers (see [38] for details about
Linux containers). A Linux container being part of a Kerrighed cluster is called a
Kerrighed container. The first level of impact is at the host system, and results from
the Kerrighed hooks inserted in the code and the additional network stack setup for
the Kerrighed container on each node of the cluster. The second level of impact is
in the Kerrighed container, and results from the Kerrighed hooks enabled as well
as the specific network configuration for the container and the global external IP
address. The third and last level of impact is in the Kerrighed container, when
network communications go through the global external IP address.

Because of the three levels of impact above, the netperf benchmark was run in
four different cases. In all cases, a cluster of 4 PCs was used, using an NFS server
on a fifth PC (The hardware is described later). The netperf client was always run
on the NFS server, and the netperf server was always run on the nodes. Finally, in
all but the first case, the nodes run a Kerrighed kernel with an SSI cluster setup.
The four cases are the following:

1. The nodes of the cluster run a vanilla Linux 2.6.30 kernel. This case serves
as a reference for all other measures.

2. The netperf server runs in the host system of the nodes. The netperf client is

94

run once for each node. This case measures the impact of having Kerrighed
hooks inserted (but not used by netperf) in the code, and a specific network
stack setup with the global external IP address (but not used by netperf) for
the Kerrighed container.

3. The netperf server runs in the Kerrighed container of the nodes. The netperf
client accesses the netperf server through the node’s own IP address for its
Kerrighed container. The netperf client is run once for each node. This case
measures the impact of using Kerrighed hooks and the specific network stack
setup for the Kerrighed container, without making netperf use the global
external IP address.

4. The netperf server runs in the Kerrighed container of the nodes. The netperf
client accesses the netperf server through the global external IP address of
the cluster. The netperf client is run once for each possible location (that
is once for each node) of the netperf server. This case demonstrates the
global external IP address feature (the netperf server should behave equally,
whatever its location). This case also measures the impact of using the global
external IP address.

The parameters used for the different netperf tests are the following:

TCP_STREAM

• Send message size (in bytes): successively 1, 4, 16, 64, 256, 1024, 4096,
16384, 65536.

• Receive message size: 32768 bytes.

• Socket send and receive buffers size: 32768 bytes requested, 65536 bytes
allocated1 for both the client and the server.

UDP_STREAM

• Send message size (in bytes): successively 16, 1024, 1460 (maximum UDP
message size fitting in an Ethernet frame for the virtual VLAN interfaces of
the Kerrighed containers).

• Receive message size: 32768 bytes.

• Socket send and receive buffers size: 32768 bytes requested, 65536 bytes
allocated for both the client and the server.

1Linux usually doubles the size of socket buffers, in order to keep space for internal book-keeping.

95

TCP_RR

• Request size/Response size (in bytes): successively 1/1, 64/64, 100/200,
128/8192.

• Socket send / receive buffers size: 2048 bytes / 256 bytes allocated for both
the client and the server.

UDP_RR

• Request size/Response size (in bytes): successively 1/1, 64/64, 100/200,
1024/1024.

• Socket send / receive buffers size: 124928 bytes / 124928 bytes allocated for
the client, and 120832 bytes / 120832 bytes allocated for the server.

The five PCs have identical hardware, with one dual-core 2GHz Intel Core2
Duo E4400 processor, 2GB of RAM, and one Broadcom Corporation NetLink
BCM5787 Gigabit NIC plugged in the PCI Express bus. The five PCs were inter-
connected with a Gigabit Dell PowerConnect 2708 switch.

The network stack in the Kerrighed containers relied on a virtual NIC imple-
mented as a VLAN over the hardware NIC, which in particular results in an 1488
bytes MTU, that is the 1492 bytes MTU of the hardware NIC used in the host
system minus 4 bytes for the 802.1q VLAN tag.

4.4.3.3 Test Results

We present the results of the four differents netperf tests run. For each of these
tests, we have displayed on one graph the four cases in which the test was run. We
can notice that on all graphs and for any of the four cases, the four nodes have equal
performance, in particular when the cluster IP address is used. This confirms that
all nodes participate equally to the cluster IP address. The following paragraphs
detail the analysis for each netperf test.

TCP_STREAM and UDP_STREAM

The results of the TCP_STREAM and UDP_STREAM tests are shown in Fig-
ure 4.14 and Figure 4.15 respectively. Since UDP packets can be silently dropped
in case of network congestion, the bandwidth displayed for UDP_STREAM was
measured on the receiver’s side.

We can notice that the host system on a Kerrighed setup and a vanilla Linux
kernel have the same performance on this test. In other words, Kerrighed hooks as
well as the specific network stack for the Kerrighed container don’t impact signifi-
cantly the bandwidth that can be obtained with TCP and UDP.

However, we can notice that with the network stack of the Kerrighed container,
the bandwidth obtained is a bit lower than in the host system. The performance

96

Figure 4.14: TCP data transfer rate from an external client to the cluster

Figure 4.15: UDP data transfer rate from an external client to the cluster

97

impact is also higher when the cluster IP address is used. Two factors can explain
this result. First in the Kerrighed container’s network stack the latency is higher
than on the host system. Indeed the MTU of the virtual network interface is 1488
bytes large instead of 1492 bytes in the host system. Moreover every packet han-
dled by this network stack traverses the IP tables rule that was defined to setup the
cluster IP address, and when the cluster IP address is used, this rule also checks
whether the packet should be handled by the local node or not, which increases the
overhead.

Second, the cluster IP address relying on Ethernet multicast to send packets to
the cluster, the network switch is more loaded by network traffic going to the cluster
through the cluster IP address than by network traffic going to a single node’s IP
address.

TCP_RR and UDP_RR

The results of the TCP_RR and UDP_RR tests are shown in Figure 4.16 and
Figure 4.17 respectively.

Figure 4.16: TCP request / response rate between an external client and the cluster

Contrary to the TCP_STREAM and UDP_STREAM tests, we can notice that
the transaction rate obtained on a vanilla Linux kernel is higher than the one ob-
tained on the host system of a Kerrighed setup, especially for small message sizes.
This confirms the overhead introduced by the specific network stack setup of the
Kerrighed container. We can also notice that this overhead decreases to zero when

98

Figure 4.17: UDP request / response rate between an external client and the cluster

the size of responses increases, since the transaction rate becomes more sensitive
to the TCP (resp. UDP) bandwidth than to the round trip lantency.

Similarly to the TCP_STREAM and UDP_STREAM tests, we can observe that
the performance in the Kerrighed container (using or not the cluster IP address) is
lower than in the host system. However, with TCP_STREAM this difference de-
creases to zero as the response size increases, which confirms that the cluster IP
address adds an overhead in latency, but not in bandwidth for traffic going out of
the cluster. It is not possible to confirm this observation with UDP_RR because
of the limited response size imposed by the network interface MTU, but we can
still observe that the performance difference decreases when the response size in-
creases.

4.4.4 Test Summary Report

4.4.4.1 Summary of Tests and Results

We presented tests of two advanced features of Kerrighed: checkpoint / restart, and
global external IP address. The tests on checkpoint / restart have shown the com-
pleteness and efficiency of the checkpoint / restart implementation in Kerrighed,
through intensive checkpoint / restart of the 3D modelization application Blender,
and micro-benchmarks of System V IPC objects checkpoint / restart.

The tests on the global external IP address have demonstrated the feature and
shown preliminary performance results of this prototype implementation. Both the

99

achievable data transfer and transaction rate were evaluated through the netperf
micro-benchmark. As expected, negative performance impacts were observed, es-
pecially in term of bandwidth for traffic going in the cluster through the cluster IP
address. The performance obtained with Kerrighed’s cluster IP address is however
comparable to the performance obtained on a vanilla Linux kernel.

4.4.4.2 Conclusion and Directions for Future Work

We have evaluated advanced features of Kerrighed that improve the quality of ser-
vice (through advanced checkpoint / restart) and the Single System Image property
(through a global external IP address) of Kerrighed. The dynamic streams feature
could not be evaluated because of the low quality of the current implementation.
One of the primary goals of future work will be to improve the quality of this
implementation.

The checkpoint / restart facility of Kerrighed has achieved a high level of com-
pleteness, making it now suitable for a broad range of computing applications.
Future work on this topic will focus on increasing the flexibility, allowing program-
mers / users to making applications collaborate with the system’s checkpointer in
order to optimize the checkpoints’ size and time.

The implementation of the global external IP address feature is still at a proto-
type-stage, and will need further evaluation and optimization to make it suitable for
a broad range of applications. Optimization will likely focus on reducing the la-
tency overhead in the Kerrighed container’s network stack, by experimenting other
network virtualization alternatives like bridged veth interfaces, and by minimizing
the decision path when filtering received network packets received on the cluster
IP address.

100

4.5 Evaluation of the DIXI Message Bus

DIXI is a communication bus, a middleware for staging services developed for
XtreemOS. It features the ability to stage services developed in Java, distribution
of the services throughout the grid, the facility to publish the service access points
and service call invocation that is abstracted from the means of the service message
exchange. The core development was the responsibility of XLAB as a part of the
WP3.2.

4.5.1 Test Plan

4.5.1.1 Responsibilities

The DIXI framework is the responsibility of WP3.2 and has been developed by
XLAB. The tests have also been carried out by XLAB.

4.5.1.2 Test Items

Here we revisit the components tested for the previous deliverable [10]. Since
then, the components have undergone many changes in terms of improved stability,
optimisation and added features. The features mostly show an easier way for the
developers to use the libraries, but we also expect the lowering of the latencies
reported in [10].

We therefore test the libraries that we expect to be packaged in the dixi-main
containing the service hosting environment and the messaging bus, and the
dixi-xati to contain the client-side (XATI) libraries, both to appear in the up-
coming XtreemOS 3.1 release.

Another major difference from the previous tests is the use of the Grid5000 [5]
for hosting the tests.

4.5.1.3 Features to be Tested

We will test the following features of DIXI:

• Staging the services and exposing their interfaces to the message bus.

• The invocation of the service calls defined by the service interface in an
asynchronous manner from another service.

• The invocation of the service calls defined by the service interface using the
client library (XATI), which occurs in a synchronous manner.

• The DIXI’s ability to redirect the service requests to an access point capable
of handling the request.

101

4.5.1.4 Features not to be Tested

The DIXI framework, in part, contains tools that help develop a DIXI service. We
will not test and compare them, because they need only be used at the design time,
and their outcome is implicitly tested within the features used during the runtime.

4.5.1.5 Overall Approach

A messaging bus and the staging environment should be as transparent to the user
and the underlying services as possible. In our tests we wanted to measure the
latencies introduced to the client request and service’s response round-trip under
various levels of stress. To reduce the external (or service’s internal) influences to
the time of the request being spent within the system, we implemented a simple
echo service which, in its service call, returns the input provided by the clients as
its response. The values sent by each clients are different for each request, but
comparable in their length (the payload size).

4.5.2 Test Unit 01: client-server timings

4.5.2.1 Responsibilities

Both the developed code and the performance tests are the responsibility of XLAB
within the WP3.2.

4.5.2.2 Test Specification

Test Items

In this test unit we test the DIXI framework, installed in dixi-main pack-
age. The client-side component in XATI, also included in the test, is packaged
in the dixi-xati package. The packages are installable following the standard
package installation procedure. The installation and usage guides are a part of the
standard XtreemOS Administration Guide.

Features to be Tested

• Staging the services and exposing their interfaces to the message bus.

• The invocation of the service calls defined by the service interface in an
asynchronous manner from another service.

• Secure communications using the SSL.

102

Approach Refinements

In this test we wanted to obtain the timings performed by the framework with-
out any delays incurred by the implementation of the user’s services staged within
the framework. For the test we used two paramount nodes on the Rennes Grid5k
site. The set-up included:

• the echo service running on a designated node, and

• a client service (i.e., a service invoking the echo service) running on either
nodes.

When the client service is running on the same node as the echo service (in fact
this means that it is co-hosted within the same Linux process as the echo service),
only the memory bus queue is involved in the exchange of the messages. When
on different nodes, additional built-in services and the network become involved as
well.

The test in either scenarios involves sending an increasing number of requests,
measuring the time between just before the service invocation and the point right
after the reception of the response. The service calls are asynchronous, meaning
that the response arrives in the form of a call-back method invoked by the frame-
work within the client service. The client service sends the next request in the
series in the call-back, assuring only one request is active at a time. The series
contains up to 1600 requests in a row. We repeat each test 10 times to ensure the
results’ consistency.

Our tests involve the use of the plain socket communication without using the
SSL. However, in this test we also compared the results with those obtained when
the SSL is enabled between clients and the service.

In the extension of the test unit, we raised the number of the Grid5000 nodes
to 16. In this case, the set-up consists of the following:

• the echo service running on a designated node, and

• all the nodes (including the one running the echo service) run a client service.

In the test, we start each client service to individually run the request series of
the original set-up, but we invoke them concurrently. As a result, the echo service
receives the requests from all the clients within each test intervals.

4.5.2.3 Test Results

We carried out the test in a sequence of stages, where in the first stage the client sent
200 requests to the service, and in the consequent stages the number of requests
increased by 200, the last stage performing 1600 requests. We noticed that the size
of the request series does not influence the time spent waiting for the response.

103

Number of requests Network SSL Average delay Standard deviation
1600 No No 1.1 ms 0.5 ms
1600 Yes No 2.9 ms 0.6 ms
1600 Yes Yes 3.3 ms 0.7 ms

Table 4.5: The delays (response times) measured in a simple scenario of a single
client and a single service.

Of course any other outcome would mean a bug or an architectural problem in the
implementation.

Due to the constant outcomes, the table 4.5 shows the summary of the final
stage only. We can see that the response times of the service calls invoked within
the same process, involving the message queues only, occur on the edge of mea-
surability, at around 1 ms.

When the service message needs to use the network to reach another node, we
notice an increase of the delays to around 3 ms per request. In the increase we
count additional operations such as the service call redirection to another node,
transcoding of the Java objects into the byte arrays, and the actual networking
transport. Enabling SSL which, effectively increases the networking payload size
as well as adds to the complexity of the communication, on the average represents
another 0.4 ms of the delay. Please note that we carried out the remainder of the
tests with SSL disabled.

Increasing the number of clients that concurrently compete with a single ser-
vice naturally increase the waiting times for each individual client. By using a
larger number of nodes and running on each node a higher number of clients we
test the kind of load it takes to raise the average response times. Again, the number
of subsequent requests issued by each client does not influence the response times.
Therefore we used the number 1600, granting us stable results and assurance that
the overlap between the execution cycle of all the clients is as long as possible.

The Figure 4.18 shows the average delays depending on the number of clients
connected and issuing requests. Since we hosted one client per node, the chart at
the same time represents the number of connected nodes. For the sake of fairness,
the chart shows a separate curve for the delays measured on the client residing on
the same node. The curve marked as two nodes thus represents an average for all
the nodes that do not host the service, but only the client.

The chart shows that for 6 client services or less the latencies are constant. With
the increase of the client number, the latencies grow, but due to the low resolution
in the measurement timings, the curve is not fully smooth. From the results we
also notice that the additional delay caused by the network transport is a constant
addition rather than a three-fold slowdown as we may guess from the Table 4.5.
Further, the delays increase slowly with the number of requestors, but the perfor-
mance gives the confidence in the framework.

104

! " # $ %& %! %" %# %$

%

'

(

)

*

%%

%'

+,-./012.

341/012.+

567.03/+.897:./:1;03

<
.
+
=
1
0
+
.
/2
.
6,
>
/?
-
+
@

Figure 4.18: Average response times of requests in the test where multiple client
services request from the same service.

4.5.3 Test Unit 02: multi-client timings

4.5.3.1 Responsibilities

Both the developed code and the performance tests are the responsibility of XLAB
within the WP3.2.

4.5.3.2 Test Specification

Test Items

The test items in this test unit are the same as the ones in Test Unit 01.

Features to be Tested

• Staging the services and exposing their interfaces to the message bus.

• The invocation of the service calls defined by the service interface using
client library (XATI), which occurs in a synchronous manner.

Approach Refinements

This test unit logically continues what Test Unit 01 has started by increasing
the demands on the echo service by severalfold, again measuring the impact in
terms of the response times of the service calls. Again we use the 16 Grid5000
nodes in a set-up as follows:

105

• the echo service runs on a designated node,

• each node runs up to 20 XATI clients concurrently.

Each instance of the XATI clients internally invokes a number of requests in a
fast succession. This is comparable to the calls invoked by the client services in
Test Unit 01. However, now we run an increasing number of the XATI clients as
Linux jobs, so that each node runs many of the clients at the same time as parallel
processes. This effectively simulates up to 320 client nodes requesting the same
service.

In this test we also have a number of clients that are hosted with the service on
the same node. The difference in this case, however, is, that even in this case they
do not share the process, so some inter-process communication takes place.

4.5.3.3 Test Results

The results of the Test Unit 01 hinted at the trend in the increase of the delays as
the load intensifies, but we find 16 clients to be a low number, so we needed to add
to the load further. In this test, in each round all 16 nodes are involved. What we
vary is the number of clients running on each node.

! " # $ % !! !" !# !$!%

&

!&&

'&&

"&&

(&&

#&&

)&&

*+,-./,01,2.30405.6,0781,

95:1

;5:1

*+,-./,01,2.3

95:1

;5:1

<8=7:08>0<2?,7:50@,-0781,

A
,
5
@
8
7
5
,
01
,
2.
30
B6
5
C

Figure 4.19: Average response times of requests on a single service from multiple
nodes, each running multiple concurrent clients.

The Figure 4.19 shows the results of the test. The X axis represents the number
of clients on each node. For instance, the client count of 7 per node means that the
service receives requests from 112 clients all running in parallel. The rightmost
point on the chart therefore represents 320 clients.

Again, we show a separate curve for the co-hosted clients from the remote
ones. The dotted lines also show the standard deviation around each of the curve.

106

The chart shows a steady linear continuation of the trend shown from the previous
result, but with a larger extent of the test itself. Along with the average growth, the
deviation also spreads slowly, though it is difficult to account the errors fully to the
framework itself, as the operating system and the platform running the nodes may
introduce some noise.

The clients co-hosted with the service show slightly smaller delays, suggesting
that their requests get served with a slightly higher priority on the average. This
is not surprising, because they are free of the latencies required by the network
transport and can queue their next request faster. However, the larger deviation
suggests that it is more likely a particular request will be delayed more than one
from a remote client.

4.5.4 Test Unit 03: parallel requests in the queue

4.5.4.1 Responsibilities

Both the developed code and the performance tests are the responsibility of XLAB
within the WP3.2.

4.5.4.2 Test Specification

Test Items

The test items in this test unit are the same as the ones in Test Unit 01.

Features to be Tested

We will test the following features of DIXI:

• Staging the services and exposing their interfaces to the message bus.

• The invocation of the service calls defined by the service interface in an
asynchronous manner from another service.

• The possibility to send the service requests in parallel within the service call.

The switch from implementing the synchronous calls to being forced to imple-
ment complex solutions using an asynchronous paradigm requires a steep learning
curve from many developers. However, once the difficulties are overcome, there
are benefits in developing services such that they do not block the execution of a
service call any more than necessary.

The previous test cases showed that using callbacks leads to a well-behaved
framework. In this test we want to test the effects of using the call-back paradigm
only partially. More precisely, instead of keeping at most one request live at a time
within a client, we send all the service requests to the same service at the same
time.

107

Approach Refinements

For this test we refer to the set-up of the Test Item 01, i.e.,

• the echo service running on a designated node, and

• all the nodes (including the one running the echo service) run a client service.

The client service, when invoked, sends to the echo service 1200 service calls.
It stores the time of the service sending and, when the response arrives, also the
time of the response arrival. The responses still return as the call-backs, but none
of them perform any further calls.

We run two independent batches of tests, one with the co-located client and
server, another one with the client and the server residing on separate nodes. We
run each batch 10 times to ensure the stability of the results.

4.5.4.3 Test Results

The Figure 4.20 shows the results of the test. This time, the chart has a form of the
time relative to the events of starting and finishing of each individual request. The
X axis thus shows the index of the request. The time taken by the request to return
is represented by the line from the point on the start time line to the point on the
end time line.

!
"#!

$%!
&'!!!

(!
)!
'"!
'$!
'&!
"'!
"%! !*!

!!!
!(!
!)!
%"!
%$!
%&!
$'! $#!

(*!
(!!
((!
()!
#"!
#$!
#&! &%!

&#!
)*!
)!!
)(!
))!
'*"!
'*$!
'*&!
'''!
''%!
''#!

*

"**

%**

(**

&**

'***

'"**

'%**

'(**

+,-.,/,012/3/4-12/5672

857/,012/3/4-12/5672

+,-.,/,012

857/,012

92:;24,/5;1<2.

9
2
4
=
6
5
4
2
/7
2
>-
?
/@
1
4
A

Figure 4.20: Start and end times of the requests issued in an asynchronous batch.

The chart shows that the 1200 requests enter the queue in around 5 ms. The
first request’s response arrives in around 500 ms for the co-hosted case, and in
just under 400 ms for the two-nodes case. The next response in both cases arrives

108

within 1 ms later, and the subsequent ones follow in a steady succession. It is
important to stress that, unlike in the previous test units, here the duration of the
whole batch is the time between the start of the batch and the time when the last
request’s response arrives rather than the sum of the individual delays.

An interesting outcome of the test is that the co-located case receives the first
response later than the separated case. We speculate that this is due to some level
of distribution of the queueing load when two nodes are involved. However, this
soon switches when more and more requests arrive. In either case the delays grow
steadily and close-to-linearly without escalating towards a breaking point.

In this case we can tell that the number of requests does influence the response
times. This is simply due to the fact that the message bus uses a FIFO queue,
therefore all the requests need to be handed out first before the first responses can
be provided to the call-backs.

This unit case does not show a realistic scenario, but it explores one possible
use of the service calls. It shows that, if ever needed, it is considerably better to
construct the call sequence in a single line of execution rather than fanning out
extensively. This does not apply for the cases where we need a service to scatter
requests to a varous set of nodes in order to gather their responses later on.

4.5.5 Test Summary Report

4.5.5.1 Summary of Tests and Results

In this report we presented a new iteration of the tests performed on the DIXI
framework and the message bus. For the tests we did not have access to the same
hardware where we carried out the previous tests, so it is difficult to compare the
outcomes. However, being able to use the Grid5000 platform, we were able to
create set-ups much closer to what the production environment for the XtreemOS
would be.

In the tests we progressed from first making simple calls with single client on a
single server. We gradually increased the number of the clients, adding to the stress
level of the service. All along we noted the slow linear increase in the average
response times. We concluded that the number of requests issued by an individual
client does not influence the delays, but the number of clients concurrently making
service calls has the expected impact on the individual request’s response time.

In a special test case we explored the influence of putting a lot of requests
quickly into the message bus. Here we found that the length of the queue of mes-
sages to be processed has a noticeable influence in terms of the initial request’s
response time.

4.5.5.2 Conclusion and Directions for Future Work

The purpose of the DIXI was to host a number of services, connected both inter-
nally on each node and throughout the network by the built-in message bus. Ideally,

109

the staging framework would host the front-ends of the services which process in-
coming service calls quickly, but moves all the lengthy and complex computation
“off-line”. For these purposes our tests show that the services can be hosted by
DIXI efficiently.

Of course it is not always practical to optimise for fast service call processing,
particularily when prototyping new services, which is another strong point of the
DIXI. On the other hand, the growing grids will provide an increasing service
stress. In either case it is difficult to construct a framework to alleviate the slow-
downs, but in this case it is better to provide a higher number of replicated services
to distribute the load of the clients.

We see a possibility of further enhancements and improvements for DIXI in
the ability to distribute the actual load on the distributed services when the service
request does not call for a particular host’s service. The already built-in service
call redirection could take decisions on the service message traffic to use the less-
visited parts of the grid.

110

4.6 Evaluation of XtreemOS API

The XOSAGA XtreemOS API, created mainly by WP3.1, offers an API for the
applications to manage jobs, resources and files within XtreemOS.

4.6.1 Test Plan

4.6.1.1 Responsibilities

This test plan is carried out under WP4.2 and involves BSC and EADS.

4.6.1.2 Test Items

First series of tests: AEM and XOSAGA versions available at the SVN on 20/06/2010.
Second series of tests: XOSAGA API v2.1.

4.6.1.3 Features to be Tested

XOSAGA job submission, resource reservation, job monitoring.

4.6.1.4 Features not to be Tested

Rest of XOSAGA features, not relevant or not implemented by the test-case appli-
cations.

4.6.1.5 Overall Approach

Series of tests:

• Comparison of AEM and XOSAGA: resources are reserved and jobs are
submitted using equivalent API methods in both AEM and XOSAGA, which
guarantees fairness of the results. Also the environment used (cluster and
number of processors) is the same for both AEM and XOSAGA.

• Job failure rate: the methodology used to calculate the failure rate consists
in keeping track of the number of failed jobs out of the total submitted.

4.6.2 Test Unit 01: Java XOSAGA – Performance comparison with
AEM

4.6.2.1 Responsibilities

WP4.2, Enric Tejedor from BSC

111

4.6.2.2 Test Specification

Test Items

For both AEM and XOSAGA, we tested the following items:

• Job management

• Resource management

Features to be Tested

For both AEM and XOSAGA, we tested the following features:

• Job management: submission and monitoring (state checking)

• Resource management: create a reservation, release a reservation

Approach Refinements

While in the previous deliverable we used the hmmpfam application, executed
by COMP Superscalar (COMPSs), to evaluate the performance of the Application
Execution Management (AEM) component, in the tests presented here we compare
the performance of AEM against the one of XOSAGA. The porting of COMPSs
on top of XOSAGA allows to establish a direct comparison between the two APIs.

The job and resource management features of both AEM and SAGA are ex-
ploited as follows. When COMPSs parallelizes hmmpfam, it creates a task depen-
dency graph based on the workflow of the application. The tasks will be submitted
as jobs to the XtreemOS grid and periodically checked for completion on nodes
running the application. In addition, COMPSs will perform an initial discovery of
the available Grid resources and then reserve a set of these resources nodes to act as
workers running the jobs in the application workflow. At the end of the application,
the COMPSs runtime will release the reservations.

4.6.2.3 Test Results

In order to evaluate COMPSs-hmmpfam on top of XtreemOS-AEM and XtreemOS-
XOSAGA, we conducted some tests to measure the execution time of the applica-
tion for both portings of the COMPSs runtime.

The testbed that we used is Grid5000. In such testbed, we reserved a set of
nodes where a XtreemOS image was deployed, and then we installed COMPSs
on each node. We also installed the AEM and XOSAGA versions available at
the SVN on 20/06/2010. The nodes reserved correspond to a single cluster of
Grid5000, called ‘paraquad’. We chose to run the tests in only one cluster, so that
the test environment is uniform, the results have less variability and are compa-
rable. If the set of nodes were chosen randomly for each execution, aspects like

112

Figure 4.21: Execution times of the hmmpfam application on top of COMPSs, both
with the AEM and XOSAGA flavours.

the processor performance or the interconnection network would strongly interfere
with the results.

The characteristics for each node of the cluster are the following:

• Intel Xeon X5570 2.93 Ghz

• Memory: 24 GB

• Storage: 500GB / SATA AHCI Controller

• Gigabit Ethernet

For job execution, we used one node as the master (thus hosting the COMPSs
runtime) and a variable number of worker nodes (from two to six nodes, using four
processors on each node).

In order to compare the performance of AEM and XOSAGA, we ran the same
series of tests using two different configurations of the COMPSs runtime: first, the
COMPSs runtime ported to AEM; second, the same runtime ported to XOSAGA.

Concerning the data accessed by the application, we copied the application files
from node to node when necessary, i.e. every time that a task needed a given input
file, that file was copied using the ‘scp’ command to the destination node before
the task execution.

Figure 4.21 shows the performance results of running COMPSs-hmmpfam,
both using AEM and XOSAGA.

For each number of workers and configuration, we ran two tests and the average
is plotted. There was no significant difference between executions of the same
number of workers and configuration. We see how the results are quite similar for
both configurations, although XOSAGA introduces some additional overhead to
the job and resource management features of AEM.

113

4.6.3 Test Unit 02: Evaluation of Parallel Job Submissions using XOSAGA

4.6.3.1 Responsibilities

WP4.2, Lokendra Singh (EADS)

4.6.3.2 Test Specification

Test Items

The test item, mainly, is the variation of Failure rate of parallel jobs when the
number of reserved nodes is varied. The jobs were submitted using XOSAGA API
v2.1.

Features to be Tested

The main feature to be tested is the effect of size of grid (w.r.t number of nodes)
on resource and job management using XOSAGA. Hence, the number of nodes is
varied for fix number of parallel jobs submitted, and failure of jobs is recorded.

Approach Refinements

The result are obtained when a large number of jobs are submitted simulta-
neously (parallel) on XtreemOS Grid, and the number of failed jobs is recorded
for each parallel submission. The evaluation study, basically, submits a definite
number of parallel jobs on a number of reserved nodes. The jobs which fail, out
of the simultaneously submitted jobs, are collected and submitted/run again upto
a certain number of such ‘Retrials’ (after which the job is declared ‘Failed’). The
failure of jobs is recorded for each of these ‘Retrials’.

The number of reserved nodes is varied, to test if the failure rate depends upon
number of nodes, hence deducing whether a large grid induces overheads on jobs.

The tests were conducted on Paradent clusters of Grid5000 on XtreemOS-2.1.
The failureRate of a trial is defined as (Number of jobs Failed) / (Number of

Jobs submitted simultaneously).

4.6.3.3 Test Results

Our applications mainly Amibe and OpenFOAM were ported on XtreemOS using
XOSAGA API. We will take the example of Amibe in this study as the illustration
would be easy.

The application Amibe, is a meshing application, and creates 3D meshes in
three steps. The first step is descretization of geometrical edges (1D elements).
The second step is 2D descretization and meshing of every face. The third step
involves 3D descretization and merging of meshes to produce final mesh.

114

The second step of Amibe makes use of parallel resources by submitting all the
Mesh2D processes as seperate jobs, simultaneously to the Grid.

The porting of Amibe was completed using Java implementation of XOSAGA-
2.1. Following pseudo-code snippet, shows the simultaneous submission of 2D
meshing Jobs:

def jobList = [];
while (i <= noFaces) {
jobname = “mesh2D”+i;
Job job = jobService.createJob(jobDesc);
job.run();
jobList.add(job);
}
monitorJobs (jobList)

The monitorJobs (jobList) method takes care of monitoring a job as
well as re-submitting/re-running a job, if it is failed. This method, basically, col-
lects a list of failed jobs and makes a ‘Retry’ to submit/run them all once again,
simultaneoulsy. Such retrials are made upto a fixed number of times (we kept it
10).

In a test-case, for having large number of parallel jobs, we used a particular
Geomtry CAD file, called as ‘lego.brep’, which has 35 faces. Hence, 35 jobs are
submitted, in parallel, in the second step of Amibe meshing.

Figure 4.22: Parallel Job Failure Rate vs Number of Nodes

The failureRate is defined as (Number of jobs Failed) / (Number of Jobs sub-
mitted simultaneously)

The average Failure Rate, is average of failure rate from all the retrials made
for a set of parallel jobs. The number of nodes is varied from 5 to 35 in steps of 10.

The failure rate has been very high (>50%), for which we later learnt that, there
were some bugs related to parallel job submission in 2.1 version of XtreemOS and
which will be fixed in later versions of XtreemOS. So, this could be a possible

115

reason for the observed failure rate.
It is also observed that failure rate of jobs is increasing with increase in num-

ber of reserved nodes. Hence, one can deduce that increasing the size of grid is
inducing overheads on parallel job execution.

4.6.4 Test Unit 03: XOS MPI – Performance testing

4.6.4.1 Responsibilities

Ronald Fowler from STFC

4.6.4.2 Test Specification

Test Items

This test was designed to show that the MPI (Message Passing Interface) could
be used effectively with XtreemOS to run a real scientific application.

Features to be Tested

The aims of this test were:

• To how that a complex real world MPI application can be built on XtreemOS

• To show that such applications can be submitted using AEM

• To report the scaling performance seen in a simple test case

Approach Used

This task used the 2.1 Permanent Test Bed system and looked at the ease of
building an MPI application on the system and a basic test of performance scal-
ing. The system had of the order of 10 to 20 computers across Europe connected
together in one VO.

The central XtreemFS file server is located at IRISA, France, with resource
nodes available in France, Holland, Germany, Italy and the UK. It was hoped to
run MPI jobs across the entire VO, but this was not possible due to technical issues
with back porting of fixes from XtreemOS 3.0 into version 2.1. These issues are
not present in 3.0 and have subsequently been resolved in 2.1, but not in time to
rerun the test cases with these updates.

For the highest performance results it would be best to run the application on a
dedicated local cluster, close to a XtreemFS file server. This could be done using a
cluster of machines within the Grid5000 system with XtreemOS nodes. However
there was not time within the extension to do this.

Due to the problems with Mpich, test results are only reported using mpi-
BLAST linked against the Mpich-2 library. These jobs are launched using the xsub

116

command to send a JSDL file to a single XtreemOS resource. Using a resource
with 8 processors allowed testing of the scaling of this application. Very similar
results would be expected using the XOS Mpich library since both have similar
communication performance.

4.6.4.3 Test Results

Building XtreemOS MPI

The only minor issue was the need to alter the configuration file to ensure that
the C++ compiler was correctly recognized, and the wrapper script mpic++ was
generated. This problem arises due to standardization changes in C++ since the
MPI library was written. The Mpich-2 package was built without any problem.

Building mpiBLAST on XtreemOS

The mpiBLAST package was successfully linked against both the XOS Mpich and
Mpich-2 libraries. Due to the problems with running XOS Mpich jobs results are
only reported using Mpich-2.

Building the test data for mpiBLAST

The test data for mpiBLAST was obtained from public resources at NCBI. A
database of Baculovirus protein sequences was built using mpiformatdb. For this
small set of data it was not necessary to partition the database, as is the case with
larger problems.

Parallel performance of mpiBLAST

Figure 4.23 shows the parallel speed up of the mpiBLAST problem on an 8 core
XtreemOS node within the 2.1 test bed system. The speed up is close to linear
since the search is efficiently parallelised by mpiBLAST. The results are reported
for data located on the /tmp partition rather than on the users XtreemFS partition.
The XtreemFS file system on the test bed showed variable performance with nodes
located in Inria (close to the XtreemFS servers) showing better performance than
those at remote sites. In particular file write speeds, writing to XtreemFS, were as
low as 0.1MBytes/sec on some remote nodes in the test bed. This can have a notice-
able impact on the timings for mpiBlast particularly if the jobs are small compared
to the amount of output generated. mpiBlast ran about 10 times slower for a small
test case using XtreemFS compared to local disk. Using local storage for database
and temporary output files may help performance. The restricted performance of
XtreemFS for remote clients may be due to network limitations or configuration
problems of the test bed.

117

Figure 4.23: The speed up of mpiBlast on the test problem. Note that two pro-
cessors are dedicated to management tasks, so the speed up is close to linear in
NCPUS-2.

4.6.5 Test Summary Report

4.6.5.1 Summary of Tests and Results

Series of tests:

• Comparison of AEM and XOSAGA: the performance regarding job submis-
sion, resource management and job monitoring is quite similar for both AEM
and XOSAGA, although XOSAGA introduces some additional overhead.

• Job failure rate: the failure rate of jobs is increasing with increase in number
of reserved nodes. Hence, one can deduce that increasing the size of grid is
inducing overheads on parallel job execution.

118

4.7 Evaluation of the Resource Selection Service

The resource selection service implements the first step to schedule jobs in Xtreem-
OS: starting from a specification of static node properties that are required for the
job, the RSS selects a number of suitable nodes that match the specification. This
list of nodes is then further refined by the Service and Resource Discovery Service
(SRDS) then the Application Execution Management (AEM) service before the
job can actually start.

The RSS is implemented in the form of a fully decentralized peer-to-peer over-
lay [11]. This provides great properties such as scalability to huge numbers of
nodes (see Deliverable D4.2.6 on this topic). On the other hand, the good perfor-
mance of the RSS depends on the correct selection of a few internal parameters.
Choosing these parameters correctly is a non-trivial task, as the optimal choice de-
pends on the statistical distribution of node and attributes. This section evaluates
the performance of the self-adaptation algorithms that we have designed to auto-
matically control internal parameters in the presence of sudden or gradual changes
in the underlying node or query properties [39].

4.7.1 Test Plan

4.7.1.1 Responsibilities

This performance evaluation is under the responsibility of VUA within WP3.2 (task
T3.2.3).

4.7.1.2 Test Items

This evaluation focuses on RSS’s self-adaptation algorithms rather than their im-
plementation: it is realized in simulation environments which allow us to control
the evaluation scenarios in ways that would no be realistically feasible in a real
deployment.

4.7.1.3 Features to be Tested

This evaluation tests the ability of RSS’s self-adaptation algorithms to maintain a
low query overhead across various changes in the node property distribution and
the query workload. We consider two test cases in our evaluation: an adaptation to
changes in the node population, and an adaptation to changes in query workloads.
In both test cases, we simulate two types of changes: sudden changes (e.g., an
addition of a new computing cluster to the system, or a switch from one type of
application to another), and gradual changes (e.g., a system in which old machines
are gradually replaced by new machines, or a slow transition in the type of jobs
that users tend to run in the system).

We assess the improvement in the RSS performance by measuring the RSS
routing overhead, defined as the average number of nodes traversed by a query.

119

This metric captures both the query routing cost and query latency, since RSS
queries traverse nodes sequentially. We also investigate the impact of our self-
adaptation protocol on the RSS responsiveness by measuring the query delivery
rate, defined as the average fraction of nodes correctly discovered by a query. Fi-
nally, we measure the extra maintenance cost introduced in the RSS by our self-
adaptation protocol.

4.7.1.4 Features not to be Tested

The performance of RSS’s implementation.

4.7.1.5 Overall Approach

Although we evaluate our system through simulation, we use real-world data to
initialize node attribute values and several types of queries that closely resemble
the workloads from current Grid systems. Specifically, we obtained descriptions
of over 300,000 machines that participated in the the BOINC volunteer computing
project between 2004 and 2008 [2]. Based on these machine descriptions, we
initialize the following four node attributes in the RSS: measured CPU performance
in FLOPS, measured downstream bandwidth, amount of installed memory, and
amount of installed disk space.

We exercise the system with several types of synthetic query workloads that
have similar characteristics to the workloads observed in real Grid systems. Al-
though a number of job traces from Grid systems are available [17], we could
not use them directly in our experiments because they mostly contain information
about job runtime characteristics (e.g., total running time, amount of used mem-
ory) and give very little information about node characteristics required for job
execution. In our experiments, we use the following three workload types:

• bag-of-tasks: a workload in which a few specific queries appear very fre-
quently. This corresponds to the “bag-of-tasks” type of jobs, that contain a
large number of very similar tasks (and thus, a large number of identical job
submission queries).

• coarse-grained: a workload which simulates user-generated queries. In
such queries, attribute ranges are specified in course-grained units. For ex-
ample, the amount of RAM is specified in multiples of 512 MB.

• random: a workload in which all the queries specify random intervals for
attribute values. We use this workload as a base for comparison with the
other workloads.

120

4.7.2 Test Unit 01: Adaptation to Changes in Node Properties

4.7.2.1 Responsibilities

This performance evaluation is under the responsibility of VUA within WP3.2 (task
T3.2.3).

4.7.2.2 Test Specification

Test Items

RSS self-adaptation algorithms [39].

Features to be Tested

Adaptation to changes in node properties.

Approach Refinements

The statistical distribution of node properties may change dramatically when
new machines are added to the system, or when they replace older ones. To simu-
late such situations, we use two sets of node properties based on the BOINC traces
from years 2004 and 2008. For this particular experiment we replaced one node
attribute (available downstream bandwidth) with the installed kernel version: this
attribute suffers much more changes across the years, and allows to stress our sys-
tem better.

The case when a new computing cluster is added to the system creates a sudden
change in the statistical distribution of node properties. We simulated this case by
starting the RSS with 5,000 nodes with attribute values obtained from the 2004
traces. After 300 gossip cycles, we added 5,000 more nodes with attribute values
from the 2008 trace.

We then show similar simulation results for a situation in which the node prop-
erties gradually change from one distribution to another. We create this change by
starting with 5,000 nodes from the 2004 BOINC trace, and subsequently replacing
a few nodes at each gossip cycle with new ones drawn from the 2008 trace.

4.7.2.3 Test Results

Figure 4.24 shows the query routing overhead in the case of a sudden addition of
many nodes, with and without the self-adaptation protocol running. The first part of
Figures 4.24(a) and 4.24(b) show the effect of self-configuration in the RSS. Both
systems start with the same set of query boundaries chosen by the human operator,
and experience a query cost in the order of 800 messages per query. In the adaptive
system, these costs drop by a factor 4 after the first system reconfiguration. At
time 300, both systems see a cost increase. Part of this increase is due to the fact

121

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600

M
e

ss
a

g
e

s

Gossip Cycle

Query Cost

Nodes from 2004 Nodes from 2004 and 2008

(a) Without self-adaptation

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600

M
e

ss
a

g
e

s

Gossip Cycle

Query Cost

Nodes from 2004 Nodes from 2004 and 2008

(b) With self-adaptation

Figure 4.24: Routing overhead for a sudden change in the node properties.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

M
e

ss
a

g
e

s

Gossip Cycle

Query Cost

Gradual change

Nodes from 2004 Nodes from 2008

(a) Without self-adaptation

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

M
e

ss
a

g
e

s

Gossip Cycle

Query Cost

Gradual change

Nodes from 2008Nodes from 2004

(b) With self-adaptation

Figure 4.25: Routing overhead for gradual changes in the statistical distribution of
node properties.

122

that the size of the system is doubled, and therefore the number of nodes matching
the queries also roughly doubles. The adaptive system also sees an additional cost
increase due to the fact that its configuration is suddenly ill-suited to the workload.
It however quickly adapts to this new situation and returns to an average cost four
times lower than the non-adaptive system.

Figure 4.25 presents similar simulation results for a situation in which the node
properties gradually change from one distribution to another. Again, the adap-
tive system shows much better performance than the non-adaptive one. The non-
adaptive system sees a relative performance improvement until cycle 250. This is
explained by the fact that, in that phase of the experiment, there is a balance be-
tween the number of old and new machines, and the nodes are distributed more
evenly into cells. The adaptive system, on the other hand, issues several relatively
minor reconfigurations, and maintains a constant performance despite the workload
variations.

4.7.3 Test Unit 02: Adaptation to Changes in Query Workload

4.7.3.1 Responsibilities

This performance evaluation is under the responsibility of VUA within WP3.2 (task
T3.2.3).

4.7.3.2 Test Specification

Test Items

RSS self-adaptation algorithms [39].

Features to be Tested

Adaptation to changes in query workloads.

Approach Refinements

We now evaluate RSS adaptation to variations in the query workloads it re-
ceives. We simulated 10,000 nodes, with attributes drawn from the 2008 BOINC
trace.

We first consider sudden workload changes, by switching the query workload
from one type to another at some point of time. We start the experiment with
random queries, then switch to bags-of-tasks (where three frequent queries account
for 25% of the workload each, and the last 25% of queries are random). We then
switch to a coarse-grained workload, and finally another bags-of-tasks workload
(similar to the first one, but with a different set of frequent queries).

123

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200

M
e
ss

a
g
e
s

Gossip Cycle

Query Cost

Random queries Bags−of−tasks 1 Coarse grained Bags−of−tasks 2

(a) Without self-adaptation

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200

M
e
ss

a
g
e
s

Gossip Cycle

Query Cost

Random queries Bags−of−tasks 1 Coarse grained Bags−of−tasks 2

(b) With self-adaptation

Figure 4.26: Routing overhead for sudden changes in query workloads.

Second, we evaluate the system’s behavior for a (more realistic) gradual change
of workload. We model a slow transition from the coarse-grained workload to a
bag-of-tasks.

4.7.3.3 Test Results

Figure 4.26 shows the performance of the RSS in the adaptive and non-adaptive
cases. The non-adaptive system observes no significant cost difference between
workloads, except for the coarse-grained workload. This workload can in fact be
considered as a best case for the manual configuration of the system, since the
query ranges are aligned to the same values as the cell boundaries.

We can observe that here as well the self-adaptation protocol brings a signifi-
cant cost improvement. When the workload changes at gossip cycle 600 and 900,
we see a small cost increase due to the fact that the previous configuration does
not work best with the new workload. However, the costs quickly decrease again
thanks to self-adaptation. In particular, for the coarse-grained workload, we can see
that the self-adaptation algorithm finds a configuration very close to the manually-
configured “optimal” one from the non-adaptive system.

Figure 4.27 shows the results of gradually changing the query workload. In the

124

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

M
e

ss
a

g
e

s

Gossip Cycle

Query Cost

grained
Coarse

tasks
Bags−of−

Gradual transition

(a) Without self-adaptation

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

M
e

ss
a

g
e

s

Gossip Cycle

Query Cost

grained
Coarse

tasks
Bags−of−

Gradual transition

(b) With self-adaptation

Figure 4.27: Routing overhead for a gradual change in the query workload.

first 100 gossip cycles, all the queries submitted to the system are coarse-grained.
Then, we introduce bag-of-tasks queries with an increasing frequency besides the
coarse-grained queries, until the last 100 gossip cycles when all the queries are bag-
of-tasks. At the beginning of the experiment both systems use the same “optimal”
set of boundaries so their performance is similar. When the workload starts to
change, however, the non-adaptive system sees its costs increase twofold while
the adaptive system efficiently controls reconfigurations and maintains a constant
performance.

4.7.4 Test Unit 03: Impact of RSS Self-adaptation on Query delivery

4.7.4.1 Responsibilities

This performance evaluation is under the responsibility of VUA within WP3.2 (task
T3.2.3).

4.7.4.2 Test Specification

Test Items

RSS self-adaptation algorithms [39].

Features to be Tested

Impact of RSS self-adaptation on query delivery.

Approach Refinements

We now evaluate the impact of a runtime reconfiguration on the query delivery
– that is, the number of nodes found by the RSS divided by the total number of
nodes that actually match the query.

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Q
ue

ry
 D

el
ive

ry
 R

at
e

Gossip Cycle

Query Delivery Rate

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Q
ue

ry
 D

el
ive

ry
 R

at
e

Gossip Cycle

Query Delivery Rate

(b)

Figure 4.28: Query delivery rate, without (a) and with (b) caching older configura-
tions.

When the system starts, it takes 100 to 200 gossip cycles for each node to
build a full set of neighbors. In a system with no churn nor runtime reconfigura-
tion, the query delivery converges to 100%. When a reconfiguration occurs, each
node needs to rebuild a new list of neighbors according to the new cell boundaries.
However, when the reconfiguration is small, most of the previous neighbors can be
reused in the new list. Only very few neighbors need to be found anew.

Reconfigurations have a second type of impact on query delivery: once a query
is submitted to the system the routing algorithm assumes that all nodes use a single
consistent set of cell boundaries. When a node receives a query that refers to an
old set of boundaries that it does not maintain any more, all it can do is terminate
the query, leading to poor query delivery.

4.7.4.3 Test Results

Figure 4.28 shows the query delivery during the same experiment as in Figure 4.27:
the workload gradually changes from coarse-grained queries to bags-of tasks. We
show two cases: one in which each node immediately forgets its previous configu-
ration when it receives a new one, and the case where nodes maintain a read-only
cache of recent configurations. When previous configurations are not cached, the
system experiences a large drop in query delivery at each adaptation. This is due to
the fact that most queries present in the system at the time of reconfiguration will be
terminated prematurely due to configuration inconsistencies. Figure 4.28(b) shows
that this effect disappears when using the caching policy. In this case, delivery
decreases only at the times of major reconfigurations when nodes need to seek for
new neighbors. In all cases, even during reconfiguration, delivery remains high,
which should remain sufficient for ensuring continuous service of the RSS within
the computing grid.

126

4.7.5 Test Unit 04: Self-Adaptation Cost

4.7.5.1 Responsibilities

This performance evaluation is under the responsibility of VUA within WP3.2 (task
T3.2.3).

4.7.5.2 Test Specification

Test Items

RSS self-adaptation algorithms [39].

Features to be Tested

Cost of RSS self-adaptation.

Approach Refinements

An important goal of the adaptation algorithm is to incur only a small cost
overhead compared to the system that is optimizing. The most important part of
this overhead is the protocol’s communication cost, which we estimate next.

4.7.5.3 Test Results

The two main protocol phases that involve communication among nodes are the at-
tribute CDF estimation through the Adam2 protocol and the dissemination of new
boundary sets. As shown in [37], an Adam2 aggregation instance with 25 gossip
rounds typically requires sending and receiving 40 kB of data per attribute at each
node. If we consider a periodicity of one round per second, during the aggrega-
tion phase of one attribute distribution each node would need an average upstream
bandwidth of 1.6 kB/s for each attribute, and a similar average downstream band-
width. For an overlay with 4 attributes, as the one used in our tests, the needed
bandwidth during aggregation is 12.8 kB/s for each node. The dissemination of
new boundary sets has a significantly lower communication overhead. In order to
decide whether it is necessary to reconfigure the boundary sets, the nodes periodi-
cally exchange their current timestamps of the sets. This information can be added
to the regular gossip messages used to maintain the overlay, increasing their size
with only 4 B. When a new boundary set is issued, each node receives it only once;
for one attribute, the size of the set is normally less than 150 B.

According to our evaluations, 3 or 4 aggregation instances are usually sufficient
to generate an accurate distribution approximation. Taking into account the time
needed to propagate the new boundary sets after they are calculated, it takes from
100 to 200 gossip cycles to effectively reduce the routing overhead after a change
in the system. If we start a gossip cycle per second, the system will be properly

127

reconfigured within less than 200 seconds. In case such a fast reconfiguration is
not necessary, gossip cycles can be initiated less frequently, resulting in a lower
bandwidth consumption at the nodes.

4.7.6 Test Summary Report

4.7.6.1 Summary of Tests and Results

These tests demonstrate that the self-adaptation algorithms can effectively adjust
internal RSS parameters to maintain optimal performance across a wide range of
fluctuations in node properties and query workloads. Reconfigurations have a lim-
ited impact on query delivery. The overall protocol is very inexpensive in terms of
memory and bandwidth requirements.

128

4.8 Evaluation of Application Execution Management

Application Execution Management (AEM), created mainly by WP3.3, is the re-
sponsible of execute and manage jobs. AEM also interacts with resource nodes
(via SSRS) obtaining a set of resources to execute jobs.

4.8.1 Test Plan

4.8.1.1 Responsibilities

SAP is responsible for the test plan evaluations performed by WP4.2.
Ramon Nou (BSC) is responsible for the evaluations performed by WP3.3.

4.8.1.2 Test Items

The test items related with this evaluation are the following:

• the release of AEM component that is shipped with the XtreemOS release
3.0.

• The hmmpfam application using COMPSs ported to the AEM XATI API.

• The documentation and distribution of SPECweb2005 application are avail-
able at http://www.spec.org/web2005.

• The replica_duplication branch in SVN of XtreemFS SVN rev: 1831

4.8.1.3 Features to be Tested

We tested the following features of the AEM XATI API:

• Job management: submission, state checking.

• Resource management: discovery, reservation.

Furthermore, we measure the scalability of AEM and present some improve-
ments using cooperation between XtreemFS and AEM to schedule jobs near files.

4.8.1.4 Features not to be Tested

Replication with SchedFS will not be tested due to bugs present on XtreemFS
software.

129

4.8.1.5 Overall Approach

To evaluate the AEM, we used the AEM job submission, job monitoring and job
reservation features. The execution of the tested applications generally begins with
the initial discovery and reservation of the needed resources to execute the applica-
tions themselves. Once the reservation is done, the applications submit jobs to the
previously reserved resources and check their state for completion. Finally, when
all the jobs are finished, the applications release the resources.

We have performed scalability tests with the hardware available to us (GRID5K).
The scalability test involved a hundred of nodes running the last version of AEM
that will be in XtreemOS 3.0. The scalability includes, submission and job status
check. We also measure the benefits of a collaboration between location service in
XtreemFS (Vivaldi) and scheduling of jobs in AEM.

4.8.2 Test Unit 01: SPECweb2005

4.8.2.1 Responsibilities

WP4.2, J. Oriol Fitó from Barcelona Supercomputing Center (BSC). The tests in-
cluded here are partially submitted in [29].

4.8.2.2 Test Specification

Test Items

We tested the following features of the Application Execution Management
(AEM) component:

• Submission of jobs

• Job monitoring

• Resources reservations

Features to be Tested
The main goal is to test and evaluate the AEM component of XtreemOS. Actually,
the focus of this evaluation is on the following features: job submission, monitoring
and reservations of resources.

Approach Refinements
As stated before, we decided to use job submission, job monitoring and job reser-
vation features in order to evaluate the AEM component. We deployed the SPEC-
web2005 application [3] with the aim to validate these features. Notice that we
decided not to change to the newest version, that is SPECweb2009 [4], because it
is equal to the previous version except the inclusion of the power workload. The
rest of the workloads of this software is exactly the same in both older and newer

130

versions. In this case, the power workloads are not truly relevant for our purposes,
so there are no advantages to using the newer version.

Our test scenario is comprised of a web server, a back-end database server
simulator (i.e. BeSIM) and many client machines (see Figure 4.29).

Figure 4.29: SPECweb2005 benchmark architecture.

In particular, we want to execute the benchmark by submitting the needed client
jobs and processes by the application itself. This submission will be done by using
a suitable reservation of an available resource node for the web server. In addition,
all the needed clients will be encapsulated into a job, each one having its own
processes inside.

The test procedures are the following:

1. Make a reservation for the web server and submit the job which will execute
on it.

2. Make a reservation the BeSIM component of the benchmark and submit the
job to be executed.

3. Make a reservation for a job which will encapsulate all the clients needed,
each one as a process inside this job.

4. Make a reservation for the prime client, which is the component that ini-
tializes the environment, manages the benchmark execution, and collects the
results.

Specifically, we repeatedly execute the benchmark in order to observe the
server performance with varying input loads, expressed as simultaneous user ses-
sions. These repeated executions will be performed by using one, two, three and
four CPUs allocated to the resource reservation of the web server requested to the
AEM. Through these experiments we will be able to see how the performance of
the web server scales up when we provide to it an increasing number of resources.

Finally, we checked the output results of the application executions in order to
validate the proper functioning (i.e. job submission, monitoring and reservations)

131

of the XtreemOS component that is tested here, i.e. the AEM. In addition, we
show the web server’s performance high-level metrics from the benchmark results:
throughput (requests per second), and response time (seconds).

4.8.2.3 Test Results

In this case, the testbed used for this evaluation is Grid5000, in which XtreemOS
images are available to be used easily. In comparison with the results shown in the
past deliverable D4.2.6, this highly-distributed environment allows us to contribute
with more interesting results in terms of scalability. For our purposes, we installed
and configured the SPECweb2005’s components needed for its execution. It is
noteworthy that the nodes used are of a single cluster, that is the Griffon one from
the Nancy site.

In particular, the characteristics of each node of this cluster used are the fol-
lowing:

• CPU: Intel Xeon L5420, 2.5 Ghz

• Memory: 16 GB

• Network: Gigabit Ethernet

• Storage: 320 GB / SATA II

In order to evaluate the AEM component of XtreemOS, we carried out several
executions of the SPECweb2005 benchmark [3] with different input loads on the
web server being evaluated. Actually, for each input load (i.e. number of simulta-
neous user sessions), we have performed three execution repetitions with the aim
of obtaining stable results in terms of web server’s performance. These tests were
performed by using the appropriate number of client machines needed to emulate
the desired input load, i.e. simultaneous user sessions. For this reason, we used
horizontal scaling of the benchmark’s client component, which involves the test-
ing of this type of scalability by means of AEM reservations. In order to obtain
these results, we used a range of one to seven client machines (each one simulating
a maximum of 1000 simultaneous user sessions), acquired through the resource
reservations as needed. In particular, we expose herein the results obtained by per-
forming tests with a maximum of 6700 user sessions. On the contrary, in D4.2.6
we tested only until 2000 user sessions. In this sense, the use of Grid5000 allows
us to perform more scalable tests for this deliverable. The possibility to reserve
efficiently as many resources as wanted is a remarkable strength of XtreemOS and,
in particular, of AEM. In addition, we present the vertical scalability results, in
terms of the performance (i.e. throughput and response time metrics) offered by
the web server running on top of XtreemOS.

132

Web server’s performance metrics Figures 4.30 and 4.31 illustrate the results
regarding the performance of the web server. Note that all of these results are
expressed depending on the number of simultaneous user sessions emulated by the
clients of the benchmark, and the workload used is the E-commerce one [7].

As shown in these figures, the performance of the server increases as long as
the amount of input load is greater. However, when the server has not enough
resources to serve a given number of simultaneous clients, its performance offered
meets diminished. This fact is easily seen in both the throughput and the response
time offered. For instance, when the server has 2 processor units, its response time
is more or less the same when the amount of users is less than 2200; and increases
linearly when there are more users than this maximum supported.

Figure 4.30: e-Commerce throughput (requests per second) when running with one
to four processors.

Figure 4.31: e-Commerce response time (seconds) when running with one to four
processors.

As a result, these tests show that XtreemOS is a suitable environment in two

133

different ways, with regard to web servers:

• Testing platform This is a viewpoint around the setup process for the bench-
mark. Typically, a large number of clients are required to run an accurate
test on a web server. Acquiring and setting up these disparate resources can
be very time consuming. Thus having easy access to remote resources, as in
XtreemOS, will no doubt greatly help in this task. Actually, through the tests
performed, we check that we are able to execute tests on he web server with
a large variety of capabilities examined. Thus we are able to acquire the re-
quired resources (through XATI AEM) suficient client machines to emulate
the input load, i.e. the number of simultaneous user sessions.

• Evaluation platform The distributed nature of XtreemOS expands the range
of possibilities in terms of scalability and robustness for a service hosted on
the aforesaid distributed operating system. Therefore, by taking into account
the vertical scalability results presented above, we verify that XtreemOS is a
proper environment for hosting web servers with their required services and
web applications deployed.

For all these reasons, we think that we have successfully proven that XtreemOS
is a suitable environment for benchmarking and hosting web services and applica-
tions.

4.8.3 Test Unit 02: Job Submisssion

4.8.3.1 Responsibilities

The test in this unit will be performed within WP4.2 and is the responsibility of
XLAB.

4.8.3.2 Test Specification

Test Items

We will be testing AEM through XOSAGA. This test also depend on XtreemOS
and VO support, although these are not explicitly being tested.

Features to be Tested

The following features of XOSAGA/AEM will be tested:

• job specification: specifying the executable, the command-line arguments,
input and output file,

• job submission,

• checking job state in order to wait for the calculating jobs to finish.

134

Approach Refinements

The goal of this test is to verify whether the jobs are submitted and ran suc-
cessfully, whether they are scheduled to available resource nodes adequately, and
whether the overhead is acceptable. This is a user-level test, thus the latest stable
release of XtreemOS will be used and the configuration will be default.

The test application will be Galeb, which submits as many calculation jobs as
the user requests, waits for them to finish, reads their partial results from XtreemFS
files, and selects the optimal subresult.

We will use a testbed consisting of three virtual machines, two of which act
as resources. The host will be based on a 3.33 GHz Intel Core 2 Duo with 8 GB
RAM, which is sufficiently powerful that the two single-core resource nodes will
not compete for host’s memory or CPU time. The host machine will not be used
for anything else during testing.

On the software side, all VMs will use XtreemOS 2.1.2 with all updates avail-
able at the time of testing. The host will use Ubuntu 10.04 and VirtualBox OSE
3.1.6.

Each run of Galeb/SAGA will use two calculating slave processes. Ideally, one
should run on each resource node. The serial version of Galeb will also be timed
in order to calculate the overhead of SAGA and AEM. To ensure a similar CPU
payload in both serial and parallel (SAGA) tests, the serial version will always be
run on both resources concurrently, although just one of the two instances will be
timed. As Galeb uses a heuristic search (genetic algorithm), the seed of the random
number generator must be the same for all tests.

Two problem sizes will be tested: 500 generations of the genetic algoritm with
population size of 200, and 3000 generations with population size 500.

In all cases we will assess the correctness of the result (the result of Gale-
b/SAGA must be the same as that of the serial version if we use the same random
generator seed) and the overhead of Galeb/SAGA over serial version.

4.8.3.3 Test Results

The tests were executed on 2010-09-29 by Marjan Šterk, XLAB. On the first try
the application failed because each job was reported as finished (SAGA job state
’DONE’) as soon as it was submitted, which resulted in the master process trying
to parse an empty file instead of waiting for the slave jobs to fill it with their results
(submitted bug no. 293, which is supposed to be solved in release 3.0). The com-
mand xps -a also reported these jobs as finished, thus the error was in AEM and
not in XOSAGA. After restarting xosd on all nodes this error did not occur again.

The job scheduler did not always perform as expected – on the contrary, often
both slave jobs were submitted to the same node. It looks to be using random
scheduling algorithm, which may be perfectly adequate for a heavily used system,
but in our case it was suboptimal. In release 3.0 of XtreemOS the user will have
the option of specifying the sceduling policy.

135

Table 4.6: Timings and overhead of Galeb/SAGA
Galeb version avg. runtime [s] std. deviation avg. overhead

Small test case (500 generations, pop. size 200)
serial 36.4 0.8
SAGA - 1 or 2 nodes 55.6 14.9 53 %
SAGA - 2 nodes 44.2 1.1 21 %

Large test case (3000 generations, pop. size 500)
serial 454 19
SAGA - 1 or 2 nodes 675 312 49 %
SAGA - 2 nodes 517 53 14 %

Each test was repeated 12 times and the highest and lowest measured runtimes
were discarded. Table 4.6 gives the timings of the remaining 10 runs for both serial
and SAGA-parallelized version of Galeb. The SAGA version does twice the work
of the serial one and also has has twice as many, i.e. two, resource nodes at its
disposal. As said above, the sceduler may or may not choose to use both nodes,
thus the average overhead is quite high. The line "SAGA - 2 nodes" gives the
statistics of just those tests that did use both nodes, in which case the overhead is
much lower but still significant.

The results for the larger test case are similar. The high overhead in the default
case is again caused by the scheduling algorithm that is suboptimal when the sys-
tem load is low. The overhead in the 2-node case is smaller than in the first test case
because of the larger amount of computation in each job. The standard deviation
is higher than with serial version, which we attribute to the effects of running the
tests in virtual machines.

4.8.4 Test Unit 03: AEM Job Submission scalability

The tests included here are partially submitted in [29].

4.8.4.1 Responsibilities

WP3.3, Ramon Nou (BSC)

4.8.4.2 Test Specification

Test Items

For this test BSC used a set of bash scripts that execute a time measuring the
time to do a xsub (normal xcommand included in XtreemOS Release). For the
query, xps is called. AEM has DHTs disabled to avoid interferences.

136

Features to be Tested

We test the following features of the AEM interface:

1. Scalability of single job submission with n processes.

2. Scalability of Job status query (with a Job with n processes).

Approach Refinements

The evaluation of the features enumerated will be performed using the GRID5K
infrastructure with the AEM that will be shipped in XtreemOS 3.0.

The test will use synthetic benchmarks.
For the first feature, test presented and explained in Figure 4.32 and with re-

sults in 4.33 , compares the scalability on the submission of a job with n processes
(sequentally and in parallel) in n resources, this test uses the automatic reservation
mechanism. In these results we have the resource discovery and reservation over-
head for the 100 nodes, plus XtreemFS mounting. We repeat 100 times each point
and present the results with a 95% confidence interval. Between each submission
we wait 10 seconds to cleanup. When submitting a process, a suitable node from
the reservation must be found and selected. We use a random scheduler but others,
such as Round Robin or Least Used Resource, are also implemented.

The last feature uses a submission of a very large job (sleep) that will run
during the whole test to measure the scalability of asking for the job and process
status of a job (master process) and its n − 1 processes distributed along n nodes.
In the second test, the user request goes to the JobMng for the whole job status
and through all the nodes in the system (ExecMng) for the process status. The
measurements are done in 30 series of 100 sequential job status queries for each
point. Results are presented with a c.i. of 95% in 4.34.

4.8.4.3 Test Results

The environment used is setup formed by 100 heterogeneous nodes where we de-
ploy one XtreemOS core and 99 resource nodes. We use Grid5K infrastructure.

In Figure 4.33, we show the scalability results in the second environment.
This test uses the automatic reservation mechanism. In these results we have the
resource discovery and reservation overhead for the 100 nodes, plus XtreemFS
mounting. When submitting a process, a suitable node from the reservation must
be found and selected. We use a random scheduler but others, such as Round
Robin or Least Used Resource, are also implemented. The lower line shows the
results of the same test submitting the n − 1 processes in parallel in an eight core
XtreemOS node for reference. In summary, the cost of sequential job submission
is 0.0062x2 for a random scheduler in the actual scenario (where x is the number
of processes created). This x2 constant cost will be reduced with some optimiza-
tions inside the code such as reducing credentials checking using Single Sign On

137

Figure 4.32: Job submission scalability test diagram.

Figure 4.33: Job Submission scalability (Parallel - Sequential).

technology. However it will be difficult to reduce the x2 bound without reduc-
ing features. This cost is produced mainly by the resource timetable checking, as
resources and reservations are dynamic and cannot be centralized for scalability
reasons. Nevertheless, submitting jobs without processes reduces those checks and
lowers x2 bound. Scalability in the x2 scenario is obtained distributing the jobs
load between different jobMng, for example a VO can have his own JobManager
and still have a Global view of the system via the Job Directory (DHT). The cost

138

Figure 4.34: Scalability of a status query.

is based on local network times, and is bounded by its latencies. To reproduce a
similar scenario in Globus we would need a Job queueing system like Condor and
multijobs (GT5 capability). But XtreemOS provides the Job-Process concept re-
lating job to their processes, and Globus considers them different jobs. However
we included Globus in the results subsection when submitting a single job.

Figure 4.34 shows the time of getting the process status as the number of pro-
cesses increases. In Globus we would have to make one job status query to each
node with a different JobID. Additionally, in XtreemOS, as Execution Manager
requests are done in parallel, the time to ask all involved Execution Manager, in
order to gather results from each individual process, is reduced. This is why the
time is lower than O(n). Checking job status in a loaded system does not imply
an overhead as far as we distribute the load between different Job Managers. The
result does not depend on the number of jobs running in the system but only on the
number of nodes used for each job. It’s worth noting that we can also ask only for
job status. To do so, we select a smaller metrics set. Removing the communication
with Execution Manager, the line is constant and independent on the number of
processes.

The different tests done, and the real use of the system during the implemen-
tation phase, marks a tendency that scalability will be as good as was designed
for. More precisely the decentralized design of job metrics inside JobMng and
processes of a job unit inside its ExecMng node, decouples information provid-

139

ing a higher throughput. Only jobs with a higher number of processes, distributed
among a large number of nodes, may be affected. When this situation is produced,
the user can reduce the depth of the information and obtain job status without pro-
cess status; this will cut the utilization from n nodes (ExecMng) to 1 (JobMng)
and get faster if the job is running or not. This decentralization is followed in every
layer of the AEM, avoiding scalability problems.

4.8.5 Test Unit 04: AEM SchedFS Benefits

4.8.5.1 Responsibilities

WP3.3, Ramon Nou (BSC)

4.8.5.2 Test Specification

Test Items

For this test we used last replica_duplication branch in SVN of XtreemFS SVN
rev: 1831.

Features to be Tested

We are going to test the benefits of using information from XtreemFS file loca-
tion (via Vivaldi coordinates) with the AEM scheduler. AEM will select the nearest
node to the data that the job is going to use (specified via jsdl:vvd extension by the
user). We will present the results with SchedFS activated and deactivated.

Approach Refinements
Our approach is use 40 Grid5K heterogeneous nodes with simulated network la-

tencies between each pair. Those simulated latencies are dividing the nodes in 8
clusters of 5 nodes with latencies ranging from 10 ms to 500 ms. Each test has the
same latencies scenario. XtreemFS vivaldi system is stabilized by more than 24
hours, and we start from the same stabilization point. We have a setup of 40 OSD,
1 MRC and 1 DIR service.

In this scenario we create 10 files of 100Mb, that are distributed over 10 OSD
of the 40 available. Finally, we have a set of 100 jobs that are using 1,2,3 or 4
files of those 10. The JSDL of the jobs are generated in a way that we try to create
clusters of files. The measured time is the time to have 100 reads of 1K along all
the files used in the job.

We execute jobs 1 by one, sequentally with a cleanup time of 10 seconds be-
tween job.

140

Figure 4.35: Job Execution (Job with 1,2,3 or 4 files) without SchedFS.

4.8.5.3 Test Results

Figure 4.35 shows the results without SchedFS, Figure 4.36 shows the result with
SchedFS (without replication). X-axis are the kind of jobs (reading 1,2,3 or 4 files),
Y-Axis is the time to do it. Boxes represent maximum-minimum values, black line
is the mean with a 95% c.i, and finally inside the boxes we have the distribution of
the times using an histogram (%).

Replication in XtreemFS has been left out of this evaluation as it has a bug and
do not work.

As the figures show, collaboration with XtreemFS via the AEM scheduler to
execute and distribute jobs produces greatly benefits. However, increased perfor-
mance could be obtained if replication is used together with SchedFS. We can
reduce from a mean of 40 seconds to less than 15 seconds. In some cases, with
one file we execute always with 0 latency from the network as the correct node (if
available) is always selected.

4.8.6 Test Summary Report

4.8.6.1 Summary of Tests and Results

We performed tests to validate AEM functional requirements, evaluate its perfor-
mance and scalability. Results of this part are published in [29]

141

Figure 4.36: Job Execution (Job with 1,2,3 or 4 files) with SchedFS.

4.8.6.2 Conclusion and Directions for Future Work

AEM in XtreemOS has obtained good results on scalibility terms, using only one
job manager and a hundred resource nodes. Scalability is also mantained when
asking for job status information. Performance in this part is better than Globus.
This shows the benefits of having interaction with the kernel and our architecture.
XtreemFS collaboration with SchedFS has not been completed due to a notified
bug in replication code.

142

4.9 Evaluation of Data Management

4.9.1 Test Plan

This test plan covers the distributed file system XtreemFS developed by WP3.4 and
Object Sharing Service (OSS) provided by the XtreemOS release 2.0. XtreemFS
functionalities include:

• high-performance distributed file system for federated installations across
multiple organizations,

• fully POSIX-compliant with extensions,

• suitable for Wide Area Networks (WANs) with high latencies between sites,

• suitable for environments with complex failure cases like network partition-
ing and similarities between slow and dead nodes,

• support for replication and partitioning of metadata servers, replication and
striping at file/object level,

• integration into Virtual Organizations,

• self-monitoring and autonomous optimization of file distribution, layout and
access,

• transparent object sharing service.

4.9.1.1 Responsibilities

The test and evaluation execution is conducted under WP2.2, WP3.4 and WP4.2.
Below we provide the names of partners and a brief description of their test appli-
cations and suites:

• UDUS: An interactive multi-user 3D virtual world application for testing
OSS,

• UDUS: A distributed microbenchmark application for performance stress
test of OSS,

• UDUS: A distributed word frequency analysis application using the MapRe-
duce computing model for OSS testing,

• CNR: The NTFS-3G suite for testing XtreemFS POSIX-compliance,

• SAP: MaxDB business application for testing scalability, stability and per-
formance of XtreemFS,

• SAP: MaxDB business application for comparative performance analysis of
several distributed file systems,

143

• SAP: MaxDB business application for testing XtreemFS replication for fault
tolerance and performance.

4.9.1.2 Test Items

The test items include:

• The XtreemFS version tested are the releases 1.1 and 1.2.1 . Source and
documentation are available from the internal XtreemOS SVN. Publications
are available on the XtreemFS website: www.xtreemfs.org.

• Object Sharing Service provided by XtreemOS release 2.0.

• Wissenheim as provided by XtreemOS release 2.0

• The MaxDB distribution and its documentation is available under https:
//www.sdn.sap.com/irj/sdn/maxdb.

• Information about Wissenheim can be found under:
http://www.wissenheim.de.

• The Pawel Jakub Dawidek’s POSIX filesystem test suite (PJD-fstest) that is
part of NTFS-3G suite. The PJD-fstest suite software and documentation are
available at
http://www.tuxera.com/community/posix-test-suite/.

4.9.1.3 Features to be Tested

The following features will be tested:

• Scalability of OSS with up to 128 nodes.

• Data consistency of OSS during high contention.

• Stability regarding full meshed p2p-connection handling with up to 128
nodes.

• Performance of the Distributed Transactional Memory (DTM) when operat-
ing with dynamic access patterns.

• Performance optimization of OSS through dynamic adaption of object access
granularity during runtime.

• POSIX compliance of XtreemFS (open, read, write, close, ls, rm, touch, mv,
cp, mkdir, cd, rmdir)

• Stability of XtreemFS under large number of clients, varying IO load and the
number of OSD servers of XtreemFS.

144

http://www.tuxera.com/community/posix-test-suite/
file://localhost/Users/slhermit/xtreemos-deliv/WP4.2/D4.2.7/www.xtreemfs.org
https://www.sdn.sap.com/irj/sdn/maxdb
https://www.sdn.sap.com/irj/sdn/maxdb
http://www.wissenheim.de

• Performance of XtreemFS under large number of clients, raising IO load and
varying number of OSD servers of XtreemFS.

• Performance benefits and fault tolerance that XtreemFS provides for the con-
suming business applications thanks to the replication feature of XtreemFS.

4.9.1.4 Features not to be Tested

The following features will not be tested as they are not supported by the current
official release or for other reasons pointed out in the respective test units:

• OSS basic network setup.

• OSS distributed transactional memory.

• Fault tolerance and performance benefits of using write replication will not
be tested since the current official release supports read-only replication.

4.9.1.5 Overall Approach

The performance of XtreemFS and OSS will be evaluated using applications and
benchmarks. The tests will also provide comparative performance analysis of
XtreemFS, CEPH and NFS file systems. The corresponding tests will be performed
at the same dedicated cluster environment without using virtualization layers, en-
suring accuracy, reproducibility and fairness of the comparison.
Benchmark Focus POSIX compliance of XtreemFS will be tested at Test Unit
4.9.6 using the Pawel Jakub Dawidek’s POSIX filesystem test suite (PJD-fstest).
Application Focus We will test XtreemFS using the MaxDB application. The tests
are performed by installing XtreemFS on testbeds consisting of local machines and
executing the MaxDB replay and Wissenheim (provided by UDUS).

It was decided to choose MaxDB replay as reference application since in typi-
cal multi-tier business solutions the great majority of file operations is transactional
relying on a central database. In practical business scenarios, end-user applications
access this database via the middleware WEB Application Server. In the exper-
iments with XtreemFS, it was decided to stress the file system via the MaxDB
replay (recorded accesses of MaxDB to the filesystem) from SAP which also al-
lows to simulate multi-user access with parallel read and write operations. These
tests will be performed at Test Units 4.9.6, 4.9.7 and 4.9.8.

Wissenheim is a distributed interactive 3D virtual world for edutainment and
entertainment. It utilises the Object Sharing Service (OSS) of XtreemOS to dis-
tribute its shared game state so that every participating node can alter the shared
data directly. Conflicting accesses are synchronised by an optimistic transactional
scheme provided by OSS. While the dynamic game data is distributed by OSS the
static graphical data is shared via XtreemFS. The experiments with Wissenheim
will be carried out at Test Unit 4.9.2. Whereas the SAP experiments test a database-
centric engine scenario, the experiments with Wissenheim test are file-based.

145

4.9.2 Test Unit 01: Object Sharing Service (OSS) – Wissenheim

4.9.2.1 Responsibilities

WP4.2, Michael Sonnenfroh (UDUS)

4.9.2.2 Test Specification

Test Items
Test item is the Object Sharing Service provided by the XtreemOS release 2.0.
Documentation can be found in the subversion repository of XtreemOS.

Features to be Tested

• OSS basic network setup.

• OSS distributed transactional memory.

Approach Refinements
Wissenheim is using OSS to share the game state of the multi-user virtual-world
among all participating nodes. Concurrent data accesses from different nodes are
synchronized by using speculative transactions provided by OSS.

Measuring the performance of an distributed interactive application is not a
trivial task. The most common value used is the graphics frame rate which mea-
sures how often the screen can be rendered per second. This frame rate incorporates
all elements of the application but depends heavily on the computational power of
the used graphics adapter. Another frame rate used is the so called game frame
rate which determines how often the game state is updated per seconds, by run-
ning physics and/or animation calculations and incorporating changes of remote
peers. For the following measurement we are addressing the game frame rate only
whenever we refer to the frame rate.

To avoid the performance effects of the render engine we are running the tests
without OpenGL output and simulate the user-interaction-load synthetically. The
physics and animation calculations are reduced to a minimum. In general, games
aim at achieving a frame rate of about 60 fps but for our measurements we have
chosen a loadfree frame-rate of 200 fps to increase the resolution of the measure-
ment results. Furthermore, we are mainly interested in the average frame rate with
respect to the number of participating nodes and the standard deviation of the frame
rate. Like for video and audio streaming the deviation is disturbing and therefore
an important factor.

Wissenheim implements two different ways to use transactions for sharing the
game state. In the first one, called the naive approach Wissenheim is using transac-
tions for all phases of the application. This includes operations like the rendering
or the physics calculations which are accessing the distributed game state in a read

146

only manner. This means, that the physic phase gets aborted if any other node is
e.g. altering the movement of its avatar.

The decoupled approach optimized the first one by allowing transactions of the
formerly mentioned read only phases to finish despite conflicts. This might result
in temporary inconsistencies like an avatar being an inch off its real position but
these errors will be undone during the next run of the phase and won’t be noticed
by the user.

All tests have been performed on a private AMD Opteron cluster (16 nodes).
Each node has two CPUs (singe core) running at 1.8 GHz, 2 GB RAM, and all 8
nodes used are interconnected by a Gigabit Ethernet network.

4.9.2.3 Test Results

The frame rate results of the measurements are shown in figure 4.37(a) and the
deviation of the frame rate is shown in figure 4.37(b). Additionally, we have mea-
sured an average token request time of around 250µs. The token is a special net-
work packet used by OSS to serialize transaction commits of participating nodes.
With eight nodes the naive approach needed an average bandwidth of 88 KB/s per
node and the decoupled 112 KB/s.

! " # $

!%%

!"%

!#%

!&%

!$%

"%%

!"#$% &%'()*+%&

!(&%,

-*
,

(a) Frame Rate.

! " # $

%

!%

"%

&%

#%

'%

(%

)*+,- .-/0123-.

!"#$%

%
&'
!
#
'
(
#
)#
$
*
+'
&+
"
!

(b) Deviation.

Figure 4.37: Wissenheim using OSS.

As expected the naive solution with OSS worked for up to four nodes but scaled
very badly. The high conflict rate lead to a very high deviation making it nearly
impossible to play Wissenheim. The decoupled approach with OSS scaled signifi-
cantly better and showed very promising results.

4.9.3 Test Unit 02: Object Sharing Service (OSS) – Performance stress
test

4.9.3.1 Responsibilities

WP3.4, Marc-Florian Müller (UDUS), Kim-Thomas Rehmann (UDUS)

147

4.9.3.2 Test Specification

Test Items

Test items are the Object Sharing Service and a distributed microbenchmark
application.

Features to be Tested

The following features have been tested:

• Scalability with up to 128 nodes

• Data consistency during high contention

• Stability regarding full meshed p2p-connection handling with up to 128
nodes

Approach Refinements
In this test the Object Sharing Service (OSS) shares objects of a microbenchmark
application by using its distributed transactional memory. OSS transparently syn-
chronizes the objects in the background. The microbenchmark application uses
OSS for testing the scalability under different transaction loads and network con-
straints. Tests have been performed with a best and a worst case scenario. Each
increment operation is encapsulated in one transaction.

This test shows the performance measurements of the transactional memory
whereas the focus relies on conflict and network related penalties for a best and
worst case scenario. Therefore all optimizations (local commits, linked transac-
tions, consistency domains etc.) have been turned off. In the worst case scenario all
peers concurrently increment a common variable stored in the transactional mem-
ory, in the best case scenario each peer increments its own variable. Furthermore,
we have expanded the transaction duration and pause between successive transac-
tions to simulate real live applications. For the measurements we have used our
P2P commit protocol with two different token mechanisms for transaction serial-
ization. The token was passed among the peers either by a dedicated coordinator
or P2P based approach.

We have used a heterogeneous test environment with 128 nodes (each contain-
ing two AMD Opteron 246/250 processors with 2.0/2.4 GHz) from two clusters
of the Grid’5000 platform. The nodes are interconnected via a switched 10 Giga-
bit Myrinet and 1 Gigabit Ethernet network. All nodes are running under a Linux
64-bit operating system with kernel version 2.6.26.

A detailed description about the tests and how to achieve an efficient ordering
of speculative transactions in distributed systems can be found in the paper Efficient
Commit Ordering of Speculative Transactions [27]

148

4.9.3.3 Test Results

1 2 16 128

0,0

500,0

1000,0

1500,0

2000,0

2500,0

Transaction throughput (private variable)
(TA duration 50ms, TA pause 10ms)

Nodes

TA
/s

1 2 16 128

15,0
15,5
16,0
16,5
17,0
17,5
18,0
18,5
19,0
19,5
20,0

Transaction throughput (shared variable)
(TA duration 50ms, TA pause 10ms)

Nodes

TA
/s

1 2 16 128

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

Transaction throughput (private variable)
(TA duration 200ms, TA pause 20ms)

Nodes

TA
/s

1 2 16 128

4,2

4,4

4,6

4,8

5,0

5,2

5,4

Transaction throughput (shared variable)
(TA duration 200ms, TA pause 20ms)

Nodes

TA
/s

1 2 16 128

0,0

500,0

1000,0

1500,0

2000,0

2500,0

Transaction throughput (private variable)
(TA duration 50ms, TA pause 10ms, Latency 10ms)

Nodes

TA
/s

1 2 16 128

12,5

13,0

13,5

14,0

14,5

15,0

15,5

16,0

16,5

17,0

Transaction throughput (shared variable)
(TA duration 50ms, TA pause 10ms, Latency 10ms)

Nodes

TA
/s

1 2 16 128

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

Transaction throughput (private variable)
(TA duration 200ms, TA pause 20ms, Latency 10ms)

Nodes

TA
/s

1 2 16 128

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Transaction throughput (shared variable)
(TA duration 200ms, TA pause 20ms, Latency 10ms)

Nodes

TA
/s

(a) (b)

(c) (d)

(e) (f)

(g) (h)

― Coordinated Token ― Distributed Token ― Maximum Theoretical Throughput (Local Commits)

Figure 4.38: OSS performance measurements with high and low contention

149

The charts in Figure 4.38 show performance measurements of the distributed
transactional memory. The results show the conflict and network related penalties
for the best and worst case scenario. The best case scenario (private variable) solely
shows the network overhead produced by the commit protocol. The worst case ad-
ditionally causes penalties due to a high conflict rate which results in transaction
aborts and restarts. The red and green lines show the overall transaction through-
put by using the coordinated and p2p based token passing mechanism. The black
line shows the maximum theoretical throughput based on the transaction time and
pause, presumed no conflicts occur.

We have examined different transaction workloads by using different trans-
action runtime lengths with a sleep after incrementing the variable (sleep called
within the transaction). Furthermore, we examined different pauses between trans-
actions by using a sleep after EOT (end of transaction). Thus we can simulate
different transaction patterns as they occur in real applications.

Figure 4.38 (a, b) shows the transaction throughput for the shared and private
variable scenario for short transactions (50 ms execution time) and a short pause
(10 ms). As expected network commits are expensive and the central approach
scales better because it avoids token races. But it is remarkable that the through-
put increases with the increasing number of nodes (for conflict-free transactions).
The maximum theoretical throughput (shown in the left figure) is reached by local
commits.

The next Figure 4.38 (c, d) shows the same scenario for longer transactions
(200 ms) and a bit longer pauses (20 ms). Here we see more or less the same
except that the overall pressure on the transaction system is lower.

The following Figures 4.38 (e, f) and 4.38 (g, h) show the same scenarios again
but with a synthetic network latency of 10 ms (for all connections). Obviously,
network latency is crucial for transaction processing and transaction throughput
drops. Although, the maximum theoretical throughput could be reached using lo-
cal commits. The incrementation of the shared variable offers contrary results of
both token passing algorithms. Due to many transaction aborts, incrementing the
shared variable scales bad. This scenario shows the lower boundary of transaction
performance, but we do not expect this access pattern in real applications.

4.9.4 Test Unit 03: Object Sharing Service (OSS) – Word frequency
analysis

4.9.4.1 Responsibilities

WP3.4, Marc-Florian Müller (UDUS), Kim-Thomas Rehmann (UDUS)

4.9.4.2 Test Specification

Test Items

150

Test items are the Object Sharing Service and a distributed word frequency
analysis application using the MapReduce computing model.

Features to be Tested

The following features have been tested:

• Performance of the Distributed Transactional Memory (DTM) when operat-
ing with dynamic access patterns

• Performance optimization through dynamic adaption of object access gran-
ularity during runtime

Approach Refinements
The application performs a word frequency analysis of a given text. Therefore a
master node subdivides the text into distinct parts and maps them to the nodes.
After the mapping phase each node counts the words of its text part. Afterwards,
the reduce phase collects all partial results and sums up all counters of identical
words to gather the global result containing the overall word counters.

The word frequency application operates on a tree (26-ary tree referencing 26
child nodes) stored in the DTM, where each child of a node represents one of all
alphabetical characters, and a word is represented by a path from the root node to
any other node of the tree. Furthermore, each node stores the counter value of the
word. A node’s associated word is identified by concatenating all characters along
the node’s path of the tree. The provided fine-granular object access-detection
scheme (independent of the hardware’s access detection granularity) allows avoid-
ing high transactional abort rates caused by false conflicts (false sharing). Further-
more, OSS adaptively manages conflict unit size by grouping objects together and
splitting them up again in case of conflicts.

As a test platform we have used a private cluster with 16 nodes (each containing
two AMD Opteron 244 processors with 1.8GHz). The nodes are interconnected via
a switched 1 Gigabit Ethernet network. All nodes are running under a Linux 64-bit
operating system with kernel version 2.6.26.

A detailed description about adaptivly modifying the object access granularity
to avoid false sharing conflicts can be found in the paper Adaptive Conflict Unit
Size for Distributed Optimistic Synchronization [35].

4.9.4.3 Test Results

Figure 4.39 shows that transactional conflicts depend on the granularity of object
access detection. In case of coarse access-detection granularity (multiple objects
per virtual memory page) applicable for the MSpaces memory allocator, accessing
objects can induce false conflicts (false sharing) which results in many unnecessary
transaction aborts. Fine-granular access-detection as provided by the Millipage

151

allocator and the adaptive approach are able to resolve this issue without wasting
physical memory.

Figure 4.39: Transaction aborts for word frequency analysis

4.9.5 Test Unit 04: XtreemFS POSIX Compliance Tests

4.9.5.1 Responsibilities

This test unit and the included tests on the POSIX compliance are under the re-
sponsibility of CNR (WP3.4).

4.9.5.2 Test Specification

Test Items

The software tested is XtreemFS. Publications are available on the XtreemFS
website: www.xtreemfs.org.

The XtreemFS version tested is the 1.2.1 version, i.e. the most recent release
available at this moment. It can be downloaded at http://www.xtreemfs.
org/download.php?t=source. Moreover, source and documentation are
available also from the internal XtreemOS SVN.

The XtreemFS POSIX-compliance was tested by the NTFS-3G suite, that is a
freely and commercially available and supported read/write NTFS driver for the
most important operating systems. In particular, it includes a POSIX file sys-
tem test environment, namely the Pawel Jakub Dawidek’s POSIX filesystem test
suite (PJD-fstest). The PJD-fstest suite software and documentation are available
at http://www.tuxera.com/community/posix-test-suite/. The
PJD-fstest used for the tests is the latest stable release pjd-fstest-20080816 (re-
leased on August 16, 2008) and downloadable from http://tuxera.com/
sw/qa/pjd-fstest-20080816.tgz.

Features to be Tested

152

http://tuxera.com/sw/qa/pjd-fstest-20080816.tgz
file://localhost/Users/slhermit/xtreemos-deliv/WP4.2/D4.2.7/www.xtreemfs.org
http://www.xtreemfs.org/download.php?t=source
http://www.xtreemfs.org/download.php?t=source
http://www.tuxera.com/community/posix-test-suite/
http://tuxera.com/sw/qa/pjd-fstest-20080816.tgz

PJD-fstest suite performs 1957 regression tests that exhaustively check a wide
amount of different scenarios for the following system calls:

• chmod: changes the permissions of files or directories

• chown: changes ownership of files or directories

• link: creates hard links

• mkdir: creates directories

• mkfifo: creates fifo files named pipes

• open: opens and eventually creates a file

• rename: changes file or directory names

• rmdir: removes directories

• symlink: creates symbolic links

• truncate: decrease/increase file size

• unlink: removes regular files, symbolic links, fifos and sockets

Approach Refinements

The goal of the test is to evaluate the POSIX compliance of XtreemFS. POSIX
(Portable Operating System Interface for Unix) is the name of a family of related
standards specified by the IEEE to define the application programming interface
(API), along with shell and utilities interfaces for software compatible with variants
of the Unix operating system.

The PJD-fstest suite performs a set of operations on files and directories, i.e.
create, remove, rename, truncate, permission and owner changes, as well as oper-
ations on special files, i.e. hard/symbolic links and fifos. For each system call, the
suite executes a set of scripts. Each script performs a set of basic operations, like
the creation of a directory, the change of its access rights, etc., and it evaluates, for
each one, its execution and return value. If its manner of acting or its return value
are different than that expected (as specified by POSIX), an error is pointed out.
In particular, the suite is "system call-oriented", which means that the scripts per-
forming the tests for a particular system call are composed of operations targeted
for the evaluation of the (hopefully correct) behaviour of that system call.

To execute the tests, we implemented a tool that basically automatizes all the
process of updating, compiling, installing XtreemFS and running a basic scenario
with one Directory Service (DS), one Metadata and Replica Catalogue (MRC) and
one Object Storage Device (OSD), and creating a volume and mounting it on a
specific directory. Once this scenario is up and running, the tests are executed in

153

the mount-point where the volume has been mounted. We experimentally verified
that the POSIX-compliant functionality of XtreemFS is invariant with respect to
the number of OSD, MRC or DS exploited in the experiments. This is justified by
the fact that the POSIX tests query and verify only metadata information, thus its
results are affected only by the logic implemented in the MRC (and not by the num-
ber of nodes involved in the experiments). Moreover, no analysis on performances
is undertaken in such kind of tests.

The testing activity consisted in the automatic execution of the scripts and in
the evaluation of the failure events. Then, in order to understand the cause of each
failure, we needed to interpret the cause of the problem and reproduce manually
the scenario (the sequence of operations) causing it.

4.9.5.3 Test Results

As described above, the PJD-fstest suite executes, for each system call sc to be
tested, a set of scripts aimed at verifying the correctness of that operation. More in
detail, each script executes various tests and verifies their return value.

Before reporting test results, it is relevant to make two observations. First,
XtreemFS does not support FIFOs mechanisms. For this reason, to make our eval-
uation as much correct as possible, we skipped tests performed by the PJD tests
suite on the mkfifo system call (totally, 232 tests). Second, XtreemFS supports
file names and directory names longer than 256 characters. Since this is considered
an error by the PJD tests suite (despite of the fact that POSIX specifications do not
limit arbitrary filename length), we removed also such kind of tests (10 tests). For
such reasons, we totally removed 242 tests from the original PJD suite test set,
resulting in 1715 final tests.

Now, let us report the results of POSIX-compliance evaluation on XtreemFS.
By considering all the 1715 tests performed by the PJD test suite, actually XtreemFS
passes exactly 1559 tests, corresponding to 90.91% of the total. The table 4.7 sum-
marizes a more detailed report of the results obtained in out tests. In particular, the
table shows, for each system call, the number of scripts, the total number of tests
performed by the scripts, the number of tests satisfied and the success rate (the tests
passed w.r.t. the total number of tests executed).

4.9.6 Test Unit 05: Scalability, Stability and Performance of XtreemFS

4.9.6.1 Responsibilities

WP4.2, Peter Izsak, Roman Talyansky (SAP)

4.9.6.2 Test Specification

Test Items

154

system call no. of
scripts

no. of
tests

no. of success-
ful tests

% success
rate

chflags 14 14 14 100.00%
chmod 12 128 127 99.22%
chown 11 200 164 82.00%
link 18 167 161 96.41%
mkdir 13 101 101 100.00%
open 24 217 213 98.16%
rename 21 479 382 79.75%
rmdir 16 109 105 96.33%
symlink 13 90 90 100.00%
truncate 14 90 90 100.00%
unlink 14 120 112 93.33%

Total 183 1715 1559 90.91%

Table 4.7: POSIX Test Result

The software to be tested is XtreemFS. Publications are available on the XtreemFS
website: www.xtreemfs.org.

The XtreemFS version tested is the release 1.2.1 from 2010-09-08. Source and
documentation are available from www.xtreemfs.org.

The MaxDB distribution and its documentation is available under https:
//www.sdn.sap.com/irj/sdn/maxdb.

Features to be Tested

The purpose of this test is to test different aspects of XtreemFS in a large scale
deployment. The following features and requirements are the subject of this test
design specification:

• Stability of XtreemFS under large number of clients, varying IO load and the
number of OSD servers of XtreemFS.

• Performance of XtreemFS under large number of clients, raising IO load and
varying number of OSD servers of XtreemFS.

Approach Refinements

The goal of the test is to test and evaluate large scale deployment of XtreemFS
file system under a transactional load that is generated by a typical business appli-
cation.

155

https://www.sdn.sap.com/irj/sdn/maxdb
file://localhost/Users/slhermit/xtreemos-deliv/WP4.2/D4.2.7/www.xtreemfs.org
file://localhost/Users/slhermit/xtreemos-deliv/WP4.2/D4.2.7/www.xtreemfs.org
https://www.sdn.sap.com/irj/sdn/maxdb

We used Grid’5000 as testbed. A mixture of nodes from the Carri System
(paradent) cluster and the Dell (paramount) cluster were used.

Specification of paradent cluster nodes: Carri System CS-5393B nodes; CPU:
Intel Xeon L5420; 2.5 Ghz / 6MB; 2 cpus per node; 4 cores per cpu; memory:
32GB; network: Gigabit Ethernet; storage: 320GB / SATA II.

Specification of paramount cluster nodes: Dell PowerEdge 1950 nodes; CPU:
Intel Xeon 5148 LV; 2.33 Ghz; 2 cpus per node; 2 cores per cpu; memory: 8GB;
network: Gigabit Ethernet; storage: 2x300 GB Raid0 / SATA.

Performing the tests at the same dedicated cluster environment without using
virtualization layers, ensures accuracy, reproducibility and fairness of the compar-
ison. We used standard performance metrics: latency and throughput of read and
write file system operations.

This test uses recorded IO access traces that the SAP database MaxDB gen-
erated while supporting a real-life Sales application. During the test, IO load of
a real-life SAP application is applied to XtreemFS by replaying the recorded IO
traces over XtreemFS. Replaying the traces, especially when they are concurrently
replayed from several nodes, generates a considerable amount of IO to the data
files (called MaxDB volumes). In the following, we will refer to concurrently re-
played traces as concurrent IO streams. During the recording process, MaxDB ran
over a commercial filer. We use the performance of this filer as the baseline in our
experiments. Note that since the filer used SSD technology for non-volatile mem-
ory implementation to speed up write-to-log operations, the baseline latency of the
filer write operations is much better than for other file systems in our experiments.

For the preparation of a MaxDB replay run on XtreemFS, one needs to copy
the existing volume files created during the MaxDB installation to XtreemFS and
symbolically link the MaxDB volume directory to the XtreemFS directory with the
copied files.

In the experiments the number of OSDs equals the stripe width of the XtreemFS
volume. The test is repeated with several stripe widths and number of concurrent
IO streams to test the system’s reliability, scalability and performance. For each
combination of stripe width and number of concurrent IO streams, the IO latency
and throughput are measured and compared to find out whether increasing stripe
width (and number of OSDs) improves the resulting performance of the system.
Each test was performed three times and for each performance metric (throughput
and latency) we report the average value of the metric over the three test repetitions.

4.9.6.3 Test Results

Figure 4.40 presents the read latency results for the baseline filer technology and
XtreemFS volumes with Stripe Widths (SW) 1, 10, 20 and 30. In our experiments,
the number of OSDs equals the SW of each volume. We also strive for collocating
the clients with OSD servers to improve the locality of the data accesses. For all
SWs a better latency is achieved when moving from 1 IO stream to 4 concurrent
IO streams. The explanation comes from the nature of the concurrent IO streams

156

- to simulate a growing IO load, the same IO trace is replayed concurrently at
several client nodes, while the start time of each IO stream is randomly chosen
within a certain period of time. In this situation the first IO stream that performs
a specific IO access in the trace loads the corresponding file stripe to the cache of
the corresponding OSD. When the other IO streams later perform the same access,
they find this file stripe already in the cache, avoiding the disk access.

In Figure 4.40 one can see that XtreemFS demonstrates very good resilience
to scaling IO load. It is quite interesting to see that the read latency of XtreemFS
with 30 OSDs, when the IO load is distributed to so many OSD servers, is indif-
ferent to the growing IO load. Note also the sharp increase in latency for 20 OSDs
and 40 streams. It can be explained by the fact that the performance of XtreemFS
is dependent on the network loads and spikes in the network loads can cause per-
formance degradation of XtreemFS. Since at the time of running the experiment
on the Grid’5000 clusters there were two additional big jobs that ran suimultan-
iously with our job, they probably generated a network load, which resulted in the
XtreemFS performance degradation. We explain this observation by the fact that
the accumulated working set of the concurrent IO streams grows linearly with the
number of IO streams. Each OSD server in XtreemFS stores its objects in the local
file system. The local file system utilizes its own cache capabilities to cache the re-
sults of the recent read operations. Thus, when XtreemFS reads data, the read data
is cached in all the caches of all OSD servers that support the XtreemFS volume.
Actually XtreemFS utilizes a distributed cache composed of the caches of the in-
dividual supporting OSD servers. The size of the resulting XtreemFS distributed
cache grows linearly with the number of OSDs and that is why this cache is able
to incorporate the big working set of several IO streams. In addition to the dis-
tributed cache explanation, when more OSDs are available for XtreemFS, the IO
accesses of different IO streams are distributed to more OSDs, reducing the prob-
ability of access collisions, i.e. when several IO accesses try to access the same
OSD simultaneously.

Figure 4.41 shows the “mirror” image of Figure 4.40, where the throughput of
XtreemFS increases as function of the distributed cache size and better IO access
distribution to growing number of OSDs.

Figure 4.42 shows write latency of the baseline filer technology and XtreemFS
volumes with SW 1, 10, 20 and 30. All files in those experiments were open with
O_SYNC flag, blocking the calling process until the data has been physically writ-
ten to the underlying hardware. Since the filer used SSD non-volatile memory for
the write operations, its latency is far below the latencies of XtreemFS file vol-
umes. As with the latency of the read operations, the latency of write operations of
XtreemFS volumes is resilient for the growing number of IO streams. Furthermore,
it may be observed that a higher number of OSDs provides with better resilience
to the growing number of IO streams, except the case of 1 and 10 OSDs and the
number of IO streams beyond 10. Our interpretation of this observation is that with
growing number of OSDs, XtreemFS distributes the synchronous write operations
among several OSDs and thus effectively load balance the write load and reduces

157

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

La
te

nc
y,

 m
ic

ro
se

co
nd

s,
lo

gs
ca

le

Transactional IO load as number of concurrent IO streams

XtreemFS read latency compared to Baseline

Filer for 1 IO stream - Baseline
XTFS #OSDs=1

XTFS #OSDs=10
XTFS #OSDs=20
XTFS #OSDs=30

Figure 4.40: Read Latency in MaxDB experiments.

the collisions when several write operations are executed simultaneously.
Figure 4.43 shows write throughput in our experiments. As in the case of read

operations, the throughput graphs of write operations provide with the “mirror”
image of the write latency. Note, however, that with 20 and 30 OSDs, XtreemFS
outperforms the throughput of the baseline filer despite of the fact that the filer used
SSD non-volatile memory to shorten latency. This clearly shows the advantage of
the distributed XtreemFS filesystem to scale out with the commodity hardware, as
opposed to the scale-up capability of the filer technology.
Conclusions:
We carried out the performance analysis measurements with a large deployment of
XtreemFS, which show promising results that support the following conclusions:

• XtreemFS is stable under real-life business application work load.

• XtreemFS scales well facing a growing IO load that is generated by a busi-
ness application, provided a big enough number of OSD servers.

• XtreemFS effectively utilizes distributed cache whose size grows linearly
with stripe width of the volume. This distributed XtreemFS cache is capable
of incorporating big application work sets and thus provides the basis for
data volume scalability at high performance.

158

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
, M

by
te

s /
 se

co
nd

, l
og

sc
al

e

Transactional IO load as number of concurrent IO streams

XtreemFS read throughput compared to Baseline
Filer for 1 IO stream - Baseline

XTFS #OSDs=1
XTFS #OSDs=10
XTFS #OSDs=20
XTFS #OSDs=30

Figure 4.41: Read Throughput in MaxDB experiments.

• Big distributed cache of XtreemFS enables low latencies and high through-
put for applications with large work set.

• XtreemFS effectively distributes IO operations over several OSDs enabling
lower latencies and higher throughput.

• XtreemFS may help to reduce TCO of running business applications: XtreemFS
scales out over commodity hardware - it runs over commodity hardware and
in some cases its performance scales almost linearly with stripe width.

• While the write latency of XtreemFS is resilient to the growing IO load, it is
still much above the write latency of the filer technology, since the filer used
non-volatile memory to speed-up synchronous write operations.

• Overall conclusion: our experiments show the potential of XtreemFS to sup-
port transactional load. However more work should be done to improve
synchronous write latency, stabilize the replication feature in XtreemFS and
further prove its ability to support business application transactional load.

159

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40

W
rit

e
la

te
nc

y,
 m

ic
ro

se
co

nd
s,

lo
gs

ca
le

Transactional IO load as number of concurrent IO streams

XtreemFS write latency compared to Baseline

Filer for 1 IO stream - Baseline
XTFS #OSDs=1

XTFS #OSDs=10
XTFS #OSDs=20
XTFS #OSDs=30

Figure 4.42: Write Latency in MaxDB experiments.

4.9.7 Test Unit 06: XtreemFS, CEPH and NFS - Comparative Perfor-
mance Analysis

4.9.7.1 Responsibilities

WP4.2, Peter Izsak, Roman Talyansky (SAP)

4.9.7.2 Test Specification

Test Items

The software to be tested is XtreemFS and CEPH.
The XtreemFS version tested is the release 1.1. Source, documentation and

publications are available from www.xtreemfs.org.
The CEPH version tested is the release 19.1. Source, documentation and pub-

lications are available from http://ceph.newdream.net/.
The NFS version tested is the release 1.1.3-18.17.
The MaxDB distribution and its documentation is available under https:

//www.sdn.sap.com/irj/sdn/maxdb.

Features to be Tested

160

https://www.sdn.sap.com/irj/sdn/maxdb
file://localhost/Users/slhermit/xtreemos-deliv/WP4.2/D4.2.7/www.xtreemfs.org
http://ceph.newdream.net/
https://www.sdn.sap.com/irj/sdn/maxdb

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
, M

By
te

s /
 se

co
nd

Transactional application IO load as number of IO streams

XtreemFS write throughput compared to Baseline

Filer for 1 IO stream - Baseline
XTFS #OSDs=1

XTFS #OSDs=10
XTFS #OSDs=20
XTFS #OSDs=30

Figure 4.43: Write Throughput in MaxDB experiments.

The purpose of this test is to perform comparative analysis of XtreemFS and
CEPH.

Approach Refinements

The goal of the test is to perform comparative analysis of XtreemFS and CEPH
under a transactional load that is generated by a typical business application.

The testbed used in these tests is a 15 nodes cluster with SuSE Linux Enter-
prise 11 installed at each node. The nodes are connected via standard Ethernet
which has a transfer rate of 1GB/s (Gigabit per second) (E 1Gb/s). Performing the
tests at the same dedicated cluster environment without using virtualization layers
ensures accuracy, reproducibility and fairness of the comparison.We used standard
performance metrics: latency and throughput of read and write file system opera-
tions.

This test uses the same IO load as in Test Unit 05. Each test was performed
three times and for each performance characteristic (throughput and latency) we
report average value of the characteristic over the three test repetitions.

161

4.9.7.3 Test Results

Below we provide a comparative performance analysis of XtreemFS and CEPH
file systems. Since CEPH is still not stable, we were able to produce a preliminary
performance results for it only. In our experiments, the number of OSDs equals the
Stripe Widths (SW) of each volume and we used XtreemFS volumes with Stripe
Widths (SW) 1, 2, 4, 6, 8, 10 and 12. CEPH volumes had SWs 1, 2, 4, 6, 8 and 10.

Figure 4.44 presents the read latency results for the baseline filer technology,
NFS, XtreemFS and CEPH volumes. We can see that for SW=4, both XtreemFS
and CEPH have similar performance. For small number of concurrent IO streams
CEPH outperforms XtreemFS, while for higher number of concurrent IO streams
the opposite holds.Note that NFS and the baseline filer run on a similar hardware
and their performance is also similar. We address this good NFS performance to the
fact that NFS is a mature file system, that runs for a long time in many enterprise
systems. However the performance of XtreemFS with one OSD is slower than of
NFS, which may be explained by the young age of XtreemFS without long expe-
rience on enterprise workloads. An additional explanation is that the XtreemFS
servers are written in Java, which may slow down the performance at the level of
one OSD server, and which may not show with more OSDs, due to the distribution
of IO load to several OSDs.

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12

La
te

nc
y,

 m
ic

ro
se

co
nd

s,
lo

gs
ca

le

Transactional IO load as number of concurrent IO streams

Filer for 1 IO stream - Baseline
NFS

XTFS #OSDs=1
XTFS #OSDs=4
XTFS #OSDs=8
CEPH #OSDs=4

Figure 4.44: Read Latency in MaxDB experiments.

Figure 4.45 shows the “mirror” image of Figure 4.44, where CEPH provides

162

better results for small number of concurrent IO streams, while XtreemFS for
higher number of concurrent IO streams.

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
, M

by
te

s /
 se

co
nd

, l
og

sc
al

e

Transactional IO load as number of concurrent IO streams

Filer for 1 IO stream - Baseline
NFS

XTFS #OSDs=1
XTFS #OSDs=4
XTFS #OSDs=8
CEPH #OSDs=4

Figure 4.45: Read Throughput in MaxDB experiments.

Figure 4.46 shows write latency of the baseline filer technology, NFS, XtreemFS
and CEPH file systems. In general XtreemFS outperforms CEPH, excluding the
XtreemFS volume with 1 OSD.

Figure 4.47 shows write throughput in our experiments. As in the case of read
operations, XtreemFS outperforms CEPH, excluding the XtreemFS volume with 1
OSD.
Conclusions:
We performed the comparative performance analysis of XtreemFS and CEPH which
support the following conclusions:

• More experiments on a large system with hundreds of nodes are required to
further compare XtreemFS and CEPH.

• For read operations CEPH outperforms XtreemFS for up to 4 IO streams,
while for higher number of IO streams the opposite is true.

• For write operations XtreemFS outperforms CEPH, excluding the case with
one OSD server.

163

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12

W
rit

e
la

te
nc

y,
 m

ic
ro

se
co

nd
s,

lo
gs

ca
le

Transactional IO load as number of concurrent IO streams

Filer for 1 IO stream - Baseline
NFS

XTFS #OSDs=1
XTFS #OSDs=4
XTFS #OSDs=8
CEPH #OSDs=4

Figure 4.46: Write Latency in MaxDB experiments.

4.9.8 Test Unit 07: XtreemFS replication for fault tolerance and per-
formance, by SAP

4.9.8.1 Responsibilities

WP4.2, Peter Izsak, Roman Talyansky (SAP)

4.9.8.2 Test Specification

Test Items

The software to be tested is XtreemFS. Publications are available on the XtreemFS
website: www.xtreemfs.org.

The XtreemFS version tested is the release 1.2.1 from 2010-09-08. Source and
documentation are available from www.xtreemfs.org.

The MaxDB distribution and its documentation is available under https:
//www.sdn.sap.com/irj/sdn/maxdb.

Features to be Tested

The purpose of this test is to test performance benefits and fault tolerance that

164

https://www.sdn.sap.com/irj/sdn/maxdb
file://localhost/Users/slhermit/xtreemos-deliv/WP4.2/D4.2.7/www.xtreemfs.org
file://localhost/Users/slhermit/xtreemos-deliv/WP4.2/D4.2.7/www.xtreemfs.org
https://www.sdn.sap.com/irj/sdn/maxdb

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
, M

By
te

s /
 se

co
nd

Transactional application IO load as number of IO streams

Filer for 1 IO stream - Baseline
NFS

XTFS #OSDs=1
XTFS #OSDs=4
XTFS #OSDs=8
CEPH #OSDs=4

Figure 4.47: Write Throughput in MaxDB experiments.

XtreemFS provides for the consuming business applications thanks to the replica-
tione feature of XtreemFS.

Approach Refinements

Replication for fault tolerance
The goal of the test is to assess the fault tolerance and performance benefits that

XtreemFS provides to its cunsumers, when the feature of XtreemFS to be tested is
replication. The IO load that is used in our experiments is the transactional load
that is generated by a typical business application.

The testbed used in these tests is a 15 nodes cluster with SuSE Linux Enterprise
11 installed at each node. The nodes are connected via standard Ethernet which has
a transfer rate of 1GB/s (Gigabits) (E 1Gb/s).

This test uses the same IO load as in Test Unit 06.
In the experiments the number of OSDs equals the stripe width of the XtreemFS

volume. The test is performed with replication level 2. The application is started
over an XtreemFS volume, where the application files are replicated to several
OSDs. During the application execution we removed up to two OSD servers or
added new OSD servers and verified that the application is still running and is
being able to access the XtreemFS volume correctly.

165

Replication for performance benefits
Using an XtreemFS volume with replication level at least 2 to store an appli-

cation data increases the locality of the client IO reads. This is due to a higher
probability of serving the data for the client’s IO read operation from a local data
replica. Thus using replication should provide the application with a better perfor-
mance in the case of read-oriented IO load. In this test we use read-only IO traces,
produced by MaxDB application to verify the potential performance benefits for
the application. We use the mean latency and accumulated throughput over all
concurrent application clients as the performance metrics.

4.9.8.3 Test Results

Replication for fault tolerance
Below we bring several screenshots that show testing the application stability

under failures of XtreemFS OSDs.Figure 4.48 shows staring up the MaxDB replay
application.

Figure 4.48: Starting up MaxDB application.

Figure 4.49 shows that the replication level of the files at XtreemFS is 2.
Figure 4.50 shows shutting down an OSD server.
Figure 4.51 shows that the application is still running in spite of the OSD server

that has been shut down.
As the screenshots above suggest, while performing the tests we observed that

166

Figure 4.49: Replication level of XtreemFS files.

Figure 4.50: Shutting down an OSD server of XtreemFS.

the application is able to run correctly after we remove up to two OSDs that hold
some replicas of the application data. That is the application is able to run smoothly

167

Figure 4.51: The application is still running.

as long as at least one replica for each portion of the application data is found on
a still running OSD. We also tested that adding more OSDs, while the application
is running, keeps the XtreemFS stable, enabling the application to continue correct
execution while the infrastructural layer is dynamically changed.

Replication for performance benefits

In our experiments with using XtreemFS replication feature for performance
benefits in a business application, we encountered a bug while running concurrent
IO read-only traces over an XtreemFS volume with replication level of 2.Figure
4.52 shows the screenshot on one of the client nodes. In the screenshot one can
notice that XtreemFS client and OSD server consume considerable amount of the
CPU time. At the same time the MaxDB application is stuck and is not able to
proceed. Analysing traces shows that probably the XtreemFS client tries to set
O_RDWR and O_NONBLOCK flags to a file in a loop, at each iteration it fails to
do so and finally crashes. Note that this faulty behaviour occures towards the end
of replaying the IO trace. For this reason we can demonstrate replication advan-
tages in the stability tests and we were not able to test performance advantages of
XtreeFS due to the replication feature.

168

Figure 4.52: Stuck XtreemFS client.

Conclusions:
We performed tests to assess fault tolerance and stability that XtreemFS provides
to the consuming applications and found that

• Replication feature of XtreemFS enables to provide the consuming applica-
tions with fault tolerance.

• Dynamically changing XtreemFS configuration via adding OSD servers does
not disturb the consuming application.

• The replication feature in XtreemFS should be further stabilized in order to
bring performance benefits for a business application.

• Overall conclusion: XtreemFS provides consuming business applications
with fault tolerance.

4.9.9 Test Summary Report

4.9.9.1 Summary of Tests and Results

We performed tests to evaluate the performance of XtreemFS and compare it to the
performance of NFS and CEPH. Tests were also performed to assess the perfor-
mance under stress of Object Sharing Service provided by XtreemOS. We found
that network latency is crucial for transaction processing and transaction through-
put drops if latency is too high. Although, the maximum theoretical throughput
could be reached using local commits. The incrementation of the shared variable
offers contrary results of both token passing algorithms. Due to many transaction

169

aborts, incrementing the shared variable scales poorly. We also found that transac-
tional conflicts depend on the granularity of object access detection.

In the POSIX compliance tests, XtreemFS passed 90.91% out of the adequate
tests.

Our experiments with large-scale XtreemFS deployment show the potential of
XtreemFS to support transactional load. However more work should be done to
improve synchronous write latency, stabilize the replication feature in XtreemFS
and further prove its ability to support business application transactional load.

Our comparative performance tests revealed that for read operations CEPH
outperforms XtreemFS for up to 4 IO streams, while for higher number of IO
streams the opposite is true; for write operations XtreemFS outperforms CEPH,
excluding the case with only one OSD server.

The experiments with XtreemFS’s replication show that XtreemFS provides
consuming business applications with fault tolerance. However the replication fea-
ture in XtreemFS should be further stabilized in order to bring performance benefits
for a business application.

XtreemFS also shows very good scalability under transactional load and the
load generated by enterprise search application. It effectively caches big appli-
cation IO work set, utilizing its de-facto distributed cache based on OSDs. Even
using normal hard drives, it enables to reach the throughput of the baseline filer
technology that uses solid-state drives (SSD).

4.9.9.2 Conclusion and Directions for Future Work

Based on the tests we conclude that POSIX Compliance leaves the room for im-
provement. Asynchronous write latency under the transactional load is still rela-
tively high as compared to the baseline filer technology. And most probably this
shortcoming may be overcome only by means of using solid-state drives (SSD) at
OSD nodes. Our experimental results under transactional load look very promis-
ing and suggest that XtreemFS may support transactional load. However more
experiments need to be performed to support this conclusion.

We can conclude that XtreemFS and Object Sharing Service in XtreemOS Re-
lease 2 are adequate, but performance leaving some room for improvement. Fur-
ther testing is required for comparative performance analysis of XtreemFS with
additional advanced file systems such as Lustre. Another set of tests is required to
assess the performance benefits that a business application can get from the replica-
tion feature of XtreemFS. An additional set of experiments should include a usage
of read/write replication to overcome failures such as network partitioning and to
improve performance of applications in WAN conditions.

170

4.10 Evaluation of Security Services

4.10.1 Test Plan

4.10.1.1 Responsibilities

This test plan is carried out under WP3.5 and involves ICT, INRIA, STFC, and
XLAB. Some of the features under test have been developed in conjunction with
WP2.1.

4.10.1.2 Test Items

The listing of test items is given below. Each of these is included in release 3 of
XtreemOS and adopt their version information from this release unless otherwise
stated.

• VO Policy Service

• Monitoring Service

• Auditing Service

• Isolation

• Single Sign-On

• CDA server, version 0.3.4

4.10.1.3 Features to be Tested

The Virtual Organisation Policy Service (VOPS) developed in WP3.5 will be tested
by XLAB. This is included in release 3 of XtreemOS.

The Monitoring Manager was also developed in WP3.5 by XLAB and is inte-
grated into version 3 of XtreemOS. The Monitoring Manager is depended on by
the Auditing Manager, which is hence the subsequent test to be done.

Testing the isolation features of XtreemOS developed in WP2.1 and WP3.5 is
the responsibility of ICT. This refers to the Account Mapping subsystem, network
flow control and virtual memory controls.

4.10.1.4 Features not to be Tested

Key management and delegation are not tested. Key management is implemented
by the pre-existing Linux ssh library. Delegation has been tested in the previous
deliverable and has not been further developed. There are also no tests of reliability
and fault recovery to be performed here, as this is beyond the scope of security
services.

171

4.10.1.5 Overall Approach

Most of these tests are performance and overhead tests. They hence follow the
procedure of comparing the performance of XtreemOS without the security fea-
tures enabled versus with them enabled. The hypothesis is that the performance
and overhead should be negligible or at least tolerable, as XtreemOS was designed
for integration with the OS as opposed to being an additional software layer. Stan-
dard performance analysis tools and techniques are applied, such that the experi-
ments are reproducible. The tests have been performed to avoid instrumentation
and intrusion of the code-base, such that timestamped logs have been used in many
cases.

4.10.2 Test Unit 01: Virtual Organisation Policy Service (VOPS)

Virtual Organisation Policy Service (VOPS) is a server serving requests to other
VO services which take part in resource selection process. For such a service it is
essential to provide:

• Proper and effective policy administration

• Effective operations in policy filtering

• Be scalable and able to serve multiple request effectively

In this section we present VOPS scalability tests and try to substantiate VOPS as
efficient entity providing upper requirements.

4.10.2.1 Responsibilities

VOPS is under development within WP3.5 under responsibility by XLAB.

4.10.2.2 Test Specification

In the third release of XtreemOS VOPS is implemented as a part of DIXI frame-
work (see section 4.5: Evaluation of the DIXI Message Bus) and its performance
depends mainly on the aforementioned framework. The main difference to the
second release [44, 10] is implementation of the eXist-db2 (Open Source Native
XML) database. Policies previously stored as plain XML files are now stored as
XML documents on this special database providing:

• XQuery 1.0 / XPath 2.0 / XSLT 1.0 (using Apache Xalan) or XSLT 2.0.

• HTTP interfaces: REST, WebDAV, SOAP, XMLRPC.

• XML database specific: XMLDB, XUpdate, XQuery update extensions.

The infrastructure of Grid’5000 is used run the tests. The machines had 2.5GHz
Intel Xeon processor and between 0.8 and 3 GB of RAM.

2http://exist.sourceforge.net/

172

Test Items

The focus of the tests is the main VOPS backend library, packed in the vops
and its DIXI equivalent packed under the name of dixi-vom-vops. The client-side
component in XATI is packaged in the dixi-xati package, which provides client
side methods. Test items taken under the probe are:

• Backend library: vops.

• DIXI frontend: dixi-vom-vops.

• XOSd’s client frontend XATI: dixi-xati.

The latest documentation of the VOPS API resides in the document Detailed
API description of VOPS [46]. The user guide [45] and the administration guide
[43] provide useful information where to get and how to install and use the VOPS
service. The user guide contains description of available user commands provided
by the dixi-xati package.

Features to be Tested

We will provide tests of the following features of VOPS:

• Policy insertion and deletion.

• The invocation of the service calls defined by the service interface in an
synchronous manner from the client service.

• Two services, one of which will act as a server (the invoked service), another
service, which will act as a client (the invokee service). Number of client
services will vary.

• Access request time while incrementing the number of policies on the server
(the XATI client invoking will reside on a different node than the server).

• Backing up policies from the policy storage and saving the policies from the
storage in memory to disk.

• Reloading policies from the policy storage from the disk.

Table 4.8 presents VOPS’ features integrated with the eXist database.

Approach Refinements

Our assumption is that the system has been properly installed and set up. Tests
have been conducted in a way that the server has been placed in different situations

173

Feature item Description
Policy insertion all Injecting policies into the policy storage
Policy removal all Removing policies from the storage
Access request all Providing PDP to other VO services
Policy backup all backing up policies to the physical storage
Policy restore all Restoring policies from the physical storage
PDP test backend library User request, policy reload

Table 4.8: Summary of the main features tested in VOPS provided by the VOPS
server API. In the test of each feature, all test items have been involved, except in
the last test where only the PDP of the VOPS has been tested.

of congestion. Various operations have been executed by the one client (repeated
queries against the server), as well as the juxtaposition of multiple clients creating
queries in parallel to create racing conditions on the server.

Policy insertion

• The goal of the test is to benchmark performance of the policy insertion pro-
cess. The benchmarks have been performed in different set-ups: client and
server have been located on different machines (1 server running 4 threads in
DIXI stage for the VOPS server, different number of clients – 1,2,4,10) and
the server has been exposed to changing load (different number of policies
inserted or deleted from the clients).

• Hardware: workstations with the latest (Release 03) DIXI installation (vari-
able number of machines on Grid5000 [5], machines have had 2.5GHz Intel
Xeon processor and between 0.8 and 3 GB of RAM),

• Test techniques: the VOPS server has been running on one workstation, the
clients have been running on different workstations running XATI (VOPS
client side). On the VOPS server there have been running mpstat and vmstat
with a period of 1 second, which have been benchmarking the CPU usage,
load and memory usage.

• Input parameters: generic policies have been generated by testing environ-
ment written in Java.

• Output parameters: None.

• Metrics to be used: on the client side the time between several operations
has been measured between operations, on the server measurements of the
user CPU usage, system load and the memory usage have been done.

Policy removal The tests have been done in the same way as described in the
Policy insertion section.

VOPS Access request and PDP test

174

• Goal of the tests is to benchmark performance of the VOPS’ Policy Decision
Point. Benchmarks have been performed in two set-ups: client and server
both residing on the same machine (we have tested only the performance of
the XACML engine – the PDP test), client and server have been located on
different machines (VOPS Access time).

• Hardware: two instances of virtual servers on Grid5000, both with the same
DIXI installation, third release.

• Test techniques: VOPS server running on one virtual server, client running
on different machine. On the machine with VOPS server there were running
mpstat and vmstat with a period of 1 second, which were benchmarking the
CPU and memory usage.

• Input parameters: generic policies on the server side, generated by testing
environment written in Java. We have also needed generic user and resource
certificates. The job description has also been provided by the testing envi-
ronment.

• Output parameters: None.

• Metrics to be used: on the client side we have been measuring the time
between operations (access request), on the server the user CPU time, system
CPU time, and number of interrupts per second have been measured.

Policy Backup This is a feature which enables VOPS to dump current storage
into XML files and vise versa - to load XML policies into eXist database.

• Goal of the test is to benchmark performance of the VOPS policy load/write
feature.

• Hardware: virtual server on Grid5000 with DIXI installation and VOPS run-
ning, third release.

• Test techniques: VOPS server running on the virtual server. There were also
mpstat and vmstat with a period of 1 second benchmarking the CPU usage,
system load and memory usage.

• Input parameters: generic policies on the server side, generated by the testing
environment written in Java. We have also needed generic user and resource
certificates and job description has also been provided by the testing envi-
ronment.

• Output parameters: None.

• Metrics to be used: on the server side we have been measuring time between
operations (loading the policies, saving the policies); user CPU usage, sys-
tem load, and memory usage were also measured.

175

Policy Restore The tests have been done in the same way as described in the
Policy Backup section.

4.10.2.3 Test Results

In this section we present test results for tests specified in former sections.

Policy insertion and removal Here we present insertion and removal tests. VOPS
server was set to use 4 threads in a DIXI stage on the server.

Num. of
policies

1 client (avg) st.dev 2 clients (avg) st.dev 4 clients (avg) st.dev

1 259.0 0 886 0.0 309.0 0.0
10 44.9 4.79 557.4 24.17 275.7 42.04
100 91.28 31.72 700.48 167.28 375.78 113.90
1000 592.054 323.9 1208.99 448.03 2383.77 1319.19

Table 4.9: Inserting policies into VOPS server simultaneously from different num-
ber of clients: numbers present the amount of time which takes to insert one policy
in a test. There were totally 10 repetitions of each test performed.

Num. of
policies

1 client (avg) st.dev 2 clients (avg) st.dev 4 clients (avg) st.dev

1 23.0 0.0 38.0 0.0 160.0 0.0
10 22.0 2.10 28.2 1.03 69.9 60.0
100 21.15 2.70 27.14 2.35 113.0 183.40
1000 25.09 4.22 22.86 2.38 349.27 1056.92

Table 4.10: Deleting policies from VOPS server simultaneously from different
number of clients: numbers present the amount of time which takes to delete one
policy in a test. There were totally 10 repetitions of each test performed.

Deleting policies (amount of time for deletion per policy) does not depend on
the amount of policies being deleted when the load is small. However, that is not
true while inserting policies. We can see deterioration while increasing the amount
of policies (1000 policies) or increasing the number of clients. Explanation for that
would be indexing performed by the eXist database. On the other hand, this kind
of situation when we need to insert a large amount of policies, are rare.

In tables 4.9 and 4.10 we show figures of tests conducted. Table 4.9 presents
average times and deviation while inserting different amount of policies. Number
of policies present the amount of policies inserted into the server from one client.
Column 4 clients (avg) presents times while inserting from 4 clients simultane-
ously. Numbers present insertion of one policy among Number of policies. Same
explanation goes for table 4.10.

176

We conclude, that comparing times to insert and delete one policy under heavy
load is linear (approximately linear). In case of 4 clients inserting policies into
database simultaneously: 1000 generic policies into VOPS database from a client is
about 6 more consuming (per policy) than when inserting and deleting 100 generic
policies (comparing 100 to 10 policies it makes approximately 1.3 times). Similar
behaviour is with deleting policies. Under heavy load average time to delete a
policy from a server takes about 3 times more time than under less load (4 clients
inserting and deleting 1000 policies versus 4 clients inserting and deleting 100
policies).

policies 1 10 100 1000
4 clients avg 553.75 3263.75 40.38 · 103 2.41 · 106

4 clients stdev 65.81 139.54 8.58 27.58
avg/#policies 553.75 326.38 403.82 2413.03
10 clients avg 511 3653.44 82.41 · 103 5.44 · 106

10 clients stdev 166.96 110.35 276.81 432.31
avg/#policies 511.00 365.34 824.14 5442.03

Table 4.11: Average times for inserting and deleting policies on 4 and 10 clients
simultaneously. All numbers are in milliseconds. Average times include generating
1000 policies.

!"##$%

&'(#)%

% %* %** %***
*

%***

+***

,***

-***

.***

/***
-)012#3$4)'5(

%*)012#3$4)'5(

3678)9:);91202#4

$2
7
#
)<
7
4
=

Figure 4.53: Average time for inserting and deleting a policy under high load.
Axis X presents number of policies inserted and deleted by each among 4 (and 10)
clients simultaneously.

177

In table 4.11 we present number for inserting and deleting policies from 4 and
10 clients simultaneously. One operation equals to inserting and deleting a policy.
Figure 4.53 presents numbers avg/#policies for 4 and 10 clients — comparison
between times of one operation under different load (axis x).

Difference between load of 1 and 100 policies when doing operation from 4
(10) clients simultaneously is not so drastic. Deterioration can be seen when 1000
policies are inserted simultaneously.

VOPS access request In table 4.12 we times to evaluate a request towards VOPS
Policy Decision Point are depicted. Times are computed as an average time of 50
access requests and with different number of policies in the database. We can see
that time to evaluate a request does not depend on the number of policies residing
in the VOPS policy storage. That is great advantage of integration with the eXist
database. Searching for the appropriate policy is does not depend on the number
of policies.

Num. of policies Avg time (ms) stdev
1 74 20.04
10 77 24.87
100 39 19.02
1000 36 23.12

Table 4.12: Time per request when number of policies on the server incrementally
increases.

Policy backup and restore We have conducted tests for loading and saving dif-
ferent number of policies on the server. Table 4.13 gives us figures for different
number of policies.

Num. of policies Time to load (ms) Time to save (ms)
10 234 196
100 832 789
1000 6271 7576

Table 4.13: Time for an operation of loading and saving specified number of poli-
cies into and from a storage respectively.

As we can see in the table time to load or save different number of policies is
nearly linear.

PDP test Here we present test results for VOPS Policy Decision Point perfor-
mance. Tests were conducted on two machines running both server and client.

178

Our reference for performance evaluation is a detailed comparison between
different XACML engines described in [42] where the choice of the Sun’s XACML
engine over other alternatives is justified. We add our results of timing submissions
of generated user requests to VOPS PDP in the same manner, where the requests
contain a varying number (10, 100, 1000 and 10000) of generic policies consisting
of four rules of which three of them deny the access to the resource and one of the
rules always permits the access. First policy conforming to the request and denying
the action (no permissive rule resides in the policy) stops the whole evaluation by
denying the evaluation. In order to time the evaluation of all policies in the storage,
a permissive rule exists in each policy and, therefore, each policy conforms to the
request.

Figure 4.54: Times to evaluate user request with large number of policies in PDP.

The results in Figure 4.54 show that we introduced some overhead to the re-
sponse times in our implementation consisting of the eXist engine for storing the
XACML policies and the XtreemOS service staging the communication bus.

On the other hand, we gained the ease to manage the policies, extract the filter
policies from the database and separate the communication part from the core of
the service. The blue graph presents average times for XACML engine’s PDP,
the green graph presents times obtained by authors in [42], which is shown as a
comparison. The red graph presents average times of first user’s access request
evaluation, i.e., when VOPS is started. In case of 10000 policies, not taking into
account the first access to PEP, which is the most expensive, we obtain average
time of 174 ms with standard deviation of 88 ms (50 tests were performed). By
that we get close to the desired blue graph with small addition due to usage of
communication framework and network latency of around 40 ms.

179

Figure 4.55 depicts how much time is consumed for saving the policies to
database and loading different amount of policies from database into main memory
preparing the policies for evaluation.

Figure 4.55: Time for loading large number of policies and PDP construction
(green line) and time for saving policies from memory to database.

4.10.3 Test Unit 02: Monitoring features and latency of monitoring
notifications

Monitoring Manager is a core service which receives monitoring data, implements
monitoring rules engine and handles the distribution of monitoring events. Vari-
ous services send metrics and events which are collected by Monitoring Manager.
Users define monitoring rules to which they or other interested parties can sub-
scribe. When monitoring rule’s conditions are met, a callback is triggered and
subscribers get notified.

4.10.3.1 Responsibilities

This test was carried out within WP3.5 by XLAB.

4.10.3.2 Test Specification

A variable number of virtual machines on Grid5000 were used run the tests. The
machines had 2.5GHz Intel Xeon processor and between 0.8 and 3 GB of RAM.

180

Test Items

We tested the following features of Monitoring services:

• Monitoring rules

• Notifications

Monitoring Serivce can be downloaded from the project repository, as well as
the users and installation guide.

Features to be Tested

We tested the following features of the Monitoring DIXI API:

• Creating monitoring rules

• Removing monitoring rules

• Subscribing to monitoring rules

• Unsubscribing from monitoring rules

• Sending events and metrics

• Sending monitoring notifications

Approach Refinements

The main focus of this test unit was to measure the delay when sending moni-
toring notifications regarding to the number of resources and monitoring rules. In
order to test this, we had to use all monitoring features, meaning we tested a much
broader aspect of the Monitoring Service than just the delay of the notifications.

Platform used to execute the tests was Grid5000, which allows reservation of
variable number of resources. The way we tested Monitoring and Auditing fea-
tures on different number of resources was to use Grid5000’s front-end, which
allows reservation of arbitrary number of virtual machines. After reservation the
XtreemOS Release 3.0 was deployed on the machines and configured.

To evaluate Monitoring and Auditing features, we created Bash scripts and
DIXI applications, which handles the execution of monitoring. Since the scripts
are parameterizable, we could easily test the features in different configurations.
The main benchmark script ran from Grid5000’s front-end, which took care of dis-
tributing "node" script to all resources and handling the actual benchmark. "Node"
script executed DIXI application on every node which produced the results file.

The procedure was the following:

181

1. Execution script was deployed to all resources

2. Monitoring rules were created

3. Node script was executed on every resource, which in turn executed Moni-
toring benchmark class

4. When benchmark finished, results files were copied from resources to the
Grid5000’s front-end

Although we tested all monitoring features, the delay was measured only with
monitoring notifications. This is due to the fact that in practice creating, removing
and subscribing to monitoring rules operations are done rarely or onetime only and
does not significantly impact on the performance of Monitoring Service.

4.10.3.3 Test Results

Monitoring rules were successfully created and removed using command-line and
through DIXI application, as well as subscribing and unsubscribing from monitor-
ing rules. Monitoring notifications were received by benchmark DIXI application,
which calculated notifications’ latency by comparing current system’s time with
notification’s time stamp. Received notifications’ data and calculated delay were
successfully written to results file.

To increase performance of Monitoring Service, Monitoring Directory Ser-
vice was introduced. Monitoring Directory provides means to connect running
instances of Monitoring Managers to increase their autonomy. As seen of figure
4.56, with the increasing number of monitoring rules and number of resources, the
latency of notifications increases, though due to the use of Monitoring Directory
Service, the delay of monitoring notifications doesn’t surpass one second until the
number of monitoring rules reach around one hundred while ten resources are in
use.

4.10.4 Test Unit 03: Auditing features and latency of history database
queries

Auditing Manager is used to permanently store monitoring data. It relies on Moni-
toring Manager to receive monitoring data which is then stored to history database.
Auditing history database can be queried in order to analyze monitoring data or
generate various reports.

4.10.4.1 Responsibilities

This test was carried out within WP3.5 by XLAB.

182

Figure 4.56: Monitoring notifications delay in seconds depending on the number
of monitoring rules and resources.

4.10.4.2 Test Specification

A variable number of virtual machines on Grid5000 were used run the tests. The
machines had 2.5GHz Intel Xeon processor and between 0.8 and 3 GB of RAM.

Test Items

We tested the following features of Auditing services:

• Handling archiving rules

• Querying of the history database

Auditing Service can be downloaded from the project repository, as well as the
users and installation guide.

Features to be Tested

We tested the following features of the Auditing DIXI API:

• Creating archiving rules

183

• Removing archiving rules

• Querying history database

Approach Refinements

The main focus of this test unit was to test the delay when querying Auditing
history database regarding to the number of resources and archiving rules, though
in order to achieve this, all features of the Auditing Service were used.

Similar to the Monitoring Service unit test (4.10.3), benchmark scripts and
DIXI applications were used to perform the tests.

The procedure was the following:

1. execution script was deployed to all resources

2. archive rules were created

3. node script was executed on every resource, which in turn executed Auditing
benchmark class

4. when benchmark finished, results files were copied from resources to the
Grid5000’s front-end

Although we tested all features of the Auditing Service, the delay was mea-
sured only with Auditing history database querying. This is due to the fact that in
practice creating and removing archiving rules operations are done rarely or only
at initialization and does not significantly impact on the performance of Auditing
Service.

4.10.4.3 Test Results

Archiving rules were successfully created and removed using command-line com-
mands. Results file of the test revealed that monitoring data was successfully stored
to Auditing history database.

As seen on figure 4.57, the number of resources and archiving rules signifi-
cantly affects on the querying time of the Auditing history database. This is due to
the fact there is only one instance of Auditing Service running.

Although we focused on the functionality of the Auditing Service, the ground-
work for making Auditing more scalable is set. There are different approaches that
could be used to make Auditing more scalable, e.g. using Scalaris to distribute
Auditing history database over the resources.

There is some more manners that could be used to make querying of the database
faster. One of them that was not used during the testing was database indexing,
which would quite significantly reduce execution time of the queries. Another way

184

Figure 4.57: Delay in seconds when querying Auditing history database depending
on the number of archiving rules and resources.

would also be to use a database with specifications that might better suit Auditing
Service. Due to the use of Hibernate for abstracting database access, switching to
any other database would be only a matter of updating Hibernate’s configuration.

4.10.5 Test Unit 04: Isolation Experiments

The goal of isolation experiments is to evaluate the resource isolation functions
of XtreemOS and the performance penalty brought by enforcing islation mecha-
nisms.

4.10.5.1 Responsibilities

WP3.5, Zhouyi Zhou (ICT)

4.10.5.2 Test Specification

Test Items

The tested items are:

185

• The automatic cgroup filesystem setup invoked by AMS (Account Mapping
Subsystem):
SVN co svn+ssh//scm.gforge.inria.fr/svn/xtreemos/foundation/xtreemos-nss_pam/trunk,
compile it, then invoke src/examples/pam_app_aem;

• The performance overhead brought by network flow control: Zhouyi Zhou
from ICT has modified the Linux kernel to add the CPU cycle counting
hooks (see below);

• The performance overhead brought by virtual memory control: Zhouyi Zhou
from ICT has modified the Linux kernel to add the CPU cycle counting
hooks.

Features to be Tested

The features to be tested on isolation are:

• When AEM submit a job with isolation requirement to AMS (Account Map-
ping Subsystem), AMS should automatically mount CGROUP filesystem
and setup quoation according to the job description;

• The performance overhead measured by means of CPU cycles brought by
network flow control;

• The performance overhead measured by means of CPU cycles brought by
virtual memory control.

Approach Refinements

• The test machine used is equipped with a Intel 4 core 2.6G CPU and 2G
Memory, 2 1000M Network Cards;

• scm.gforge.inria.fr/svn/xtreemos/foundation/xtreemos-nss_pam/trunk/src
/examples/aem/XPamAPIs.c contains test code for automatic isolation con-
figuration;

• To test performance overhead of network flow control, Zhouyi Zhou has
modified Linux/net/socket.c to add rdtscll around the isolation hooks in func-
tions __sock_sendmsg and __sock_recvmsg, he also add sysctl entry for
userland test program to read the accumulated CPU cycles overhead;

• To test performance overhead of virtual memory control, Zhouyi Zhou has
made similar modification to XOS Linux kernel.

186

4.10.5.3 Test Results

• After invoking ./pam_app_aem XXX.pem /bin/bash There should be a new
directory named aem_jobid_XXX entry under /mnt/xos_cgrp/. memory.
Content of limit_in_bytes and net.tot should be related to the array “unsigned
long long quotas” in scm.gforge.inria.fr/svn/xtreemos/foundation/xtreemos-
nss_pam/trunk/src/examples/aem/XPamAPIs.c.

• The performance overhead of network flow control handling a ssh login ses-
sion is about 9448 cycles, The performance overhead of virtual memory con-
trol handling a ssh login session is about 15448 cycles.

Compared with total CPU cycles spent on performing the ssh login (about
3729768664 CPU cycles), the perfermance overhead of resource isolation is
neglectable.

4.10.6 Test Unit 05: Evaluation of CDA Server

The CDA (Certificate Distribution Authority) server is the core of the Public Key
Infrastructure used in XtreemOS. It is used to generate user XOS-Certificates, con-
taining the user’s identity and VO attributes (details such as VO and group mem-
bership). To provide a reliable, trusted service, is has to authenticate user requests
against their registration details (username and password) stored in the X-VOMS
database.

4.10.6.1 Responsibilities

The CDA server and corresponding client software have been develeoped in WP3.5
by STFC.

4.10.6.2 Test Specification

Test Items
The object of the test is to measure the performance of the CDA (Certificate Dis-
tribution Authority) server, version 0.3.4. This is the second major release of the
CDA server, which is a standalone component (that is, the CDA server is not part
of the DIXI framework). The purpose of the CDA server is to create certificates for
a user containing details of their identity and their VO attributes. The CDA server
authenticates the user against the X-VOMS database, and returns an X.509v3 cer-
tificate (the XtreemOS ’XOS-Certificate) containing the user’s Globally Unique
Identifier (GUID) in the certificate Subject field, and their VO attributes in certifi-
cate extension fields.

The main change in this version of the CDA server is the option to generate ser-
vice certificates (that is, certificates used to authenticate other XtreemOS services,
such as VOPS and RCA, to their corresponding clients). This is an alternative to

187

the previous mode of working, which required system admistrators to create a Cer-
tificate Signing Request file by hand and to get it manually signed by the operator
of the Root CA. The CDA client and server are described in [44].

Installation and configuration of the CDA server is described in the XtreemOS
Adminstration Guide, and use of the CDA client is described in the XtreemOS
User Guide. The code of the CDA server is available in the project SVN at
https://gforge.inria.fr/scm/viewvc.php/
grid/cdaserver/branches/cdaserver-service-cert-support/?root=xtreemos. The source
code of the corresponding CDA client is available at
https://gforge.inria.fr/scm/viewvc.php/
grid/cdaclient/branches/cdaclient-host-cert-support/?root=xtreemos

Features to be Tested

The performance of the CDA server will be measured by recording the val-
ues of CPU parameters during the time that the CDA server is receiving . These
parameters include CPU load and memory utilisation. These measurements will
be carried out on the machine where the CDA server is running. The CDA client
program, get-xos-cert, will be used to make multiple requests on the CDA server
in succession. There will also be parallel streams of requests from CDA client pro-
grams running on more than one machine. There will be no CPU measurements
carried out on machines where the CDA client is running, but the overall time taken
to send multiple requests may be recorded.

Approach Refinements

Here we describe the approach taken to perform the test.

• The goal of the test is to measure the change in memory usage and CPU
utilisation while procssing a stream of requests

• The hardware used is the same as for the last set of performance measure-
ments, reported in D4.2.6. This is an Intel dual core processor running at
2.40GHz with 3GB RAM. The CDA server, version 0.3.4, runs on a node
configured with the “task-xtreemos-coreservices” package. . XtreemOS 2.1
is installed directly onto this machine, with the latest patches applied. The
version of the CDA server running on this machine is v0.3.4, and the version
of the X-VOMS database is v0.3.4. This is equivalent, for the purpose of this
test, to a machine with XtreemOS 3.0 installed.

The client machine(s) used: MacBook Pro, Intel dual core processor 2.20GHz
running XtreemOS 3.0.

There is no virtualisation software used on client(s) or server during this test.

188

Test method The following steps are executed during the test:

1. On the core node, the “dstat” command is started. The invocation is “dstat
-tcm 5 > file.out”. This records CPU load and memory utilisation figures
every 5 seconds, along with a timestamp.

2. Wait for a short while before starting the test from the client node.

3. On the client node, the “get-xos-cert” command is executed 100 times in a
shell “for” loop, under the control of the “/usr/bin/time” command.

4. Wait until this “for” loop has finished. The time reported by the “time”
command (user+system) for running “get-xos-cert” is recorded.

5. On the core node, the “dstat” command is stopped and the output file pre-
served.

4.10.6.3 Test Results

The test was run by issuing 100 request on the client side. The CPU parameters
measured on the server during the processing of 100 requests is shown in Figure
4.58.

Figure 4.58: CPU load (left axis) and memory usage (right axis) while CDA server
is processing 100 requests.

189

The result shows that the CPU usage of the CDA while processing a stream
of 100 requests is around the 40% mark. The memory used during this period
increased by 200 MB, the majority of which is due to the CDA server using more
memory as it processes the requests.

4.10.7 Test Summary Report

4.10.7.1 Summary of Tests and Results

The main security features of XtreemOS have been evaluated. These are consis-
tent with the features expected from any Grid platform but enhance the state of
the art by integrating them with the operating system. For example the integration
of OS-level isolation features is an improvement to existing practice. The secu-
rity architecture is comparable to the Security Architecture for Open Grid Services
proposed by Nagaratnam et al.[28], but does not include features such as intrusion
detection, anti-virus managment and secure conversations, as these are not funda-
mental to the Grid security problem.

4.10.7.2 Conclusion and Directions for Future Work

It is possible to implement Grid security mechanisms that are integrated with OS-
level mechanisms without introducing significant overheads. Future work is to
apply these security principles in the context of Cloud computing, where there is
more emphasis on virtualization and collocation of services. In this case the isola-
tion features become even more important for management and not just security.

190

4.11 Evaluation of Mobile Device Flavor

The component to be evaluated in this case is XtreemOS-MD, the XtreemOS Mo-
bile Device flavor, let’s say, the XtreemOS version for MDs. XtreemOS-MD soft-
ware includes:

• XtreemOS-MD F-layer, for VO support in Mobile Devices.

• XtreemOS-MD G-layer, including three main services: XtreemFS, AEM,
and CDA.

• XtreemOS-MD mechanisms for resource sharing (G-layer).

• The IMA and JobMA applications will be used for testing, but are not part
of XtreeemOS-MD software.

While the mentioned applications (IMA and JobMA) are described by this
work package (WP4.2), the use cases, architecture and features are described by
WP2.3 (focused on XtreemOS-MD F-layer) and WP3.6 (focused on XtreemOS-
MD G-layer). In every case, TID is responsible for the components, being also
WPLeader of the WPs in charge of the different parts of XtreemOS-MD software.

4.11.1 Test Plan
FiXme Note: Santiago

No for these 3 tests, graphics provided later (apps and statistics)

4.11.1.1 Responsibilities

WP2.3, WP3.6, WP4.2 and TID as partner, are responsible for defining and execut-
ing the tests related to XtreemOS-MD and the reference applications associated.

4.11.1.2 Test Items

The software to be tested is XtreemOS-MD. The current version of the software (as
of the time of writing this test plan) is XtreemOS-MD Release 3.0 Beta2. Source
and documentation are available on the internal XtreemOS SVN.

4.11.1.3 Features to be Tested

The following features will be tested:

• XtreemOS 3.0 support in mobile phones (ARM architectures).

• VO support of XtreemOS-MD.

• Lightweight security support of XtreemOS-MD (considered also as a perfor-
mance test).

191

• Performance of AEM and XtreemFS in XtreemOS-MD.

• Support of specific applications created inside XtreemOS project (the appli-
cation in this case will be JobMA).

• XtreemOS-MD support of main services (XtreemFS, AEM, CDA).

• Resource sharing: 3G connection sharing and data sharing.

4.11.1.4 Overall Approach

The purpose of these tests is to evaluate the current version of Mobile-Device soft-
ware (3.0), provide feedback to developers, detect bugs and improve the final ver-
sion which fulfills the requirements listed in XtreemOS deliverable D4.2.5

We will thus focus on evaluating the higher-level design, features and usabil-
ity of each module rather than bugs in the implementation. Some additional per-
formance tests will be executed, in order to compare XtreemOS-MD 3.0 and the
XtreemOS PC client version (3.0) and also to demonstrate the benefits of the use
of Grid services natively from mobile devices.

The tests will be done on a Nokia N900 and Nokia N800.

The test preparation requires the following tasks:

1. Install the software XtreemOS-MD on the Nokia N900 and N800 terminals.

2. Install the IMA and JobMA applications that will be used for testing purpose.

Once installed the mentioned software, each test then consists of performing
the test, and documenting the full procedure. The individual tests can be executed
in any order, but the order of tasks during preparation and during execution of tests
must be as given here.

4.11.2 Test Unit 01: XtreemOS support on ARM architectures

4.11.2.1 Responsibilities

WP2.3 and WP3.6, and TID as partner, are responsible for definition and execution
of this test

4.11.2.2 Test Specification

Test Items
XtreemOS-MD software is in this case the item tested. XtreemOS-MD release 3.0
could be downloaded from the project repository. The users guide and installation
guide could also be found in the project repository.

192

Features to be Tested
This test case tests the support of XtreemOS-MD on ARM architectures, the cus-
tomary processor used for PDAs and mobile phones. The test will basically verify
the installation, configuration and first use of XtreemOS-MD in one initially-clean
MD.

Approach Refinements

The goal of this test is to verify that XtreemOS-MD software is supported by
ARM architecture devices. A Nokia N900 will be used for this test. No need of
special software pre-installed in the Nokia N900. The installation of XtreemOS-
MD will be part of the test, so this test case is also valid for installation testing
purposes.

The input of this test case consists of the XtreemOS-MD software that will be
installed in the mobile device.

A command uname -awill be executed as part of the test and the output should
be the usual one showing info about the system where the request is being executed
(name, OS, etc.). When executing this first command, the password of the user
configured by the installation will be requested.

Then the command date will be executed and the current date and time will
be shown. In this case, the user’s password will not be requested again, as the
certificate should have been already created in the previous step.

4.11.2.3 Test Results

The procedure was run following this procedure:

Installation

1. First, we should open the website where XtreemOS-MD software can be
downloaded.

2. Then, we will proceed to the download and installation of XtreemOS-MD
just clicking on the correspondent link.

Set Up No special configuration after the installation is needed.

Start The test is run by typing the command uname -a and then the command
date. In the first operation, the user’s password should be requested to generate
a new certificate. For the second operation, it should do it directly without any
furthers user’s interaction, as the credential should be already stored.

193

Procedure Results The installation of XtreemOS-MD from the web server has
been done succesfully. Then we have verified the installation following the proce-
dure steps described previously and the commands have been executed correctly,
requesting the user’s password to generate the certificate just the first time.

4.11.3 Test Unit 02: VO support by XtreemOS-MD

4.11.3.1 Responsibilities

WP2.3 and TID as partner, are responsible for definition and execution of this test

4.11.3.2 Test Specification

Test Items
XtreemOS-MD software is in this case the item tested. XtreemOS-MD release 3.0
could be downloaded from the project repository and the users guide and installa-
tion guide could also be found in the project repository.

Features to be Tested
This test case will test the management of VOs using VOLife from the mobile
device. Only authorized users shall be able to manage VOs from MDs.

Approach Refinements
The goal of this test is to verify that it’s possible to manage VOs using VOLife
from a mobile devices. A Nokia N900 with XtreemOS-MD pre-installed will be
used for this test.

This test requires as input a user certificate to authenticate the user in the Grid
and the output of the test will be the VOLife GUI for managing the VOs.

4.11.3.3 Test Results

The procedure was run following this procedure:

Installation XtreemOS-MD software should be previously installed in the termi-
nal used, but no other installation is requiered for this test case.

Set Up No special configuration needed.

Start The test is run by connnecting to VOLife web interface from the mobile
device (the Nokia N900 in this case), trying the different links and verifying that
the GUI is correctly displayed in the terminal screen.

194

Procedure Results The pre-installation of XtreemOS-MD was done success-
fully. The navigation through VOLife GUI from the Nokia N900 has been suc-
cessful, and the interface is correctly displayed and adapted to the device screen.

4.11.4 Test Unit 03: Lightweight security for mobile devices

4.11.4.1 Responsibilities

WP2.3, WP3.6, WP4.2 and TID as partner, are responsible for definition and exe-
cution of this test.

4.11.4.2 Test Specification

XtreemOS-MD software is in this case the item tested. XtreemOS-MD release 3.0
could be downloaded from the project repository and the users guide and installa-
tion guide could also be found in the project repository. Also CDAProxy, included
as part of XtreemOS release will be needed in this test.

Features to be Tested
This test case tests the benefits of using a CDAProxy to obtain a new certificate
instead of doing it directly contacting the CDAServer. This is related with the
requirement of having some light security on Mobile Devices, taking into account
their CPU limitations and the high cost of resources associated to the processes
for generating a certificate. This requirement is fulfilled with the inclusion of the
CDA-Proxy in the XtreemOS-MD distribution.

The test will compare the time spent for the operation of generating a new
certificate when using CDAProxy and when contacting directly the CDA.

Approach Refinements
The goal of this test is to demonstrate the benefits of CDAProxy. A Nokia N900
with XtreemOS-MD pre-installed will be used for this test.

There are no special input parameters needed and the output of the test will be
the time spent in generating a certificate in each case.

4.11.4.3 Test Results

The test was run following this procedure:

Installation XtreemOS-MD software should be previously installed in the termi-
nal used, but no other installation is requiered for this test case.

Set Up No special configuration needed.

195

Start Configure XtreemOS-MD to contact directly the CDA server. Obtain a
new certificate and take note of the time spent in the operation. Repeat the process
until obtaining a stable average measurement of time spent on the operation.

Configure XtreemOS-MD to contact the CDA through a CDAProxy that will
be already running. Obtain a new certificate and take note of the time spent in the
operation. Repeat the process at least 3 times to obtain an average time spent on
the operation.

Compare the average times in each case.

Procedure Results The commands used for measuring the time for obtaining
a new credential contacting directly with the CDA or through the CDAProxy are
time xos_getdumpcred cdabench and time xos_getdumpcred
cdaproxybench respectively. Actually, those commands are scripts using the
time facilities of the underlying operating system.

We have executed 3 series of requests executing the commands in the previous
order. It’s important to alternate the obtainment of the credential with and without
the CDAProxy, in order to force the generation of a new credential each time (as
the command xos_getdumpcred will obtain the credential from the cache if
possible, which is not what we want to test).

The tests have been executed directly on a Nokia N800 and also on a PC run-
ning Qemu to emulate Angstrom, also supported by XtreemOS-MD.

An additional set of tests from the Nokia N900 have been carried out, to obtain
a value significant from a statistic point of view

The results obtained are shown in the next figures, where a table shows the
different times for obtaining the credential in each test, including also a graphic to
make more clear the advantage of using CDAProxy, reducing the average time for
obtaining the credential from more than 6 seconds (9 seconds in Angstrom over
Qemu) to around just one second.

Additionally, there are the figure 4.59 and 4.60 including a graphical represen-
tation of a large series of tests comparing the time for obtaining a credential with
and without the CDAProxy from the Nokia N900.

4.11.5 Test Unit 04: Performance comparison with XtreemOS PC fla-
vor and no-Grid solutions

4.11.5.1 Responsibilities

WP2.3 and WP3.6, and TID as partner, are responsible for definition and execution
of this test

4.11.5.2 Test Specification

Test Items
XtreemOS-MD software is in this case the item tested. XtreemOS-MD release 3.0

196

Figure 4.59: CDAProxy comparison

could be downloaded from the project repository and the users guide and installa-
tion guide could also be found in the project repository.
For this test, XtreemOS-MD will be installed in a mobile device: Nokia N900.
Also, a XtreemOS PC client and a Core included as part of XtreemOS 3.0 release,
will be needed for this test. Both nodes (core and client) are running as VMware
virtual machines on top of a Pentium IV machine.

Features to be Tested
This test case checks the performance of XtreemOS-MD compared to XtreemOS
PC flavor and direct operation on the MD. Some commands will be executed from
an MD (with and without XtreemOS-MD software installed on it) and from a PC
connecting to a XtreemOS node respectively. The same node will be used for
every subtest. Those tests will be based on some simple jobs executions (to test
AEM) and file system operations (to test XtreemFS), and finally a video conversion
job, allowing us to test simultaneously the performance of AEM + XtreemFS in a
more useful scenario.

Approach Refinements
The goal of this test is to demonstrate the benefits of using the Grid through
XtreemOS-MD from a mobile device, and also the fact that the performance of
XtreemOS-MD as a client is similar to the one offered by the XtreemOS PC client.

Some scripts for executing a simple job and for executing usual file system
operations (writing and removing operations) will be used for these tests. Finally,
some video files of different size will be used as input for the final test about video

197

Figure 4.60: CDAProxy comparison results

conversion.

The time spent for the different operations (simple job execution and video
conversion), the number of bytes written for writing test and the number of files
created and removed in a concrete period of time will be the output of each of these
subtests, generating finally some comparison graphics. The shown data in these
graphics are the result of a statistic process consists of average of the obtained
values in different repetitions (10) for each subtests.

4.11.5.3 Test Results

The test was run following this procedure:

Installation
XtreemOS-MD software should be previously installed on the Nokia terminal used,
and also an XtreemPS client on a PC.

Start
The command used for these tests is xsub -vf conversion.jsdl, where
conversion.jsdl defines a job that converts an AVI video. The conversion
process is optimized for the target device, a Nokia N800 terminal. Both videos,
original and converted are stored in XtreemFS.
We will convert 5 video files between 3 and 30 MB. The tests will be executed first
in the PC (testing performance in XtreemOS-PC flavour) and then on the Nokia
(XtreemOS-MD client). In both cases the same node in the Grid will be used for
executing the conversion.

198

Procedure Results
The results obtained are presented in the figure 4.61, where a graphic shows the dif-
ferent times for video conversion depending on the size of the input file, it shows
clearly that the result are similar using XtreemOS and XtreemOS-MD. The ob-
tained results take into consideration the conversion time plus the transfer to the
XtreemFS volume of the user. It serves us to conclude that the performance of
AEM and XtreemFS is independent of the client used, either it’s XtreemOS or
XtreemOS-MD.

Figure 4.61: Video conversion performance

• Nokia label identifies the data set related to the video conversion on a Nokia
device directly (without any XtreemOS flavor installed) using its own file
system and processor.

• XOS-PC label identifies the data set related to the video conversion using
the Grid through XtreemOS client(PC flavour)

• XOS-MD label identifies the data set related to the video conversion using
the Grid through XtreemOS-MD client installed on a Nokia device.

File creation performance
We will execute a bash script creates empty files in the XtreemFS volume. The test
will be executed first in the PC (testing performance in XtreemOS-PC flavour) and
then on the Nokia (XtreemOS-MD client). In both cases the same node in the Grid
will be used for executing the test. Moreover, the test will be repeated on the Nokia
device without XtreemOS in order to get the performance of the Nokia native file

199

system and to compare it with the two previous cases. The results are shown in the
figure 4.62

Figure 4.62: File creation performance

• Nokia label identifies the data set related to execution of the test on a Nokia
device directly (without any XtreemOS flavor installed) using its own file
system.

• XOS-PC label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS client(PC flavour)

• XOS-MD label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS-MD client installed on a Nokia device.

File removal performance
We will execute a bash script removes all empty files (created in the previous sub-
test) in the XtreemFS volume. The test will be executed first in the PC (testing per-
formance in XtreemOS-PC flavour) and then on the Nokia (XtreemOS-MD client).
In both cases the same node in the Grid will be used for executing the test. More-
over, the test will be repeated on the Nokia device without XtreemOS in order to
get the performance of the Nokia native file system and to compare it with the two
previous cases. The results are shown in the figure 4.63

200

Figure 4.63: File removal performance

• Nokia label identifies the data set related to execution of the test on a Nokia
device directly (without any XtreemOS flavor installed) using its own file
system.

• XOS-PC label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS client(PC flavour).

• XOS-MD label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS-MD client installed on a Nokia device.

Writing operation performance We will execute a bash script writes informa-
tion (zeros), in a text file of the XtreemFS volume, in a concrete period of time.
The test will be executed first in the PC (testing performance in XtreemOS-PC
flavour) and then on the Nokia (XtreemOS-MD client). In both cases the same
node in the Grid will be used for executing the conversion. Moreover, the test will
be repeated on the Nokia device without XtreemOS in order to get the performance
of the Nokia native file system and to compare it with the two previous cases.

The results are shown in the figure 4.64

• Nokia label identifies the data set related to execution of the test on a Nokia
device directly (without any XtreemOS flavor installed) using its own file
system.

201

Figure 4.64: Writing operation performance

• XOS-PC label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS client(PC flavour).

• XOS-MD label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS-MD client installed on a Nokia device.

Note that the shown data in these graphics are the result of a statistic pro-
cess consists of average of the obtained values in different repetitions(10) for
each subtests.

Each previous subtests result serves us to conclude that the performance of
AEM and XtreemFS is independent of the client used, either it’s XtreemOS or
XtreemOS-MD. In other words, the implementation of XtreemOS-MD does not
penalize any Grid feature. In addition, the inclusion of the executed tests directly
in the Nokia and their results permit us to remark the benefits (in terms of per-
formance) of using grid solutions, as XtreemOS-MD, instead of native executions
(directly in the Nokia hardware) for operations on the mobile.

4.11.6 Test Unit 05: Creation of new jobs using JobMA application

4.11.6.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

202

4.11.6.2 Test Specification

Test Items
JobMA application is in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the creation of new jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to create new jobs using the
GUI offered by the JobMA application. A Nokia N800 with XtreemOS-MD and
JobMA applications pre-installed will be used for this test.

This test requires a JSDL file where a job (that will be created) is described.
We will check that the JobMA GUI works correctly and that it’s possible to

load JSDL files from JobMA.

4.11.6.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start Once JobMA application is installed, the next step is to start the JobMA.
To do this, type the next sentence in a X-Terminal:

jobma

A new window will appear in the terminal, requesting the CDA password,
which the user has in the VOlife. Then, the user has to click on the "OK" but-
ton in this window to send the password.

After introducing the password, the JobMA user interface will appear on the
X-terminal (not needing to load manually the certificate in this version)

Load jsdl It’s needed to load the job that the user wants to create. This job should
be in a .jsdl file and, to load it, is necessary to select the "File" tab in the menu and
then click on the "Open JSDL file..." option.

A new window will appear, where the user has to browse to select the job and,
after clicking on the "Open" button, a new message will appear at the bottom of

203

the JobMA window informing that the new job has been created automatically if
the load is successful.

Procedure Results The execution of this test was successful. The JobMA GUI
was correctly presented and a JSDL file was loaded using it.

4.11.7 Test Unit 06: Defining new jobs using JobMA application

4.11.7.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.7.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the definition of new jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to define new jobs using the
GUI offered by the JobMA application. A Nokia N800 with XtreemOS-MD and
JobMA applications pre-installed will be used for this test.

204

This test requires that the user introduces some fields to generate the JSDL file
that will create the job

We will check that the JobMA GUI works correctly and that the .jsdl file is au-
tomatically created when the job is defined filling the needed fields in the window
opened by the JobMA GUI.

4.11.7.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Define job Once installed XtreemOS-MD and JobMA application in our mobile
device, and after launching this JobMA application, user can define a job that will
be created. To do this, user has to do click on the "File" tab in the top menu and
then on the "Define job" option. After this, a new window will appear requesting
three fields to fill:

• Command: is the name of the job we want to create. E.g: "uname" is the
command to show name and information about current kernel.

• Parameters: is the specification that we want to add to the job. E.g: "-a" in
the previous command will show basic information currently available from
the system.

• Output file: is the file in which the job will be stored once it will be created
and run.

After clicking on the "OK" button, the job will be created and a new message
will appear at the bottom of this JobMA window ("New job created"), also the
column "State" is set to "Created", explaining that the job has been created succes-
fully.

Procedure Results The execution of this test was successful. The JobMA GUI
was correctly presented and a JSDL file was loaded using it.

205

4.11.8 Test Unit 07: Using JobMA for monitoring jobs

4.11.8.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.8.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the monitoring of jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to monitor the current jobs
using the GUI offered by the JobMA application. A Nokia N900 with XtreemOS-
MD and JobMA applications pre-installed will be used for this test.

We will check that the JobMA GUI works and that the list of jobs in correctly
shown.

4.11.8.3 Test Results

The test was run following this procedure:

206

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start Once installed XtreemOS-MD and JobMA application in our mobile de-
vice, and after launching this JobMA application, user can consult all the existing
jobs in the Grid. To do this, user has to click on the "Start" button in the top right
corner of the JobMA window. Note that in the JobMA window will appear a mes-
sage at the bottom explaining that in order to monitor jobs, user has to press "Start"
button.

After clicking on this button, a job list will be shown, displayed in rows, one
for each job. The number of columns can be different depending on the options
selected by the user. This is, in the "View" tab in the menu, users can select the
information about the job that they want to know. In this tab, users can consult the
"Job ID", "Command", "Name", "Owner", "State", "Sub. time" and the "Nodes"
related to each job.

The "Start" button is as well replaced by a "Stop" button, that will serve to stop
monitoring the jobs.

Procedure Results The execution of this test was successful. The list of jobs
was correctly presented using the JobMA GUI.

207

4.11.9 Test Unit 08: Using JobMA for viewing info about a job

4.11.9.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.9.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the “view info” feature offered by the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to view additional info
about a concrete job using the GUI offered by the JobMA application. A Nokia
N900 with XtreemOS-MD and JobMA applications pre-installed will be used for
this test.

We will check that the JobMA GUI works and that the job additional info is
presented when requested.

4.11.9.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start Once installed XtreemOS-MD and JobMA application in our mobile de-
vice, after launching this JobMA application, user has to create a job to view info
about it. This can be done from two different ways, loading a JSDL file or defining
a job.

After the job is created, user can consult all the information about it doing
double click on the created job or clicking on the "Action" tab in the top menu and
then in the "View info" option in it. After doing this, a new window will appear
in which some info about the job is shown, like "Job ID", "Command", "Name",
"Owner", "Status", "Sub.time" or "Node".

208

Procedure Results The execution of this test was successful. The additional info
related to a job correctly presented using the JobMA GUI.

4.11.10 Test Unit 09: Using JobMA for running a job

4.11.10.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.10.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the execution of jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to run jobs using the GUI
offered by the JobMA application. A Nokia N900 with XtreemOS-MD and JobMA
applications pre-installed will be used for this test.

An already created job is needed, as we will check that the JobMA GUI works
and that the job is correctly executed.

209

4.11.10.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start Once installed XtreemOS-MD and JobMA application in our mobile de-
vice, after launching this JobMA application and after creating a job, user has to
run it to get the expected result.

The first step to do this is selecting the job the user wants to run and then
clicking on the "Action" tab in the top menu and then in the "Run" option in it.
After doing this, column "State" change from the previous state to "Running" and a
new message will appear at the bottom of this JobMA window ("New job running")
explaining that we have run a created job.

If everything goes OK, a new file will be created in the XtreemFS with the
result of the execution.

Procedure Results The execution of this test was successful. The additional info
related to a job correctly presented using the JobMA GUI.

210

4.11.11 Test Unit 10: Using JobMA to suspend running a job

4.11.11.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.11.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the suspension of running jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to suspend a running job
using the GUI offered by the JobMA application. A Nokia N900 with XtreemOS-
MD and JobMA applications pre-installed will be used for this test.

An already running job is needed, as we will check that the JobMA GUI works
and that the job is correctly suspended.

4.11.11.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start After launching JobMA application and clicking on the "Start" button in
the top right corner of this application, all the users jobs will be displayed. One
of the actions that the user can do with these jobs, but only with active jobs, is to
suspend them. This action could be done from the "Suspend" option in the "Action"
tab of the menu of the JobMA. After clicking on this option, "State" column of the
job will change to "SUSPEND" instead of the previous state.

Procedure Results The execution of this test was successful and the running job
was correctly suspended.

211

4.11.12 Test Unit 11: Using JobMA to resume a suspended job

4.11.12.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.12.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the feature of resuming a suspended job using the JobMA ap-
plication

Approach Refinements
The goal of this test is to demonstrate that it’s possible to resume a suspended job
using the GUI offered by the JobMA application. A Nokia N900 with XtreemOS-
MD and JobMA applications pre-installed will be used for this test.

An already suspended job is needed, as we will check that the JobMA GUI
works and that the job is correctly resumed.

4.11.12.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start After launching JobMA application and clicking on the "Start" button in
the top right corner of this application, all the users jobs will be displayed. One
of the actions that the user can do with these jobs, but only with jobs that have
been suspended or stopped, is to resume them. This action could be done thanks
to the "Resume" option in the "Action" tab in the menu of the JobMA application
window. After clicking on this option, "State" column of the job will change to
"RUNNING" instead of the previous state in which the job was.

212

Procedure Results The execution of this test was successful and the suspended
job was correctly resumed.

4.11.13 Test Unit 12: Using JobMA to cancel a job

4.11.13.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.13.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the cancellation of a job using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to cancel an existing job (in-
dependently of its current status) using the GUI offered by the JobMA application.
A Nokia N900 with XtreemOS-MD and JobMA applications pre-installed will be
used for this test.

An already existing job is needed, as we will check that the JobMA GUI works
and that the job is correctly canceled.

4.11.13.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start After launching JobMA application and clicking on the "Start" button in
the top right corner of this application, all the users jobs will be displayed. One
of the actions that the user can do with these jobs (active, stopped, suspended and
resumed), is cancel them. This action could be done thanks to the "Cancel" option
in the "Action" tab in the menu of the JobMA application window. After clicking
on this option, the job will appeared as "Canceled" in the list of jobs shown.

213

Procedure Results The execution of this test was successful and the job was
correctly canceled.

4.11.14 Test Unit 13: IMA and XtreemFS integration

4.11.14.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.14.2 Test Specification

IMA application, based on the well-known Pidgin messaging application, is in this
case the item tested. As the rest of the reference applications, it’s not included at
this moment as part of any XtreemOS release, but, it’s possible to be downloaded
from the project repository.

Features to be Tested
This test case tests the integration of IMA application and XtreemFS

Approach Refinements
The goal of this test is to demonstrate that it’s possible to integrate existing appli-
cations with the Grid services. In this case the integration of the IMA application
with the XtreemFS service, so that the configuration of the application and the
conversation logs can be stored in the Grid, in the XtreemFS. 2 Nokia N800 with
XtreemOS-MD and IMA applications pre-installed will be used for this test.

A jabber account is needed. We will check that the configuration of the appli-
cation (concretely the jabber account configured in the first terminal) is available
when launching the application from the second terminal and the logs of the con-
versations kept using the first terminal are available from the second terminal.

4.11.14.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, IMA ap-
plication should also be installed in the terminal following the installation and con-
figuration instructions.

Set Up Login in the Grid with a user/password valid.

214

Start The user will start the IMA application and will configure a new jabber ac-
count. Then, he will connect using the new account and will launch a conversation
with one of his contacts. Finally he will log out.

Then he will use a different mobile device, with XtreemOS-MD and IMA ap-
plication installed on it. After login in the Grid with the same credentials used
previously, he will launch the IMA application. The jabber account previously
configured in the first terminal should be already available. The user will connect
using that account, and he will check the logs of the conversations. The previous
conversation from the first terminal should appear in the logs.

Procedure Results The test was executed successfully. After moving to a differ-
ent device, we had available the account created from the first terminal and once
connected we could see the logs of the conversations kept with this first terminal.

4.11.15 Test Unit 14: Using XtreemOS-MD for sharing 3G connection

4.11.15.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.15.2 Test Specification

Test Items
3G sharing feature of XtreemOS Mobile device.

215

Features to be Tested
This test case tests the connection between a XtreemOS-PC and a XtreemOS-MD
to share the Mobile 3G connection.

Approach Refinements
The goal of this test is to demonstrate that it’s possible to share the 3G connection
of mobile devices with others XtreemOS clients. A Nokia N900 with XtreemOS-
MD and PC with XtreemOS-PC pre-installed will be used for this test.

4.11.15.3 Test Results

The test was run following this procedure:

Installation XtreemOS-MD must be installed on the mobile device. In addition
for this test, it must be used a PC client that requests a 3G connection to the Mobile
device. XtreemOS-PC must be installed on the PC and later the sharing3gclient
must be installed on the PC following these steps:

• download the package from xtreemOS-MD web

• urpmi sharing3gclient-1.0-2.i386.rpm

Set Up No special configuration after the installation is needed on PC or mobile
device.

Start The first step is to enable the 3G sharing feature from RS-Monitor applica-
tion on the Nokia terminal. This is done bye clicking on the Network sharing tab
of the RS-Monitor and then modify the Current status by clicking on the modify.
After doing this, status d̈isabledc̈hanges from the previous state to ënabled,̈ so the
3G connection sharing is now started from this mobile device.

The second step is to execute, from XtremOS-PC, the sharing3gclient
in a standard shell as root: root@xos-pc1:#sharing3gclient

If everything goes OK, a request from the PC client will be sent to the mobile
device and will generate a VPN connection between the PC and the Mobile Device.
All web traffic of PC client will be forwarded to the mobile device (Nokia N900).

Procedure Results The execution of this test was successful. All web traffic of
the PC is routed by the Mobile device 3G connection.

4.11.16 Test Unit 15: Using XtreemOS-MD for data sharing

4.11.16.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test.

216

4.11.16.2 Test Specification

Test Items
Data sharing feature of XtreemOS Mobile Device.

Features to be Tested
This test case tests the sharing of data from a mobile device between XtreemOS
clients.

Approach Refinements
The goal of this test is to demonstrate that it’s possible to share data from mo-
bile devices within the XtreemOS file system. Two Nokia, N900 and N800, with
XtreemOS-MD will be used for this test.

4.11.16.3 Test Results

The test was run following this procedure:

Installation Install XtreemOS-MD on the mobile devices used. Install camera
application on the Nokia N800: Camera for Nokia N800/N810.

Set Up Using the Resource Sharing Configuration tool, ConfigRS, on the Nokia
N800, enable the Data Sharing feature and set the shared folder path with the cam-
era application’s working directory, user/multimedia/camera.

Start The first step is to take a photo with the Nokia N800. A new file is created
in the working directory of the camera application and it is shared through the
XtreemOS file system.

The second step is to execute the filemanager from Nokia N900, open the share
folder and find the new file.

Finally, the third step is to open this file from Nokia N900 and the content is
uploaded from Nokia N800 to Nokia N900 through the Xtreemos file system. In
Nokia N800 the RSmonitor icon changes its state showing that data transfer was
executed.

Procedure Results The execution of this test was successful.

4.11.17 Test Summary Report

4.11.17.1 Summary of Tests and Results

The tests executed have been passed without major issues. The functionalities
developed in XtreemOS-MD and the applications have been verified. The tests

217

show that XtreemOS-MD performance is comparable to the XtreemOS PC flavour,
in terms of protocols behaviour.

4.11.17.2 Conclusion and Directions for Future Work

This is the final test suite performed on XtreemOS-MD. The general conclusion is
that XtreemOS-MD brings Grid functionality to Linux-based mobile devices. The
software developed may be exploited in any Linux-based terminal running on top
of a XtreemOS core Grid.

218

Chapter 5

Evaluation of XtreemOS as
Foundation for Cloud Computing

This chapter is devoted to evaluating the benefits of using XtreemOS technology
as a basis for Cloud Computing. Whereas deliverable D4.2.6 [10] put emphasis on
Grid Computing aspects (comparing XtreemOS with competitive Grid Middleware
solutions), the deliverable at hand tries to assess the capability of XtreemOS for en-
abling (or supporting) the management of cloud environments and the development
of cloud services.

5.1 Evaluation of Cloud System Management Automation
and Recoverability Enhancement with XtreemOS

The purpose of this evaluation is to assess the contributions that XtreemOS tech-
nologies can make to automation and recoverability1 of infrastructure and general
IT systems management . A research prototype for Rule-based and Unified Sys-
tems Management has been developed by SAP Research during the XtreemOS
project. The motivation for this research prototype is relevant to XtreemOS, as
it addresses the challenge of maintaining heterogeneous hardware, operating sys-
tems, data bases and software. This heterogeneity results in a collection of var-
ious scripts, tools and models for management . These increase the likelihood
of error, conflict and of loss of know-how when administrators leave an organi-
sation. Moreover, systems that contain many nodes, software instances and files
can become particularly challenging to maintain without automation. Although
cloud computing offers organisations the possibility to out-source the hosting of
machines, software and data, the sprawl of machine instances and cloud providers
can still become unmanageable. Figure 5.1 shows the overall architecture of the
Rule-based System Management (RBSM) solution used in this evaluation.

1There is no assumption of self-healing, self-balancing, and other self-* features of autonomic
computing

219

Figure 5.1: High-level component architecture of RBSM used for management
of on-premise and cloud-based hardware, software and database instances, imple-
menting a Unified System Management (USM) solution

In this evaluation, the concept of ”Cloud” includes on-premise (private) and
off-premise (publicly shared) resources . An organization’s IT administration would
use RBSM to support deployment decisions, based on factors such as cost, per-
formance and security, towards determining which resources should be used for
specific scenarios . For this reason it is also referred to as a Unified System Man-
agement (USM) solution. In cases of off-premise clouds there is no assumption
made that XtreemOS is used for the management. However, as the organisation’s
data-centre can itself be deployed and managed using a cloud model, the advan-
tages of operating aspects of the systems management solution using XtreemOS
technologies is reasonable.

Clients include customers, users of the organisation or remote administrators.
Clients will not tolerate extended downtimes and slow responses when requesting
resources (e.g. virtual machines) to be provisioned and deployed. The Request-
Handling component is responsible for receiving and interpreting requests from
Clients. It also performs scheduling of passing these requests to the USM Core
for handling . The USM Core is the central engine of the management solution.
It uses the rules and various information sources in order to automatically decide
how to best handle requests, or supports decision making through generation of
visualizations2 .

Rules used for decision-making are of the form IF <conditions> THEN

2Visualisation is often a requirement from IT administrators even with automation, as they prefer
to have some oversight of the system’s state. The ability to visualise the system is in any event also
a subset of computer supported system management.

220

<actions>. These are processed by a rule engine, such that they can be updated
offline. The concept of a rule-flow is used to separate concerns of systems manage-
ment. For example, configuration of an element cannot occur unless the element
has been installed. The configuration data for elements are stored in the collection
of Assets. This includes the properties of the elements, their commands that can be
executed on the elements and how they can be manipulated. This data is important
for configuring the Monitoring subsystem and the Information Providers that run
natively to monitor specific elements.

The Action Management component is used to coordinate the mapping of ac-
tions to executable scripts in the repository of Script Templates. This repository
also includes VM images and other resource bundles required for installation and
configuration of specific types of elements. The Script Deployment mechanism is
responsible for transmitting a concrete script instance to the respective Deployment
Daemon, which is a native process on an element that executes installation and con-
figuration scripts. All actions and their feedback are captured in the system’s Logs.
The goal of the evaluation is to determine how XtreemOS’ features can be used to
enhance the automation and recoverability of management tasks.

5.1.1 Responsibilities

The responsibilities for this evaluation have been assigned to Philip Robinson
and Barry McLarnon from SAP Research in Belfast. They are the principal de-
signers and developers of the systems management solution. Barry has been the
main programmer of the project and has implemented and setup various XtreemOS
demonstrators surrounding RBSM. Philip designed the original concept and con-
tinues to guide the architecture and roadmap of the RBSM project. The project
is currently creating transfers of its object models and automation concepts within
SAP. Given that the idea for developing the solution was inspired by developments
within XtreemOS, this indicates a success for exploitation.

5.1.2 Evaluation Setup

Three scenarios were used to carry out this evaluation. These scenarios follow
from previous XtreemOS demonstrations developed with RBSM for XtreemOS.
The capability of RBSM has been enhanced since the previous demonstrations but
the basic features and architecture are still valid. Figure 5.2 shows the setup of
RBSM for the evaluation.

221

Figure 5.2: Technical set up of RBSM Evaluation

The initial configuration of RBSM is shown in Figure 5.2 (1) shows the typical
setup of RBSM for managing deployment on a Cloud infrastructure. The data
such as Assets, Logs and Scripts are persisted on a standard filesystem. The main
components of RBSM are then installed on a single machine. The Cloud Controller
is in our local data centre and is based on the Open Nebula [31] framework. The
physical infrastructure in the data centre is a collection of blade servers, but the
details of these are not important for the evaluation.

Figure 5.2 (2) shows the set up of RBSM using XtreemOS features. In addition,
the scenario was a deployment of multiple XtreemOS VM images, in order to have
an isolated XtreemOS grid of virtual machines running within the cloud infrastruc-
ture. The persisted elements of RBSM were placed on the XtreemFS filesystem
with the motive of improving the resilience of accessing critical management data.
Loss of access to this knowledge would cause a complete shutdown of manage-
ment operations. The results of this evaluation can help to inform developers and
administrators of systems management solutions.

5.1.2.1 Methodology and Metrics

The evaluation methodology was a mix of hands-on usage development of scenar-
ios for systems management, as well as architectural analysis. With the hands-on
development and execution of systems management scenarios, it was possible to
practically identify where the challenges are and gain experience with the critical
needs for automation and resilience in systems management. The approach to use
architectural analysis was inspired by our work on analysing faults in automated

222

system management [22]. The fundamentals of the methodology are in four stages:

1. Identify scenarios that capture the core features of the system under analysis.

2. Identify and classify locations where information and state are maintained.

3. Identify and classify management tasks that cause information to be trans-
ferred and state to be changed.

4. Assess the impact on information transfer and state change if tasks are not
completed based on selected metrics or indicators.

Three scenarios have been selected in order to assess the core features of RBSM
as well as the relevant features of XtreemOS that have been identified as having po-
tential impact on the systems management problem. The selected indicators are the
Level of Automation (LoA) and Level of Recoverability (LoR) for systems man-
agement tasks. The LoA indicators are adopted from the taxonomy of automation
levels defined by Parasuraman, Sheridan and Wickens [33], defined as the level of
assistance a computer or automated solution (i.e. RBSM) offers to a human (i.e.
administrator):

1. (Lowest) no assistance from computer — purely manual

2. set of decision/action alternatives offered

3. computer narrows skeleton down

4. computer suggests one alternative

5. execute suggestion if approved by human

6. allow time before automatic execution

7. execute automatically then informs human

8. informs on request

9. informs if determined that it is necessary

10. (Highest) complete execution — fully automated

There is however no existing taxonomy for LoR indicators, such that we devel-
oped our own. The indicators consider the capability of a solution to detect faults
and to then respond to them. These are as follows:

Capability to detect:

0 Manual timeout

1 Implicit/indirect alert (i.e. by observing other tasks or events)

223

2 Implicit/indirect prediction

3 Explicit timeout (i.e. refers to specific task)

4 Explicit alert

5 Explicit prediction

Capability to respond:

0 Interrupted restart (i.e. other tasks and managed elements are affected)

1 Interrupted rollback

2 Interrupted redirect (i.e. requires redundancy)

3 Isolated restart

4 Isolated rollback

5 Isolated redirect

The summation of detection and response capability gives a rating for LoR,
where 0 (i.e. Manual timeout and interrupted restart) means that the automation
solution offers no support for recovering from faults. The human administrator has
to manually identify that the task is not reaching completion and just re-executes
that task. The scenarios are now defined, showing how the set of management tasks
analysed were derived.

5.1.2.2 Scenario 1: Basic Cloud Deployment

The first scenario considers the simplest use case for RBSM in a cloud environ-
ment, where the automation of deploying a single machine image on a cloud in-
frastructure is implemented. This basic scenario is fundamental for administrators
of XtreemOS deployments, which might be composed of internal and external in-
stances. In this particular case the image deployed to the cloud was an XtreemOS
core node image. This also demonstrates setting up XtreemOS in different types
of operational environments.

224

Figure 5.3: Information and control flow for basic cloud deployment

Locations L1 – L4:

L1: storage location for asset DB with images and templates

L2: management core

L3: cloud controller

L4: virtualization manager and VM host in cloud

Management tasks t1 – t8:

t1: specification of VM creation command at management core

t2: search and selection of appropriate image in asset DB

t3: transfer of image description data to the management core

t4: invocation of create-vm API on cloud controller API

t5: transfer of image to Cloud controller

t6: creation of VM on selected host and selected/specified VM manager

t7: feedback and query response of VM state to controller that VM cre-
ation is complete

t8: feedback to deployment management that VM creation is complete

It is assumed here that the management core and cloud controller are on dif-
ferent hosts. They can also be in different domains. The management core may be
managing on-premise and cloud-based machines.

225

5.1.2.3 Scenario 2: Checkpointing and Migration

This second scenario involves automation of checkpointing and migration of se-
lected processes or VMs. For the checkpointing of process instances the node-level
BLCR integrated in XtreemOS was used.

Figure 5.4: Information and control flow for checkpointing and migration

Locations L1 – L5:

L1: storage location for checkpoints

L2: management core

L3: current host of processes or images to be checkpointed

L4: target cloud controller

L5: host in cloud where checkpointed image is restarted

Management tasks t1 – t9:

t1: query/selection and configuration of volume for checkpointing

t2: query/update storage volume with checkpoint meta-data

t3: invocation of checkpoint action

t4: execution of checkpoint and transfer to checkpoint volume location

t5: issue migration and restart of checkpoint to cloud controller

t6: retrieve checkpoint data from designated volume

t7: restart checkpoint instance on a selected endpoint

t8: return checkpoint status to controller

226

t9: get checkpoint status from controller

However, note that the node-level checkpoint and restart can only work if there
host architectures are identical, such that these prerequisites would have to be is-
sued to the cloud controller. For that reason the above scenario refers to a private
cloud.

5.1.2.4 Scenario 3: Deployment of Distributed Virtual Infrastructure with
Dependencies

In this scenario the management core of RBSM acts as a cloud broker. It receives
management requests from external clients and can select to handle these using in-
ternal or remote resources. The location of resources is however abstracted for this
evaluation. Secondly, this extends scenario 1 as the emphasis is now on deploy-
ment of multiple, dependent elements, forming a virtual infrastructure. This means
that it is necessary to deploy elements in a specific order, as dependencies of one
on another will cause installation and configuration errors to propagate. XtreemOS
was designed for setting up distributed systems such as Clusters, Grids and Clouds.
This scenario also investigates the additional tooling that administrators could em-
ploy when managing large-scale XtreemOs deployments.

Figure 5.5: Information and control flow for deployment of distributed virtual in-
frastructure

Locations L1 – Ln:

L1: remote client sending request

L2: management core

L3: internal storage for images, templates and scripts

L4: host of first instance in virtual infrastructure

L5: host of intermediate instance in virtual infrastructure

Ln: final node to be deployed in the virtual infrastructure

227

Management tasks t1 – t8:

t1: specification of VM creation command at management core

t2: search and selection of appropriate image in asset DB

t3: transfer of image description data to the management core

t4: invocation of create-vm API on cloud controller API

t5: transfer of image to Cloud controller

t6: creation of VM on selected host and selected/specified VM manager

t7: feedback and query response of VM state to controller that VM cre-
ation is complete

t8: feedback to deployment management that VM creation is complete

t9: feedback and query response of VM state to controller that VM cre-
ation is complete

t10: feedback to deployment management that VM creation is complete

The overall specification of the virtual infrastructure was done as a batch of
requests. This works by sending them as a linked list. There is no assumption of
parallel tasks for batches, but this could also be inferred in the scheduling, if the
dependencies are explicitly defined.

5.1.3 Evaluation Results

The results for the evaluation are now presented per scenario.

5.1.3.1 Evaluation of Scenario 1

Figure 5.6 shows the results of comparing automation and recoverability for RBSM
with and without XtreemOS. The results in Figure 5.6 (A) show that there are
no advantages for additional automation achieved with XtreemOS, as much of
the configuration management features that exist in XtreemOS are achieved us-
ing other mechanisms in RBSM. There are however advantages for recoverability
detected, as shown in Figure 5.6 (B).

228

Figure 5.6: Evaluation of (A) Level of Automation (LoA) and (B) Level of Recov-
erability (LoR) of RBSM for basic delpoyment tasks t1 to t8. The comparison is
between RBSM without XtreemOS (SM) and with XtreemOS (+xos)

Tasks t1 and t2 cannot be automated beyond level 4 (suggests one alternative),
as these explicitly require human input in order to specify the need to create a VM.
This could be changed if the same VM needs to be installed several times, such
that his request could be captured in a script. Tasks t3, t5, t7 and t8 were however
capable of being supported with LoA 8, where RBSM informs the administrator
about how the request is being handled if the administrator requests this to be the
case.

From the perspective of LoR, task t2, t3 and t5 show significant advantages for
XtreemOS underlying RBSM. These tasks are each storage-dependent tasks, such
that the unavailability of the centralized storage node in (A) will block these tasks.
It is therefore suggested to employ a distributed storage architecture like XtreemFS
in order to have better guarantees of correctness and timeliness for automated man-
agement tasks.

229

5.1.3.2 Evaluation of Scenario 2

Figure 5.7 shows the results of comparing automation and recoverability for RBSM
with and without XtreemOS for the checkpointing and migration. The results
in Figure 5.7 (A) show that there are some advantages for additional automation
achieved with XtreemOS, unlike in scenario 1. Advantages for recoverability were
also observed when using XtreemOS, as shown in Figure 5.7 (B).

Figure 5.7: Evaluation of (A) Level of Automation (LoA) and (B) Level of Recov-
erability (LoR) of RBSM for checkpointing and migration, tasks t1 to t9. The com-
parison is between RBSM without XtreemOS (SM) and with XtreemOS (+xos)

Using XtreemOS features increases the automation of t1 and t7, given the us-
age of the distributed file system for storage of checkpoint data. Given that an
automatically-scalable volume is mounted, there is then no need for the admin-
istrator to explicitly select the storage location and check that it has the required
capacity. Tasks t1, t2 and t4 are enhanced with respect to their recoverability given
the improved resilience brought by XtreemFS.

230

5.1.3.3 Evaluation of Scenario 3

Figure 5.8 shows the results of comparing automation and recoverability for RBSM
with and without XtreemOS for the scenario of deploying distributed virtual in-
frastructure. The results in Figure 5.8 (A) show that there are minor advantages for
additional automation achieved with XtreemOS. Two tasks benefit from enhanced
recoverability, as shown in Figure 5.8 (B).

Figure 5.8: Evaluation of (A) Level of Automation (LoA) and (B) Level of Recov-
erability (LoR) of RBSM for deployment of distributed virtual infrastructure with
tasks t1 to t10. The comparison is between RBSM without XtreemOS (SM) and
with XtreemOS (+xos)

Tasks t2 and t3 are again storage operations, such that the usage of XtreemFS
as our underlying filesystem yielded an increase in the overall recoverability.

231

5.1.4 Summary

Automated systems management can support data centres in becoming more effi-
cient. Labor costs reduction leads to significant reduction in overall costs of own-
ership. However, without resilience and recoverability implemented in the man-
agement system, or built as a feature of the operating environment, the benefits of
automation are degraded.

5.2 Evaluation of an Online Photo Archive as Cloud De-
ployment using XtreemOS

5.2.1 Test Plan

5.2.1.1 Responsibilities

WP4.2, Maik Jorra (ZIB), Björn Kolbeck (ZIB)

5.2.1.2 Test Items

The main purpose of the Online Photo Archive demonstrator (referred to as Zmile)
is to proof that XtreemOS can be utilized as platform for a state of the art web
application. In addition to just host Zmile on an XtreemOS environment, we also
use XtreemOS features to improve our web-application.

Using XtreemOS yields two gains for our application: When using XOSAGA
and XtreemFS in the same application one has the possibility to perform all calls
to XtreemFS in a system-independent way through the XOSAGA-API or simply
to mount a XtreemFS volume via a fuse client, and access it as was part of the local
file system.

XOSAGA would mount the XtreemFS volume when a file is requested, read
the file from the volume and unmount it. It is very comfortable if one would read a
few files and does not want to bother where the files are located. However, in Zmile
reading and storing of files is the major purpose of the application and additionally
we want the image processing tools to be able to have direct access to the images
files on „disk“. For these reasons, we decided to mount our XtreemFS volume
manually and have Zmile access it as if it was a folder. This also has the advantage
that it shows, how a web-application which was not designed for XtreemOS can
profit from XtreemFS, thanks to its transparent nature and POSIX conformity.

The second advantage is that we can use the XOSAGA-Job-adapter to execute
required jobs in a platform independent way. See Section 5.2.1.4 for more infor-
mation.

5.2.1.3 Features to be Tested

As said Zmile is a proof of concept. To show that Zmile works, it is sufficient to
demonstrate that users can store and upload images.

232

Additionally, we show that the memory can be increased by adding a new OSD
to the XtreemFS pool which registers itself to our directory service, leads to a
higher amount of memory Zmile can use, while the node running Zmile needs not
be touched.

We also show that configuring the XOSAGAs SSH adapter we can run jobs on
different hosts, which have the Zmile public key installed and must have access to
our volume.

5.2.1.4 Features not to be Tested

The AEM job service. In the first draft of Zmile it was desired to use AEM to
submit jobs. Jobs in this case are image transformations like scaling, rotating and
thumbnail-creation.

These tasks can be accomplished in two ways: The first would be to use a Java
image-processing-library like Jai which would execute this operation directly in the
server process, in another task. Hence this approach will not scale well, we used
the second option, which is using an external application for image manipulation.
We choose the ImageMagick program suite, because it is available on most Linux
boxes and is easy to install on XtreemOS.

The following workflow triggers the execution of ImageMagick commands:
Every time an image is displayed to a user it is checked if the image has the desired
size, e.g. when the user opens an overview of album contents, images need to be
displayed as thumbnail, for each image Zmile checks if a thumbnail is available, if
this is the case its send to the browser, if not, it is converted into a thumbnail by an
ImageMagick command and then again the result is returned immediately to the
user.3

The fact that the result is required as soon as possible does not leave much room
to schedule the conversion job. Using the AEM service to submit jobs yielded
an simple problem: On the one hand AEM is used to schedule jobs which are
expected to have a long runtime and may require more than one CPU-core to run.
On the other hand ImageMagick commands have a very short runtime, need very
few resources and the result must be available ASAP. In other words Zmile does
not provide the kind of job you want to send to an job-scheduler no matter its AEM,
PBS or Condor.

So we abandoned the idea of using AEM instead we are using the XOSAGA-
SSH binding and gain the possibility to either run ssh commands on the localhost or
send jobs to arbitrary compute servers which need not necessarily run XtreemOS,
but need access to the OSDs.

3After a thumbnail is created it will be stored on XtreemFS along with the original picture

233

5.2.1.5 Overall Approach

XtreemOS 2.1 is used for all of our tests. We run XtreemOS with Zmile on an
out-dated workstation with the following specs:4

CPU 2x Intel Xeon 2.20GHz 32-bit

RAM 1GB

HDD-Storage approx 60GB

We ran another XtreemOS instance in an virtual machine on our ZIB internal Cloud
setup [13], which is hosted on a dedicated cluster consisting of 32 nodes called
cumulus. The nodes have access to our storage pool. The virtual XtreemOS node
is called vmhost01 and runs an OSD which is connected to the directory-service
running on the Zmile-machine. The OSD provides additional 115 GB which zmile
is using to store images.

There is an another more powerful workstation in our setup which accepts the
XOSAGA-SSH commands and executes image conversions.

CPU 2x Intel Core2 2.66GHz 64-bit

RAM 4GB

We choose this setup to show how a low-cost server with little compute power
is extended by storage from a cloud environment and other nodes which offer ad-
ditional compute power. Instead of the second workstation we could have sent the
SSH requests to another vmhost node.

The fist test run will show an extension of the cloud nodes, the second test will
show the benefit from the additional compute node.

This is the setup for the tests, all further details about the testing methodology
can be found in the following Test Unit sections.

5.2.2 Test Unit 01: Storage Extension

5.2.2.1 Responsibilities

See 5.2.1.1.

5.2.2.2 Test Specification

Test Items

This test aims at the file-system of XtreemOS. If XtreemOS is not used one
could download XtreemFS from http://www.xtreemfs.org, this site pro-
vides the latest release as well as the required documentation.

The following components on XtreemFS were used:
4We’ll call this the Zmile-machine in the following.

234

http://www.xtreemfs.org

• xtreemfs-backend-1.2.0-3.1.i586.rpm

• xtreemfs-client-1.2.0-3.1.i586.rpm

• xtreemfs-server-1.2.0-3.1.i586.rpm

• xtreemfs-tools-1.2.0-3.1.i586.rpm

Features to be Tested
Scalability of XtreemFS in cloud scneario.

Approach Refinements
We used the test set-up described in Section 5.2.1.5 with a running Zmile-server.
The test consists of the following steps:

1. we use the df command to acquire the available size of the zmile image
directory.

2. Then we launch a new instance of the XtreemOS-VM running on vmhost01.

3. When the VM is on-line we call df on the zmile-server again.

We expect a doubling of the available storage space, since the image has the same
configuration and provides additional 115GB of space.

This test will show how easy and without reconfiguration the storage can be
extended. The instantiation of the new VM could be executed automatically by the
cloud management software.

5.2.2.3 Test Results

Before we show the results it should be mentioned that the tests were executed
correctly without any hurdle. This includes the set up of the test sytem from the
installation of XtreemOS to the upgrade of the XtreemFS version.

Here is the first output of the df command, the Zmile volume is mounted on
/var/zmile:

1030 zmile@csr-pc28 ~ > df
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 5,8G 2,6G 3,0G 48% /
/dev/sda3 66G 9,6G 53G 16% /home
xtreemfs 116G 27M 116G 1% /var/zmile

Now after the second machine is up:

1030 zmile@csr-pc28 ~ > df
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 5,8G 2,6G 3,0G 48% /
/dev/sda3 66G 9,6G 53G 16% /home
xtreemfs 232G 27M 232G 1% /var/zmile

235

As we expected the available storage is doubled see Figure 5.9.

Figure 5.9: Zmile with replicated OSDs.

5.2.3 Test Unit 02: XOSAGA-SSH benefit

5.2.3.1 Responsibilities

See Section 5.2.1.1.

5.2.3.2 Test Specification

Test Items

This will show how useful the XOSAGA-SSH adapter is. The XOSAGA ver-
sion was pulled from the SVN, it is trunk revision r6868.

Features to be Tested
The machine running Zmile is quite old but serves well as a web-server, however
converting images can take quite some time. This we configured XOSAGA to
submit jobs through the SSH-adapter to a different machine.

Approach Refinements

The set-up is the same as described in 5.2.1.5. The major image transformation
Zmile performs is resizing, so we upload an image via the web interface, add it to
an album and open the album view. This causes zmile to resize the image to the
size of 30x30 pixel.

As the source image we use a picture which has the standard format of a nor-
mal digital camera with the following properties: R0012033.JPG JPEG 2048x1536
2048x1536+0+0 8-bit DirectClass 1.254MB

236

Internally, Zmile generates the following command line to resize the image:
convert R0012033.JPG -thumbnail 30x30 r0012033_thumb.jpeg
The thumbnail argument causes convert to generate an image of lower quality
and runs pretty fast.

When an image is viewed it is resized to fit into a box of 600x600 pixel. Here
the command
convert R0012033.JPG -resize 600x600 r0012033_small.jpeg
is used. The resize argument causes convert to create an image of good qual-
ity which takes longer than the thumbnail creation. The runtime of the command
increases when the size decreases.

In order to compare execution of the jobs on the machine running the Zmile
service with the execution using XOSAGAs SSH-adapter, we wrote an XOSAGA
mock-up which executes the command using a System.exec-call on the server
machine. Then we replaced our mock-up with the real XOSAGA-SSH adapter, to
send the command to a faster machine. The time the execution command needs to
return is measured in the Java code.

The crucial point here is that the local runtime of the command must be bigger
then the remote runtime plus the time for the communication overhead. This is way
we compare the thumbnail creation with the normal resize action. It is possible that
only the latter can profit from the remote execution while the first fails.

The test shows how versatile XtreemOS is. We need not implement the SSH
submission by ourselves, and are able to switch to another job-scheduler if this
gives some advantage.

5.2.3.3 Test Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4

ru
nt

im
e

image id

thumbnail local
thumbnail remote

resize local
resize remote

Figure 5.10: Zmile remote and local job execution.

Figure 5.10 shows that in every case the remote execution is faster than the
local one. This would not necessarily be true for small images, but one can see that
the usage of the XOSAGA-adapter has only a small overhead, and the big images

237

are the ones causing problems.

5.2.4 Test Summary Report

5.2.4.1 Summary of Tests and Results

Both tests show that its not only possible to create a web-application running on
XtreemOS, it was even faster to use the provided features than developing them
on our own. We are not aware of a any distributed file system (DFS) which could
replace XtreemFS in our scenario, other DFS having either local boundaries like
Lustre, which is for LAN use only, or doesn’t scale so well like CIFS of WEBDAV.
Because of the lack of alternatives one would have to create his one storage pool
solution or store the images into a normal data-base. However the first solution
would be time consuming and the second one would scale well, since standard
OpenSource DBMS can hardly be distributed.

Second using the XOSAGA-API provides a comfortable way to generate jobs,
which are executed in other processes even on different machines and again thanks
to XtreemFS no additional work is needed to get the pictures to the machine which
runs the ImageMagick commands.

5.2.4.2 Conclusion and Directions for Future Work

As developer of the Zmile application I have to admit that I would use XtreemFS
and XOSAGA in future web-applications as well.

The possibility to increase the storage size dynamically is a huge advantage. In
other solutions, which could use CFIS or some other remote file systems, however,
you always have to register it to the server. Also the placement of the data does
not require any influence from the server which would not be the case for example
when you have different mount points.

Other distributed file systems have a locality constraint, in our case we can host
OSDs even on different clouds and static machines around the world.

It was also shown in the test that it basically does not matter if you run XtreemOS
on stationary machines or in a cloud environment. It works in both cases and does
not give you problems when you prepare it as cloud image.

As stated in Section 5.2.1.4, the AEM service was not suitable for our work.
XOSAGA-SSH, however, gives us some flexibility to choose the host we want to
run our compute jobs on. Here, we see the possibility for some improvement in the
form of load-balancing for lightweight jobs: Compute-nodes could register them-
selves to the server running Zmile, like the XtreemFS OSDs are doing. Currently
the Zmile-machine uses a list of hosts it can send jobs to.

238

Chapter 6

Conclusion

In this deliverable, we presented the extended set of applications and the test doc-
umentation of the XtreemOS evaluation. The spectrum of previous applications in
WP4.2 has been extended by further applications for experimental usage during the
project extension phase. We briefly introduced the applications, reported on appli-
cation development and porting activities done and indicated how the applications
can be used for dissemination and exploitation purposes.

The evaluation was carried out in three different test categories: evaluation of
installation and configuration, evaluation of XtreemOS components, and evalua-
tion of XtreemOS as foundation for Cloud Computing. In the following, the test
summaries of these test categories shall be re-visited and directions for future work
will be given.

The first category of tests gathered the experience of end users with seven
XtreemOS releases from XtreemOS 1.0 (released end of 2008) until XtreemOS
v3.0 beta 2 (tested September 2010). This allowed for tracing the evolution of
user satisfaction and for transferring feedback to developers in a continuous man-
ner. In all categories examined, one could detect an remarkable upward trend. The
ratings improved almost monotonously along all XtreemOS versions examined,
most noticeable, however, is the leap made with the introduction of the public re-
lease of XtreemOS 2.0. Early major problems with lacking integration, instability,
complicated manual setup, bugs and lacking synchronization between software de-
velopment and documentation have been addressed to a far extend. Advancements
with software integration have been reported and also the automatized installation
and configurations tools have been added which render the adoption of the new OS
much easier. One further major reason for improved satisfaction was the revised
documentation which provides for more clarity and completeness, it also corrected
many errors. The separation into a user and an admin guide is highly appreciated.

Recommendations given in previous surveys were given to developers which
tried to deal with them to a far extent. Also the comments and recommendations
collected for the latest two releases covered by the survey were communicated. Af-
ter four years of research, XtreemOS end-users acknowledged the progress made

239

in software installation, configuration, basic usage and documentation quality. This
was expressed by ever increasing ratings in all categories. It is highly appreciated
that so many recommendations and comments have been addressed which lever-
aged user experience.

The second category of tests consists of the evaluation of XtreemOS com-
ponents including Node-level VO support, checkpointing and restart, Linux SSI,
DIXI message bus, XtreemOS API, Resource Selection Service, Application Exe-
cution Management, Data Management, Security Services and the Mobile device
Flavor. In the following, the results per component shall be summarized.

The tests with node-level VO support show that account mapping performs as
expected in normal usage, except in cases when logged into the client node as root.
We can conclude that the components for node-level VO support in XtreemOS
release 2.1 are adequate, with all major functional requirements met but certain
bugs still to be fixed.

The experimentation completed for checkpoint/restart functionality provided
good coverage of the features provided by XtreemOS. Tests included checkpoint-
ing of openVZ containers, the Grid Checkpointing Service (GCS) and the Linux
SSI checkpointing. With respect to container checkpointing the tests have shown
that the checkpointing mechanisms could be executed successfully. The time taken
to submit a job to an openVZ container is around 5.5 times greater than native sub-
missions. Still the execution in a container may be profitable for applications de-
manding a high degree of isolation. The scalability test of openVZ checkpointing
integrated into XtreemOS reveal practically no difference to the openVZ check-
pointing on native Linux. Considering the test with GCS, the overhead of GCS
seems to be negligible. Only in one case there are differences in the range of sec-
onds caused by dynamic network traffic behavior and non-linear disk access for
these large checkpoint file images and also seek times of the disk to read this large
scattered checkpoint-images. Long restart times could be measured for restarting
large images which could be explained by the bottleneck wrt. disk read and write
bandwidth which is responsible for the tremendous overhead. Also the average du-
ration of the pre- and post-checkpoint phase was measured. The pre-checkpointing
phase takes longer than the post-checkpointing phase. Pre checkpointing covers the
most of the work associated with channel flushing, such as channel control threads
coordination, the actual channel flushing and the channel removal. Post check-
point has a minor workload, it merely covers socket recovery and input of buffered
messages which requires less coordination with control threads. No significant cor-
relation could be found between the message length the pre-checkpoint phase time.
The final tests with checkpointing on the current LinuxSSI failed because the setup
of the appropriate testbed could not be prepared. Bugs were reported accordingly
and it is planned to repeat the tests when fixes have been released.

The tests with the Dixi message bus were done with the Grid5000 platform.
In the tests, we progressed from first making simple calls with single client on a
single server. We gradually increased the number of the clients, adding to the stress
level of the service. All along we noted the slow linear increase in the average

240

response times. We concluded that the number of requests issued by an individual
client does not influence the delays, but the number of clients concurrently making
service calls has the expected impact on the individual request’s response time. In
a special test case, we explored the influence of putting a lot of requests quickly
into the message bus. Here we found that the length of the queue of messages to
be processed has a noticeable influence in terms of the initial request’s response
time. The purpose of the DIXI was to host a number of services, connected both
internally on each node and throughout the network by the built-in message bus.
Ideally, the staging framework would host the front-ends of the services which
process incoming service calls quickly, but moves all the lengthy and complex
computation “off-line”. For these purposes our tests show that the services can
be hosted by DIXI efficiently. Of course it is not always practical to optimize for
fast service call processing, particularly when prototyping new services, which is
another strong point of the DIXI. On the other hand, the growing grids will provide
an increasing service stress. In either case it is difficult to construct a framework
to alleviate the slow-downs, but in this case it is better to provide a higher number
of replicated services to distribute the load of the clients. We see a possibility of
further enhancements and improvements for DIXI in the ability to distribute the
actual load on the distributed services when the service request does not call for
a particular host’s service. The already built-in service call redirection could take
decisions on the service message traffic to use the less-visited parts of the grid.

Tests with the XtreemOS API included tests with MPI, XOSAGA and AEM.
The comparison of AEM and XOSAGA showed that the performance regarding
job submission, resource management and job monitoring is quite similar for both
AEM and XOSAGA, although XOSAGA introduces some additional overhead.
Further tests indicated that the failure rate of jobs is increasing with increase in
number of reserved nodes. Hence, one can deduce that increasing the size of grid
is inducing overheads on parallel job execution.

The evaluation of Resource Selection Service (RSS) demonstrated that the self-
adaptation algorithms can effectively adjust internal RSS parameters to maintain
optimal performance across a wide range of fluctuations in node properties and
query workloads. Reconfigurations had a limited impact on query delivery. The
overall protocol was very inexpensive in terms of memory and bandwidth require-
ments.

We performed further tests to validate AEM functional requirements, evaluate
its performance and scalability. Respective results are described in [29] in greater
detail. AEM in XtreemOS has obtained good results on scalability terms, using
only one job manager and a hundred resource nodes. Scalability is also maintained
when asking for job status information. Performance in this part is better than
Globus. This shows the benefits of having interaction with the kernel and our
architecture.

With respect to XtreemOS data management, we performed tests to evaluate
the performance of XtreemFS and compared it to the performance of NFS and
CEPH. Tests were also performed to assess functional requirements and perfor-

241

mance under stress of Object Sharing Service provided by XtreemOS. We found
that network latency is crucial for transaction processing and transaction through-
put drops if latency is too high. Although, the maximum theoretical throughput
could be reached using local commits. The incrementation of the shared variable
offers contrary results of both token passing algorithms. Due to many transaction
aborts, incrementing the shared variable scales poorly. We also found that transac-
tional conflicts depend on the granularity of object access detection. In the POSIX
compliance tests, XtreemFS passed 90.91% out of the adequate tests. Our ex-
periments with large-scale XtreemFS deployment show the potential of XtreemFS
to support transactional load. However more work should be done to improve
synchronous write latency, stabilize the replication feature in XtreemFS and fur-
ther prove its ability to support business application transactional load. Our com-
parative performance tests revealed that for read operations CEPH outperforms
XtreemFS for up to 4 IO streams, while for higher number of IO streams the oppo-
site is true; for write operations XtreemFS outperforms CEPH, excluding the case
with only one OSD server. The experiments with XtreemFS’s replication show that
XtreemFS provides consuming business applications with fault tolerance. However
the replication feature in XtreemFS should be further stabilized in order to bring
performance benefits for a business application. XtreemFS also shows very good
scalability under transactional load and the load generated by enterprise search ap-
plication. It effectively caches big application IO work set, utilizing its de-facto
distributed cache based on OSDs. Even using normal hard drives, it enables to
reach the throughput of the baseline filer technology that uses solid-state drives
(SSD). Based on the tests we conclude that POSIX Compliance leaves the room
for improvement. Asynchronous write latency under the transactional load is still
relatively high as compared to the baseline filer technology. And most probably this
shortcoming may be overcome only by means of using solid-state drives (SSD) at
OSD nodes. Our experimental results under transactional load look very promising
and suggest that XtreemFS may support transactional load. However more exper-
iments need to be performed to support this conclusion. We can conclude that
XtreemFS and Object Sharing Service in XtreemOS Release 2 are adequate, but
performance leaving some room for improvement. Further testing is required for
comparative performance analysis of XtreemFS with additional advanced file sys-
tems such as Lustre. Another set of tests is required to assess the performance ben-
efits that a business application can get from the replication feature of XtreemFS.
An additional set of experiments should include a usage of read/write replication
to overcome failures such as network partitioning and to improve performance of
applications in WAN conditions.

Also the main security features of XtreemOS have been evaluated. These are
consistent with the features expected from any Grid platform but enhance the state
of the art by integrating them with the operating system. For example the inte-
gration of OS-level isolation features is an improvement to existing practice. The
security architecture is comparable to the Security Architecture for Open Grid Ser-
vices proposed by Nagaratnam et al.[28], but does not include features such as

242

intrusion detection, anti-virus management and secure conversations, as these are
not fundamental to the Grid security problem. It is possible to implement Grid
security mechanisms that are integrated with OS-level mechanisms without intro-
ducing significant overheads. Future work is to apply these security principles in
the context of Cloud computing, where there is more emphasis on virtualization
and collocation of services. In this case the isolation features become even more
important for management and not just security.

The tests executed have been passed without major issues. The functionalities
developed in XtreemOS-MD and the applications have been verified. The tests
show that XtreemOS-MD performance is comparable to the XtreemOS PC flavour,
in terms of protocols behaviour. The general conclusion is that XtreemOS-MD
brings Grid functionality to Linux-based mobile devices. The software developed
may be exploited in any Linux-based terminal running on top of a XtreemOS core
Grid.

A further category of tests was devoted to evaluating the benefits of using
XtreemOS technology as a basis for Cloud Computing. Whereas the last deliver-
able put emphasis on Grid Computing aspects (comparing XtreemOS with compet-
itive Grid Middleware solutions), deliverable D4.2.7 tries to assess the capability of
XtreemOS for enabling (or supporting) the management of cloud environments and
the development of cloud services. Considering the management of cloud environ-
ments the evaluation has shown that automated systems management can support
data centres in becoming more efficient. Labor costs reduction leads to significant
reduction in overall costs of ownership. However, without resilience and recover-
ability implemented in the management system, or built as a feature of the operat-
ing environment, the benefits of automation are degraded. Regarding the capability
of XtreemOS to support the development of cloud services, the tests have shown
that its not only possible to create a web-application running on XtreemOS, it was
even faster to use the provided features than developing them on our own. We are
not aware of a any distributed file system (DFS) which could replace XtreemFS in
the given scenario, other DFS having either local boundaries like Lustre, which is
for LAN use only, or doesn’t scale so well like CIFS of WEBDAV. Because of the
lack of alternatives one would have to create his one storage pool solution or store
the images into a normal data-base. However the first solution would be time con-
suming and the second one would scale well, since standard OpenSource DBMS
can hardly be distributed.Second using the XOSAGA-API provides a comfortable
way to generate jobs, which are executed in other processes even on different ma-
chines and again thanks to XtreemFS no additional work is needed to get the pic-
tures to the machine which runs the ImageMagick commands. The possibility to
increase the storage size dynamically was a huge advantage. In other solutions,
which could use CFIS or some other remote file systems, however, you always
have to register it to the server. Also the placement of the data does not require any
influence from the server which would not be the case for example when you have
different mount points. Other distributed file systems have a locality constraint, in
the case tested we could host OSDs even on different clouds and static machines

243

around the world. It was also shown in the test that it basically does not matter
if you run XtreemOS on stationary machines or in a cloud environment. It works
in both cases and does not give you problems when you prepare it as cloud image.
XOSAGA-SSH gave some flexibility to choose the host we wanted to run our com-
pute jobs on. Possible improvements may include load-balancing for lightweight
jobs: Compute-nodes could register themselves to the server running Zmile, like
the XtreemFS OSDs are doing.

Evaluation reports and bugs have been continuously reported to developers and
to project management thereby guiding the project and contributing to software
evolution. The project approached its end and the we can conclude that the software
product became increasingly mature and complete.

244

Chapter 7

Acknowledgments

Many thanks go to the developers in SP2 and SP3 and in particular the respective
work package leaders for their cooperation regarding the identification of interest-
ing test scenarios and for their support during the XtreemOS installation.

245

Bibliography

[1] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Sei-
del, and B. Ullmer. The Grid Application Toolkit: Towards Generic and Easy
Application Programming Interfaces for the Grid. Proceedings of the IEEE,
93(3):534–550, 2005.

[2] David P. Anderson and Kevin Reed. Celebrating diversity in volunteer com-
puting. In Proc. HICSS, pages 1–8, January 2009.

[3] SPECweb2005 benchmark. Specweb2005 benchmark. Website, 2010.
http://www.spec.org/web2005/.

[4] SPECweb2009 benchmark. Specweb2009 benchmark. Website, 2010.
http://www.spec.org/web2009/.

[5] Raphael Bolze, Franck Cappello, Eddy Caron, Michel Dayde, Frederic De-
sprez, Emmanuel Jeannot, Yvon Jegou, Stephane Lanteri, Julien Leduc,
Noredine Melab, Guillaume Mornet, Raymond Namyst, Pascale Primet,
Benjamin Quetier, Olivier Richard, El-Ghazali Talbi, and Irea Touche.
Grid’5000: A large scale and highly reconfigurable experimental grid
testbed. International Journal of High Performance Computing Applications,
20(4):481–494, November 2006.

[6] Barcelona Supercomputing Center. Marenostrum supercomputer. http:
//www.bsc.es.

[7] SPECweb2005 E commerce Workload Design Document. Specweb2005
e-commerce workload design document. Website, 2009. http://www.
spec.org/web2005/docs/EcommerceDesign.html.

[8] The Kerrighed Community. Kerrighed. Website, 2010. http://www.
kerrighed.org/.

[9] XtreemOS consortium. Design and implementation of node-level vo support.
XtreemOS deliverable D2.1.2, 2007.

[10] XtreemOS consortium. Evaluation report. XtreemOS deliverable D4.2.6,
2009.

246

http://www.kerrighed.org/
http://www.spec.org/web2005/
http://www.spec.org/web2009/
http://www.bsc.es
http://www.bsc.es
http://www.spec.org/web2005/docs/EcommerceDesign.html
http://www.spec.org/web2005/docs/EcommerceDesign.html
http://www.kerrighed.org/

[11] Paolo Costa, Jeff Napper, Guillaume Pierre, and Maarten van Steen. Au-
tonomous resource selection for decentralized utility computing. In Proceed-
ings of the 29th International Conference on Distributed Computing Systems
(ICDCS), June 2009.

[12] SPECweb2005 Benchmark Design Document. Specweb2005 benchmark de-
sign document. Website, 2009. http://www.spec.org/web2005/
docs/designdocument.html.

[13] Inc. Eucalyptus Systems. Eucalyptus, the open source cloud platform. Web-
site, 2010. http://open.eucalyptus.com/.

[14] Open GATE. Simulations of preclinical and clinical scans in emission to-
mography. Website. http://www.opengatecollaboration.org/forewords.html.

[15] Hewlett-Packard. The netperf homepage. Website, 2010. http://www.
netperf.org/.

[16] IEEE. IEEE standard for software test documentation, ieee 829-1998. IEEE
Computer Society, 1998.

[17] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Dumitrescu,
Lex Wolters, and Dick H. J. Epema. The grid workloads archive. Future
Generation Computer Systems, 24(7):672–686, 2008.

[18] S. Jan. Gate: a simulation toolkit for pet and spect. Phys. Med. Biol.,
49(3):4543–4561, July 2004.

[19] S. Kortas. Rï£¡olution haute prï£¡ision des ï£¡uations de navier-stokes
sur machines parallï£¡es ï£¡mï£¡oire distribuï£¡. Phd thesis, Univer-
sit’e de Provence, Centre de Mathematiques et d’informatique.I, France,
1997. http://samuel.kortas.free.fr/DOCS/THESE/these_
Samuel_Kortas.pdf.

[20] S. Kortas and P. Angot. Parallel preconditioners for a fourth-order
discretization of the viscous Bürgers equation. In P. E. Bjørstad,
M. Espedal, and D. Keyes, editors, Proceedings of the 9th interna-
tional conference on domain decomposition method, pages 387–405,
1998. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.23.4449&rep=rep1&type=pdf.

[21] Libvirt. Libvirt: Virtualization API. Website, 2010. http://www.
libvirt.org.

[22] Barry McLarnon, Philip Robinson, Paul Sage, and Peter Milligan. Classifica-
tion and impact analysis of faults in automated system management. In Proc.
of the Third International Conference on Dependability (DEPEND), pages
182–187, July 2010.

247

http://www.libvirt.org
http://www.spec.org/web2005/docs/designdocument.html
http://www.spec.org/web2005/docs/designdocument.html
http://open.eucalyptus.com/
http://www.netperf.org/
http://www.netperf.org/
http://samuel.kortas.free.fr/DOCS/THESE/these_Samuel_Kortas.pdf
http://samuel.kortas.free.fr/DOCS/THESE/these_Samuel_Kortas.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4449&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4449&rep=rep1&type=pdf
http://www.libvirt.org

[23] John Mehnert-Spahn, Thomas Ropars, Michael Schoettner, and Christine
Morin. The architecture of the xtreemos grid checkpointing service. In Euro-
Par, pages 429–441, 2009.

[24] John Mehnert-Spahn and Michael Schoettner, editors. Checkpointing and
Migration of Communication Channels in Heterogeneous Environments, 11th
International Conference on Algorithms and Architectures for Parallel Pro-
cessing, ICA3PP, Busan, South Korea, Mai 21-23, 2010, Lecture Notes in
Computer Science. Springer, 2010.

[25] N. Miles. Emission Tomography. The Fundamentals of PET and SPECT.
Elsevier Academic Press, USA., 2004.

[26] E. Milošev, M. Novak, M. Pihlar, and G. Pipan. Grid-based solution for finan-
cial modeling. In MIPRO 2006. [Vol. 1], Microelectronics, Electronics and
Electronic Technologies/MEET. Hypermedia and Grid Systems/HGS, pages
253–256, Rijeka, Croatia, 2006.

[27] Marc-Florian Müller, Kim-Thomas Rehmann, and Michael Schöttner. Ef-
ficient commit ordering of speculative transactions. In Proc. of the Inter-
national Conference on Parallel and Distributed Processing Techniques and
Applications, pages 21–27, June 2010.

[28] Nataraj Nagaratnam, John Dayka, Anthony Nadalin, Frank Siebenlist, Von
Welch, Ian Foster, and Steve Tuecke. Security architecture for open grid
services. Global Grid Forum Draft, 2002. http://www.ggf.org/
ogsa-sec-wg.

[29] R. Nou, J. Giralt, J. Corbalán, E. Tejedor, J. O. Fitó, J. M. Pérez, and T. Cortés.
Xtreemos application execution management: A scalable approach. In The
11th ACM/IEEE International Conference on Grid Computing (Grid 2010),
2010.

[30] University of Pisa. Information technology center of the university. Website.
http://www.itc.unipi.it.

[31] OpenNebula. The open source toolkit for cloud computing. website, Septem-
ber 2010. http://www.opennebula.org/.

[32] OpenVZ. Openvz. Website, 2009. http://wiki.openvz.org/.

[33] Raja Parasuraman, Thomas B. Sheridan, and Christopher D. Wickens. A
model for types and levels of human interaction with automation. IEEE
Transactions on Systems, Man, and Cybernetics, Part A, 30(3):286–297,
2000.

[34] Pidgin. Pidgin, a universal chat client. website, September 2010. http:
//www.pidgin.im/.

248

http://www.pidgin.im/
http://www.ggf.org/ogsa-sec-wg
http://www.ggf.org/ogsa-sec-wg
http://www.opennebula.org/
http://wiki.openvz.org/
http://www.pidgin.im/

[35] Kim-Thomas Rehmann, Marc-Florian Müller, and Michael Schöttner. Adap-
tive conflict unit size for distributed optimistic synchronization. In Euro-Par
(1), pages 547–559, 2010.

[36] R. Reuillon, D. R. C Hill, C. Gouinaud, Z. El Bitar, V. Breton, and I. Bu-
vat. Monte carlo simulation with the gate software using grid computing. In
NOTERE ’08: Proc. of the 8th Int. Conf. on New Technologies in Distributed
Systems, pages 1–4, New York, NY, USA, 2008. ACM.

[37] Jan Sacha, Jeff Napper, Corina Stratan, and Guillaume Pierre. Adam2: Reli-
able distribution estimation in decentralised environments. In Proceedings of
the 30th IEEE International Conference on Distributed Computing Systems
(ICDCS), June 2010.

[38] Dwight Schauer. Lxc howto. Website, 2010. http://lxc.teegra.
net/.

[39] Corina Stratan, Jan Sacha, Jeff Napper, and Guillaume Pierre. Coordinated
self-adaptation in large-scale peer-to-peer overlays. Technical Report IR-
CS-60, Vrije Universiteit, Amsterdam, The Netherlands, September 2010.
http://www.globule.org/publi/CSALSPTPO_ircs60.html.

[40] Inc. The Linux Kernel Organization. The linux kernel archives. Website,
2010. http://www.kernel.org/.

[41] Apache Tomcat. Apache tomcat. Website, 2010. http://tomcat.
apache.org.

[42] Fatih Turkmen and Bruno Crispo. Performance Evaluation of XACML PDP
Implementations. In SWS 2008: ACM Workshop on Secure Web Services,
pages 37–44. ACM, 2008.

[43] XtreemOS. Advanced guide: Installation and administration. Tech-
nical report, August 2010. https://gforge.inria.fr/scm/
viewvc.php/*checkout*/doc/trunk/AdminGuide.pdf?
root=xtreemos.

[44] XtreemOS. Third prototype implementation of security and vo management
services. Deliverable D3.5.16, May 2010.

[45] XtreemOS. User’s guide. Technical report, August 2010. https:
//gforge.inria.fr/scm/viewvc.php/*checkout*/doc/
trunk/UserGuide.pdf?root=xtreemos.

[46] XtreemOS. Xtreemos grid operating system component interfaces release
v3.0. Technical document, July 2010. https://gforge.inria.
fr/scm/viewvc.php/*checkout*/interfaces/Release3.0/
Release3-interfaces.pdf?root=xtreemos-deliv.

249

https://gforge.inria.fr/scm/viewvc.php/*checkout*/interfaces/Release3.0/Release3-interfaces.pdf?root=xtreemos-deliv
http://lxc.teegra.net/
http://lxc.teegra.net/
http://www.globule.org/publi/CSALSPTPO_ircs60.html
http://www.kernel.org/
http://tomcat.apache.org
http://tomcat.apache.org
https://gforge.inria.fr/scm/viewvc.php/*checkout*/doc/trunk/AdminGuide.pdf?root=xtreemos
https://gforge.inria.fr/scm/viewvc.php/*checkout*/doc/trunk/AdminGuide.pdf?root=xtreemos
https://gforge.inria.fr/scm/viewvc.php/*checkout*/doc/trunk/AdminGuide.pdf?root=xtreemos
https://gforge.inria.fr/scm/viewvc.php/*checkout*/doc/trunk/UserGuide.pdf?root=xtreemos
https://gforge.inria.fr/scm/viewvc.php/*checkout*/doc/trunk/UserGuide.pdf?root=xtreemos
https://gforge.inria.fr/scm/viewvc.php/*checkout*/doc/trunk/UserGuide.pdf?root=xtreemos
https://gforge.inria.fr/scm/viewvc.php/*checkout*/interfaces/Release3.0/Release3-interfaces.pdf?root=xtreemos-deliv
https://gforge.inria.fr/scm/viewvc.php/*checkout*/interfaces/Release3.0/Release3-interfaces.pdf?root=xtreemos-deliv

	Executive Summary
	Introduction
	Application Descriptions
	Overview
	Hmmpfam on COMP Superscalar (BSC)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	SPECweb2005 (BSC)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	XOS-GATE Tomographic Application (CNR)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Amibe (EADS)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	OpenFOAM (EADS)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Paraview (EADS)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Elfipole (EADS)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Maestro (EDF)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Dissemination of XtreemOS

	OpenTurns (EDF)
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Zephyr (EDF)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	SALOME (EDF, INRIA)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	SAP NetWeaver Search and Classification (SAP)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	SAP MaxDB Replayer (SAP)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Rule-based System Management (SAP)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	BioLinux Application mpiBLAST (STFC)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Instant Messaging Application (TID)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Job Management Application (TID)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Wissenheim (UDUS)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Cloud Computing (VUA, ZIB)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Galeb (XLAB)
	Application overview
	Application Development and Porting
	How the Application can Contribute to the Exploitation of XtreemOS
	How the Application can Contribute to the Dissemination of XtreemOS

	Evaluation of Installation and Configuration
	Survey Setup
	Survey Results
	Overview
	Installation
	Configuration
	Basic Usage
	Documentation

	Summary

	Evaluation of XtreemOS Components
	Evaluation Overview
	Evaluation of Node-level VO Support
	Test Plan
	Test Unit 01: Correctness of account mapping
	Test Summary Report

	Evaluation of Checkpointing and Restart
	Test Plan
	Test Unit 01: Container-based checkpointing / restore mechanism with SPECweb
	Test Unit 02: Grid Checkpointing and Restart
	Test Unit 03: Checkpointing on Linux SSI
	Test Summary Report

	Evaluation of LinuxSSI
	Test Plan
	Test Unit 01: Checkpointing and Restart
	Test Unit 02: Global external IP
	Test Summary Report

	Evaluation of the DIXI Message Bus
	Test Plan
	Test Unit 01: client-server timings
	Test Unit 02: multi-client timings
	Test Unit 03: parallel requests in the queue
	Test Summary Report

	Evaluation of XtreemOS API
	Test Plan
	Test Unit 01: Java XOSAGA -- Performance comparison with AEM
	Test Unit 02: Evaluation of Parallel Job Submissions using XOSAGA
	Test Unit 03: XOS MPI -- Performance testing
	Test Summary Report

	Evaluation of the Resource Selection Service
	Test Plan
	Test Unit 01: Adaptation to Changes in Node Properties
	Test Unit 02: Adaptation to Changes in Query Workload
	Test Unit 03: Impact of RSS Self-adaptation on Query delivery
	Test Unit 04: Self-Adaptation Cost
	Test Summary Report

	Evaluation of Application Execution Management
	Test Plan
	Test Unit 01: SPECweb2005
	Test Unit 02: Job Submisssion
	Test Unit 03: AEM Job Submission scalability
	Test Unit 04: AEM SchedFS Benefits
	Test Summary Report

	Evaluation of Data Management
	Test Plan
	Test Unit 01: Object Sharing Service (OSS) -- Wissenheim
	Test Unit 02: Object Sharing Service (OSS) -- Performance stress test
	Test Unit 03: Object Sharing Service (OSS) -- Word frequency analysis
	Test Unit 04: XtreemFS POSIX Compliance Tests
	Test Unit 05: Scalability, Stability and Performance of XtreemFS
	Test Unit 06: XtreemFS, CEPH and NFS - Comparative Performance Analysis
	Test Unit 07: XtreemFS replication for fault tolerance and performance, by SAP
	Test Summary Report

	Evaluation of Security Services
	Test Plan
	Test Unit 01: Virtual Organisation Policy Service (VOPS)
	Test Unit 02: Monitoring features and latency of monitoring notifications
	Test Unit 03: Auditing features and latency of history database queries
	Test Unit 04: Isolation Experiments
	Test Unit 05: Evaluation of CDA Server
	Test Summary Report

	Evaluation of Mobile Device Flavor
	Test Plan
	Test Unit 01: XtreemOS support on ARM architectures
	Test Unit 02: VO support by XtreemOS-MD
	Test Unit 03: Lightweight security for mobile devices
	Test Unit 04: Performance comparison with XtreemOS PC flavor and no-Grid solutions
	Test Unit 05: Creation of new jobs using JobMA application
	Test Unit 06: Defining new jobs using JobMA application
	Test Unit 07: Using JobMA for monitoring jobs
	Test Unit 08: Using JobMA for viewing info about a job
	Test Unit 09: Using JobMA for running a job
	Test Unit 10: Using JobMA to suspend running a job
	Test Unit 11: Using JobMA to resume a suspended job
	Test Unit 12: Using JobMA to cancel a job
	Test Unit 13: IMA and XtreemFS integration
	Test Unit 14: Using XtreemOS-MD for sharing 3G connection
	Test Unit 15: Using XtreemOS-MD for data sharing
	Test Summary Report

	Evaluation of XtreemOS as Foundation for Cloud Computing
	Evaluation of Cloud System Management Automation and Recoverability Enhancement with XtreemOS
	Responsibilities
	Evaluation Setup
	Evaluation Results
	Summary

	Evaluation of an Online Photo Archive as Cloud Deployment using XtreemOS
	Test Plan
	Test Unit 01: Storage Extension
	Test Unit 02: XOSAGA-SSH benefit
	Test Summary Report

	Conclusion
	Acknowledgments

