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Executive Summary
The DIstributed XtreemOS Infrastructure (DIXI) has been designed as a frame-
work and a message bus to offer rapid prototyping of XtreemOS system services.
DIXI provides a staging environment for the XtreemOS services, simplifying the
development of a distributed system by providing a convenient communications
layer. This layer can be used to allow services to communicate with each other,
whether they are on the same node or different nodes. The DIXI developers de-
signed the system to address both short-term goals, providing a simple way to
experiment with new XtreemOS components, and long-term goals, including the
deployment of the system on a high number of nodes. This deliverable focuses on
describing the framework and providing the details on how to develop services to
be run within the framework.

The development of the DIXI was further motivated by the requirement that
the service middleware would be light-weight, provide the service bindings in
Java, and extend the client bindings with C. The framework should abstract away
the particulars of the locations of peer services and the means of communication
required to invoke them. The resulting framework thus functions as an integral
part of XtreemOS, hosting its vital services, and also providing a bridge between
the services hosted by DIXI and other XtreemOS services.

The XtreemOS runtime includes the DIXI daemon which hosts the services,
and the libraries that can be used by client programs. In essence, the DIXI archi-
tecture consists of the messaging bus, an event machine and the stages. The stages
represent the instances of the service implementation. When a service invokes an-
other service’s method, the framework queues a service message with the message
bus. The event machine retrieves the message and puts it on the target service’s
private message queue, effectively executing the service method. In this respect
a bare architecture addresses the stage communication within the DIXI daemon’s
process. Special built-in stages extend the connectivity towards other instances of
DIXI using TCP/IP or SSL. The design of the networking communication permits
passing messages for multiple stages using a single channel, which not only sim-
plifies the point-to-point communication within a subnetwork, but also enables
routing them through firewalls and between NAT-based subnetworks.

The XATI and XATICA libraries provide the service call stubs to the program-
mers developing in Java and C, respectively. The architecture of these libraries
also includes the message bus and the event machine, but it runs no stages except
for the one that provides the network communication.

To develop a DIXI service, the programmer implements a Java class, then dec-
orates it with annotations provided by the DIXI developer library. The service’s
methods that are to be exposed, can receive annotations for having them also ex-
posed towards the client programs (XATI and XATICA). Special annotations exist

4



for placing the service call to be subject to access control validation, and to have
a command generated in the DIXI console. The actual auxiliary code generation
is performed by a tool provided with DIXI.

When a service needs to invoke another service’s call, the developer should
keep in mind that the call done through the service call delegate is asynchronous.
To obtain the result, the service class needs to implement a call-back method, dec-
orated with the proper annotation and registered with the delegate call. Anony-
mous call-back interfaces can also be used, acting as listener classes similar to
Java’s event calls. In either case, a different method should be implemented to
accommodate for the success outcome of the call as well as the failure condition.

The asynchronous nature of the service calls means that the service call im-
plementation loses the method’s internal state between the call-backs. DIXI helps
bridge this gap by providing a context class. The framework ensures that the call-
back receives the correct context, and by being able to receive any object within
its storage, the internal state is preserved. Care should be taken, however, because
the context instance is shared with every service thread presently handling the
service call.

The client development basically involves importing and using static classes
which are auto-generated stubs according to service’s exposed interfaces. These
stubs feature blocking until reception of the result. In addition to ordinary calls,
it is possible to register a call-back listener interface implementation for being
notified of events if services support them.
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1 Introduction
Developing a distributed system presents a need for a way to place components
that can appear in one or more locations, and connecting the components so that
they can act in concert or complement each other. If the component hosting envi-
ronment can also provide the capabilities of a message bus, both the runtime and
the development can benefit.

For XtreemOS we are thus building a framework for developing, hosting and
exploiting services that compose essential components of the XtreemOS system.
We name this framework DIstributed XtreemOS Infrastructure (DIXI).

Communication for the services is an important feature of the framework, but
not an exclusive one. In this respect we have introduced and described the DIXI
framework in [1]. This current deliverable extends the previous entries by pro-
viding further information on the architecture, and contains the documentation
needed by anyone who would like to use or work with the framework.

We start the deliverable by describing the motivation for developing DIXI. In
Section 2 we describe the technical background of the framework and its archi-
tecture. The developer’s guide, presented in Section 3, provides the information
needed for writing or updating services hosted in DIXI, complete with example
code. Developers wishing to write client side code that needs to exploit services
in DIXI can also refer to this section. Users wanting to set up and run DIXI along
with the hosted services can refer to Section 4. We conclude the deliverable with
Section 5.

1.1 Motivation
In the early designing stages of the XtreemOS services it became clear that the
services developed for the system would be experimental at first, but they would
soon stabilise into production-level software. To this end, we needed a framework
that would

• offer quick prototyping of the services,

• provide a staging environment for the XtreemOS services,

• simplify a development of a distributed system, composed of services,

• provide a communication layer between services running on the same node,

• provide communication between the nodes.

While the first services to use DIXI were those of AEM [2], the framework is
general and can host any service package’s components. We considered known
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and widely used middleware products such as CORBA or web services. However,
our middleware message bus and the hosted components needed to satisfy these
requirements:

• The services should be as light-weight as possible.

• The target system would be highly distributed.

• The system should provide such a level of abstraction that the programmer
would not have to implement communication-related logic. The framework
would take care of the communication.

• The services would be written in Java.

• Peer services could use ready-made Java interfaces for issuing service calls.

• The client code could be written either in Java or in C.

• The communication layer would be interchangeable with any protocol re-
quired by the developers.

In this respect, frameworks such as CORBA require both the client and the
server code to contain considerable amount of code for looking up services, nego-
tiating their types and other CORBA-aware operations before it can actually use
the service. Web services, on the other hand, require installation of servers like
Apache Tomcat and Axis, introducing additional overhead in system confugira-
tion, service and client programming, as well as the run-time overheads.

We therefore decided to develop DIXI, which we chose to implement using a
staged event-driven architecture (SEDA) [3]. The outcome is a flexible framework
that does not depend on external middleware instances. Instead, it uses ordinary
TCP/IP for its communication, with an option to use SSL for encryption.

During the development we have performed the benchmarking, reported in [4].

1.2 Uses of DIXI
The high level of abstraction and generality of DIXI permits virtually limitless
uses. In the XtreemOS context, DIXI provides the following capabilities:

• Staging of services that can be either ordinary stateless services or they can
provide an intrinsic state. They act as core services, providing functionali-
ties of the cluster or grid to the software packs, or exist as representatives of
specific nodes.
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• Messaging and communication between nodes, using plain TCP/IP, or, to
provide security and trust, using SSL for encryption and authentication of
the peers in the communication.

• Certain services can provide bridging the DIXI-hosted services with other
components.

• Built-in client programs represent commands and utilities extending the
services’ capabilities towards the users. These components enable the us-
ability of the system within DIXI.

• Further, the client-side libraries can be built into web applications, provid-
ing further types of front-end to the DIXI services.

• Custom user clients can take advantage of the system, e.g., the jobs sub-
mitted to the XtreemOS VOs.

As a result, the DIXI in XtreemOS hosts services of AEM [5], certain security
infrastructure services such as VOPS and RCA [6], it contains services that wrap
the functionality of the SRDS, and the front-ends take shape of the command-line
utilities and the VOLife web interface. The framework is also fully extensible, as
shown by the case of the introduction of the VNodes [7].
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2 Architecture
In this section we describe the architecture of the part of the DIXI framework that
is dedicated to the runtime of the system. In terms of deployment, it consists of
the following components:

DIXI comprises the following components:

• The DIXI Daemon, also named simply the XOSD, usually runs as a Linux
service on the host system. It, in turn, provides the staging environment of
the DIXI services, their cooperation and communication.

• The client interface that can be imported into user programs. The XATI
library provides the Java bindings, and the XATICA library provides the C
bindings.

xosdxosd

user stages

M
es
sa
ge
 B
us

Event Machine

built‐in stages

Daemon
Service Service 
Call 
Proxy

Communi‐Communi‐
cation 
Stage

Figure 1: Architecture of the DIXI Daemon.

The xosd’s architecture is depicted on Figure 1. It shows the following essen-
tial components:

• Stages are the classes which usually implement services. They run in one or
more separate threads within the xosd’s memory space and expose service
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calls towards other services. Each stage has its own messaging queue for
storing incoming service messages. Most of the stages are provided by
the user and can be freely included or excluded within an xosd’s runtime.
However, certain stages are built in and represent an important part of the
DIXI’s features:

– Daemon stage represents the book-keeping stage, holding the infor-
mation of all the stages running within an xosd instance, providing
their runtime manipulation, and the ability to control the xosd.

– Service Call Proxy is a stage for acting on behalf of the clients con-
necting to the xosd.

– Service Call Redirector stage handles the requests to the services that
run in another instance of the xosd.

– Communication Stage provides the capabilities of the network con-
nectivity. It employs the Apache Mina1 framework for handling TCP/IP
and SSL connections with other xosd hosts.

• Event Machine is a root object, responsible for instantiating stages and
connecting their messaging queues.

• Message Bus Stage is an object, which provides communication capabil-
ities between various stages within an instance of xosd. The service mes-
sages use it to post their service messages. The Message Bus Stage collects
the service messages in a FIFO manner and, based on the service header
information, passes them to the recipient service’s event handler.

The arrows in Figure 1 represent the passing of the service messages, which
form the following cycle:

• A service message originates from one of the stages within the xosd. It
contains a service call request, the target service and any parameters.

• The Message Bus collects the messages in an internal FIFO queue. The
Event Machine collects the service message from the tail part of the queue
and de-marshals sends them to the target stage.

• The target queue executes the service request, returning a result. This result
is intercepted by DIXI, addressed to the stage originating the request. and
queued again with the Message bus.

1http://mina.apache.org/
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Figure 2: XATI architecture.

A special case occurs if the target stage does not exist within the xosd in-
stance. In this case the Service Call Redirector will look it up from the service
directory and re-queue the service message to be sent through network to the host
of the service. All the network-bound messages are handled by the Communi-
cation Stage. The Communication Stage also acts as a network server, receiving
service messages from remote clients and queuing them with the Message Bus.

In terms of their implementation, the services are decoupled from the rest
of the DIXI layers. This is made possible by employing generated service call
stubs (service call delegates), making certain that the stage implementation, when
invoking other services, does not need to explicitly form and send the service
messages. Instead, the delegates provide the means to perform asynchronous Java
calls. Such calls do not receive the result of the call, but register a call-back that
the DIXI will call to provide the result.

Any DIXI stage can be a client to another DIXI stage. However, to unlock the
full potential of using the software deployed in DIXI, the user programs can use
XATI or XATICA client libraries for invoking service calls. Figure 2 represents
the architecture of the XATI library. The architecture of the XATICA is similar,
except that it runs in C. As the figure shows, XATI uses a paradigm of message
queueing similar to that in DIXI. However, the only stage that remains active is
that of the Communication Stage, providing the connectivity with xosds.

In XATI, the service messages arrive in the Message Bus through generated
service call stubs. These are designed to block the execution of the thread until
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Figure 3: Service call invocation when the service is located within the same xosd.

the Event Machine receives the result to be returned to the calling thread.

Service messages and information flow. The payload of the communication
between the stages has the form of service messages. These are implemented as
Java classes, serialised and deserialised depending on the transport. Based on their
needs, DIXI uses the following service message types:

• ServiceMessage: the basic class for queueing in the Message Bus, con-
taining information such as the name of the target service, the name of the
method to be invoked and the call parameters.

• CallbackMessage: similar to the ServiceMessage, but with the purpose to
describe the return path for the message call result. It is usually included
as a part of the ServiceMessage’s payload, but can be also used stand-alone
for the services that support notifications.

• NetPackage: a wrapper type for ServiceMessage used where the target
service needs to be contacted through the network.

The service messages are thus exchanged within the DIXI based on the needs
of the call. The Figure 3 shows the most basic scenario of invoking a service mes-
sage of a service presently running within the same xosd instance. In this scenario,
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Figure 4: Service call invocation when the service is located on another node.

a service containing an instance of a delegate class calls the delegate method (a).
The called stub forms a ServiceMessage (c) and sends it to the infrastructure (b).
The Message Bus (d) receives it and, the Event Machine (not shown) executes it
in the target service (e).

A common scenario involves invoking a service which resides on another in-
stance of the xosd, shown on Figure 4. Like in the previous scenario, the client
service invokes a delegate call which implicitly forms a ServiceMessage passed
into the Message Bus (a). The Event Machine cannot invoke this message, thus
it passes it to the service call redirection stage. This obtains a service directory
(c) and forms a NetPackage, passing it to Communication Stage (b). The latter
contacts the Communication Stage of the target host (e) and sends the service mes-
sage over (d). The remote Communication Stage extracts the ServiceMessage and
queues it with its local Message Bus, effectively having the target service invoked
(g).

One advantage of such an architecture is that an xosd can receive on the same
port or, effectively, through a single network channel the service invocations for
any service hosted within. It is therefore also possible to set up an xosd that will
route the service messages through a firewall or a NAT subnet.
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3 Developer’s guide
This section is directed at the developers who would like to create services to
be staged in the DIXI framework. It describes the basic elements that make a
Java class into a DIXI service, provides the directions on how to develop the
asynchronous calls, and specifies the rules governing the DIXI services. For il-
lustration, many section contain examples containing sections of working code or
contents of other text files. The end of each example is marked with a small square
!.

3.1 Service development
3.1.1 Overview

A service in DIXI is a class implemented in Java. It can contain an internal state,
and it exposes a set of methods. The purpose od a service is to provide inter-
related functionalities. For example, a phone directory service maintains a list of
names and phone numbers as its internal state, and provides methods for adding,
removing and listing the entries.

Implementation of a DIXI service is very similar to implementing a call that
other classes use by calling its public methods from the same Java process. How-
ever, we need to have the following in mind:

1. The service calls cannot be invoked directly by calling the class implemen-
tation’s method. Instead, a suitable access point akin to remote procedure
calls needs to be invoked.

2. When calling another service, the call will not be blocking until the called
method returns a value. Instead, a call-back needs to be provided that will
receive the returned value.

The service process implementation occurs in two phases that can freely inter-
chage:

1. The work on the source code that implements the service.

2. Using the XServiceProcessor for generating auxiliary code as well as
service access points and XATI (API and access points for the clients). The
tool uses reflection to extract the API

There are many ways of going about implementing a DIXI service:
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• Starting from the scratch, we can implement the API as the DIXI service
class, and put the implementation within the DIXI class. This is suitable for
a quick development of prototype classes that are ready to be tested right
away on a system that will use DIXI as the main message bus. However,
this may lead to the code where all the processing happens within the DIXI
class, and such code might be difficult to read.

• Alternatively, if there is a pre-existing library or a pre-developed code con-
taining the implementation that we would like to use as a DIXI class, then
we can create a DIXI service class which serves as a wrapper to this imple-
mentation.

For instance, in XtreemOS, services such as the JobMng and the ReservationManager
implement the service within the DIXI class. On the other hand, AllocationMng
or SRDSMng are wrappers for another class.

3.1.2 Requirements

The main requirement for being able to effectively develop DIXI classes is to use
a platform which supports Java 6 or later. The code generation tool takes ad-
vantage of the Java’s decorations for extracting the relevant information from the
code when auto-generating auxiliary classes. In this way, all interfaces and stubs
emerge from the actual code itself, avoiding the need to prepare separate interface
specification documents. Both Sun’s Java2 and the OpenJDK3 are supported.

3.1.3 Preparing the service implementation class

In order for a class to become a service in DIXI, it needs the following:

• Annotate the class with @XOSDSERVICE and

• Extend the class by by Abstract2wayStage.

The following imports are required for the base class and the annotations:

import eu.xtreemos.annotations.XOSDSERVICE;
import eu.xtreemos.system.eventmachine.stage.Abstract2wayStage;

The declaration of the class then appears like in the following example:

2http://java.sun.com
3http://openjdk.java.net/
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@XOSDSERVICE
public class MyService extends Abstract2wayStage {

\\ ....
}

3.1.4 Initialising the class

The service class can maintain a state in the form of its class member field values.
Any needed initialisation, such as instantiating classes, should be placed into the
class’s void init() overload. This method will be called by the xosd after
instatiating the service handler classes.

To notify the xosd or any other classes that the initialisation has been success-
ful, do one of the following within your implementation of the void init():

• Before the end of the class, if the initialisation is successful, call
super.initialise().

• Alternatively, invoke the notification by calling the inherited
notifyServiceInitialised() method.

If the initialisation contains critical code that may fail, the hosting xosd will
usually not stop functioning, but rather proceed with hosting all the other services.
Considering that the xosd runs as a daemon on the Linux system, the failure to
initialise will go unnoticed, save for any error messages in the message log, if the
implementation outputs them. This means that the next time a user will try to
use the service’s calls, the outcome will be undefined or it will throw a seemingly
unrelated exception.

For handling the way the xosd handles the services with failed initialisation, it
is possible to use the following inherited fields:

• boolean isInitialised — if set to true, the service will be con-
sidered initialised, and the service handler will invoke the service call meth-
ods as requested. Otherwise, it will allways throw a
ServiceNotRunningException with the message from the value of
errorMessage.

• String errorMessage — use this field to assign the error message to
be contained in the service exception, if the service is not initialised prop-
erly.

The example on Figure 5 demonstrates the usage of the initialisation overload.
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public void init() {
// the default is to indicate failure
this.isInitialised = false;

try {
// tricky initalisation which may fail
// ...

// safe area, we succeeded
this.isInitialised = true;
notifyServiceInitialised();

} catch (Exception ex) {

// log the failure

// set the message to be shown with any
// attempt to use the service
this.errorMessage = "Cannot initialise " +

"my service: " + ex;
}

}

Figure 5: Initialisation of a service.

3.1.5 Writing service calls

All public methods of the service class become available to other services as ser-
vice calls.

Additionally, the service calls can be annotated with the following annotations:

• @XOSDXATI marks a method to appear in the XATI API. The annotation
has two optional parameters:

– String returntype() — optional parameter assigning the re-
turn type of the call. This does not have to be set because the proper
return type will be assigned to XATI API return type.

– boolean debug() — optional parameter putting the method into
the XATI API for debug purposes only.

• @XOSDCONSOLE — create an entry command for the XConsole which in-
vokes this call via XATI. The annotation has the following parameters:

17



– String returnType() — optional parameter assigning the re-
turn type of the call. This does not have to be set because the proper
return type will be assigned to XConsole command’s return type.

– String consoleString() — the string representing the com-
mand that the XConsole will recognise to be the call to this method.

• @XOSDCALLBACK marks the method as a call-back, creating a correspond-
ing helper method into the call-back class (see Section 3.1.6).

• @XOSDCHECKVALIDITY causes the xosd to validate the certificate by
trusted signers and the date-based validity. The following parameters can
be set:

– String certificate() signifies the name of the parameter to
be used for validation.

– boolean debug() enables or disables the debugging mode for the
validity checks.

• @XOSACCESSCONTROL enables the access control for the service call.
The access control in DIXI is based on the categories that the methods
can be assigned to at the design-time, and the access control list read at
the run-time. The method needs to define a formal parameter of class
X509Certificate to contain the caller’s credential. The Section 3.1.8
contains a detailed description of the use of this annotation. Here we pro-
vide a brief summary of the parameters that can be set:

– String category() defines the category of the method subject
of the access control checks. A single category can be set, or, if
needed, multiple comma-separated names of the categories can be pro-
vided.

– String credential() defines the name of the parameter to be
used as a credential. It has to be the name of one of the parameters
defined in the method’s signature.

– boolean verifyKey() enables or disables the requirement to
verify the credential against the private key.

– checkValidity() enables or disables the requirement to also check
validity of the credential. Setting the parameter to true is equivalent
to decorating the method with @XOSDCHECKVALIDITY.

The XServiceProcessor uses the visibility and the decoration information to
generate the stubs and the auxiliary code that is necessary for the infrastructure
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to function properly. There are many uses of the XServiceProcessor, but in the
following sections we will focus on the service call stubs, the XATI interfaces
(i.e., the Java client interfaces), and the call-back helper classes.

The service call’s parameters as well as the return values can be any seri-
alizable Java class. Please note that currently the primitive Java types are not
supported.

XATICA-friendly parameters. If you are targeting your service also towards
the C-based clients, you may need to provide the method signatures such that they
will be compatible with the XATICA library. The Section 3.4.4 provides a table
with the currently supported Java classes usable in XATICA.

It is also possible to extend the support to own custom classes. To do this,
have your class that appears as a type of a parameter or a return value of a service
call, implement the interface IXATIParasable. The interface should provide
the implementation of the following methods:

• IXATIParsable parseXATI(String toParse) — this method
should use the contents of the toParse parameter to instantiate an in-
stance of the class.

• String toXATIString() — this method should describe the instance
in such a way that it can be parsed into a clone of the instance using parseXATI.

Warning: when the string is transmitted to xosd, it attempts to parse it as an
XML. Therefore if your string representation of the IXATIParsable contains an
XML, please make sure to escape it in the serialization, and un-escape it when
instantiating from a string.

3.1.6 Calling other services’ calls

The most important auto-generated classes contain the delegates that other ser-
vices can use to perform the service calls. These delegates reflect the signature of
the original service call, with the only difference, that all of them are of type void.

The delegate class, by default, appears in the XOS_Services/src project source
folder, the eu.xtreemos.xosd.services package, and it is named as the
service class with a prefix S. For example, the service class named MyService
will yield a service call delegate class named SMyService.

For each service call method of the service class, the delegate class contains
three overloads of the service call’s counterpart:

• The delegate containing the same sequence of parameters as they appear in
the service call.
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• The delegate containing the same sequence of parameters as they appear
in the service call, with one additional parameter representing the success
call-back service message.

• The delegate containing the same sequence of parameters as they appear
in the service call, with two additional parameters. The first additional pa-
rameter represents the success call-back service message, and the second
additional parameter represents the failure call-back service message.

• The delegate containing the same sequence of parameters as they appear in
the service call, with an additional parameter representing an anonymous
call-back listener interface implementation.

Their implementation composes a service message corresponding to the ser-
vice call, and sends it to the message bus. The delegates do not wait for the
message to be delivered, but return immediately instead. The overloads with ad-
ditional call-back parameters embed the call-back service messages within the
newly composed service message. This provides a way for the invoked service to
return the result of the service.

Example. Let us assume we have implemented a service named MyComputation.
One of MyComputation’s methods has the following signature:

public Integer myCall(String name) throws Exception;

The XServiceProcessor puts class SMyComputation into the
eu.xtreemos.xosd.services package of the XOS_Service project. The
class will contain the following methods:

public void myCall(String name) throws Exception;
public void myCall(String name,

CallbackMessage callback) throws Exception;
public void myCall(String name,

CallbackMessage callback,
CallbackMessage exceptionCallback)

throws Exception;
public void myCall(String name,

IServiceCallback callback) throws Exception;
!

To obtain an instance of the delegate class, use the constructor which takes a
Context instance as a parameter. The instance is available within service calls.
Please refer to section 3.1.10 for more details on using the context.
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The call-backs are a special type of service calls. The call-backs are never
invoked explicitly by the remote service, but they are invoked implicitly by the
infrastructure in order to pass the result of the service call. There are two kinds of
call-back methods:

• The success call-back. It obtains the return value of the service call.

• The failure call-back. This call-back is invoked if the service call throws an
exception.

As the generated delegates show, DIXI provides two ways of defining the call-
backs: the call-backs defined and implemented as the stage’s method, or anony-
mous call-backs that use a listener interface implementation.

Methods defined as call-backs. These call-backs are ordinary methods defined
and implemented within the service’s implementation class and decorated with
@XOSDCALLBACK and should follow these guidelines:

• The success call-back should have a single parameter with the type equal to
the return type of the service call being called.

• The failure call-back should have a single parameter typed as java.lang
.Exception.

• The return type of either call-back should be the same as the return type of
the method which registered the call-back.

Java does not enable using the method pointers directly in the delegate stub,
so instead a method description that is an instance of the
CallbackMessage class is needed. An instance of this class contains all the
information needed by the DIXI to identify the host, service and the call that
the result needs to be returned to. The XServiceProcessor code generator tool
will use the signature of the @XOSDCALLBACK methods to create a call-back
helper class with static methods that create and return the CallbackMessage
descriptions.

By default, the call-back helper class is named like the service class, prefixed
with letters CB, and it is placed into the .service sub-package of the package
containing the service class. To obtain the service class description, call the static
method named like the call-back method..
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Example. Let us assume that, in addition to the MyComputation service
class, we will have access to the service calls defined in the service named as
YourService. The service exposes the following method that MyComputation
needs to call:

public String yourServiceCall() throws Exception;

We would like to invoke this service call from MyComputation’s myCall.

In effect, this means that during the design time we need to import into our
project the library containing the SYourService class definition. Considering
we would like MyComputation to be notified of the outcome of the
yourServiceCall, we first implement the call-back method to process the
return value. The return value of yourServiceCall is of type String, and
this defines the call-back’s parameter type. And since myCall’s return value is
of type Integer, the same return type will be used in the call-back.

@XOSDCALLBACK
public Integer successCallback(String result) {

System.out.println("Result: " + result);
Integer returnValue = 42;
return returnValue;

}

If there is an exception in yourServiceCall, we need another call-back to
handle the failure in the service call. The difference with the success call-back’s
signature is that its parameter is always typed as Exception:

@XOSDCALLBACK
public Integer failureCallback(Exception e){

System.err.println("Exception! " + e);
Integer returnValue = new Integer(-1);
return returnValue;

}

Once the call-backs are defined, we need to use XServiceProcessor to gener-
ate the call-back helper class for us.

We now need to implement the actual making of the call:
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public Integer myCall(String name)
throws Exception {

// initialise the delegate class
SYourService yourService =

new SYourService(curContext.get());

// making the service call
yourService.yourServiceCall(

CBMyService.successCallback(),
CBMyService.failureCallback());

/* finishing the class, but not returning
* anything yet */
return null;

}

In this example, we first created an instance of the SYourService delegate
class, using the getter of the call’s context (curContext.get()). We then use
the service call method delegate, registering the two call-backs, which effectively
sends a service message to the message bus requesting the service call invocation.
We finish by returning null (please refer to section 3.1.7 for further details on
returning the values). !

The figure 6 illustrates the execution flow of the service methods. The ver-
tical (blue) arrows represent the ordinary Java line execution, while the arrows
between them (the red arrows) represent the service call invocations. In the case
of myCall, the invocation is requested explicitly, and the execution of
yourServiceCall may be started before myCall finishes. The code of
yourServiceCall is prepared like any Java method, the processing of which
ends either at a valid return directive, or when a message is thrown. Depending
on the outcome, either the success call-back or the failure call-back is invoked.

Anonymous call-backs. A standard way in Java for registering call-back-like
notifications is to employ listener interfaces with methods that a component calls
for us whenever something interesting happens. In DIXI, IServiceCallback
is such an interface, defined as follows:
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Class YourService

Class MyComputation
public Integer myCall(String name) throws Exception {

SYourService yourService = new 
SYourService(curContext.get());

yourService.yourServiceCall(
CBMyService.successCallback(),
CBMyService.failureCallback());

return null; // we are not returning any value yet

}

@XOSDCALLBACK

public Integer failureCallback(Exception e){
System.err.println(“Exception! ” + e);

returnValue = new Integer(‐1);

return returnValue;

}

@XOSDCALLBACK

public Integer successCallback(String result){
System.out.println(“Result: ” + result);

returnValue = 42;

return returnValue;

}

public String yourServiceCall() throws Exception {
if (this.errorCondition)

throw new Exception(“There was an error.”);

else

return “Hello from the other service!”;

}

Figure 6: The call invocation sequence. The myCall requests the
yourServiceCall to be invoked. In yourServiceCall, an er-
ror could occur, resulting in failureCallback invocation. Otherwise,
successCallback is invoked with the return value.

public interface IServiceCallback {
public Object success(Object result)

throws Exception;
public Object failure(Exception exception)

throws Exception;
}

It therefore simply accommodates for both the success and the failure callback
within one class. The advantage over the need to provide the methods decorated
with @XOSDCALLBACK is that it requires no passing of the code through the code
generation tool. Many developers will also prefer this method as it might produce
a cleaner code. On the downside, however, the parameters and return values are
general, so no strong type checking is possible at the design time.
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public Integer myCall(String name) throws Exception {
// initialise the delegate class
SYourService yourService =

new SYourService(curContext.get());

// making the service call
yourService.yourServiceCall(

new IServiceCallback() {
public Object failure(Exception exception)

throws Exception {

System.err.println("Exception! " + e);
returnValue = new Integer(-1);
return returnValue;

}
public Object success(Object result)

throws Exception {
System.out.println("Result: " + result);
returnValue = 42;
return returnValue;

}
});

/* finishing the class, but not returning

* anything yet */
return null;

}

Figure 7: Using the anonymous call-back implementaion in a service call.

Example. The equivalent of the previous example using anonymous call-backs
is shown on Figure 7.

Of course this example only implements the minimum required by the inter-
face. Custom implementation classes can contain further elements, such as fields
with call-specific information whenever needed in the call-back. !

3.1.7 Returning a value

When using Java class methods called directly and within the same memory
spaces, each method returns a value only once, when it finishes the processing.
Similarly, most of the services will expect that their registered call-backs will be
called only once per each service call invocation. This also means that either the
call will occur to either the success call-back or the failure call-back, never both.
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In this section, we assume that the service call completes with no errors that would
indicate a failure. Therefore, once it returns a value, the caller service will receive
it through its success call-back.

In this fashion, an implementation of the service call needs to provide the
return value only once, usually when it completes its processing.

Returning a value of a simple service call method (i.e., a method that does
not make further service calls) is the same as returning a value in a normal Java
fashion: by using the return keyword. The service handler will take care of
sending the appropriate service message containing the returned value.

In a more complex scenario, the service call method makes service calls, and
the processing of the fragmented into one or more call-back methods. In this case,
the following rules should be observed:

• If the method calls other service calls and registers at least one call-back,
the method should return null. This goes for the service call method or
any of the subsequent call-backs.

• If the method is the final call-back of the computation flow, the return value
is ready, and it can use it in its return directive.

• Returning null is valid. The registered success call-back of the callee
service will be invoked after the last method in the call-back sequence of
the called service returns.

If any of the call-backs in the invocation sequence of the service class return
a non-null value, the callee service’s call-back will receive it shortly after it is
returned. However, the service’s call-back sequence will resume in parallel, and
any additional non-null return values will cause undefined behaviour.

3.1.8 Service call invocation access control

Services may implement methods that are sensitive in nature, and thus should be
subject to access restrictions. Such methods can only be issued by the users that
are capable of providing proper credentials. In XtreemOS such credentials are
contained in the user’s certificates as obtained from the VOLife or CDA server.

The service developers are free to build in the access control checks into their
methods. A typical way to perform this is to include as a parameter a form of
credential, then checking a credential attribute (e.g., the user’s group and role)
against an access control list. If the user’s credential checks, then the method
proceeds with its invocation. Otherwise, it aborts the operation with a failure.

There are several drawbacks with this process, however:
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• The developer needs to take additional time to implement the access control
checks, which could have been provided globally and uniformly. Custom
access control checks also require an increase in the needed configuration
files, particularly if each service uses its own scheme of access control.

• With the custom access control checks, the code execution already enters the
implementation of the target service call, possibly posing a security threat.

• The service messages usually have no way to check the credential against
the private key. This is due to the fact that the service receives a secondary
call from another service, or the message arrives through the service proxy.

To solve this, the DIXI provides a built-in mechanism for performing the ac-
cess control checks before invoking a service call. The methods are marked with
categories to provide a simple way to maintain access control lists in the runtime.

In the design time, to have a method be checked for access control, decorate
your methods with the @XOSACCESSCONTROL annotation.

Example. The following method, which is also available as a client call, will
be available to the callers that are permitted to perform actions in the category
vo_administration:

@XOSDXATI
@XOSACCESSCONTROL(category="vo_administration",

credential="userCert")
public String getResourceList(String voID,

X509Certificate userCert) {
// ... implementation here ...
}

The name of the credential parameter of the decoration must match the
name of the parameter used for access control check. In this example, the xosd
will also perform the credential authenticity check, but will not perform any va-
lidity check. There is no restriction of the placement of the credential parameter.

To assign multiple categories for the call, use a comma-separated list of the
category names:
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@XOSACCESSCONTROL(category=
"vo_administration, administration",
credential="userCert")

public String removeVO(X509Certificate userCert,
String voID) {

// ... implementation here ...
}

!
Please note that whenever the decoration or any of its parameters change, you

need to regenerate the code.

The access control list is a simple text file containing a list which, for each
category, it defines which groups and roles are permitted to invoke the service
calls assigned this category. The category name is delimited from the permission
list with an equals sign =. Multiple permissions are delimited with a comma ,
and the group and role are expressed as group:role.

To express permission of any group and role, the asterisk * can be used.
The location of the access control list is defined in the XOSdConfig.conf in

an option named as accessControlListPath. The following shows a valid
access control list:

registration_info=*
resource_administration=admins:res_admin, admins:admin
administration=admins:admin

The access control is therefore based on the certificates which need to con-
tain the proper values in the ”Group” (OID 1.34.5.0.14.7) and the ”Role” (OID
1.34.5.0.14.6) attribute. The user passes the XtreemOS user certificate as the
credential, requesting an invocation of a service call. DIXI then uses the infor-
mation on the method’s categories to consult the access control list. If the user’s
group and role exist in the permissions list of any of the categories assigned to
the service call, it will proceed with the invocation. Otherwise, it will throw the
PermissionDeniedException4 exception.

Credential verification. The credentials used in the service call access control
are sensitive and should be subject to authenticity verification. Considering that
the X509Certificate contain the public and freely exchangeable key, in principle
anyone can obtain anyone else’s credential and use it as a parameter value when

4eu.xtreemos.xosd.security.PermissionDeniedException
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issuing a service request. To ensure that only the holder of the credential’s private
key counterpart issues the request, the system should verify it.

The DIXI uses the following mechanism to verify the certificate:
• The XATI client has to use SSL to connect to the xosd and issue the re-

quest. For the SSL, the same certificate (and corresponding private key)
have to be used as the certificate passed in the credential parameter value.
If mismatching certificates are used, the credential will not be verified and
the server will return the PermissionDeniedException.

• The server that does not process the request, but only acts as the service call
proxy for the client, will verify the credentials in the call parameters against
the certificate used in the SSL communication. Any verified credentials in
the call will be marked as authentic in an additional service call parameter.

• The target service which receives the client’s service call request indirectly
from the proxy will first check if the proxy is hosted on a trusted host. If so,
it will base the access control decision on the additional information on the
verification provided by the peer (i.e., the proxy).

• The service receiving a service call from another service (i.e., not from a
XATI client) that is hosted on a trusted host will assume the credentials
verified.

In summary, the credential verification relies on the SSL to provide the neces-
sary verification of the credential against its private key. Further, it assumes that
the trusted hosts will not use false credentials to gain access to restricted service
calls. Currently, the trust of the peer service is based on the trusted issuer of the
certificate used in the SSL handshake between the two services.

3.1.9 Throwing an exception

In Java, throwing an exception is a legitimate way of notifying of an error or a fail-
ure of any sort. In the DIXI services, it is also a valid way for the service to abort
its processing whenever necessary. This includes any exception thrown within
the service method implementation or the call-back method implementation, not
surrounded in the try ... catch block.

It is a good practice to catch any exceptions that may occur in the service im-
plementation’s runtime by either calling one’s own or other code. In this way the
service implementation has an opportunity of cleaning up any side effects of the
unfinished computation. If the caught exception renders the result meaningless,
and if the caller has to be notified of the failure, the implementation has to throw
an exception that is not caught by the user’s code. This exception, however, will
be caught by the xosd infrastructure, and invoke the caller’s failure call-back.
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XATICA-friendly exceptions. As explained in Section 3.4.4, the XATICA re-
ceives the outcome of the service call as an error code. To provide informative
result in cases of failure, we recommend the use of the XOSException or its
(possibly custom) extensions, that provide the means to assign the error code in
the exception. The class provides one of the following constructors to be used or
extended, where the errCode parameter will translate into the return value in
the XATICA in case of a failure:

public XOSException(final int errCode);

public XOSException(final String message,
final int errCode);

public XOSException(final String message,
final Throwable cause, final int errCode);

3.1.10 Using the context

When a new service call is invoked, it creates a new context. The context consists
of a state, representing this call only, that is isolated from other service call con-
texts. It contains the information on the manner in which the the call was invoked,
the address of the calling service, as well as the information on the call-backs to
be used to return the service’s outcome. The context persists in all executed parts
of the service call, fragmented into the main call and the call-backs.

The context is embodied in the instance of the class Context, located in
the eu.xtreemos.system.eventmachine.queue package, that is ob-
tainable using the curContext.get().

A Context class instance has the following useful fields:

• storage — a field that can be used to store and obtain the call’s state (i.e.,
the parameter and local variable values),

• senderCertificate — the peer certificate used by the remote host (the sender
of the service message request) in the SSL session. This certificate always
represents the other party in the point-to-point communication. If the value
is null, the SSL was not used in the communication. The storage’s value
is preserved between the call-back methods.

• callSenderAccessPoint — the reported access point, i.e., the address of the
xosd that sent the current service message. This address can be useful when
the call-back needs to find out where the response arrived from. The value
of this field will be unique for each method or call-back.
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• senderCommunicationAddress — the address of the host that initiated the
chain of the service calls.

Preserving the call state. Often, our service call needs to first obtain some in-
formation from another service, then, based on the result and the original set of
parameters, computes the response and returns it. In practice, this means that the
information available in the first method (the service call implementation) is re-
quired in the call-back method. The latter is out of Java scope of the first method.
This means that all the local variable values that will be required in the subsequent
call-back methods need to be stored.

The Context’s storage can receive any Object. If only a single variable
needs to be preserved in the storage, the methods can readily assign and retrieve
it, casting it into the proper type when referring to it. When multiple local variable
values need to be transferred, however, it is best to prepare a storage class to hold
the values that need to be retrieved in the call-back method.

Example. In this example, we will have a service which computes a price of a
rectangular real-estate, using another service to obtain the price of a real estate
unit.

We first define a class for storing the values in the parameters of the service
call method. The class can be embedded into the service implementation class, or
placed as a stand-alone class.

public class DimensionStorage {
Double width;
Double height;

}

Then we implement the service call method.

31



public Double rectangleArea(Double width,
Double height) throws Exception {

// obtain the current context
Context context = curContext.get();

// initialise the storage
DimensionStorage storage = new DimensionStorage();

// store the parameters
storage.width = width;
storage.height = height;
context.storage = storage;

// query the price
SRealEstate estate = new SRealEstate(context);
estate.queryPrice(

CBMyService.queryPriceCallback());
}

Finally, we implement the call-back method which will use the values of the
parameters.

@XOSDCALLBACK
public Double queryPriceCallback(Double price) {

// obtain the current context
Context context = curContext.get();

// recover the storage values
DimensionStorage storage =

(DimensionStorage)context.storage;

return storage.width * storage.height * price;
}

!

Scattering requests. A core service is a service which runs in one (or a small
number) of instances within a site. These services usually have a number of node-
level services, i.e., the kind of services which need to run on nodes of a specific
kind. The core nodes may need to gather the responses of these node-level ser-
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vices. To achieve that, it first scatters the requests, sending one to each node.
However, one needs to keep in mind that the requests will go out almost con-

currently. The responses will then arrive from each node, and the call-back meth-
ods (either from success or failure) will be invoked in some order, which will not
be the same as the order we made requests in. Both the success and the failure
method should therefore

• keep count of the number of responses arrived so far. If the counter reaches
zero or registers the same number of invocations as the number of called
nodes, it should return the final result, otherwise it should return null.
Please note that each call can result either in the success or failure call-back,
so each call-back should account for the call. Also

• use context’s callSenderAccessPoint to check the node that sent the
particular response. If the member field’s value is null, the call arrived
from the same xosd.

Example. The following code scatters the requests to services on nodes con-
tained in the collection nodeList:

Context context = curContext.getContext();

// ...

// Initialise the invocation counter
context.storage = nodeList.size();

for (CommunicationAddress node : nodeList) {
// make the next request be sent to node
yourService.setRemoteAddress(node);
// a targeted service call
yourService.yourServiceCall(successCB,

failureCB);
}

The context’s storage in this example holds the invocation counter initialised
by the number of invocations. Each of the two call-backs decreases the counter
until it reaches zero. The counter should be accessed in a thread-safe way unless
your service will always run in a single thread.
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@XOSDCALLBACK
public Integer successCB(Integer result) {

boolean finish = false;
Context context = curContext.getContext();
synchronized (context.storage) {

context.storage = (Integer)context.storage - 1;
finish = (context.storage == 0)

}

if (context.callSenderAccessPoint == null) {
// the response was sent from this xosd

} else {
// the response was sent from another xosd

}

if (!finish)
return null; // we are not done yet

else
return result; // we are done

}

@XOSDCALLBACK
public Integer failureCB(Exception ex) {

boolean finish = false;
Context context = curContext.getContext();
synchronized (context.storage) {

context.storage = (Integer)context.storage - 1;
finish = (context.storage == 0)

}

if (context.callSenderAccessPoint == null) {
// the exception arrived from this xosd

} else {
// the exception was sent from another xosd

}

if (!finish)
return null; // we are not done yet

else
return result; // we are done

}

!
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Scenario Effect in DIXI
Undirected service call.
Service look-up fails.

ServiceNotRunningException to
caller’s failure call-back

Undirected service call.
Target service off-line.

Remove target address from local list. Retry with
the next on the list.

Undirected service call.
All known targets off-line.

Obtain a new list and retry.

Undirected service call.
No known targets.

ServiceNotRunningException to
caller’s failure call-back

Directed service call.
Target service off-line.

MessageSendingException to caller’s
failure call-back

Table 1: Service message invocation failures and respective outcomes.

3.1.11 Network call invocation problems

Certain service call invocations will invariably require a network communication
to be carried out. This introduces possibilities that the communication will fail.
The table 1 summarises situations covered by DIXI and possible outcomes. They
all involve a client service residing on a different node from the target service.
Upon the call, communication bus consults a local copy of service directory and
selects for target the first node on the list. If one does not exist yet, it tries to get it
from the global service directory.

3.1.12 Custom call-backs and notifications

Some of the services that we are implementing may need to provide a way to
notify other services or the clients about specific event occurrences. For other
services, it is possible to notify them by calling their exposed service messages.
The problem arises when we need to send notifications to the clients. The clients,
unlike the services, are not discoverable and behave differently.

The solution is to let the client register for receiving the call-backs by provid-
ing the API call which receives an ICallback object. It is up to the service
implementation then to store the call-back object and use it whenever notification
is due. It should also provide a way for the client to cancel the reception of the
notifications.

To invoke a call-back, the SendCallback method is available in the
Abstract2wayStage class, and thus to all the service class implementations:

• public void SendCallback(ICallback callbackToSend,
Object result, ICallback failureCallback— request a call-
back invocation. The callbackToSend parameter should contain the
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call-back description registered by the client. The result parameter will
become the value of the call-back method’s parameter. The failureCallback
parameter can be the description of the service’s call-back to be invoked if
the invocation of the call-back fails (e.g., due to the network failure). Can
be null if no such call-back is needed.

This method can be used from another service call, call-back, or, e.g., from
a thread. Please note, however, we can pass two ICallback parameters to this
method. The callbackToSend parameter will typically have a value obtained
from the client in another service call. The failureCallback, however, is a
standard failure DIXI call-back with Exception for its single parameter type.
The CB-prefixed auto-generated class methods can therefore be used here.

Please refer to section 3.4.3 for the information on how to implement the client
for it to take advantage of the call-back functionality.

3.2 Configuration classes
The DIXI framework and its development tools feature a way to write and read
configuration files that reflect the Java classes containing the configuration in their
field member. It includes reading and writing of many standard Java types, such
as ArrayList<String>, String[], String, CommunicationAddress, int, long, double.

The configure file takes shape as a properties file. This means that each line
in the configuration file contains the name of the property, followed by the equals
sign and the string representation of the field’s value. The following example of
XOSdConfig.conf shows the attributes representing the address, integer, and an
array of strings:

#Properties File for the client application
#Thu Oct 18 09:15:19 CEST 2007
rootaddress.host=/192.168.0.246
rootaddress.port=60000
services.size=10
services.8=eu.xtreemos.service.test.service.TestHandler
services.6=eu.xtreemos.xosd.jobDirectory.service.JobDirectoryHandler
services.5=eu.xtreemos.xosd.jobmng.service.JobMngHandler
services.3=eu.xtreemos.xosd.resourcemonitor.service.ResourceMonitorHandler
services.2=eu.xtreemos.xosd.xmlextractor.service.XMLExtractorHandler
services.1=eu.xtreemos.xosd.resmng.service.ResMngHandler
services.0=eu.xtreemos.xosd.daemon.DaemonGlobal

To use a properties file for persistent storage of configuration values, we can
create a class (e.g. MyClass with some fields), annotate it with @XOSDCONFIG
annotation and extend it with eu.xtreemos.generator.config.IGenerateConfig (part
of XOS_SEDA). Implement the defaultConfig() method where the initialisation of
the fields’ default values takes place. (If a config file is not provided, these values
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will be used when the user creates an instance of this config class.) If you do not
add implementation of the IGenerateConfig interface, the generated configuration
class will implement defaultConfig() (so that user can add initialisation code later).

@XOSDCONFIG
public class XOSdConfig implements IGenerateConfig{

public CommunicationAddress rootaddress =
new CommunicationAddress();

public String[] services = new String[10];

public void defaultConfig() {
services[0] = "eu.xtreemos.xosd.daemon." +

"DaemonGlobal";
services[1] = "eu.xtreemos.xosd.resmng." +

"service.ResMngHandler";
services[2] = "eu.xtreemos.xosd.xmlextractor." +

"service.XMLExtractorHandler";
services[5] = JobMngHandler.class.getName();
services[6] = JobDirectoryHandler.class.getName();
services[8] = "eu.xtreemos.service.test." +

"service.TestHandler";
rootaddress.host =

CommunicationAddress.localNetAddress();
rootaddress.port = 60000;

}

}

Run the XServiceProcessor generates, for example, the class CXOSdConfig
(with prefix “C”, in the same package as XOSdConfig), which extends XOSd-
Config and enables the user to load and save field values from/into provided config
file.

There are two methods of using the generated class. One can use it statically,
if the same values should be used throughout the project:
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/ filename is path to property file
/ Loading
XOSdConfig.load2Instance(filename, xosdconfig);
/ Saving
osdconfig.rootaddress.port = 60000;
osdconfig.services[0] = "newService";
XOSdConfig.saveInstance("./newxOSDCONFIG.conf",

xosdconfig);

Alternatively, one can create an instance of the configuration class to contain
the values in the configuration file:

// filename is path to property file
// create an instance with values stored in the file
public static CXOSdConfig xosdconfig =

new CXOSdConfig(filename);
// store values into new property file, which
// can be loaded later
xosdconfig.save(myNewFilename);

3.3 Using the code generation tool (XServiceProcessor)
The XServiceProcessor is the tool that analyses the code, compiles it inter-
nally, then uses Java reflection to extract the relevant information from the classes.

To define which classes to analyse, the tool uses the service_folders.txt file as
an input of the paths. The following shows an example of the contents of the file:

../XMLExtractor/src/

../JobDirectory/src/

../RCAServer/src/

../XOSd/src/
#END

It is possible to exclude any line by putting the hash (#) character to the begin-
ning of the line.

In Eclipse, one can use the tool by importing the XServiceProcessor project
into the workspace, then run the Runner Java class. For the utility to function
properly, the runtime needs to reference all the classes compiled in the target
projects as well as any external library referenced by the service implementation
classes.

The service code generation is possible from the command line as well. The
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XServiceProcessor project contains the xserviceprocessor.sh which can
be called to invoke the tool. Before calling it, the service_folders.txt has to contain
the list of paths to the sources containing the code to be processed. Further, make
sure that the target source is compiled before invoking the tool. It is best if the
compilation produces one or more jars that will appear in the tool’s class-path.

The script supports one of the following uses:

# ./xserviceprocessor.sh \
-ClassesBase ~/xtreemos/grid/dixi-aem/trunk/

With the -ClassesBase option the tool will use for its classpath the classes
and jars contained within the project pointed to in the path. The output files will be
written into the XATI, XATICA and XOS_Services folders of the dixi-main/trunk/
module. This is currently the most common usage.

# ./xserviceprocessor.sh \
-ModuleBase ~/xtreemos/grid/dixi-aem/trunk/

The -ModuleBase usage differs from the -ClassesBase in the output
files ending in the XATI, XATICA and XOS_Services folders contained within
the target module (i.e., dixi-aem/tunk/ in the case of the example).

# ./xserviceprocessor.sh \
-AllInOne ~/xtreemos/grid/srds/trunk/

The -AllInOne option tells the tool to place all the output files inside the
target project. It there creates or uses no separate projects (XATI, XATICA or
XOS_Services).
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3.4 Client development

3.4.1 Overview

In the terminology we use in the document, the client of the DIXI infrastructure
is a program that itself does not run any DIXI services. The administrator and the
user commands packaged in the XtreemOS Linux are all clients. They all take
advantage of the communication library and the exposed interfaces provided by
XATI.

3.4.2 Using XATI interfaces

The services can expose a subset of their service calls to the clients by using
the @XOSDXATI decoration (section 3.1.5). The XServiceProcessor creates a
class containing the methods with their signatures transcribed from the service
class. These methods are static, and can be readily called to make the service
call invocation from the client. Unlike the service call delegate class methods,
described in 3.1.6, these calls block until receiving the result. This means that the
service calls in XATI can be used like any other static class methods.

By default, the XServiceProcessor places the generated client API class into
the XATI folder, into the eu.xtreemos.xati.API package, using the name
of the service class prefixed with the letter X for the class name.

Example. Let us assume, like in the previous examples, our service is imple-
mented in the MyComputation class, exposing the following method:

@XOSDXATI
public Integer myCall(String name) throws Exception;

In order for the client to make the call to this method, it needs to first import
the generated XATI class:

import eu.xtreemos.xati.API.XMyComputation;

From within the code, wherever the call needs to be made, it uses the static
method:
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// ...

try {
Integer result = XMyComputation.myCall("Test call");
System.out.println("The call returned " + result);

} catch (Exception ex) {
System.err.println("There was an error: " + ex);

}

As we can see, the client programmer does not need to register any call-backs.
The return result and any exceptions thrown within the service call will be received
by the client’s code as if it were calling a local class method. !

3.4.3 Client call-backs

Some services provide the notification functionality, effectively pushing a mes-
sage or a value to the client. The client needs to implement the handler of these
notifications to be able to receive them. It then needs to first register the handler
with the XATI, and, finally, with the service.

Implementing the call-back listener. The client needs the code that handles
the call-back whenever invoked by the service. The DIXI provides the
ICallbackListener in the eu.xtreemos.xosd.basic package with
the following method to be implemented:

• public void callbackInvoked(Object data) — the method
that will be called whenever a notification occurs. The data parameter will
receive the value of the notification.

Registering the call-back listener with XATI. The XATI library will be re-
sponsible for calling the call-back listener when the appropriate message arrives.
As a result, it needs to issue the call-back message description that the client will
use in the last step, the registering the call-back with the service. This process
requires a set of interfaces that may be confusing. The table 2 clarifies them.

Interface Purpose Needed by
ICallbackListener Implements the handler Client, XATI
ICallback Describes service message Service, XATI

Table 2: The interfaces involved in the client call-backs.

To assign the call-back implementation and to obtain the appropriate descrip-
tion, use the following static method of XATI:
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• public static ICallback setCallback(ICallbackListener
callbackListener) — register the call-back listener implementation
with XATI and obtain the call-back message description related to the call-
back listener.

• public static void removeCallback(ICallback callback)
— unregister the call-back and stop receiving the notifications. This method
expects the call-back message description.

• public static void removeCallback(ICallbackListener
callbackListener) — unregister the call-back and stop receiving the
notifications. This method expects the call-back listener implementation,
and effectively stops any notifications arriving to this implementation.

Registering the call-back with the service. This final step involves notifying
the service that the client needs to receive notifications. The specific call depends
on the service and its API. If you are implementing your own services and would
like to support call-backs, please refer to section 3.1.12.

Typically, however, the service needs to receive the call-back message descrip-
tion that contains the information identifying the client (e.g., the address), as well
as the information needed by XATI to relate the service message with its respec-
tive call-back listener.

Example. On a XATI client, we might want to be notified about an event on the
server. We thus first create a call-back invocation class instance:

ICallbackListener myListener = new ICallbackListener() {
public void callbackInvoked(Object data) {

System.out.println("Invocation with " + data);
}

};

We then register it to XATI, obtaining the call-back message description. This
ensures that XATI will call our listener implementation whenever the proper mes-
sage call arrives.

ICallback myCallbackMsg = XATI.setCallback(myListener);

We now register the call-back message with the service, e.g., the EventProducer
service.

XEventProducer.registerClientCallback(myCallbackMsg);

42



Of course, the EventProducer service has to have a service call exposed
to XATI. On the service side we therefore need to first add a collection to hold all
the clients’ call-back descriptions, and implement the registration service.

@XOSDSERVICE
public class EventProducer extends Abstract2wayStage {

// ...

protected ArrayList<ICallback> callbacks;

// ...

@XOSDXATI
public void registerClientCallback(ICallback callback)
{

this.callbacks.add(callback);
}

// ...

}

Finally, we implement another method in EventProducer that the service
will call whenever the event of interest will occur, and thus notify all the regis-
tered clients by sending them the call-back message. Along with it we will also
implement an optional call-back that will be invoked every time a client call-back
invocation fails.

protected void notifyClients(Object eventResult) {
for (ICallback cb : this.callbacks) {

SendCallback(cb, eventResult,
CBEventProducer.callbackFailed());

}
}

@XOSDCALLBACK
public void callbackFailed(Exception ex) {

// ... handle the failure here
}

!
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3.4.4 Using XATICA libraries

The client programs to DIXI services can also be developed in C. The standard
XATICA directory of the DIXI repository contains the libXATICA library and the
header files as well as the source needed to compile the library5.

To use the XATICA library, your code needs to include the XATICATypes.h
to have the XATICA utilities and structures available. The code generation tool
will also create a header file named after the service class name, prefixed with XC.
The service calls are translated into the global functions with the modification of
its signature as follows:

• The return value of the method is appended to the parameter list. This
return-value parameter is passed by reference of a type equivalent to the
Java method’s return type.

• The service calls with void return type produce no additional parameter to
the signature.

• The return value of the function is the error code of the call.

Example. An equivalent to the XATI example in 3.4.2 in C would be as follows:
!

Type mapping. The DIXI services can use any standard or user-defined Java
classes for the service call parameters and return values, and the XATI client,
being in Java, can use them directly. For the C clients, however, XATICA supports
only a selection of the classes in Java that can be used by the C clients.

The Table 3 shows the mappings between the supported Java classes that ap-
pear in DIXI service calls. To gain access to the custom XATICA-related types
such as CommunicationAddress, the source needs to import the XATICATypes.h.

The DIXI service implementations may provide further support to the classes
used by the services. As explained in Section 3.1.5, the Java classes implement-
ing IXATIParsable can instantiate from a string. On the XATICA side, all
IXATIParsable implementations appear as const char !.

5Please note that libxml2-dev and libssl-dev are required to be able to compile the XATICA
library.
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#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <XATICATypes.h>
#include <XCMyComputation.h>

#define SOCK_MAX_BUF 4096

int main(int argc, char *argv[])
{

// ...

int returnValue;
int retCode = myCall("Test call", &returnValue);

if (retCode != 0)
fprintf(stderr, "There was an error: %x\n",

retCode);

// ...
}

Figure 8: A sample program using XATICA.

4 User’s guide

4.1 Service deployment
The DIXI services are not stand-alone programs. Instead, they are stages that
need to be hosted within the XtreemOS Daemon xosd. The xosd, when started,
will read a configuration file and load, in turn, the service handler of every stage
that it finds listed in the configuration.

The xosd instantiates the service handler dynamically, based on the fully qual-
ified class name (i.e., the string that contains both the package name and the class
name of the handler). In order for the instantiation to succeed, the target handler
class needs to be within the Java class path.

The xosd designates one or more threads6. It creates access points by listening
to communication ports for incoming service messages. The incoming service
messages get queued and passed on to the target service handlers. The overall

6By default, a single thread is assigned to a service, but more can be configured to run.
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Java class C equivalent
String const char !
Integer int
Boolean char
X509Certificate const char (PEM-formatted)
CommunicationAddress const typedef CommunicationAddress
MetricsDesc const typedef MetricsDesc
MetricEvent const typedef MetricEvent
ArrayList<String> const typedef ArrayList
ArrayList<CommunicationAddress> const typedef ArrayListCA

Table 3: Supported Java classes mapped into C for XATICA.

operation of the xosd depends on the settings in its configuration files.

4.2 The xosd command-line parameters
The xosd is a program that can be run with the following syntax:

xosd [-C config_path] [-c xosd_config_file] [-r root_dir]
[-s server_ip[:port_num] ]

• -C config_path sets the folder to contain all the configuration files used by
the services. If the option is omitted, then the /etc/xos/config/ folder is used.
Overrides the -c directive for the xosd’s configuration.

• -c xosd_config_file sets the path and file name to be used for xosd config-
uration. If the option is omitted, /etc/xos/config/XOSdConfig.conf is used
instead. Please note that if the value denotes a relative path, the daemon
and the services will use config_path as the absolute path prefix.

• -r dir_path instructs the daemon to set the DIXI root folder to the value of
dir_path. By default this is the install path /usr/share/dixi.

• -s server_ip[:port_num] sets the ip address server_ip and, optionally, the
port to port_num, of the root xosd. This directive overrides the related set-
tings in the configuration files.

4.3 Running xosd as a service
In the XtreemOS Linux distributions, the xosd installs with scripts that allow it to
be used like a standard system service.
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The user can use /etc/init.d/xosd script for running, stopping and restarting
xosd. This script supports the commands start, stop and restart at this time.

root# /etc/init.d/xosd {start|stop|restart}
On the Mandriva distributions, it is possible to use the service command in-

stead of calling the script directly. By default, the logging information is placed
into /var/log/xosd/xosd.log.

4.4 Configuring the xosd
The xosd reads the contents of a text file containing the parameters for its opera-
tions. As explained in 4.2, the default configuration file’s full path is
/etc/xos/config/XOSdConfig.conf, but the xosd can be instructed to look for the
configuration files in another location using the -C option, or use a different path
and file altogether, supplied with the -c option.

The configuration options can be grouped into logical groups, as explained
below.

Defining which services to run. Listing the services to run within the xosd
involves specifying the service’s fully qualified class name and, optionally, the
number of threads (if more than 1) to start for the service. There are two mutually
exclusive ways of enumerating the services:

• Providing a list of services in the XOSdConfig.conf. This involves the
services.size and the services.X options.

• Defining the service’s invocation by placing .stage files into a specific folder.
This involves the xosdStagesSubDirectory option in the XOSdConfig.conf.
If used, the list of services in the XOSdConfig.conf will be completely ig-
nored.

To provide the list of services in the XOSdConfig.conf, edit as needed the
following options:

• services.size — the number of services to be run by this xosd. This option
defines the size of the list of services to be read by xosd.

• services.X — one or more entries listing the services to be run by this xosd,
with 0 ≤ X < services.size. Make sure each service has a distinct X suffix,
otherwise only the last entry with the same number will be used. Omitting
entries is not an error, but also note that entries with indexes higher than the
defined array size will be ignored with no error reported.
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# Enumerate the services to be run on the node
services.size=7
# This service needs to be included for
# proper operation of xosd
services.0=eu.xtreemos.xosd.daemon.DaemonGlobal
services.1=eu.xtreemos.xosd.security.rca.client.service.RCAClientHandler
services.3=eu.xtreemos.xosd.resourcemonitor.service.ResourceMonitorHandler
services.4=eu.xtreemos.xosd.execMng.service.ExecMngHandler
services.6=eu.xtreemos.xosd.xmlextractor.service.XMLExtractorHandler

Figure 9: Listing the services in the XOSdConfig.conf.

The Figure 9 shows a sample portion of the XOSdConfig.conf listing the ser-
vices. Notice that the services.2 and services.5 entries are missing, which is a
valid setup (i.e., the services can be omitted from the start-up by deleting or com-
menting out the lines defining the service).

For manipulating the services’ inclusion in the xosd using scripts and helper
programs, we have developed an alternative way to define which services to run.
In the XOSdConfig.conf we set the following option:

• xosdStagesSubDirectory — the directory to contain .stage files which de-
fine what services need to run in the xosd. If the directory is relative, the
xosd will assume it is a subdirectory of the configuration path (please refer
to the -C command-line option in 4.2). By default, the xosd_stage value is
used, meaning that the files are expected to be in /etc/xos/config/xosd_stages/.

The xosd will look for the files with names ending with .stage in the designated
directory. The files may be empty, or contain certain options. Depending on each
of the file’s name and contents, one service will be run per file. The .stage files
can contain the following options:

• service — the name of the service to be loaded. If the option is omitted, the
file’s name without the .stage suffix will be used.

• numThreads — the number of threads to start the service in. The default
value is 1.

• enabled — can take values true (default value) or false. This option lets
the user to disable loading of a certain service even if the respective .stage
file is present.

For example, we put the following line into the XOSdConfig.conf:

xosdStagesSubDirectory=xosd_stages

We prepared a number of .stage files in this directory:
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$ ls -l /etc/xos/config/xosd_stages
-rw-r--r-- 1 [...] 133 [...] DaemonGlobal.stage
-rw-r--r-- 1 [...] 0 [...] eu.xtreemos.xosd.security.
rca.server.service.RCAServerHandler.stage
-rw-r--r-- 1 [...] 158 [...] RCAClientHandler.stage

This listing suggests the xosd will load three stages. The RCAServerHandler’s
stage file is empty, therefore the
eu.xtreemos.xosd.security.rca.server.service.RCAServerHandler will be used
as the class name for the service to load. DameonGlobal.stage contains the fol-
lowing:

$ cat /etc/xos/config/xosd_stages/DaemonGlobal.stage
service=eu.xtreemos.xosd.daemon.DaemonGlobal
enabled=true
numThreads=1

This means that the eu.xtreemos.xosd.daemon.DaemonGlobal will be the
class name used when instantiating the service. Finally,

$ cat /etc/xos/config/xosd_stages/RCAClientHandler.stage
service=eu.xtreemos.xosd.security.rca.client.service.RCAClientHandler
enabled=false
numThreads=5

the RCAClientHandler would not be loaded, because the content of the file tells
the xosd that the service is disabled.

Defining the paths and files important for xosd and services.

• xosdRootDir — the string containing the path to the xosd root. This path is
used by some of the services to locate files needed for their proper operation.

• accessControlListPath — the path to the file containing the access control
list. Please refer to Section 3.1.8 for further details.

Communication parameters. The xosd provides stages that provide connectiv-
ity to the xosds and clients elsewhere on the network. The following parameters
modify these values.

• useSSL — indicates whether the communication should use SSL for secu-
rity. Default value: false.
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• trustStoreSSL — indicates the path to the folder containing the signer cer-
tificates trusted in the SSL handshakes.

• trustStore — indicates the path to the folder containing the signer certifi-
cates trusted in the AEM or other services.

• certificateLocation — the path to the public certificate used for the SSL
handshakes. The certificate needs to be able to handle both server and client
connections.

• privateKeyLocation — the path to the private key used for the SSL hand-
shakes and for encrypting the communication.

• networkInterface — an optional option that tells the xosd which network
interface to use for the inbound traffic, e.g., eth0 or eth1. If external-
Address, rootaddress.externalAddress and rootaddress.host are left out
from configuration (are commented out), networkInterface is used to set
up IP proprely assuming XOSd root is running on this node.

• xosdport — the port the xosd will use for listening to the inbound traffic.

• externalAddress — optional parameter. It defines the IP address or the
host name of the gateway xosd that nodes from other subnets can use to
connect to this node. If this node is running behind a firewall, then the
router or firewall that responds on the external address IP needs to forward
the inbound traffic arriving to port xosdport to this node. If the local subnet
has multiple DIXI nodes, then one of the nodes will act as proxy, and the the
firewall needs to forward the traffic on the port number as configured in that
node’s XOSdConfig.conf’s xosdport value. If the parameter is omitted, the
same address is used as that of the xosd’s host.

• xmlport — the port used for the inbound XML connections from C appli-
cations using XATICA C library.

• rootaddress.host — the IP address or the host name of the root xosd. Can
be the node’s own address for a stand-alone or a root xosd. This address
needs to be the one the root xosd’s host’s local address, as seen from the
peers in the host’s subnet. If the host is running on a different subnet than
this node, the rootaddress.externalAddress has to be set to the address ex-
posed to the current node.

• rootaddress.port — an optional parameter defining the port number the
root xosd is listening to for requests. Default value is 60000.
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• rootaddress.externalAddress — the IP address or the host name of the
node visible from external network nodes. The node with this IP needs to
have the port rootaddress.port forwarded to one of the nodes that on the
internal network run the xosd.

Figure 10 shows an example XOSdConfig.conf which configures the local
xosd to connect to a root xosd running at the address myroot.xlab.si. The com-
munication will be SSL-encrypted, using the SSL credentials of the local node.
The daemon will start up and serve the services defined by the .stage files in
/etc/xos/config/xosd_stages.

# This is a sample configuration.
# The lines starting with the hash # are ignored.

# Look for the .stage files here
xosdStagesSubDirectory=/etc/xos/config/xosd_stages

# Security and SSL-related settings
trustStore=/etc/xos/truststore/certs/aem_trusted/
useSSL=true
trustStoreSSL=/etc/xos/truststore/certs/
certificateLocation=/etc/xos/truststore/certs/resource.crt
privateKeyLocation=/etc/xos/truststore/private/resource.key

# Node’s parameters and root addresses
xosdRootDir=.
networkInterface=eth0
xosdport=60000
xmlport=55000
externalAddress=testnode2.xlab.si
rootaddress.host=myroot.xlab.si
rootaddress.externalAddress=gateway.xlab.si
rootaddress.port=60000

Figure 10: A sample DIXI daemon configuration file.

When the xosd starts, the hosted services become available at a common port
of the selected or configured network interface. The Java services and clients
would use the port 60000 to send their service messages, and the C clients would
use the port 55000 to exchange the XML-encoded service messages.

The services use the communication address structure when addressing their
service messages. The communication address is composed of the target host ad-
dress, the port number, and, optionally, the subnet’s gateway (external address).
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For example, 192.168.0.30:60000(194.249.173.87) represents a ser-
vice running on an xosd that uses host address 192.168.0.30, accepts the incoming
messages at port 60000, and is running on a subnet which has a gateway xosd run-
ning on host with address 194.249.173.87.

4.4.1 Connecting the nodes

The system becomes distributed when the services communicate with their peers
on other nodes. Starting up the xosd is the first step, which makes the services
available for the rest of the subnet. The next step is to advertise the service’s
access point (i.e., the address of the xosd) to the other services. This is important
for the type of services that occurs only on one node in the whole system, or
uses a number of replicated mirrors. Hard-coding or using configuration files
would be inconvenient and quite unscalable. Therefore, the infrastructure takes
care of keeping the service locations, and enables the service access point look-
up. The redirection mechanism relies on this look-up to pass an undirected service
message to a target service.

Currently, the DIXI supports a static and centralised node and service direc-
tory. This means that we have to designate a node and its xosd to become a root
xosd. This xosd will keep a list of other nodes, and also store the list of services
as reported by the other xosds.
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Figure 11: Connecting the xosds to the root xosd.

All the other xosds in the system need to specify the address of the root xosd
in their configuration file (please also refer to Section 4.4). The Figure 11 shows a
possible set-up of registering xosds with the root xosd. Here, the root xosd started
up first, followed by the other xosd as numbered on the figure. The xosd 4 would
connect to xosd 3, which would pass on the information to the root xosd.

Please note that the xosds can reside within the same node or on multiple
nodes. Furthermore, the chart shown on Figure 11 does not represent an overlay
of message passing, as the message transport happens on a point-to-point basis.
Other xosds can communicate to the ones shown even if they are not connected to
the same root xosd, as long as they know the address.
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In the upcoming releases, however, a support for the SRDS will be added to
replace the centralised solution with the distributed one.

Connecting the clients. Clients use XATI or XATICA (Java or C, respectively)
to access the services from user programs and prepared commands. The XATI
library is, in effect, a slightly repackaged /bf xosd which runs only the basic com-
munication stages. It does not contain any lists of services or their addresses,
and therefore it needs to connect to an active xosd in order for the service call
invocations to function properly.
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Figure 12: Connecting the client programs to the DIXI system.

Figure 12 illustrate how the clients can connect to an xosd. The clients can
be within the network that is running XtreemOS, or even on a node that runs an
active xosd. It can also connect to an xosd from an external node (such as a laptop
or a home computer), but provided that the target xosd has an externally visible
address, and no firewall blocks the access point’s port. It is also possible to start
an xosd on the external computer which reports its presence to the XtreemOS
network, and then have the clients connect to this local xosd.
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5 Conclusion
In this deliverable we presented the details on the implementation and the usage
of the Distributed XtreemOS Infrastructure (DIXI). The framework has proven
perfect for writing a new distributed operating system. With the built-in utilities,
it reduces the effort needed to prepare the service interfaces, and with the archi-
tecture it enables a high level of separation between the service implementation
and the nature of the underlying transport. The benefit is two-fold: the service de-
velopers can focus on the functionality of the services, while it is possible to add
framework-related features without having to alter the service implementation in
any way.

XtreemOS system provides a reference implementation and usage of the DIXI.
The framework, however, can be used stand-alone or in any other system. The fact
that it is developed in Java also enables it to connect any number of platforms into
its grid. Deployed on the grids such as the PlanetLab7 or the Grid50008, it offers
a baseline for experiments needed in the distributed system research.

As part of the future work, certain improvements in terms of the usability
will be implemented. Mainly these belong to adding diagnostics and management
tools. It will particularly improve the usability by adding graphic user interfaces
for monitoring and managing the run-time of the deployed DIXI framework, either
as a Web application or a desktop GUI.
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