
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Design and Implementation of Advanced Node-level VO
Support Mechanisms

D2.1.5
Due date of deliverable: Novmember 30th, 2008
Actual submission date: December 17th ,2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP2.1
Task number: T2.1.7

Responsible institution: ICT
Editor & and editor’s address: Haiyan Yu

Institute of Computing Technology
No.6 Ke Xue Yuan Nan Lu

100080 Beijing
China

Version 0.3 / Last edited by ICT Team / Dec 17th, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 15/11/08 Haiyan Yu ICT Initial draft
0.2 25/11/08 Haiyan Yu ICT Revision based on reviewers’ comments
0.3 17/12/08 Haiyan Yu ICT Final version

Reviewers:
Adolf Hohl(SAP), Matej Artac(XLAB)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T2.1.7 Design and Implementation of Advanced version of node-

level VO support mechanisms
ICT∗, INRIA, TID, STFC, CNR, SAP

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

D2.1.5 IST-033576

Contents
1 Introduction 3

2 Revisiting the Basic Version of Node-level VO Support 3

3 Objectives and Design Principles 5

4 Revisiting Virtualization Techniques 7
4.1 Comparison of VMM features 8
4.2 Comparison of VMM Performance 8
4.3 Impacts on other XtreemOS modules 9

5 Design and Implementation 10
5.1 Architecture . 10
5.2 Default DMS Implementation on cgroup support 11

5.2.1 Isolation of resources . 12
5.2.2 Container monitor and scheduler 13

5.3 Network Issues . 13
5.4 Monitoring and Accounting . 14

6 Conclusion 14

Bibliography 15

1/17 XtreemOS–Integrated Project

IST-033576 D2.1.5

Executive Summary
In the basic version of VO support mechanisms, the isolation of VO users’ access
to the same local node is done by mapping VO users into different local accounts.
This approach exposes several limitations due to the fact that multiple VO users’
jobs are running in a shared local OS instance. For example, one VO user’s job
could exhaust system resources resulting in the crash of the whole system. Also,
it is quite difficult to support jobs that require different execution environments in
terms of a specific version of kernel, libraries, and system configurations.

The main objectives of advanced node level VO support mechanisms are i)
strong isolation of resource usage and enforcement of fine-grained access control
for VOs, in terms of separated security, performance and other QoS constraints
among multiple VO users accessing the same physical node. ii) auditing, logging,
accounting mechanisms that are needed at node level to provide the information
needed by the higher-level VO management and security services.

In this report, we study and try to leverage new standard-based OS exten-
sions supported by the mainline Linux kernel and mainstream Linux distributions,
mainly virtualization techniques including full virtualization, para-virtualization
and light-weight OS level resource containers, to create isolated execution envi-
ronments for VO users. Typically these enhancements are done in an incremental
manner so as to preserve the semantics and the API provided to other XtreemOS
packages as well as normal Linux applications, ensuring backward compatibility.

XtreemOS–Integrated Project 2/17

D2.1.5 IST-033576

1 Introduction
The main responsibilities of node-level VO support include authenticating grid
users and verification of their security tokens, mapping from grid user identities
to local user identities, translating VO-level access control policies into local OS-
level access rights and capabilities, tracking and auditing users’ accesses to local
resources, accounting resource usage, isolation of different users’ access to the
same node, as well as session management of users’ activities.

We leverage OS-level extension mechanisms to implement VO support, which
are based on standard (or de-facto standard) interfaces supported by most Linux
distributions. With conforming to POSIX-compliant or generic common library
APIs, this approach could enable most traditional Linux services and applications
to be VO-aware without a heavy change of their source codes.

However, without operating system support, it is difficult to differentiate ac-
cess control and auditing among different grid users accessing the same node, in
a scalable and flexible manner, as well as preventing one user’s applications from
interfering with the other’s in terms of performance and other QoS constraints.
OS-level lightweight isolation and enforcement mechanisms, which are already
in or approaching the mainline kernels, are investigated and evaluated to be used
for better support of VOs. These mechanisms include virtualization mechanisms
such as para-virtualization and process containers that evolved from earlier re-
source containers [7] and security containers [22]. By such way, enforcement of
VO policies at a fine-grained level, as well as efficient and guaranteed isolation of
VO accesses, could be achieved in the local node. Typically these enhancements
are done in an incremental manner so as to preserve the semantics and the API
provided to normal Linux applications, ensuring backward compatibility.

The rest of this report is organized as follows: Section 2 presents current
status of basic version of VO support and discusses its limitations. Section 3
gives overall objectives and design principles of using virtualization techniques in
XtreemOS. Section 4 summarizes state-of-art virtualization techniques and their
pros and cons. Section 5 presents the design and implementation of advanced VO
support modules based on libvirt API library [2] and cgroup support [3] in latest
kernels. Section 6 concludes this report.

2 Revisiting the Basic Version of Node-level VO Sup-
port

D2.1.2 [12] presents the basic version of node-level VO support mechanisms.
New PAM and NSS extensions are developed to take over the control of authenti-
cation procedure when VO users access a node either by submitting jobs or using

3/17 XtreemOS–Integrated Project

IST-033576 D2.1.5

a login shell. VO users are dynamically mapped onto local user accounts once a
PAM session starts. A dedicated Account Mapping Service (AMS) was developed
to serve as the back-end for PAM and NSS extensions, which performs the actual
mapping actions based on local configured mapping rules. AMS also acts as the
local policy engine for enforcing VO policies (in the basic version, VO policy of
access control is quite simple as whether to allow or deny a user’s access). The
integration of basic version of VO support extensions (i.e. nss-pam) with other
XtreemOS work packages is described as follows:

• Integration with XtreemFS XtreemFS provides two APIs (xtfs_mount
and xtfs_umount) for mounting the home volume of a VO user in
the (global) XtreemFS file system. The mounting and unmounting oper-
ations are put into the start and end of a PAM session, respectively, i.e.,
the xtfs_mount is called in pam_open_session and xtfs_umount
being called in pam_close_session. The PAM module makes the
assumption that a VO user has already created her own home volume in
XtreemFS before she logins into the node. Correspondingly, a local home
directory is created as the default working directory of a VO user.

• Integration with AEM A PAM-aware interface library was provided to
AEM which relies on the underlying PAM module to launch a job on behalf
of the submitting VO user’s identity. This library is called by the local node
execution manager of AEM. Like XOS-SSH, AEM becomes another PAM-
aware application which is able to track all spawned processes of a job after
the user identity mapping is done in PAM module.

• Integration with VOM The integration with higher level VO Manage-
ment(VOM) services is done in an offline mode due to the nature of PKI-
based security infrastructure. Currently the user identity together with other
VO attributes (e.g. VO names and groups which the user belongs to) are
conveyed in the XOS certificate of a VO user. PAM module processes XOS
certificate to get all necessary information to do account mapping.

• Integration with checkpoint/restart mechanisms The checkpoint/restart
mechanisms require that uid/gid of mapped local users are statically allo-
cated, i.e., after the job restart procedure, the mapped user has the same
uid/gid as the one before job checkpointing. This consistency is ensured by
PAM module with storing the mapping information in a local repository.

In current implementation of node-level VO support modules (nss-pam),
isolation of VO users’ access to a node is done based on mapping VO users onto
different local users. This approach has a few limitations listed below:

XtreemOS–Integrated Project 4/17

D2.1.5 IST-033576

• Performance Issues Without kernel-level support, there is no good way to
effectively control resource usage in a shared environment. One user can
consume a large portion of CPU, memory or disk space resulting in fewer
resources being available for other users. The ulimit could be used to
control amounts of consumed resources by a user. For example, the limita-
tion of maximum CPU wall time against a user could be set with ulimit,
but apparently controlling the percentage of CPU usage is more meaningful.
It is possible to use setpriority (i.e. nice) to change the scheduling
priority of a process, process group, or user. To control the percentage of
CPU usage by a user, additional monitoring works need to be done against
all job processes of the user, to provide an estimation of consumed total
CPU time and thus dynamically adjust scheduling priorities of those pro-
cesses. However, this kind of adjustment is not accurate and becomes very
complicated when there are numerous running processes.

• Stability and Security Issues Since many local users are sharing the oper-
ating system of a node, a buggy or malicious program with one user’s jobs
could cause a system-wide crash, which brings down other users’ jobs on
the same node. Also, the local OS’s vulnerability is increased as VO users
could submit arbitrary jobs that may lead them to be compromised.

• Deployment Issues Each local user shares system-wide components with
others, such as the same version of kernel, libraries, and configuration files.
This severely limits the ability to configure and control the job running envi-
ronment at the individual VO user level. In other words, all VO users’ jobs
need to be compatible with the local OS environment and even hardware
architecture. This also limits the selection of resource nodes for running
jobs with different requirements of environments such as a specific version
of kernel, library, and system configuration files.

3 Objectives and Design Principles
The limitations with the basic version of VO support stems from traditional ac-
count mapping mechanism where system resources are coarsely protected by user
accounts. The objectives of advanced VO support are strong isolation of resource
usage and enforcement of VO policies in terms of security, performance and other
QoS constraints. Access rights of user applications on end nodes as well as their
resource quotas (memory, disk, cpu, net, etc.) defined by VO and/or resource
policies must be strictly controlled. Effective resource usage must be accounted
and transmitted in real time to higher level services. Isolation of grid applica-

5/17 XtreemOS–Integrated Project

IST-033576 D2.1.5

tions must be enforced at various levels (performance, namespace, data, etc.)
depending on the user requirements.

The key point to advanced VO support is to enable multiple isolated execution
environments within a single OS instance. According to Solaris 10 [19], isola-
tion is defined in three aspects: security isolation, resource isolation and fault
isolation.

• Security isolation Isolated execution environments for VO users, also called
containers or sandboxes, are shielded from the outside world and the run-
ning processes of a container are assured that no other users of a container
on the same node can see what they are doing, or compromise information.
Additionally, an administrator inside of a container (i.e. a VO user granted
with admin access rights) only has authority over her own container, so if
the container is illegally accessed, the container isolates the intruder inside
the boundary.

• Resource isolation Each container is assigned a specified allocation of
CPU, memory, and disk, according to VO policies set on a VO user. It
is possible to allow a VO user’s jobs to have bursting resource usage within
reasonable limits but not to dominate the physical server’s resources. And
such, each container could receive a guaranteed level of service.

• Fault isolation A fault or a process in one container does not adversely
affect processes running in other containers. The container is also indepen-
dent from the physical hardware, making it possible to move (i.e. check-
point/restart) a container from one physical node to another with no down-
time. The ability to dynamically reconfigure these containers offers in-
creased flexibility in operations and optimized resource utilization.

With virtualization techniques (an evaluation technical report is presented in
D2.1.6 [13]), it is possible to create such isolated execution environments (i.e.
Virtual Machines, domains, guest hosts, or containers in virtualization terminol-
ogy) that performs as if it were a full node dedicated to the exclusive use of each
VO user. To avoid ambiguity, we use the term domain to represent the isolated
execution environment in following sections.

Though virtualization is a promising way to facilitate the isolation of VO ac-
cess of a physical node and strict enforcement of resource usage. A few design
principles need to be followed in XtreemOS case :

• Application Transparency Grid applications running on VOs do not need
to be aware of the existence of specific virtualization capabilities of nodes.
In other words, application codes do not need to change with nodes that

XtreemOS–Integrated Project 6/17

D2.1.5 IST-033576

may or may not support virtualization. VO users do not know their submit-
ted jobs are possibly running in sandboxes of a machine. It is possible for
VO users to submit domain images (a domain image is a packed file pro-
viding metadata of resource configurations of a VM and the pre-installed
OS image) to a node for running provided that they are granted this kind of
access right. In that case, domain images could be stored on XtreemFS and
the instantiate of images could be specified in a JSDL file.

• Scalability Depending on VO policies, it is possible to allocate one domain
on per-VO basis, or one domain for each VO user, or even one domain for
each running job. In this document, we only consider the allocation of do-
mains on per-user basis, i.e., all jobs of a VO user are limited to running
within one domain. When there are a large amount of VO users accessing
the same node, it requires that underlying virtualization mechanisms are
light-weight in terms of both running and management overhead. As dis-
cussed later, the choice of virtualization solutions is quite difficult as there
is no best one among available techniques.

• Flexibility With the built-in virtualization support from CPU chips (e.g.
Intel Intel VT-x or AMD-V Pacifica and Vanderpool), virtualization tech-
niques are becoming mature and get a wide adoption in commercial IT in-
frastructures that require improved cost-effectiveness and manageability. It
is also hard to predict which technical virtualization solution will dominate
in the future OS releases. In XtreemOS case, it is desirable that VO support
mechanisms are independent of a specific virtualization solution.

4 Revisiting Virtualization Techniques
Recent years have witnessed the mature and wide application of virtualization
techniques. Xen [20], VMWare [6] and Virtuozzo [5] (the commercialized ver-
sion of OpenVZ [4]) are commonly seen in Web hosting business for providing
dedicated Virtual Private Server (VPS) renting. Linux-VServer [15] is extensively
used in PlanetLab [11], a worldwide platform provide virtualized "slices" to re-
searchers. Recently Xen based virtualization platform got the focus in cloud com-
puting such as Amazon EC2 platform [1] and related research plans [10] proposed
by IBM/Google.

In XtreemOS, before we leverage virtualization techniques, the following ques-
tions are to be answered:

• For strong isolation and enforcement of resource usage, which kind of vir-
tualization technique should XtreemOS choose ?

7/17 XtreemOS–Integrated Project

IST-033576 D2.1.5

• What kind of changes could happen with other XtreemOS modules if we
introduces virtualization in VO support ?

4.1 Comparison of VMM features

0 Isolation

Linux,

MacOSX

*BSD

Windows *

SE Linux,

Resource

Containers,

BSD Jail

Vserver

Solaris 10

OpenVZ

Virtuozzo

Efficiency

3 1 2

Xen, KVM

VirtualBox

VMWare ESX

VMWar e GSX

Virtual Server,

QEMU

UML

Figure 1: Comparison of existing VMM techniques

Figure 1 and Table 1 are adapted from [23]. Figure 1 summarizes the state-
of-the-art in Virtual Machine Monitor (VMM) technology along two dimensions.
The x-axis counts how many of the three different kinds of isolation are supported
by a particular technology. The y-axis is intended to be interpreted qualitatively
rather than quantitatively. Table 1 provides a list of popular features that attract
users to VM technologies. The key observation is, to date, there is no VMM
technology that achieves the ideal of maximizing both efficiency and isolation, as
well as supporting all desired features. A detailed comparison of virtualization
techniques are discussed in D2.1.6 [13].

4.2 Comparison of VMM Performance
Using virtualization for high performance computing (HPC) applications is cur-
rently limited despite its potential for both improving resource utilization as well
as providing resource guarantees to its users. In [14] authors systematically eval-
uate various VMs for computationally intensive HPC applications using various
standard benchmarks. VMWare Server, Xen and OpenVZ are examined respec-
tively to test the suitability of full virtualization, para-virtualization, and operat-

XtreemOS–Integrated Project 8/17

D2.1.5 IST-033576

Features HyperVisor-based
approaches (Xen,
KVM, VMWare
ESX,VirtualBox,UML
etc.)

Container-based ap-
proaches (OpenVZ,
Linux Vserver, Linux
Container, etc.)

Fault Isolation yes no
Resource Isolation yes yes
Security Isolation yes yes
Multiple Kernels yes no
Separated root access yes yes
Checkpoint & Resume yes yes
Live Migration yes yes
Live System Update yes yes

Table 1: Comparison of common features of VMM

ing system-level virtualization in terms of network utilization, SMP performance,
file system performance, and MPI scalability. The conclusion is that operating
system-level virtualization provided by OpenVZ provides the best overall perfor-
mance, particularly for MPI scalability. Similar results are found in [16, 17, 24].
Though there is no evaluation report regarding control group (cgroup) support
[3] in latest kernel, we believe that it gains better performance than full virtualiza-
tion solutions, provided that jobs are running with the same version of kernel.

4.3 Impacts on other XtreemOS modules
For advanced VO support by leveraging virtualization techniques, multiple VO
accesses to the local node are isolated by domains, be it heavy-weight virtual
machines or light-weight containers. While we try to minimize the impact on
other XtreemOS modules, the following issues have to be considered:

• XtreemFS integration Generally the sharing mechanisms among domains
(VMs) is very limited to only network based communication. Some VMMs
support direct mounting of file systems between hosts and guests. For ap-
plications running in domains to access XtreemFS, either the domain image
(OS) is capable of running XtreemFS client or the domain relies on the un-
derlying host to expose XtreemFS into its file system space. For the former
approach, it requires that domain images is also equipped XtreemOS or at
least the XtreemFS client. In the later case, additional mounting work needs
to be done, and the implementation approach depends on specific VMM
support or in the worst case using NFS based file sharing.

9/17 XtreemOS–Integrated Project

IST-033576 D2.1.5

• AEM integration The local execution manager and monitoring service of
AEM need a special treat of the case that jobs of a VO user are running
in a domain. In other words, jobs running in domains need to be tracked
in a different way and thus additional work is required to interact with do-
mains. For example, the local execution manager of AEM needs to be able
to manager processes in a domain. This can be accomplished by connecting
domains and issuing process related command via remote shell or deploy-
ing AEM services into domains. Things become complicated if VO users
are permitted to created new domain images or uploading existing images
to nodes. In such case, AEM needs to deal with additional management
works such as finding matched nodes with virtualization capabilities, trans-
ferring domain images or fetching images from XtreemFS to nodes. Finding
virtualization-capable nodes would be a matter of using proper/extended
JSDL and publishing the virtualization capabilites by the node as another
resource. Of course we would need to settle on what type of attributes to
use, and whether a domain is advertised as a node, or should we stick to
advertising the host only. It is true, however, that AEM would need to set
up the user’s domain before starting a job, and tearing it down afterwards.
It sounds likely that AEM too would need to be installed on the domain, un-
less we could count the running of the domain as a job, and simply control
the domain as a black box.

• VOM integration The virtualization support raise new questions for VO
policy management services. There are several choices regarding the gran-
ularity of controlling resource usage in VOs. Possible policies could be
allocating one domain per VO (i.e. enforcing QoS constraints at whole VO
level), one domain per VO user or one domain per job. There could be new
policy of allowing VO users to submit their own OS images to resource
nodes. How to define these policies and how to convey them to the node is
a remaining issue.

5 Design and Implementation

5.1 Architecture
As depicted in Fig. 3, a new module named Domain Management Service (DMS)
is developed to control all domain related operations in a local node, which ac-
cepts given resource constraints for VO users (e.g. specified in VO policies) and
creates domains for each VO user. DMS also performs the real-time monitoring
of domains to ensure the resource quota is not exceeded. The resource usage en-

XtreemOS–Integrated Project 10/17

D2.1.5 IST-033576

forcement information to DMS is passed by PAM-aware applications, e.g., a job
execution manager or a login shell.

With considering the fact that different virtualization support could reside on
physical nodes (e.g. Mandriva with Xen, Debian etch with OpenVZ, etc.) and for
simplicity of implementation, libvirt API library [2] is used to implement DMS.
Libvirt provides a stable API for managing virtualization hosts and their guests.
It started with a Xen driver, and over time has evolved to add support for QEMU,
KVM, OpenVZ and most recently of all a driver called "LXC" short for "LinuX
Containers". With a consistent set of APIs, libvirt also adopts standardized con-
figuration format for user-space management applications in the host (and remote
secure RPC to the host).

Sub components of DMS are listed as follows:
Domain Controller Domain controller is responsible for creating, destroying,

suspending/resuming of domains for VO users. Domain controller interacts the
underlying hypervisor for managing domains. By default, there is a hypervisor
implemented via cgroup extension (discussed later). Domains are persisted into
domain repository as domain images when necessary.

Domain Monitor Domains are created with determined resource constraints
including CPU percentage, memory quota, storage quota and network bandwidth
limitation. Domain monitor keeps an eye on running domain instances using hy-
pervisor dependant APIs (e.g. XenMon [18]). Domain monitor is able to notify
domain controller when domains are exceeding their resource usage limits.

Domain Repository The domain repository is used to store templates of do-
main configurations (e.g. hardware resource configuration defined by virDomainDefineXML)
and domain OS images/snapshots. For example, when a VO user leaves a node
temporarily, the allocated domain image could be suspended into domain repos-
itory to save system resources. When a VO user access the node next time, her
domain is quickly put into running status (e.g. via virDomainCreate).

5.2 Default DMS Implementation on cgroup support
By default, we use a light-weight OS level virtualization method as the hypervisor
to manage domains. As discussed in D2.1.6, the cgroup subsystem appearing
in Linux kernel (version 2.6) has been seen as a new partition technology. It
provides a mechanism for aggregating/partitioning sets of processes, and all their
future children, into hierarchical groups with specialized behaviors. Linux allows
a control group of process hierarchy to be associated with subsystems (scheduling,
memory management, accounting, etc. A subsystem is a module, which makes
use of the process grouping facilities provided by cgroups, to treat groups of pro-
cesses in particular ways. A subsystem is typically a "resource controller" that
schedules a resource or applies limits predefined for each cgroup.

11/17 XtreemOS–Integrated Project

IST-033576 D2.1.5

User application

libpam
XtreemOS

PAM module
(pam_xos.so)

libc
XtreemOS

NSS module
(libnss_xos.so)

Mappings
database

Account Mapping Service
!AMS"

1. authentication
request

2/6. PAM configured
to use specific

module

4. authentication
success

7. mapping request
and store mapping

relationship

NSS subsystem
PAM subsystem

5. account
confirmed
request

8. account
confirmed
success

1. user
information

request

2. NSS configured
to use specific

module

3. mapping
information

request
4. mapping
information

5. user
information

Prototype-specific component

System standard component

CDA

VO management

1. cert request

2. user XOS_cert

PAM disposal phrase

NSS disposal phrase

Previous steps

user

IS

AS

X-VOMS

3. store
credential

Domain Management
Service (DMS)

Cgroup
subsystem

9. resource usage
enforcement information

10. create/
load domain
in session

Domain
Repository

libvirt

Domain
Monitor

Domain
Controller

Figure 2: Overview of Architecture

From Linux kernel version 2.6.27, many subsystems such as PID namespace,
memory/network usage subsystem, have been integrated in kernel container. We
can make use of existing functionalities or develop custom function subsystem to
achieve our goal. Figure 4 depicts the interaction between cgroup based DMS
with other modules.

A detailed introduction of linux container support in libvirt is presented
in [9]. Here we briefly introduce the implementation approach.

5.2.1 Isolation of resources

For PID isolation, each process can only see the process belonging to same con-
tainer. The view of ps command only presents the processes in the same con-
tainer. One process can not be allowed to access or communicate with other pro-
cesses in other containers. The isolation of memory access is done by cgroup
subsystem. Memory limitation can be done with containers (still need a cgroup
patch). Each container can be allocated given memory. Currently, the memory
limitation is only applied to physical memory rather than virtual memory. The
limitation of network bandwidth can be archieved by blocking network traffic for

XtreemOS–Integrated Project 12/17

D2.1.5 IST-033576

AMS

PID subsystem MEM
subsystem

Ndev
subsystem ...

cgroup

kernel

user

Cgroup
filesystem

Container Userspace Library

Container System

XtreemOS PAM

Container
Monitor

Container
Scheduler

Domain Management Service

Figure 3: Default DMS implementation based on cgroup support

a given network namespace.

5.2.2 Container monitor and scheduler

The container monitor here is to provide QoS related information to scheduler.
By inspecting the /proc file system of each container (i.e. cgroup file system),
the container monitor could perform accounting of resource usage for each con-
tainer. Container scheduler freeze (or unfreeze or execute) containers based on
accumulated accounting information. Container scheduler is able to switch the
status of multiple containers in a priority-based or time sharing-based policy. The
container scheduler also provides the support for checkpoint/restart and migration
of containers.

5.3 Network Issues
By default, domains are assigned internal IP address in virtual networks. That
should not affect VO users submitting jobs as AEM hide the running details from
users. But for VO users accessing domains directly from external networks (e.g.
via xos-ssh), normally domains need public IP addresses as the physical node
has. The alternative way is to use port forwarding on physical node (the limitation

13/17 XtreemOS–Integrated Project

IST-033576 D2.1.5

is that one port is only mapped to one domain). This issue can be also addressed
in the application level. For example, xos-ssh client sends specific domain
addresses to xos-sshd, and the xos-sshd relays traffic to domains according
to target domain addresses.

5.4 Monitoring and Accounting
Generally speaking, large part of monitoring and accounting works could be done
in higher level services like execution management services. With introducing
virtualization and domains, monitoring and auditing works become complicate.
For example, while VMM can allocate fixed shares of CPU among competing
VMs, it is also necessary to account for work done on behalf of individual VMs in
device drivers (e.g. multiple VMs share I/O paths in hypervisor or domain-0 and
this part of overhead needs to be logged). In other words, the accurate measure of
consumed resources by domains should include the I/O work done in the host.

For monitoring the physical nodes, there are many choices. Ganglia [21] is
cluster-wide tool currently used to gather information of physical nodes though it
may be not aware of virtualized nodes. Nagios [8] is another open source moni-
toring program for hosts, services and networks and generally used for alerting. It
is possible to develop Nagios plugin for monitoring VMs.

Unlike the software that monitors the underlying hardware, the software that
monitors the hypervisor depends on the type of hypervisor. For example the Argo
project is a simple, extensible, framework for monitoring and controlling a host
running multiple Xen instances. The Unix/Linux system management tool monit
can also be used to watch hypervisor processes. The XenMon [18] tools make
use of the existing Xen tracing feature to provide fine grained reporting of various
domain related metrics. The xenbake daemon keeps a large amount of history in
a shared memory area that may be accessed by tools such as xenmon. Monitor-
ing applications running inside VMs is no different than monitoring applications
running on a physical server.

6 Conclusion
In this report, we have investigated state-of-art virtualization techniques and chose
a feasible approach to achieve advanced VO support in terms of strong isolation
and enforcement of resource usage. For each VO user, a domain (VM) is allo-
cated once a PAM session starts. VMs enable fault isolation and encapsulating
of different applications in self-contained execution environments so that a failure
in one virtual machine does not affect other VMs hosted on the same physical
hardware. Individual VMs are often configured with performance guarantees and

XtreemOS–Integrated Project 14/17

D2.1.5 IST-033576

expectations, e.g., based on policies or service level agreements. Thus, the re-
source consumption of one VM should not impact the promised guarantees to
other VMs on the same hardware. We also discussed using the default hypervisor
based on cgroup support in recent Linux kernel.

Bibliography
[1] Amazon elastic compute cloud (amazon ec2). http://aws.amazon.com/ec2/.

[2] libvirt:virtualization api. http://libvirt.org/.

[3] Linux containers. http://lxc.sourceforge.net/.

[4] Openvz. http://openvz.org/.

[5] Virtuozzo. http://www.parallels.com/virtuozzo/.

[6] Vmware. http://www.vmware.com.

[7] G. Banga, P. Druschel, and J.C. Mogul. Resource Containers: A New Facil-
ity for Resource Management in Server Systems. OPERATING SYSTEMS
REVIEW, 33:45–58, 1998.

[8] W. Barth. Nagios: System And Network Monitoring. No Starch Press, Inc,
2006.

[9] Daniel P. Berrange. An introduction to libvirt’s LXC (LinuX Container)
support, 2008. Available at https://lists.linux-foundation.
org/pipermail/containers/2008-September/013237.
html.

[10] G. Boss, P. Malladi, D. Quan, L. Legregni, and H. Hall. Cloud Computing,
2007.

[11] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman. PlanetLab: an overlay testbed for broad-coverage services.
ACM SIGCOMM Computer Communication Review, 33(3):3–12, 2003.

[12] XtreemOS consortium. D2.1.2: Design and Implementation of Node-level
VO Support. November 2007.

[13] XtreemOS consortium. D2.1.6: Evaluation of Linux native isolation mech-
anisms for XtreemOS flavours. November 2008.

15/17 XtreemOS–Integrated Project

https://lists.linux-foundation.org/pipermail/containers/2008-September/013237.html
https://lists.linux-foundation.org/pipermail/containers/2008-September/013237.html
https://lists.linux-foundation.org/pipermail/containers/2008-September/013237.html

IST-033576 D2.1.5

[14] E. Courses and T. Surveys. A Comparison of Virtualization Technologies for
HPC. In Advanced Information Networking and Applications, 2008. AINA
2008. 22nd International Conference on, pages 861–868, 2008.

[15] B. des Ligneris. Virtualization of Linux Based Computers: The Linux-
VServer Project. In Proceedings of the 19th International Symposium on
High Performance Computing Systems and Applications, pages 340–346.
IEEE Computer Society Washington, DC, USA, 2005.

[16] W. Emeneker, D. Stanzione, and H.P.C. Initiative. HPC Cluster Readiness
of Xen and User Mode Linux. In 2006 IEEE International Conference on
Cluster Computing, 2006.

[17] A. Gavrilovska, S. Kumar, H. Raj, K. Schwan, R. Nathuji, V. Gupta, R. Ni-
ranjan, A. Randive, and P. Saraiya. High-Performance Hypervisor Architec-
tures: Virtualization in HPC Systems. In Workshop on High Performance
Virtualization (HPCVirt) in conjunction with EuroSys, 2007.

[18] D. Gupta, R. Gardner, and L. Cherkasova. XenMon: QoS Monitoring
and Performance Profiling Tool. Technical ReportHPL-2005-187, Hewlett-
Packard Development Company, LP, 2005.

[19] M. Lageman and S.C. Solutions. Solaris ContainersąłWhat They Are and
How to Use Them. Sun BluePrints OnLine, pages 819–2679, 2005.

[20] Barham P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of
the nineteenth ACM Symposium on Operating Systems Principles (SOSP),
2003.

[21] F.D. Sacerdoti, M.J. Katz, M.L. Massie, and D.E. Culler. Wide Area Cluster
Monitoring with Ganglia. In Proceedings of the IEEE Cluster 2003 Confer-
ence, 2003.

[22] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux
Security Module. NAI Labs Report# 01, 43, 2001.

[23] S. Soltesz, H. Pötzl, M.E. Fiuczynski, A. Bavier, and L. Peterson. Container-
based operating system virtualization: a scalable, high-performance alterna-
tive to hypervisors. In Proceedings of the 2007 conference on EuroSys, pages
275–287. ACM Press New York, NY, USA, 2007.

[24] L. Youseff, R. Wolski, B. Gorda, and C. Krintz. Evaluating the Performance
Impact of Xen on MPI and Process Execution For HPC Systems. In Proc. of

XtreemOS–Integrated Project 16/17

D2.1.5 IST-033576

International Workshop on Virtualization Technologies in Distributed Com-
puting (VTDC), 2006.

17/17 XtreemOS–Integrated Project

	Introduction
	Revisiting the Basic Version of Node-level VO Support
	Objectives and Design Principles
	Revisiting Virtualization Techniques
	Comparison of VMM features
	Comparison of VMM Performance
	Impacts on other XtreemOS modules

	Design and Implementation
	Architecture
	Default DMS Implementation on cgroup support
	Isolation of resources
	Container monitor and scheduler

	Network Issues
	Monitoring and Accounting

	Conclusion
	Bibliography

