
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

First Version of System Architecture
D3.1.4

Due date of deliverable: November 30th, 2007
Actual submission date: December 21st, 2007

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.3

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.1 / Last edited by Christine Morin / December 21, 2007

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 04/10/07 Thilo Kielmann VUA initial draft
0.2 10/10/07 Oscar David Sánchez INRIA glossary, configuration, document splitted in different

files
0.3 23/10/07 Matthieu Fertré INRIA WP2.2 components
0.4 24/10/07 Luis Pablo Prieto TID overall architecture of WP2.3 and WP3.6 components
0.5 12/11/07 Toni Cortes BSC Overall architecture of WP3.3 and capability diagrams

for AEM
0.6 19/11/07 Toni Cortes BSC Refined capability diagrams for AEM
0.7 23/11/07 Yvon Jégou INRIA Inserted VO management capabilities
0.8 26/11/07 Bjoern Kolbeck ZIB Added file system related capabilities
0.9 27/11/07 Toni Cortes BSC Added refernces for AEM deliverables
0.91 27/11/07 Paolo Costa VUA Added refernces for WP 3.2 deliverables
0.92 30/11/07 Luis Pablo Prieto TID Added refernces for WP 2.3 & 3.6 deliverables
0.93 06/12/07 Michael Schoettner UDUS WP2.2 checkpointing
0.94 10/12/07 Erica Yang STFC updated all VO capabilities: text and diagrams
0.99 11/12/07 Thilo Kielmann VUA first complete version
1.00 14/12/07 Thilo Kielmann VUA final version
1.01 14/12/07 Mathijs den Burger and Thilo

Kielmann
VUA minor corrections in a few diagrams

1.1 21/10/07 Christine Morin INRIA Minor corrections in Section 2, correction of typos in
Sections 1 and 3

Reviewers:
All work package leaders from SP2 and SP3

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.1.3 XtreemOS system architecture INRIA, STFC, BSC, VUA∗, XLAB, ZIB, TID

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable.
∗Task leader

Executive Summary
This document describes the overall system architecture for the software packages
developed by the XtreemOS project, as they are foreseen and already partially de-
veloped at the current phase of the project (month 18). We are presenting the
individual packages of XtreemOS, their layering in the overall software system,
as well as the individual components of each package. Based here upon, we are
describing the interactions of the software packages with each other, for the pur-
pose of jointly providing capabilities to users, applications, or to other XtreemOS
software packages. We conclude this document by summarizing our findings and
outlining directions for future documents describing aspects of the XtreemOS sys-
tem architecture.

1

Glossary
Capabilities Higher-level functionality achieved by the combination and in-

teraction of different services.

Component Generic name for a piece of software that makes up XtreemOS.
Focuses on the software-engineering aspect rather than the func-
tionality the software provides.

Functionality Specific actions or activities that can be performed.

Layer Set of components that provide functionality at approximately
the same level of abstraction from the underlying hardware.

Module Part of a component.

Package Set of components provided by the same Work Package.

Service Set of components providing a certain functionality. Focuses
on the functionality that is provided rather than the underlying
software.

System A combination of components and hardware forming a unitary
whole. Historically, the term is mostly used to describe either
rather low-level software close to the actual hardware, or the
high-level concept of the ’whole system’ including all software
and hardware it consists of.

2

Contents
Executive Summary 1

Glossary 2

1 Introduction 2

2 XtreemOS software packages 4
2.1 Extensions to Linux for VO Support and checkpointing (WP2.1) . 5
2.2 LinuxSSI (WP2.2) . 5
2.3 Embedded Linux (WP2.3) . 7
2.4 XtreemOS API (WP3.1) . 7
2.5 Infrastructure for Highly-available and Scalable Services (WP3.2) 8
2.6 Application Execution Management (WP3.3) 9
2.7 Data Management (WP3.4) . 11
2.8 VO and Security Management (WP3.5) 12
2.9 Services for Mobile Devices (WP3.6) 13

3 Capabilities 13
3.1 Resource Discovery . 15
3.2 Reservation Management . 16
3.3 Job Submission . 17
3.4 Checkpointing . 19
3.5 Event Management . 21
3.6 Monitoring . 22
3.7 Dynamic Resource Allocation 23
3.8 Fault-Tolerant Execution . 25
3.9 Data Management . 26
3.10 File Replication . 26
3.11 VO Lifecycle Management . 27
3.12 VO Entity Management . 29
3.13 Policy Management . 30
3.14 VO Accounting and Audit Trail Management 31

4 Summary 32

1

1 Introduction
The major research challenge in grids is scalability. Large numbers of machines
(e.g., 10.000’s) populating virtual organizations are becoming unmanageable, re-
quiring decentralized (P2P) management solutions. The numbers of users is get-
ting equally large, with similar implications on user authentication and authoriza-
tion management. Another important trend is the increasing diversity of plat-
forms, ranging from high-end clusters, via stand-alone PC’s, to less powerful,
mobile devices. While integrated (operating system) support for these heteroge-
neous platforms is highly desirable, their different requirements and capabilities
keep asking for tailor-made configurations.

To address these challenges, the XtreemOS project is building a Linux-based
operating system to support virtual organizations (VOs) in next-generation grids.
Unlike the traditional, middleware-based approaches, it is a prominent goal to
provide seamless support for VOs, on all software layers involved, ranging from
the operating system of a node, via the VO-global services, up to direct application
support. In terms of the Open Grid Service Architecture (OGSA) [1], as shown
in Figure 1, XtreemOS is providing support on all layers involved in a virtual
organization:

• On the fabric layer, XtreemOS provides VO-support by Linux kernel mod-
ules.

• On the connectivity layer, XtreemOS provides VO membership support for
(compute and file) resources, application programs, and users.

• On the resource layer, XtreemOS provides application execution manage-
ment.

• On the collective layer, XtreemOS provides the XtreemFS file system, and
VO management services.

• On the Application layer, finally, XtreemOS provides runtime support via
the Simple API for Grid Applications (SAGA) [2], next to native POSIX
interfaces.

Not only does XtreemOS cover the whole spectrum of OGSA layers. XtreemOS
also integrates operating systems for the various computer architectures used in
VOs:

• For stand-alone PCs (single CPU, or SMP, or multi-core), XtreemOS pro-
vides its Linux-XOS flavour with full VO support.

2

Collective Layer

Resource Layer

Application Layer

Connectivity Layer

Fabric Layer

Figure 1: The layered Grid middleware architecture, diagram simplified from [1].

• For clusters of Linux machines, the LinuxSSI flavour combines VO support
with a single system image (SSI) functionality.

• For mobile devices, finally, XtreemOS provides the XtreemOS-MD flavour
with VO support and specially-tailored, lightweight services for application
execution, common data access, and user management.

This document describes the overall system architecture for the software pack-
ages developed by the XtreemOS project, as they are foreseen and are already
partially developed at the current phase of the project (month 18). This document
is intended to serve the following purposes:

1. Provide an overview of the XtreemOS software packages and their compo-
nents,

2. Summarize the functionality of XtreemOS components:

(a) functionality provided to other components,

(b) functionality required from other components,

3. Analyze the interactiplons (and flows of information) between components,
for jointly providing capabilities to users, applications, or to other XtreemOS
software packages.

3

This document has two main sections. Section 2 presents the individual pack-
ages of XtreemOS, their layering in the overall software system, as well as the
individual components of each package. Section 3 describes the interactions of
the software packages with each other, for the purpose of jointly providing ca-
pabilities to users, applications, or to other XtreemOS software packages. We
conclude this document with Section 4 by summarizing our findings and outlin-
ing directions for future documents describing aspects of the XtreemOS system
architecture.

2 XtreemOS software packages
The XtreemOS project is producing various software components, ranging from
Linux kernel modules to application-support libraries. The overall layering of
these components, grouped to software packages, is shown in Fig. 2. It shows
all layers in the infrastructure on a very high level of abstraction. Each layer
abstracts further from the underlying physical structure of a Grid, and consists of
one or more software packages.

The development within XtreemOS is organized in work packages; each work
package is responsible for one of these software packages. A software package
provides one or more services of XtreemOS. Each service implements its func-
tionality by interacting with other services in the same layer, and the layer below.
Here, services can be either “classical” services within the XtreemOS-G layer, or
Linux extensions (kernel modules etc.) within the XtreemOS-F layer.

Figure 2: Layering of the XtreemOS software packages.

This document describes the overall architecture for all software packages de-
veloped by XtreemOS. As such, it also describes software that is still under de-
velopment or planned for later stages of the project. In the following, we outline
the individual services being produced by the work packages from SP2 and SP3.

4

2.1 Extensions to Linux for VO Support and checkpointing
(WP2.1)

The current state of the work is documented in D2.1.2 [3] Design and imple-
mentation in Linux of basic user and resource management mechanisms spanning
multiple administrative domains with respect to VO support and in D2.1.3 [4] De-
sign and implementation of basic application unit checkpoint/restart mechanisms
in Linux with respect to checkpointing in the F-layer of XtreemOS. This work
package provides two main components of XtreemOS:

Node-level VO support in Linux-XOS This component provides the mapping
from VO user identities to local user identities and the enforcement of VO-
level policies on the local node. It performs authorization functions, by
checking the validity of XtreemOS certificates (XOS-Cert) on user’s login.
It provides a dynamic mapping between grid identities and local identities,
allowing grid users and processes to be linked to their local counterparts.
This component was implemented based on existing Linux mechanisms in-
cluding NSS, PAM and the kernel key retention service, which implies that
applications could process VO-level information via standard Linux APIs
(e.g. libc).

Checkpointing in Linux-XOS Checkpointing in Linux-XOS provides the abil-
ity to save the state of a given process/tree of processes for a single node,
and to restart it later. Linux-XOS’ implementation of checkpoint/restart
mechanisms leverages BLCR (Berkeley Lab Checkpoint/Restart) [5], and
adapt its uses to an application running on a grid. It is made of three kernel
modules, several binaries and a POSIX-like API.

2.2 LinuxSSI (WP2.2)
The current state of the work is documented in D2.2.2 [6] Design and implemen-
tation of scalable SSI mechanisms in LinuxSSI, D2.2.3 [7] Design and implemen-
tation of basic checkpoint/restart mechanisms in LinuxSSI, D2.2.4 [8] Design and
implementation of basic reconfiguration mechanisms in LinuxSSI, D2.2.5 [9] De-
sign and implementation of high performance disk input-out operations in a clus-
ter, D2.2.6 [10] Design and implementation of a basic customizable scheduler,
and D2.2.7 [11] Prototype of the basic version of LinuxSSI. This work package
provides two main components of XtreemOS:

Single System Image for cluster: LinuxSSI LinuxSSI gives the illusion that a
Linux cluster is a single Linux node. Based on Kerrighed Single System
Image (SSI) technology [12], LinuxSSI is improved in stability and features

5

such as global customizable scheduler, checkpoint/restart of process trees,
reconfiguration mechanisms, and distributed file system.

VO support in LinuxSSI: LinuxSSI-XOS This component provides the XtreemOS-
F layer for cluster. LinuxSSI-XOS provides the necessary adaptations to the
LinuxSSI operating system for clusters, in order to work with virtual orga-
nizations and VO users, by using Linux standard mechanisms like PAM
and NSSwitch, in a similar fashion as in Linux-XOS node-level VO sup-
port (see Section 2.1). LinuxSSI-XOS provides a complete transparency of
the cluster for XtreemOS-G layer so that a LinuxSSI-XOS cluster can be
considered as a Linux-XOS powerful node.

LinuxSSI comprises of the following services:

Distributed file system Most of available network file systems for clusters are
built on the historical model compute nodes vs storage nodes. Available
hard drives on compute nodes are only used for the system and temporary
files, wasting both a lot of space and throughput, predominant criteria in
the current High Performance Computing context. Keeping that in mind
we have designed a new kernel Distributed File system, named kDFS, to
efficiently exploit storage resources within a cluster. The first prototype,
pluggable under the VFS, has been implemented upon kDDM mechanisms,
a kernel DSM-like manager which allows consistent data sharing cluster-
wide [9]. Thanks to kDDM sets, kDFS provides a cooperative cache for
both data and meta-data.

Customizable scheduler LinuxSSI scheduler [10] is a component which is in
charge of placing processes to different cluster nodes. Besides that, it also
serves as an interface for submitting jobs to LinuxSSI-XOS from upper lay-
ers (especially the Application Execution Management (AEM) layer). In
the first implementation phase of the XtreemOS project, we were dealing
with load balancing schedulers. These schedulers take care of migrating
processes from one cluster node to another and thus transferring load from
overloaded nodes to less busy ones. We designed a special framework,
which we named “Pluggable Probes and Scheduling Policies Framework”
(PlugProPol). By using this framework, the upper layers are able to load
user-implemented resource measurement probes and scheduling policies
(i.e., implementations of scheduling algorithms) and enable them without
having to restart the whole cluster.

Reconfiguration mechanisms LinuxSSI is implemented by a set of kernel level
services distributed on the cluster nodes. Moreover, in a LinuxSSI cluster,

6

an application may be distributed over several nodes. The cluster adminis-
trator may want to upgrade hardware of one cluster node without stopping
the whole cluster and especially without stopping application execution.
Reconfiguration mechanisms provide node addition(s) and node removal(s)
operations [8]. Future versions will handle node failure and network dis-
connection to avoid a crash of the whole cluster. However, fault tolerance
of applications is out of the scope of the reconfiguration mechanisms.

Checkpointing Checkpointing in LinuxSSI provides the ability to save the state
of a process/tree of processes for a cluster, and to restart it later. The cus-
tomized checkpointing implementation extends the SSI-based process mi-
gration facility provided by Kerrighed. The checkpointer runs in kernel
mode and is able to transparently checkpoint and restart applications. If re-
quired, the checkpointer informs applications when they are checkpointed
and restarted. The LinuxSSI kernel checkpointer uses a coordinated check-
pointing approach to save the cluster-wide state of a distributed applica-
tion [7].

2.3 Embedded Linux (WP2.3)
The current state of the work with respect to the F-layer of XtreemOS-MD is
documented in D2.3.3 [13] Design of a Basic Linux Version for Mobile Devices.
As of this writing, the envisioned components belonging to this software package
are:

Terminal Mobility This component provides XtreemOS-MD nodes with termi-
nal mobility features, through an implementation of Mobile IPv6, in order
to be able to change access points in a transparent way, without interrupting
the communications of the mobile node with the Grid.

VO support in Linux-XOS for Mobile Devices This component provides adap-
tations to the Linux operating system for mobile devices, in order for mobile
users to login and be authenticated with virtual organizations, enabling them
to use XtreemOS services like AEM or XtreemFS. These adaptations share
the same features and make use of the same Linux standard mechanisms
used in the VO support of the standard flavour (see Section 2.1).

2.4 XtreemOS API (WP3.1)
The state of the work with respect to the XtreemOS API is documented in D3.1.2 [14]
Second Draft Specification of Programming Interfaces and D3.1.3 [15] First Pro-

7

totype of XtreemOS Runtime Engine. The (envisioned) components belonging to
this software package are:

API engine in C++ This engine acts as a runtime library that is to be linked to
a user application. The engine is providing the XtreemOS API, and imple-
menting its functions on top of different XtreemOS flavours. The engine is
using dynamically loaded libraries, so-called adaptors, to dispatch function-
ality to different service providers. One set of adaptors is interfacing to the
local capabilities of the node the application is running on (local adaptors),
another set of adaptors is interfacing to XtreemOS’ services.

In a later stage, the C++ engine can be augmented by wrappers for other
languages, such as C, Fortran, or Perl.

API engine in Java This engine works like its C++ counterpart, except that it is
written purely in Java, also with Java adaptors in JAR files.

2.5 Infrastructure for Highly-available and Scalable Services
(WP3.2)

A introductory description about WP3.2 goals is provided in D3.2.1 [16] (De-
sign of an Infrastructure for Highly Available and Scalable Grid Services) while
individual services are extensively described in, respectively, D3.2.2 [17] (First
Prototype Version of Ad Hoc Distributed Servers), D3.2.3 [18] (Simulation-based
evaluation of a scalable publish/subscribe system), D3.2.4 [19] (Design and Spec-
ification of a Prototype Service/Resource Discovery System), and D3.2.5 [20] (De-
sign and Specification of a Virtual Node System).

Distributed Server A distributed server is an abstraction that allows to present a
collection of server processes to its clients as a single entity. The address
of a distributed server remains stable, even in the case of nodes joining or
leaving the application. This technology is exploited in the project both as a
support for highly available services (e.g., the job manager or the VO man-
ager) and by those applications willing to make their internal distribution
transparent to their clients.

Virtual Nodes A group of nodes taking part in an application can request to be or-
ganized as a virtual node. A virtual node is a fault-tolerant group where each
member can take over the task of the others in case of failure. Several types
of virtual nodes may be provided, based on active replication, passive repli-
cation, and checkpoint/restart mechanisms provided by the XtreemOS oper-
ating system. This technology will be integrated with distributed servers to

8

provide a single platform to support fault-tolerant, highly available services
and applications.

Publish-Subscribe A common form of communication between a large number
of nodes taking part in a given application is publish-subscribe. We will
provide a fully decentralized pub/sub communication system that applica-
tions can use for their own purpose. The current implementation is based on
a hierarchical topic-based mode while later in the project we will evaluate
if a content-based approach is also needed.

Resource Selection Service The Resource Selection Service (RSS) takes care of
performing a preliminary selection of nodes to allocate to an application, ac-
cording to range queries upon static attributes. It exploits a fully decentral-
ized approach, based on an overlay network which is built and maintained
through epidemic protocols. This allows to scale up to hundred thousands, if
not billions, of nodes and to be extremely resilient to churn and catastrophic
failures.

Application Directory Service The Application Directory Service (ADS) han-
dles the second level of resource discovery, answering queries expressed as
predicates over the dynamic attributes of the resources. ADS will create
an application-specific “directory service” using the NodeIDs received by
the RSS, related to the resources involved in the application execution. To
provide scalability and reliability, DHT techniques and their extensions to
dynamic and complex queries will be used.

Application Bootstrapping Many applications need to have nodes arranged in
specific overlay networks (e.g., a torus, a ring) to operate correctly. Appli-
cation Bootstrapping is a set of libraries, leveraging off epidemic protocols,
to make application nodes self-organize to meet the requirements.

2.6 Application Execution Management (WP3.3)
The state of the work with respect to the XtreemOS services regarding Application
Execution Management is documented in D3.3.1 [21] Requirements and specifi-
cation of XtreemOS services for application execution management. The internal
architecture of these services is documented in D3.3.2 [22] Design of the archi-
tecture for application execution management in XtreemOS, D3.3.3 [23] Basic
services for application submission, control and checkpointing, and D3.3.4 [24]
Basic services for resource selection, allocation and monitoring. The (envisioned)
components belonging to this software package are:

9

Job Manager Global information on the jobs running (or submitted) is kept by
this distributed service (most nodes in the grid will have an instance, and
each instance will handle some of the current jobs). Among its main func-
tionality, the job manager is in charge of being the contact point to interact
with a job, answer information about a job, schedule jobs, coordinate job
checkpointing, decide when a migration is needed, etc.

Execution Manager This service is responsible of managing the job units run-
ning on the node it is located (which means that we will have one of these
services in each nodes running a part of a job). A job unit represents (in-
ternally to AEM) all the processes of a job running in one resource, and a
running job running consist of one of more job units. The functionality of
this service is to perform the action requested by the Job Manager such as
launch processes within a job, monitor the job unit (information that will be
aggregated by the job manager), start job unit checkpointing, etc.

Resource Manager Each resource in the grid will have a resource manager ser-
vice that will mainly take care of two tasks. On the one hand, it will be
responsible for exporting information about the resource (for instance for
monitoring issues). And, on the other hand, to negotiate with the Reser-
vation Manager to manage reservations, and the Job Manager to negotiate
with the scheduler, etc.

Reservation Manager This service is responsible of managing advanced global
reservations. Reservations are created by the Job Manager or directly by
users and are bounded to one or more jobs. The goal of resource reser-
vations is to provide a negotiated quality of service to running applications.
The Reservation Manager interacts with applications (for instance workflow
managers), with the Job Manager (in traditional job submission), and with
the Resource Manager (to perform local reservations).

Job Directory In order to locate a job controller (part of the Job Manager) in
the system, we need a distributed service that stores the location of the Job
manager containing this object. With this information we can get all the
information about the job by directly contacting the right instance of the job
controller.

XATI Interface used to communicate with services in the Application Execution
management. We will have a java and C version and it will be used by appli-
cations either directly, or via XOSAGA (that will use XATI to communicate
with the AEM services).

10

2.7 Data Management (WP3.4)
The state of the work with respect to Data Management is documented in D3.4.1
[25] The XtreemOS File System - Requirements and Reference Architecture and
D3.4.2 [26] XtreemFS Prototype Month 18. The (envisioned) components be-
longing to this software package are:

Metadata and Replica Catalog File system metadata is managed by the Meta-
data and Replica Catalog (MRC). The MRC provides an interface for file
system operations related to metadata, such as creating, renaming or re-
trieving information about files, on which it also enforces access control.
To provide for resilience, it supports replication of metadata. It will also
offer partitioning of metadata among different servers to increase perfor-
mance and scalability. A querying interface will allow for an advanced
attribute-based retrieval of files.

Object Storage Device Object Storage Devices (OSDs) are responsible for stor-
ing file content. File content is internally handled in the form of objects,
where an object represents a certain range of bytes of a file. With the aim
of increasing read/write performance, OSDs support striping by spreading
multiple objects of a single file across several OSDs. OSDs will also support
replication of files with automatic fail-over, for the purpose of improving
fault tolerance and availability, as well as reducing access latency. The latter
can be achieved by placing file replicas close to their users. Replica place-
ment will later be automated by the Replica Management Service (RMS).

Client/Access Layer The Access Layer provides the interface between user pro-
cesses and the file system infrastructure. It’s main task is to handle access
to files and directories on behalf of user processes. A POSIX-compliant in-
terface based on the FUSE framework enables arbitrary applications to use
the file system without a prior modification or recompilation of their source
code. As the client-side part of the file system, the Access Layer inter-
acts with the aforementioned file system services by translating calls from
the POSIX API into corresponding interactions with OSDs and MRCs. In
addition to the POSIX interface, the access layer will provide tools for cre-
ating and deleting XtreemFS volumes, checking file integrity, querying and
changing the file striping policies, and other Grid-specific features.

Object Sharing Service The Object Sharing Service (OSS) provides sharing of
volatile memory objects (raw memory regions or programming language
objects) and memory-mapped files. One of the major goals is to imple-
ment transactional consistency (combining speculative transactions and op-

11

timistic synchronisation) to simplify distributed programming. But the mod-
ular and layered design is open for other consistency models. Fault toler-
ance is provided by replication of shared data and checkpointing (using the
XOS grid checkpointer).

2.8 VO and Security Management (WP3.5)
The state of the work with respect to VO and Security Management is documented
in D3.5.3 [27] First Specification of Security Services, D3.5.4 [28] Second Spec-
ification of Security Services, D3.5.5 [29] Security Services Prototype month 18,
and D3.5.6 [30] Report on Formal Analysis of Security Properties,

The (envisioned) components belonging to this software package are:

Credential Distribution Authority In XtreemOS, grid level credentials take the
form of XOS Certificates, as defined in D3.5.3, First Specification of Secu-
rity Services. An XtreemOS user runs a command-line CDA client program
to contact the CDA service via a secure and authenticated channel - if the
user is a member of a specified VO, the CDA service generates an XOS
Certificate, signs and returns it to the user. With the corresponding private
key, the user can then use this certificate to authenticate himself to remote
entities in subsequent operations, such as submitting a job via the AEM
or accessing files through the XtreemFS. The main consumer of the XOS
Certificate is the code produced by WP2.1.

Accounting Service The Accounting Service aims to record the information about
resource usage and by whom the resources are used within a VO. It is cur-
rently being designed in WP3.5. It supports both push (information being
pushed to the service) and pull (information being pulled by the service)
models. It ensures accountability of actual resource consumption about
(groups of) individuals by relying on the (real-time) events provided by
the AEM services and the AEM communication infrastructure to realise
accounting capability.

VO Policy Service The VO Policy Service (VOPS) is designed to support coor-
dinated access control to VO resources, including computation and storage
resources, by offering a VO level policy decision point. Together with node
level policy decision points, it forms a hierarchical access control frame-
work that can be tuned to achieve various degrees of control to resource us-
age within a VO. It is being used by AEM to facilitate VO policy governed
resource selection and job scheduling. It can also be used together with the
accounting service to enforce constrains (e.g. quota and usage pattern) to
certain types of resource consumption in a real-time manner.

12

2.9 Services for Mobile Devices (WP3.6)
The current state of the work with respect to the G-layer of XtreemOS-MD is
documented in D3.6.1 [31] Requirements and Specification of Basic Services for
Mobile Devices. As of this writing, the envisioned components belonging to this
software package are:

Application Execution This component provides client access to XtreemOS Ap-
plication Execution Management, allowing mobile users to launch, manage
and monitor jobs running in XtreemOS Grid. It will consist mainly of a Java
implementation of the XATI interface to the AEM in mobile devices.

Common Data Access This component enables mobile users to access the XtreemFS
filesystem through an implementation of the XtreemFS FUSE client for mo-
bile devices architectures. This allows mobile users to mount XtreemFS
volumes, and access grid files through a POSIX-compatible interface.

Common User Management This component consists of a client for accessing
the Credential Distribution Authority (see Section 2.8), in order to obtain
XtreemOS certificates for mobile users, with a customised user interface for
mobile devices. By using this certificates and the VO support components
for Linux-MD, users are able to access other XtreemOS services.

XtreemOS-MD API Engine This component provides a subset of the XtreemOS
XOSAGA API, that covers the needs of a XtreemOS client configuration
(access to grid resources, without sharing of node resources). This enables
user applications to access and manage grid files, grid jobs and security con-
texts. Initially, only the Java engine and XtreemOS adaptors are available
in mobile devices.

3 Capabilities
The different services developed by XtreemOS can interact in different ways to
achieve certain higher-level functionality. We call such higher-level functionality
a capability of XtreemOS: it is something XtreemOS as a whole is able to provide
to the outside world. XtreemOS has the following capabilities:

Resource discovery: users can search for XtreemOS resources with certain char-
acteristics.

Reservation management: users can exclusively reserve a set of XtreemOS re-
sources for further use.

13

Job submission: users can submit a job to XtreemOS, which will then be exe-
cuted on the required or reserved resources.

Checkpointing: jobs can be checkpointed automatically by XtreemOS according
to a policy specified by the user, or manually triggered by the user.

Event management: users can send events to their jobs, similar to POSIX sig-
nals.

Monitoring: users can monitor various aspects of their jobs and the resources
they run on.

Dynamic resource allocation: users can modify the resources used by their run-
ning jobs.

Fault-tolerant execution: vital XtreemOS services and user jobs can be repli-
cated transparently to ensure high availability with minimum additional pro-
gramming overhead.

Data management: users can have a global view of the distributed file system
(XtreemFS).

File replication: XtreemFS implements transparent access to replicated files and
co-operates with other services to support pro-active replica creation.

VO lifecycle management: VO creators can manage the lifecycle of VOs.

VO entity management: VO admins can manage the identity and attributes for
users in a VO. Together with resource admins, VO admins can also manage
VO resources.

VO accounting and audit trail management: VO admins can receive, register,
and certify audit and accounting information of resource usage. VO admin-
istrators distributes such information to users.

Policy management: VO admins can manage VO policies to control the access
to and the usage of VO resources.

We structure this section along different capabilities, and show the interac-
tions between different services for each capability individually. Each capability
is described by a diagram showing the interaction of the services involved. The
diagram is accompanied by a brief description of the interaction.

Each box in these capability diagrams corresponds to a service in one of the
work packages, as described in Section 2. The text in a box consists of the work

14

package number, followed by the name of the service. An arrow between boxes
describes the flow of information between services. Each arrow is annotated with
a very short description of the information, which is always a noun. The direction
of the arrow indicates the direction in which the information is transferred. When
services communicate by request-and-reply, an arrow indicates the direction and
contents of the reply.

Boxes can consist of multiple layers stacked on top of each other. These lay-
ers describe software layers, that are linked together and used as one piece of
software. Layering is only be included in a diagram if it is relevant for the capa-
bility the diagram describes. For complex or more general software layering, a
separate diagram is used.

A capability diagram may include grey areas that visually group services that
are in the same scope. Each scope indicates the locality of services. We have
identified four scopes:

User Scope contains all services that are local to a user of XtreemOS. The main
example is client APIs.

Admin Scope contains all services that are local to an administrator of a virtual
organization (VO) [1].

Collective Scope contains those services that are operating independent of their
physical location, typically in charge of a whole VO.

Node Scope contains all services that are running on an XtreemOS node (being a
single machine running Linux-XOS, or a cluster running LinuxSSI-XOS).

Grouping services into these scopes gives the diagrams a more intuitive layout
and improves readability.

3.1 Resource Discovery
Users of XtreemOS can search for XtreemOS nodes with certain characteristics,
which is depicted in Figure 3. First, the user retrieves its credentials from the
Credential Distribution Agency (CDA). Together with its credentials, the user then
specifies resource requirements in the XOSAGA API, which are translated by an
Application Directory Service (ADS) adaptor to a resource query. The ADS uses
the Resource Selection Service (RSS) to perform a preliminary selection of nodes,
which is further refined by the ADS. Finally, a description of the resources found
is returned to the user.

15

Figure 3: Resource Discovery

Note that, although nodes must authenticate themselves to join the Resource
Selection Service, this should not imply that nodes found in this service are neces-
sarily trusted. One should therefore check credentials of such nodes before using
them to run jobs.

3.2 Reservation Management

XtreemOS users can reserve a set of XtreemOS nodes for future usage. Figure 4
presents the reservation of a set of nodes. Initially, the user knows what resources
will be used to make the reservation. These resources can either be already know
by the user (i.e. a well known large cluster) or could have been discovered pre-
viously as described in Section 3.1. To be able to make a reservation, the user
first needs to get credentials from the CDA. With these credentials and the de-
scription of the reservation it contacts the Reservation Manager via the XOSAGA
and XATI interfaces. The Reservation Manager gets in contact with the Resource
Managers of the nodes to reserve, and asks them for a local reservation. Once
these reservations are made, information is kept in the Accounting Service and
the reservation ID is returned to the user. From this point on, the user can refer to
this reservation with this ID.

16

Figure 4: Reservation management

3.3 Job Submission
Users of XtreemOS can submit jobs in two ways. The first way is to first reserve a
number of resources, and then submit a job that uses this reservation. The second
way is to incorporate the job’s resource requirements into the job description, and
let XtreemOS handle the reservation and scheduling itself.

Figure 5 shows the submission of a job that uses a previously made reserva-
tion. To be able to submit a job, a XtreemOS user should first obtain credentials
from the CDA. With these credentials, it can submit a job using XOSAGA, which
uses XATI internally to access the Job Manager. The Job Manager obtains the

17

Figure 5: Job submission using an existing reservation

reservation from the Reservation Manager using the reservation ID in the job de-
scription. The different job units the job consist of are then submitted by the
Job Manager to the Exec Manager of each reserved node, which starts it on all
nodes. The executables, libraries and other input files needed by each job unit are
obtained from XtreemFS by the Exec Manager of each node. Finally, the infor-
mation about the job is stored in the Job Directory for future reference. Similarly,
the resource usage of the job is stored in the Accounting Service.

Note that the information stored in the Job Directory is minimal, as most of
the relevant information is kept in the Job Manager. The Job Directory contains
the job ID, the contact point within the Job Manager to get the information of the
job, and some security information.

Figure 6 shows the submission of a job for which no resources have been

18

Figure 6: Job submission without an existing reservation

reserved yet. In this case, XtreemOS will first select and reserve the required
resources, and then schedule the job on those resources. The resulting diagram is
a merger of Figures 4 and 5.

3.4 Checkpointing
Similar to job submission, there are two different scenario for initiating a check-
point: manually or automatic. Manual checkpointing is initiated by the user, au-
tomatic checkpointing by the Job Manager.

To create a manual checkpoint of a job (depicted in Figure 7), the user first
needs to get its credentials from the CDA. It then contacts the Job Manager with
its credentials and the job ID to request a checkpoint. The Job Manager contacts

19

Figure 7: Manually checkpointing a running job

all nodes where a job unit is running and instructs the Exec Manager to start a
checkpoint of this job unit. In turn, each Exec Manager will requests the kernel to
checkpoint all processes within the job unit. All stored information (checkpoint
files and additional checkpoint information) is kept in XtreemFS.

In the automatic checkpoint scenario (shown in Figure 8), it is the Job Man-
ager that decides that the job needs to be checkpointed. This can be due to a
periodic checkpoint to guarantee some degree of fault tolerance, due to a migra-
tion decision etc. Compared to manual checkpointing, the only difference with
automatic checkpointing is that the Job Manager triggers the action instead of the
user; the resulting interaction of services is the same.

Restarting a job from a checkpoint is handled by the Job Manager. It very

20

Figure 8: Automatic checkpointing of a running job

much resembles job submission, but includes the checkpoint information and files
stored in the checkpointing process.

By combining checkpointing and restarting, a job can be migrated from one
set of resources to another. First the job on the old set of resources will be check-
pointed, and then restarted on the new set of resources.

3.5 Event Management
XtreemOS users can send events to jobs. These events are extended versions of
POSIX signals. In the general scenario (see Figure 9), the user gets the needed
credentials from the CDA and then requests the Job Manager to send an event to
the job identified by a job ID. The Job Manager contacts the Exec Managers in the

21

Figure 9: Event management

nodes where the job has running processes and requests them to send an event to
these processes. The default case is that all processes in the job receive the event,
but mechanisms to decide which ones actually receive them will also be available.

In addition to events sent by the user, events can also be sent by the Job Man-
ager. This resembles the way a Linux kernel can send signals to processes.

3.6 Monitoring
XtreemOS offers a much more detailed monitoring system than current approaches.
Not only jobs, but also reservations and resources can be monitored. Figure 10
presents the components that play a role in monitoring. Once the user has ob-

22

Figure 10: Monitoring

tained the right credentials it can ask the Job Manager to monitor some events.
The Job Manager will request the information from the Reservation Manager, the
Resource Manager and the Exec Manager. The monitored information can travel
to the user in two ways. The first one is a ’pull’ mechanism where the application
requests certain information and waits for the reply. The second one is a ’push’
mechanism where the Job Manager provokes a callback when a given event is
measured or it reaches a certain value.

3.7 Dynamic Resource Allocation
XtreemOS allows applications to change the number of resources they are using.
For this reason, the system allows dynamic resource allocation. Figure 11 presents

23

Figure 11: Dynamic resource allocation

the services involved when a job requests more resources. The interaction of ser-
vices is nearly the same as with job submission without having previously reserved
resources (Figure 6). The only difference is that the job is already running, which
means that instead of creating it, resources have to be requested via ADS, the
reservation has to be modified by the Reservation Manager, and processes have to
executed by the local Exec Managers.

24

Figure 12: Fault-tolerant execution of vital XtreemOS services and jobs

3.8 Fault-Tolerant Execution
Some XtreemOS services are vital; if they are unavailable, a serious number of
capabilities is lost. Examples of such services are the Job Manager and the VO
Policy Service. Certain user applications could also desire high-availability. For
this reason, XtreemOS provides transparent fault-tolerant execution of services
and applications.

As sketched in Section 2.5, fault-tolerant replication of a service or applica-
tion is achieved by organizing it into a virtual node. Transparent access to a vir-
tual node is achieved using distributed servers. In case of a server failure, replicas
within a virtual node can take over each others tasks to provide continuous exe-
cution. Configuring virtual nodes as distributed servers ensures that they can be
reached at a single stable IP address, which makes the fault-tolerance transparent
to clients.

Both XtreemOS services and user applications can be made fault-tolerant by
linking their code to special libraries, as shown in Figure 12. When running mul-
tiple copies of the same code on different machines, these libraries take care of all
necessary communication between the copies to create a group of virtual nodes
and distributed servers.

25

Figure 13: Data management and file replication

3.9 Data Management
Data management in XtreemOS is implemented by XtreemFS which is composed
of several components in all scopes (see Figure 13). The file system is composed
of the Access Layer, the Metadata and Replica Catalogs (MRC), the Replica Man-
agement Service (RMS) and the Object Storage Devices (OSD). The Access Layer
implements a POSIX compatible API and translates all file system calls into cor-
responding invocations of XtreemFS services. The Directory Service is used as a
registry for storage servers and volumes. Notification of file changes are dissemi-
nated using the Pub/Sub service.

3.10 File Replication
XtreemFS implements transparent file replication while maintaining POSIX com-
patibility (i.e. same semantics as a local file system). Figure 13 shows the Meta-

26

Figure 14: VO lifecycle management

data and Replica catalogs that keep a list of replica locations for every file. Such
information can be used by external services like the Job Manager to start jobs
close to the storage location of the job’s data. The creation and removal of replicas
can be done manually by the user. In addition, the Replica Management Service is
pro-actively creating and deleting replicas as needed. The Job Manager can send
hints on future jobs to the RMS to allow for automatic replica creation before a
job is executed. The replica consistency coordination is done transparently among
the OSDs.

3.11 VO Lifecycle Management
In XtreemOS, the lifecycle of a virtual organization consists of three stages: cre-
ation, evolution, and dissolution. The management of this lifecycle involves a
number of actors: a VO creator, VO members, VO administrators, resource ad-
ministrators, and a VO manager.

27

The VO creator is the person who creates the VO. The VO members are users
(consuming resources) and resources (providing resources) in the VO. The VO ad-
ministrators perform administrative tasks, including adding VO members to and
removing members from the VO, maintaining policies and attributes of the VO,
and running services for the VO. The resource administrator, one per resource, is
responsible for setting up policies for the resource, running services and register-
ing the resource to a VO. The VO manager is a person or an organization respon-
sible for the authenticity of the information, such as the identity and attributes of
VO members and accounting information and audit trails of users, disseminated
from the VO management services, such as CDA and accounting.

These actors are logical groupings by their responsibilities. In practice, one
person or software service can take up the responsibilities of one or more actors.
For example, a person can simultaneously become a VO creator, a VO member,
a VO administrator, and a VO manager. In the very extreme case, a person can
have the responsibilities of all these roles. The person (or a service) who creates a
VO can become a VO member, a VO administrator, a VO manager, and a resource
administrator, given that he also provides resources to the VO.

To set up a VO, a VO creator needs to specify the following information:

1. the public and private key pair of the VO manager (compulsory)

2. VO attributes (compulsory), for example, roles, groups, capabilities and/or
other attributes that the VO supports

3. a set of VO policies (optional)

4. a set of VO members (optional)

The information of (2 - 4) are maintained in the VO Management (VOM)
database(s), whose structure is set up and are administrated by the VO adminis-
trators.

During the evolution phase, the VO administrators maintain the sets of VO
policies, users, and resources in the corresponding databases. Also, the VO ad-
ministrators are responsible for running the VO management services.

Upon the dissolution of the VO, all the relevant entries of the VO are deleted
from the database(s) and the VO configuration is removed from the resources
involved by the resource administrator.

28

Figure 15: VO user management

3.12 VO Entity Management
There are two types of entities in a VO: users and resources. VO administrators
are in charge of managing both of them as illustrated in Figure 15 and 16.

When a user registers with a VO, his identity and attributes (such as role,
group, capabilities, and VO membership) are stored in the VO Management (VOM)
database by the VO administrator. Based on the information in the database, the
CDA service issues short-lived X.509 certificates (signed by the VO manager) to
users. A user can associate with multiple attributes (e.g. roles and groups) in a
VO. He can also simultaneously register with multiple VOs.

A resource admin can register a resource with multiple VOs. Upon receiving
the description from a resource admin, the VO admin creates corresponding en-
tries for the resource in the VOM database. The VO admin sends the configuration
of this VO to the resource so that it can be configured as part of the VO.

By performing the VO configuration as instructed, the resource admin is com-
mitted to:

1. configure the resource as part of the VO, which implies that it will have
the means to check the authenticity of the credentials from this VO and
appropriate policies have been set up for this VO.

2. provide genuine resource usage data to the VO accounting service.

29

Figure 16: VO resource management

The removal of a resource from a VO involves a VO admin removing the
resource entries from the VOM database and a resource admin removing the VO
configuration from the node.

3.13 Policy Management
VO admins are in charge of managing global policies of a VO (Figure 17). These
policies, used by the VOPS service and stored in a VO policy database, describe
a VO-level access and usage control based on the description (characteristics)
of users, resources, and/or requests (e.g. job description and resource require-
ments). VO admins can adapt the policies dynamically to balance the load on VO
resources. The VO policy decisions are certified by the VO manager and such
decisions can be verified by a resource.

In XtreemOS, nodes can also have node level policy management mechanisms
to enforce local policies, which are independent from VO policies. VO policies
are set and managed by VO admins through the VOPS service whereas node poli-
cies are set and managed by resource admins via node level policy mechanisms.

30

Figure 17: VO policy management

Checking whether a job conforms to local policies implies that a job is already
compliant to VO policies. Hence, from a policy management point of view, a job
running on a node means that it satisfies both VO and node policies.

When a resource is being added to a VO, be it during the setup or evolution of
the VO, the resource can set up local policies in accordance to the VO attributes.
However, each resource can come with a default set of generic local policies (such
as users’ file quota) which are agnostic to the VO attributes.

3.14 VO Accounting and Audit Trail Management
The VO accounting service receives audit and accounting information from job
and resource management services. Such information is registered in an account-
ing database and is certified by the VO manager. The database is managed by the
VO admin who disseminates the certified information to users (Figure 18).

31

Figure 18: VO audit trail and accounting management

4 Summary

This document describes the overall system architecture of XtreemOS, at the cur-
rent stage of the project (month 18). In combination with the overall layering
of the XtreemOS software packages, as shown in Figure 2, we have followed
a bottom-up approach by first describing the individual software packages (Sec-
tion 2), followed by descriptions of the capabilities provided by the software pack-
ages together (Section 3), outlining the interactions and information exchanged
between the components within the packages.

As such, this document provides a comprehensive description of all software
packages being produced by the XtreemOS project. It will be used for the upcom-
ing activities on package integration and software bundling, the latter for devising
the different XtreemOS configurations.

Finally, we would like to emphasize that the current document merely de-
scribes the (foreseen) state of the developments at project month 18. It might
become necessary in the upcoming project phases to revise the current architec-
tural design. Reasons for such revisions might either be new insights gained in
the upcoming integration activities or changes induced by technological develop-
ments outside the project.

32

References
[1] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International J. Supercomputer
Applications, 15(3), 2001.

[2] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Klei-
jer, Andre Merzky, John Shalf, and Christopher Smith. A Simple API for
Grid Applications (SAGA). Grid Forum Document GFD.90, 2007. Open
Grid Forum (OGF).

[3] XtreemOS Consortium. Design and implementation in Linux of basic user
and resource management mechanisms spanning multiple administrative do-
mains. Deliverable D2.1.2, November 2007.

[4] XtreemOS Consortium. Design and implementation of basic application
unit checkpoint/restart mechanisms in Linux. Deliverable D2.1.3, November
2007.

[5] Paul H. Hargrove and Jason C. Duell. Berkeley lab checkpoint/restart (blcr)
for linux clusters. In In Proceedings of SciDAC 2006, June 2006.

[6] XtreemOS Consortium. Design and implementation of scalable SSI mecha-
nisms in LinuxSSI. Deliverable D2.2.2, November 2007.

[7] XtreemOS Consortium. Design and implementation of basic check-
point/restart mechanisms in LinuxSSI. Deliverable D2.2.3, November 2007.

[8] XtreemOS Consortium. Design and implementation of basic reconfiguration
mechanisms in LinuxSSI. Deliverable D2.2.4, November 2007.

[9] XtreemOS Consortium. Design and implementation of high performance
disk input-out operations in a cluster. Deliverable D2.2.5, November 2007.

[10] XtreemOS Consortium. Design and implementation of a basic customizable
scheduler. Deliverable D2.2.6, November 2007.

[11] XtreemOS Consortium. Prototype of the basic version of LinuxSSI. Deliv-
erable D2.2.7, November 2007.

[12] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard, David
Margery, Jean-Yves Berthou, and Isaac Scherson. Kerrighed and data par-
allelism: Cluster computing on single system image operating systems. In
Proc. of Cluster 2004. IEEE, September 2004.

33

[13] XtreemOS Consortium. Design of a Basic Linux Version for Mobile De-
vices. Deliverable D2.3.3, November 2007.

[14] XtreemOS Consortium. Second Draft Specification of Programming Inter-
faces. Deliverable D3.1.2, November 2007.

[15] XtreemOS Consortium. First Prototype of XtreemOS Runtime Engine. De-
liverable D3.1.3, November 2007.

[16] XtreemOS Consortium. Design of an Infrastructure for Highly Available
and Scalable Grid Services. Deliverable D3.2.1, December 2006.

[17] XtreemOS Consortium. First Prototype Version of Ad Hoc Distributed
Servers. Deliverable D3.2.2, December 2007.

[18] XtreemOS Consortium. Simulation-based evaluation of a scalable pub-
lish/subscribe system. Deliverable D3.2.3, December 2007.

[19] XtreemOS Consortium. Design and Specification of a Prototype Ser-
vice/Resource Discovery System. Deliverable D3.2.4, December 2007.

[20] XtreemOS Consortium. Design and Specification of a Virtual Node System.
Deliverable D3.2.5, December 2007.

[21] XtreemOS Consortium. Requirements and specification of XtreemOS ser-
vices for application execution management. Deliverable D3.3.1, November
2006.

[22] XtreemOS Consortium. Design of the architecture for application execution
management in XtreemOS. Deliverable D3.3.2, May 2007.

[23] XtreemOS Consortium. Basic services for application submission, control
and checkpointing. Deliverable D3.3.3, November 2007.

[24] XtreemOS Consortium. Basic service for resource selection, allocation and
monitoring. Deliverable D3.3.4, November 2007.

[25] XtreemOS Consortium. The XtreemOS File System - Requirements and
Reference Architecture. Deliverable D3.4.1, November 2006.

[26] XtreemOS Consortium. XtreemFS Prototype Month 18. Deliverable D3.4.2,
November 2007.

[27] XtreemOS Consortium. First Specification of Security Services. Deliverable
D3.5.3, May 2007.

34

[28] XtreemOS Consortium. Second Specification of Security Services. Deliver-
able D3.5.4, December 2007.

[29] XtreemOS Consortium. Security Services Prototype month 18. Deliverable
D3.5.5, December 2007.

[30] XtreemOS Consortium. Report on Formal Analysis of Security Properties.
Deliverable D3.5.6, December 2007.

[31] XtreemOS Consortium. Requirements and Specification of Basic Services
for Mobile Devices. Deliverable D3.6.1, November 2007.

35

