
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Third Prototype of XtreemOS Runtime Engine
D3.1.8

Due date of deliverable: May 31st, 2009
Actual submission date: June 12th, 2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.1
Task number: T3.1.2

Responsible institution: VUA
Editor & and editor’s address: Thilo Kielmann

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1083
1081HV Amsterdam

The Netherlands

Version 1.0 / Last edited by Thilo Kielmann / June 12th, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.9 26/05/09 Mathijs den Burger VUA complete draft version
0.99 27/05/09 Thilo Kielmann VUA complete version, for internal review
1.0 12/06/09 Thilo Kielmann VUA final version, based on reviewer comments

Reviewers:
Ramon Nou (UPC), Samuel Kortas (EDF)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.1.2 A runtime engine for dynamic call dispatching VUA∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
This document presents the third prototype implementation of a runtime engine
for the XtreemOS API as specified in deliverable D3.1.5 [8]. (Some restrictions
apply due to the limited availability of some XtreemOS features and services.)
Compared to the second prototype implementation, as documented in D3.1.6 [7],
the following functionality has been added:

• Job submission and resource reservation in the Java programming language.

• A separate implementation in the Python programming language.

We outline the design of the implementations, explain how to install and de-
ploy them, and provide some code examples. In addition, we describe Xterior: an
application on top of XOSAGA that provides a simple graphical user interface for
managing files, jobs, and credentials.

1

Contents
1 Introduction 3

2 General Architecture 4

3 The SAGA C++ Engine 6
3.1 Installation and deployment . 7
3.2 API documentation . 8

4 The SAGA Java Engine 8
4.1 Java language binding of SAGA 8
4.2 XOSAGA additions . 9
4.3 Configuration . 9
4.4 The SAGA Java Adaptors . 10
4.5 Installation and documentation 11
4.6 Code example . 11

5 The SAGA Python engine 13
5.1 Python language binding of SAGA 13
5.2 Installation . 14
5.3 Unit tests . 14
5.4 Code Examples . 14

5.4.1 Listing a directory . 15
5.4.2 Showing file contents . 16
5.4.3 Running a job . 16

6 XtreemOS Job Adaptor 19

7 Resource Reservation 20

8 Xterior 20
8.1 File management interface . 20
8.2 Credential management . 22
8.3 File management operations . 23

9 Summary and Future Work 24

2

1 Introduction

For the successful adoption of the XtreemOS grid operating system, it is extremely
important to provide a well-accepted API to its potential application programs.
To accomplish this goal, we are following an iterative approach to specifying
and implementing this API. In our previous deliverable, D3.1.1 [5], we have pre-
sented the Simple API for Grid Applications (SAGA) [2] as the first draft API for
XtreemOS. Deliverables D3.1.2 [6] and D3.1.5 [8] added XtreemOS-specific ex-
tensions to SAGA, which together were named XOSAGA. These specifications
are the basis of the implementations presented by this report.

In this document, we provide three prototype implementations of the XOSAGA
API, written in the programming languages C++, Java, and Python. These imple-
mentations cover those parts of the XtreemOS-specific functionality described in
D3.1.2 and D3.1.5 for which stable implementations have been available so far
and XOSAGA bindings have been developed. In particular, the current imple-
mentations support:

• The XtreemFS file system (in C++, Java, and Python)

• The XtreemOS security context (in C++, Java, and Python)

• Job submission on top of AEM (in Java and Python)

• Resource reservation on top of AEM (in Java)

The XOSAGA ’sharing’ package described in D3.1.5 is not covered by the
currently existing implementations. It will be an essential part of the fourth pro-
totype implementation (D3.1.10, due month 46).

The functionality available in this third prototype implementation is summa-
rized in Table 1. New functionality (compared to the previous prototype imple-
mentation) is shown in bold face.

In the remainder of this document, we will outline the general design of all
three XOSAGA implementations, describe their integration with the Application
Execution Management system in XtreemOS, and provide information for down-
loading, installing and using the software. For providing a self-contained report,
we include some description of general architecture and of the C++ and Java im-
plementations that were also part of D3.1.5. We augment it by the respective infor-
mation about the new, Python-based implementation, the XtreemOS job adaptor,
the resource reservation API, and the GUI application Xterior.

3

SAGA package C++ Java Python
Physical Files local, local, local,

XtreemFS, XtreemFS, XtreemFS,
SSH, SSH, SSH,
HDFS, KFS,

FTP, SFTP, FTP, SFTP,
Globus GT4 Globus GT2 & GT4.0 Globus GT2 & GT 4.0
GridFTP WS GridFTP WS GridFTP

Replicated Files Globus GT4 RLS via physical files via physical files
Job submission local, local, local,

AEM,
GridSAM, GridSAM, GridSAM,
Condor,

gLite, SGE, LocalQ, gLite, SGE, LocalQ,
Unicore, Koala, Unicore, Koala,

Globus GT4 Globus GT2 & GT4.0 Globus GT2 & GT4.0
GRAM2 WS GRAM WS GRAM

Streams TCP sockets TCP sockets
RPC XMLRPC XMLRPC XMLRPC

XOSAGA package C++ Java Python
Resource reservation AEM

Table 1: SAGA and XOSAGA functionality provided by the third prototype implementation

2 General Architecture
In its general architecture, our SAGA implementations follow the lessons we have
learned with the SAGA predecessor GAT [1]: a small dynamic engine provides
dynamic call switching of SAGA API calls to middleware bindings (adaptors)
which are dynamically loaded on demand, and bound at runtime (late binding).
The relation between these components are illustrated in Figure 1.

Unlike the GAT, SAGA provides an extensible API framework, consisting of
a look-and-feel part, and an extensible set of functional packages. The look-and-
feel consists of the following parts:

Base object which provides all SAGA objects with a unique identifier, and asso-
ciates session and shallow-copy semantics.

Session object that isolates independent sets of SAGA objects from each other.

Context object that contains security information for Grid middleware. A ses-
sion can contain multiple contexts. XtreemOS certificates are managed with
an XtreemOS context object.

4

Application

Middleware
API

API

SAGA

RPC

SAGA Adaptors

L
o

c
a

l
R

e
m

o
te

Middleware

SAGA API Packages (managed by ’Engine’)

libc

(globus)

GridFTP

FilesFiles
(local)

Files
(XtreemOS)

XtreemOS

FilesJobs

Figure 1: General architecture: a lightweight engine dispatches SAGA calls to dynamically loaded
middleware adaptors.

URL object to uniformly name remote jobs, files, services etc.

I/O buffer providing unified access to data in memory, either managed by the
application or by the SAGA engine.

Error handling using exceptions.

Monitoring of certain SAGA objects using callback functions.

Task model which allows both synchronous and asynchrous execution of meth-
ods and object creation.

Permission model lets an application allow or deny certain operations on SAGA
objects.

Orthogonal to the look-and-feel are the functional packages, providing the
actual functionality of the grid. Currently, the set of standardized functional pack-
ages consists of:

Job Management to run and control jobs.

Name Spaces to manipulate entries in an abstract hierarchical name space.

File Management to access files.

5

Replica Management to manage replicated files.

Streams for network communication.

Remote Procedure Calls for inter-process communication.

The complete specification of the language-independent SAGA API can be
found in [2].

3 The SAGA C++ Engine
The C++ implementation of SAGA uses the PIMPL mechanism (private imple-
mentation) to simplify the internal state management of SAGA objects and to
resolve the lifetime dependencies between SAGA objects, SAGA sessions, and
adaptors [4]. The SAGA object does not maintain any state itself, but is merely a
facade maintaining a private, shared pointer to the implementation of the (state-
ful) SAGA object, and all method invocations are simply forwarded to that imple-
mentation instance. On copies, a new facade instance is created which maintains
another shared copy to the same implementation instance, using, by definition,
shallow copy semantics, as the stateful implementation is not copied at all. Also,
depending objects and task instances (which represent asynchronous operations)
maintain additional shared pointers to the implementation instance and are thus
extending the lifetime of that instance: only when all shared pointer copies are
finally freed (i.e., when all depending objects are deleted and all asynchronous
operations are completed) is the stateful implementation deleted.

At the same time, the engine provides the complete SAGA task model, e.g.,
it implements all SAGA operations asynchronously, even if that is not explicitly
supported by the backend services. Both the central call routing and the central
management of asynchronous operations, allow for smart runtime optimizations
of the remote method invocations [3], which are, for example, exploited for bulk
optimizations.

We also use the shared pointer abstraction for the internal lifetime manage-
ment of the adaptor instances: multiple of those instances can co-exist and provide
the implementation (i.e., middleware binding) of the SAGA object implementa-
tions.

The SAGA C++ Adaptors
Along with the SAGA C++ engine, which is providing the SAGA API itself, sev-
eral middleware bindings (i.e. SAGA adaptors) have been implemented. Firstly,
local adaptors have been provided which interface to the local operating system

6

(in the case of XtreemOS: Linux) and provide the SAGA functionality on the lo-
cal host machine, as well as LinuxSSI clusters. Besides, the local adaptor set is
also important for (a) development and debugging purposes, and (b) as reference
for other, non-local adaptors.

In addition to the local adaptors, the SAGA C++ implementation includes
various adaptors to access remote services. Table 1 provides an overview of the
accessible services, which include the XtreemFS file system. XtreemOS user cer-
tificates are also automatically recognized and used by the XtreemFS adaptor to
securely access remote volumes. Interfaces to other XtreemOS services are cur-
rently being designed and implemented.

3.1 Installation and deployment
In the XtreemOS distribution, the C++ implementation of SAGA is available as
several rpm packages:

libsaga-devel contains everything to develop SAGA applications.

libsaga contains all libraries to run SAGA applications.

saga contains some example SAGA programs and environment settings.

xosaga contains XtreemOS-specific additions to SAGA.

Installing C++ SAGA can be done using urpmi:

$> urpmi xosaga

You will be given a choice between the ’libsaga’ and the ’libsaga-devel’
package. Choose the ’libsaga’ package if you only want to run XOSAGA ap-
plications (e.g. on an XtreemOS node). Choose the ’libsaga-devel’ package
if you also want to develop XOSAGA applications on your machine.

The development source tree of the C++ implementation of XOSAGA can be
found in the Subversion repository of XtreemOS located at INRIA, France:

svn+ssh://scm.gforge.inria.fr
/svn/xtreemos/grid/xosaga/cpp/trunk

XOSAGA includes the latest SAGA 1.2.1 release, which can also be down-
loaded separately from the SAGA website. For historical reasons, the SAGA
website is located at http://saga.cct.lsu.edu.

7

The C++ implementation of SAGA depends on the free Boost C++ libraries,
version 1.33.1 or higher. They can usually be found in the package repository of
your Linux distribution. Alternatively, they can be downloaded from the Boost
website: http://www.boost.org.

3.2 API documentation
API documentation of the C++ implementation is available in three different for-
mats. Firstly, the OGF SAGA API standard document [2] is, naturally, a compre-
hensive documentation source for the SAGA API. Secondly, a number of tutorials
are included in the released code package. And finally, a detailed API documen-
tation is generated by doxygen. It is available from:

http://saga.cct.lsu.edu/cpp/apidoc/

4 The SAGA Java Engine
The SAGA Java engine implements release 1.0 of the Java SAGA language bind-
ing. Like its C++ counterpart, the engine takes care of dynamically selecting and
loading SAGA adaptors, contains base classes for adaptors, and default imple-
mentations for SAGA’s attributes, tasks, monitorable, buffer, session, and context.

4.1 Java language binding of SAGA
The Java language binding defines the precise syntax and semantics of the SAGA
functionality in the Java language. The language binding can be seen as a con-
tract between applications and SAGA implementors: both parties can safely as-
sume that exactly the classes and interfaces described in the language binding will
be either provided or requested for. SAGA’s language binding for Java is pro-
vided in the form of directly usable files that contain a set of interfaces. A SAGA
implementation has to provide classes that implement these interfaces. For al-
lowing applications to create SAGA objects, the interfaces are accompanied by
factory classes. The factory objects for each SAGA package are created by a
SagaFactory meta class. This setup requires a bootstrap meachanism to locate
the implementation of the SagaFactory class. A user is therefore obliged to
set the system property saga.factory to the class name of an implementation-
specific SagaFactory object. In our SAGA Java engine, this property must be
set to:

8

saga.factory=org.ogf.saga.impl.bootstrap.MetaFactory

The Java language binding of SAGA can downloaded from Sourceforge:

http://sourceforge.net/projects/saga/

The language binding is also available online in the form of Javadoc:

http://saga.cct.lsu.edu/java/apidoc/

4.2 XOSAGA additions
The XtreemOS-specific functionality added to SAGA is bootstrapped using a
XosagaFactory meta class, which extends SagaFactory. XOSAGA users
should therefore use an XOSAGA-specific factory instead of the default class
org.ogf.saga.impl.bootstrap.MetaFactory, namely:

saga.factory=eu.xtreemos.xosaga.bootstrap.MetaFactory

This class extends org.ogf.saga.impl.bootstrap.MetaFactory, so
all SAGA functionality is also available via the XOSAGA factory. Currently,
XOSAGA adds support for resource reservation in XtreemOS. Other XtreemOS-
specific functionality is currently being developed.

4.3 Configuration
The scripts that are included in the SAGA Java engine use the environment vari-
able JAVA_SAGA_LOCATION, which should point to the root directory of the
SAGA Java installation. The engine recognizes a number of system properties,
which are either provided to the engine by means of a saga.properties file, or
by means of the -D option of Java. The saga.properties file is searched for in
the classpath and in the current directory. If both are present, values specified in
the file in the current directory override values specified in the file in the classpath.
Values specified on the command line override both.

The property saga.adaptor.path tells the engine where to find the adap-
tors. Its default value is JAVA_SAGA_LOCATION/lib/adaptors. This property
is interpreted as a path, which may either be specified in the "unix" way (with ’/’
and ’:’), or in the system-dependent way.

All properties with names ending in .path are subjected to the following
replacements: all occurrences of the string SAGA_LOCATION are replaced with
the value of the JAVA_SAGA_LOCATION environment variable, all occurrences of

9

’/’ are replaced with the system-dependent separator character, and all occurences
of ’:’ are replaced with the system-dependent path separator character. This allows
for a system-independent way of specifying paths in a saga.properties file.

All XtreemOS-specific adaptors (i.e. to access XtreemFS, XtreemOS certifi-
cates, and AEM) are configured via an xosaga.properties file. Properties are
load from the following locations, in this order:

1. The system-wide property file /etc/xos/config/xosaga.properties

2. The per-user property file /.xos/xosaga.properties

3. The file xosaga.properties the current working directory

4. Properties specified at the command line

Properties loaded later replace properties loaded earlier.

4.4 The SAGA Java Adaptors
During startup, the engine examines which adaptors are available, and loads these.
When a SAGA object is created, a corresponding set of adaptors is instantiated.
An invocation of a method on a SAGA object is dynamically dispatched to one or
more of adaptors, until one succeeds or all adaptors fail.

The adaptors implement one or more specific Service Provider Interfaces (SPI),
which correspond to particular interfaces of the SAGA language binding for Java.
Some adaptors only implement one SPI (e.g. the Gridsam adaptor, which only
implements the SPI for SAGA’s job package). Other adaptors implement multi-
ple SPIs, as they are able to provide more functionality. An important adaptor
of the latter catagory is the one built on top of the JavaGAT. This adaptor imple-
ments almost all SPIs and acts like a “swiss army knife”. Table 1 lists all available
functionality provided by all adaptors.

All adaptors that ship with the SAGA Java engine are located in the subdirec-
tory lib/adaptors. Each adaptor has its own subdirectory, named
<adaptorname>Adaptor, in which a jar-file <adaptorname>Adaptor.jar
exists, and which also contains all supporting jar-files. The manifest of
<adaptorname>Adaptor.jar specifies which adaptors actually are implemented
by this jar-file. For instance, the manifest of XtreemFsAdaptor.jar specifies:

FileSpi-class: org.ogf.saga.adaptors.xtreemfs.FileAdaptor

which indicates that it contains a class ’org.ogf.saga.adaptors.xtreemfs.FileAdaptor’
that implements the FileService Service Provicer Interface. By default, the

10

SAGA engine tries all adaptors that it can find on the list specified by the prop-
erty saga.adaptor.path. It is, however, possible to select a specific adaptor,
or to not select a specific adaptor by specifying certain properties in a file named
saga.properties or on the command line. Some examples are:

StreamService.adaptor.name=socket,javagat will load both the socket
and the JavaGAT adaptor for the StreamService SPI, but no others. Also,
the adaptors will be tried in the specified order.

StreamService.adaptor.name=!socket will load all StreamService adap-
tors, except for the socket adaptor.

4.5 Installation and documentation

The development source tree of the XOSAGA Java implementation can be found
in the Subversion repository of XtreemOS located at INRIA, France:

svn+ssh://scm.gforge.inria.fr
/svn/xtreemos/grid/xosaga/java/trunk

This tree includes the latest SAGA Java release, which can also be downloaded
separately from Sourceforge:

http://sourceforge.net/projects/saga/

The release contains a short user guide that describes the steps required to
compile and run a Java SAGA application. The complete specification of the
Java-to-SAGA language binding is the subject of ongoing work.

4.6 Code example

Figure 2 shows an example Java program that prints XtreemOS-specific attributes
from a user’s certificate using Java XOSAGA.

The program first creates a SAGA context object of type ’xtreemos’. This
type is only recognized by the XtreemOS context adaptor, which picks up the
default key and certificate in a user’s home directory. Some properties of the cer-
tificate are then retrieved via XOSAGA-specific attributes, and printed to stdout.

11

import org.ogf.saga.error.SagaException;
import org.ogf.saga.session.Session;
import org.ogf.saga.session.SessionFactory;

import eu.xtreemos.xosaga.context.Context;
import eu.xtreemos.xosaga.context.ContextFactory;

public class XosContextDetails {

public static void main(String... args) {
try {

Session defaultSession = SessionFactory.createSession(true);
Context c = ContextFactory.createContext("xtreemos");
defaultSession.addContext(c);

String userKey = c.getAttribute(Context.USERKEY);
System.out.println("XtreemOS key file: " + userKey);

String userCert = c.getAttribute(Context.USERCERT);
System.out.println("XtreemOS certificate: " + userCert);

if (userCert != null) {
String vo = c.getAttribute(Context.GLOBAL_PRIMARY_VO_NAME);
System.out.println("- Global primary VO name: " + vo);

String role = c.getAttribute(Context.GLOBAL_PRIMARY_ROLE_NAME);
System.out.println("- Global primary role name: " + role);

String group = c.getAttribute(Context.GLOBAL_PRIMARY_GROUP_NAME);
System.out.println("- Global primary group name: " + group);

String[] sec =
c.getVectorAttribute(Context.GLOBAL_SECONDARY_GROUP_NAMES);

System.out.println("- Global secondary group names:");
for (String name: sec) {

System.out.println(" - " + name);
}

}
} catch (SagaException e) {

System.err.println("SAGA says: " + e.getMessage());
e.printStackTrace();

}

}

}

Figure 2: Example XOSAGA Java program that prints attributes of an XtreemOS user certificate.

12

5 The SAGA Python engine
The SAGA Python engine implements a preliminary version of the Python SAGA
language binding. This language binding is under development, and will be a
candidate for future standardization.

Unlike its C++ and Java counterparts, the Python SAGA engine does not
use Python-specific SAGA adaptors to implement the functionality of the various
SAGA packages. Instead, it acts as a wrapper on top of a Java SAGA implementa-
tion. All SAGA functionality is therefore available via Python-specific constructs.
Internally, the Python SAGA engine uses the Java SAGA engine to implement all
functionality.

The Python SAGA engine relies on Jython1, a Python interpreter written in
Java. Hence, we nicknamed this engine JySaga. The current stable release of
Jython is 2.2.1, which implements most of the features of CPython 2.2. Jython
allows a Python application to use Java objects and methods, which makes it rela-
tively easy to implement a Python SAGA engine on top of the Java SAGA engine.

5.1 Python language binding of SAGA
The Python language binding defines the precise syntax and semantics of the
SAGA functionality in the Python language. The language binding can be seen as
a contract between applications and SAGA implementors: both parties can safely
assume that exactly the classes and interfaces described in the language binding
will be either provided or requested for. SAGA’s language binding for Python is
provided in the form of a set of files that contain a Python module for each of the
SAGA packages. Each module defines a number of skeleton objects that define
the method signatures of all SAGA objects, but do not implement any functional-
ity. A Python SAGA engine programmer can use these skeleton objects as a basis
for implementing a functional SAGA engine in Python. To ensure that the engine
implements all SAGA functionlity correctly, the language binding is accompanied
by a set of unit tests. These unit tests provide a run-time check of a Python SAGA
implementation, and check the precise syntax and semantics of all SAGA objects.
The Python language binding of SAGA and the engine on top of a Java SAGA
engine (JySaga) can be retrieved from Subversion:

svn+ssh://scm.gforge.inria.fr
/svn/xtreemos/grid/xosaga/python/trunk/

The language binding is documented in the ’doc’ directory. The JySaga code is

1http://www.jython.org

13

located in the ’saga’ directory. The unit tests can be found in the ’test’ directory.
The ’bin’ directory contains scripts to easily start JySaga and run the unit tests.
Finally, the ’examples’ directory contains a few example programs, which are
described in more detail in Section 5.4).

5.2 Installation
The Python SAGA engine JySaga requires:

• Jython >= 2.2.1

• Java >= 1.6

• The Java SAGA engine

The jysaga script starts the Jython interpreter with the right classpath and
Java properties set to load the Python XOSAGA classes and modules. The script
assumes that Jython is started via /usr/bin/jython.

The Java SAGA implementation is assumed to be located in the directory
/usr/share/java/saga. This directory must contain a subdirectory ’lib’ that
corresponds to the ’lib’ directory created by the build.xml script of the Java
SAGA distribution. Another location can be specified by setting the environment
variable JAVA_SAGA_LOCATION.

JySaga’s .py files are assumed to live in a subdirectory ’saga’ in the default
Jython path (usually /usr/share/jython/Lib). Another location can be spec-
ified by setting the environment variable JYSAGA_LOCATION.

5.3 Unit tests
The ’test’ directory contains a set of generic unit tests for a Python SAGA im-
plementation. For JySaga, the whole test suite can be easily run using the shell
script bin/jysaga-test. The script also accepts a single unittest file name as
parameter, in which case only that test is run.

The unit tests verify all SAGA functionality. Only local adaptors are used to
keep the test environment as simple as possible. XOSAGA packages for XtreemOS-
specific functionality are not available yet in Python, and are therefore currently
not covered by the unit tests either.

5.4 Code Examples
The subdirectory ’examples’ contains several example Python applications that
use SAGA. We will describe these examples in the following sections.

14

5.4.1 Listing a directory

The program examples/listdir.py shows the contents of a (possibly remote)
directory. Figure 3 shows its source code. The program accepts a URL as param-

import sys

from saga import context, error, namespace, session, url

if __name__ == "__main__":

if len(sys.argv) < 2:
print "usage: jysaga " + sys.argv[0] + " <url>"
sys.exit(1)

try:
dir_url = url.URL(sys.argv[1]);

check if we need an anonymous FTP context
if dir_url.scheme == "ftp":

default_session = session.Session()
ftp_context = context.Context("ftp")
default_session.add_context(ftp_context)

d = namespace.NSDirectory(dir_url)

for file_url in d.list():
print file_url.string

except error.SagaException, e:
print e.message

Figure 3: Source code of examples/listdir.py

eter that indicates the directory to show. If the URL scheme is ’ftp’, we add a
SAGA context for anonymous FTP access to the default SAGA session. We then
create an NSDirectory object with the given URL, and print the names of all
files in that directory.

An example run of listdir.py could be:

$ bin/jysaga examples/listdir.py ftp://ftp.xs4all.nl/
dev
pub
shlib
welcome.msg

15

Possible others URLs are:

• Local files: file://localhost/dir/

• XtreemFS: xtreemfs://volume@host.example.com/dir/

• FTP files: ftp://host.example.com/dir/

• Secure Shell: ssh://host.example.com/dir/

• GridFTP: gridftp://host.example.com/dir/

• Try all adaptors: any://host.example.com/dir/

5.4.2 Showing file contents

The program example/cat.py shows the contents of a (possibly remote) file.
Its source code is show in Figure 4.

The first part of the program is similar to listdir.py. It accepts a URL
as parameter that indicates the files whose context will be printed. After adding
an anonymous FTP context (if needed), we create a SAGA File object with the
given URL. The file is then read in chunks of 2048 bytes that are interpreted as
ASCI and printed to stdout.

An example run of cat.py could be:

$ bin/jysaga examples/cat.py ftp://ftp.kernel.org/welcome.msg
Welcome to the

LINUX KERNEL ARCHIVES
ftp.kernel.org

(remaining output omitted)

5.4.3 Running a job

The program examples/runjob.py executes a (possibly remote) job. Figure 5
shows the source code of this program. It needs at least three parameters: the
URL of the job service to contact, the URL of the file in which the output of the
command is stored, and the command to execute. Any additional parameters are
provided to the command.

16

import sys

from saga import buffer, context, error, file, session, url

if __name__ == "__main__":

if len(sys.argv) < 2:
print "usage: jysaga " + sys.argv[0] + " <url>"
sys.exit(1)

try:
u = url.URL(sys.argv[1]);

check if we need an anonymous FTP context
if u.scheme == "ftp":

default_session = session.Session()
ftp_context = context.Context("ftp")
default_session.add_context(ftp_context)

f = file.File(u)

bufsize = 2048
buf = buffer.Buffer(bufsize);

done = False
while not done:

len = f.read(bufsize, buf);
if len > 0:

sys.stdout.write(buf.data[:len].tostring())
else:

done = True

f.close()

except error.SagaException, e:
print e.message

Figure 4: Source code of examples/cat.py

The program first creates a SAGA JobService object with the given URL.
It then creates a simple job description using the other parameters. The job de-
scription is given to the job service to create a SAGA Job object. Two callback
functions are then registered with this job object. These callbacks are triggered
when the job’s status and detailed status changes. The callbacks simply print the
current job status. After the job is run, the contents of the output file printed.

17

import sys
from saga import context, error, file, job
from saga import monitoring, session, url

class JobCallback(monitoring.Callback):

def cb(self, monitorable, metric, context):
print metric.Name + ": " + metric.Value
return True

if __name__ == "__main__":
if len(sys.argv) < 3:

print "usage: jysaga " + sys.argv[0] + " <jobservice_url> ",
print "<output_file> <command> [arguments...]"
sys.exit(1)

try:
job_service_url = url.URL(sys.argv[1]);
output = sys.argv[2]
cmd = sys.argv[3]
args = sys.argv[4:]

js = job.JobService(job_service_url)

jd = job.JobDescription()
jd.Executable = cmd
jd.Arguments = args
jd.Output = output

j = js.create_job(jd)

c = JobCallback()
j.add_callback(job.Job.STATE, c)
j.add_callback(job.Job.STATEDETAIL, c)

j.run()
j.wait();

print "Output:"
output_url = url.URL(output)
output_file = file.File(output_url);
print output_file.read(),
output_file.close()

except error.SagaException, e:
print e.message

Figure 5: Source code of examples/runjob.py

18

An example run of runjob.py (assuming SSH access to ’host.example.com’)
could be:

$ bin/jysaga examples/runjob.py ssh://host.example.com \
file://localhost/tmp/out hostname -f

job.state: RUNNING
job.state_detail: JavaGAT.PRE_STAGING
job.state_detail: JavaGAT.RUNNING
job.state_detail: JavaGAT.POST_STAGING
job.state_detail: JavaGAT.STOPPED
job.state: DONE
Output:
host.example.com

Other possible job service URLs are:

• Local jobs: local://localhost

• XtreemOS jobs: xos://host.example.com

• Gridsam jobs: gridsam://host.example.com

• gLite jobs: glite://host.example.com

• Globus jobs: globus://host.example.com

• Try all adaptors: any://host.example.com

6 XtreemOS Job Adaptor
The XtreemOS job adaptor lets SAGA applications submit jobs on an XtreemOS
cluster by using the familiar SAGA job API. The adaptor uses AEM through the
XATI API package.

URLs recognized by the job adaptor must have a scheme ’xos’ or ’any’. A
URL without a hostname (i.e. xos://) will signal the adaptor to use the default
XATI settings in ~/.xos/XATIConfig.conf to connect to an XOSD. When the
URL includes a hostname and port (e.g. xos://host.example.com:12345),
the job adaptor will reconfigure XATI to connect to the XOSD running at the given
hostname and port. When no port is specified, the default port number 60000 is
used.

The user certificate used to talk to XATI is configured through the SAGA se-
curity context mechanism. If a context of type ’xtreemos’ exists which contains
a Context.USERCERT attribute, the XtreemOS job adaptor tries to load and use

19

the certificate at the location given by the attribute value. If the certificate is en-
crypted, the Context.USERPASS attribute should also contain the password for
decryption. If no Context.USERCERT attribute was found, the default XATI se-
curity settings found in ~/.xos/XATIConfig.conf are used.

Currently, the XtreemOS job adaptor is only available in Java and Python.
Support for XtreemOS job submission in C++ is currently being developed.

7 Resource Reservation
XOSAGA add an extra ’resource’ package to allow resource discovery and reser-
vation management. It also allows more job submission use cases by using the ex-
tended XOSAGA job API. A language-independent specification of the resource
package and extended job API can be found in deliverable D3.1.2 [6].

Current, resource reservation is only available in the SAGA Java engine. The
XOSAGA API classes for resource reservation can be found in the Java packages
eu.xtreemos.xosaga.resource and eu.xtreemos.xosaga.job.

Users can access the extra XOSAGA functionality by using the SagaFac-
tory eu.xtreemos.xosaga.bootstrap.MetaFactory. This class extends
the Java SAGA class org.ogf.saga.impl.bootstrap.MetaFactory, and
adds the method createResourceFactory() to obtain a ResourceFactory
object. Figure 6 shows the methods that the resource factory contains.

The ResourceService object represents a resource management system.
It allows for resource discovery and reservation. The ResourceDescription
object adds a number of SAGA attributes to describe resources.

8 Xterior
Xterior is an GUI application for easily managing files, jobs, and credentials in
a virtual organization. Xterior is implemented in Java, and uses the Java SAGA
engine underneath to access XtreemOS functionality. The first release of Xterior
(0.2.0) only supports management of files and credentials.

8.1 File management interface
Figure 7 shows the file management interface of Xterior. Clicking the ’File Man-
ager’ button in the top left corner creates a new file management tab. Each tab has
its own SAGA session object, with its own set of associated SAGA security con-
texts. The contexts used in the tab’s session can be edited in the side pane on the
left. The lower box in this side pane contains all contexts used in the tab’s session,

20

/**
* Creates a resource service object which connects to a
* resource management system.
*
* @param session
* SAGA session to associate with the service.
* @param rm
* Contact url for the resource manager. If blank or null, the implementa-
* tion must either perform resource discovery, fall back to a fixed value,
* or find a rm contact in any other way. If that is not possible, a
* BadParameter exception MUST be thrown, and MUST indicate that an rm
* contact string is needed.
* @return
* the created ResourceService object.
* @throws NotImplementedException
* @throws IncorrectURLException
* @throws PermissionDeniedException
* @throws AuthorizationFailedException
* @throws AuthenticationFailedException
* @throws TimeoutException
* @throws NoSuccessException
*/

public static ResourceService createResourceService(Session s, URL rm)
throws NotImplementedException, IncorrectURLException, PermissionDeniedException,

AuthorizationFailedException, AuthenticationFailedException,
TimeoutException, NoSuccessException;

/**
* Creates a new ResourceDescription to be used with the resource reservation
* service.
*
* @return the resource description.
*/

public static ResourceDescription createResourceDescription();

Figure 6: Methods in the ResourceFactory class

and the upper box contains the remaining contexts. In Figure 7, the tab’s session
only contains one ’Anonymous FTP’ context. This context defines a username
’anonymous’ and an empty password to access anonymous FTP servers. Contexts
can be dragged between these two boxes to add and remove them to and from the
tab’s session. Alternative, the ’plus’ and ’minus buttons can be used.

Each file management tab shows the contents of two directories, which is re-
trieved via a SAGA NSDirectory.list() call. The URL of each directory is
shown above each directory contents pane. In Figure 7, the left one is the local
directory /home/mathijs/doc/. The right directory shows the contents of the
root directory of the FTP server ftp.chello.nl. This FTP server allows anony-
mous FTP access. Hidden from the user, the FTP adaptor in the Java SAGA engine
uses the ’Anonymous FTP’ context to login to this server and retrieve contents of
the root directory.

The icon in front of each directory entry indicates whether it is a file or a

21

Figure 7: Example of remote directory access via FTP

directory. Double-clicking a file opens it with the default associated program of
the operating system. Double-clicking a directory changes the current working
directory.

8.2 Credential management

Clicking the middle button in the credentials side pane pops up the credential
management interface of Xterior. Figure 8 shows a screenshot of this interface.

In this interface, users can easily manage their credentials for various mid-
dleware, protocols and remote services. Each credential translates to a SAGA
security context, and consists of a user-specified name, a type, and a set of at-
tributes. Various credential types are available, including including ’FTP’, ’SSH’,
’Globus’, and ’XtreemOS’. Depending on the type, certain attributes can be en-
tered in the interface.

In Figure 8, a new context of type ’SSH’ is created, and named ’My SSH
key’. The attribute ’User key’ is set to the filename of the local private SSH key

22

Figure 8: Creating a new ’SSH’ context in Xterior

/home/mathijs/.ssh/id_rsa. The option ’Add by default’ is marked, which
indicates that when a new tab is created, this context should be added automati-
cally to the tab’s session.

After clicking the ’Done’ button, all credential information is automatically
saved to a local file ~/.xterior/saved_credentials.data. The file is en-
crypted with a master password.

In Figure 9, a second tab is created by clicking the ’File Manager’ button again.
The new ’My SSH key’ context is now automatically added to this tab’s session.
To demonstrate that SAGA can now access remote SSH servers, the URL of the
right directory is changed to ssh://flits.cs.vu.nl/home/mathijs/doc/.
The private key referred to in the ’My SSH context’ is then used to retrieve the
contents of the remote directory.

8.3 File management operations
Xterior users can copy and move files between the two directories shown in the file
management interface. Copying files and directories is done by selecting one or
more of them in one of the directories, and pressing ’F5’. The files are then copied
to the other directory. Moving files and directories is done similarly by pressing
’F6’. Alternatively, users can drag entries from one directory to the other. When
both directories refer to the same filesystem, dragged files will be moved. When
the directories refer to different filesystems, dragged files will be copied. Figure 9
shows how the file talks.tar.gz was copied from the remote SSH server to the
local directory /home/mathijs/doc/.

23

Figure 9: Example of remote directory access via SSH. The file talks.tar.gz is copied from
the remote directory to the local one.

Other file management operation are also possible. Renaming a file or direc-
tory is done by selecting it and pressing ’F2’. Deleting files is done by selecting
them and pressing ’F8’ or ’Delete’. New directories can be created by pressing
’F7’.

9 Summary and Future Work
In this report, we have presented the third prototype of the XtreemOS runtime
engine. The prototype implements the XOSAGA API, according to our previous
deliverables D3.1.2 and D3.1.5. We have outlined the underlying design principles
of our implementations in C++, Java, and Python, and have provided information
for download, installation, and use. All implementations support the XtreemFS
file system and XtreemOS certificates. In addition, the Java and Python engine
support XtreemOS job submission. The Java engine also supports resource reser-
vation.

24

Deliverable D3.1.5 defines several other XtreemOS-specific extensions to the
SAGA API that are not covered in the current prototype engine. These XOSAGA
interfaces provide access to publish-subscribe systems, shared properties, shared
buffers, and distributed servers. Implementing these interfaces in the runtime en-
gines for C++, Java, and Python is the subject of ongoing work.

25

References
[1] Gabrielle Allen, Kelly Davis, Tom Goodale, Andrei Hutanu, Hartmut Kaiser,

Thilo Kielmann, Andre Merzky, Rob van Nieuwpoort, Alexander Reinefeld,
Florian Schintke, Thorsten Schütt, Ed Seidel, and Brygg Ullmer. The Grid
Application Toolkit: Towards Generic and Easy Application Programming
Interfaces for the Grid. Proceedings of the IEEE, 93(3):534–550, 2005.

[2] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer,
Andre Merzky, John Shalf, and Christopher Smith. A Simple API for Grid
Applications (SAGA). Grid Forum Document GFD.90, January 2008. Open
Grid Forum (OGF).

[3] Stephan Hirmer, Hartmut Kaiser, Andre Merzky, Andrei Hutanu, and
Gabrielle Allen. Generic Support for Bulk Operations in Grid Applications.
In MCG ’06: Proceedings of the 4th International Workshop on Middleware
for Grid Computing, page 9, New York, NY, USA, November 2006. ACM
Press.

[4] Hartmut Kaiser, Andre Merzky, Stephan Hirmer, and Gabrielle Allen. The
SAGA C++ Reference Implementation – Lessons Learnt from Juggling with
Seemingly Contradictory Goals. In Workshop on Library-Centric Software
Design LCSD’06, at Object-Oriented Programming, Systems, Languages
and Applications conference (OOPSLA’06), Portland, Oregon, USA, Octo-
ber 2006.

[5] XtreemOS Consortium. First Draft Specification of Programming Interfaces.
Deliverable D3.1.1, 2006.

[6] XtreemOS Consortium. Second Draft Specification of Programming Inter-
faces. Deliverable D3.1.2, November 2007.

[7] XtreemOS Consortium. Second Prototype of XtreemOS Runtime Engine.
Deliverable D3.1.6, November 2008.

[8] XtreemOS Consortium. Third draft specification of programming interfaces.
Deliverable D3.1.5, November 2008.

26

	Introduction
	General Architecture
	The SAGA C++ Engine
	Installation and deployment
	API documentation

	The SAGA Java Engine
	Java language binding of SAGA
	XOSAGA additions
	Configuration
	The SAGA Java Adaptors
	Installation and documentation
	Code example

	The SAGA Python engine
	Python language binding of SAGA
	Installation
	Unit tests
	Code Examples
	Listing a directory
	Showing file contents
	Running a job

	XtreemOS Job Adaptor
	Resource Reservation
	Xterior
	File management interface
	Credential management
	File management operations

	Summary and Future Work

