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Executive summary
This document focuses on three core themes. Firstly, it presents the usability of
the Virtual Nodes framework by discussion a demo application. Furthermore, it
contains an extensive evaluation of the framework with respect to performance
and availability.

Secondly, this document is concerned with our efforts on integrating Vir-
tual Nodes with other components of XtreemOS, mainly AEM and Distributed
Servers. For each of both components, we present the architectural approach, the
current state regarding the implementation and a list of future work.

Thirdly, we made attempts to improve the quality of our code. We did mod-
ularise our previously monolithic framework implementation in order to allow
maintaining components individually. Moreover, we have used model checkers to
prove that our various scheduler implementations are correct.
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1 Introduction
After the first specification in D3.2.5 [4] and a functional evaluation in D3.2.9 [8]
this deliverable is concerned with an extension of the Virtual Nodes framework.
The last months were characterized by various real-world and integration efforts.
In particular, we presented a replicated POP3 server at the XtreemOS review meet-
ing (c.f. Section 2).

In addition we have also expended effort for integrating Virtual Nodes with
distributed servers whose feasibility has been subject to Deliverable D3.2.10 [7].
As before, this is ongoing work, so that we only present architectural results
mainly from a Virtual Nodes perspective.

Furthermore, we have been working on applying the framework to the Appli-
cation Execution Environment (c.f. Section 4). This is still work in progress, so
that this document will only present preliminary results. Mainly, it focuses on the
software architecture of the integration approach. Moreover, it will only focus on
the extensions required for Virtual Nodes and ignore modifications to AEM.

Apart from that we worked on proving the correctness of our deterministic
scheduling algorithms using the Spin model checker [10]. The modifications and
extensions led to the introduction of a new modularised software layout of Virtual
Nodes together with a sophisticated configurator.

Finally, we have executed an extensive performance and reliability evaluation
of Virtual Nodes. In the following sections we will discuss these topics.

2 Demo
For the review session in June 2009, ULM presented a fault-tolerant POP3 server
based on the Virtual Nodes framework. This section first gives a short introduction
about the effort it took to take a ready-to-use open source POP3-server implemen-
tation and to make it fault-tolerant. Afterwards, we discuss the demo set-up and
discuss its weaknesses.

2.1 Preparation

As a basis we used the open-source POP3-capable Java Mail Server1. We mod-
ified the implementation to fit the Virtual Nodes requirements. Overall, it took
us one person week to do all modifications and to get the software running re-
liably. Figure 1 shows a diagram that summarises the time spent on different

1http://www.ericdaugherty.com/java/mailserver/
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Figure 1: Time required for porting JMS to Virtual Nodes [days]

tasks. It clearly shows that the actual tasks that are required for enabling repli-
cation, namely removing non-determinisms and adding support for state transfer,
together were less time-consuming than all other tasks individually.

Adding state transfer took half a day and resulted in additional 200 lines of
code that are mainly responsible for copying files. Removing non-determinsm re-
quired adding about 100 lines code that mainly handle access to the file system.
For instance, it ensures that invocations to, File.list() return a determinis-
tically ordered list of files instead of a randomly ordered list (as specified in the
Java API).

In contrast, it took three days to first restructure the poorly written code and
to track and remove bugs. The code restructuring was necessary as Virtual Nodes
require object-orientation. That means, they operate on object instances and can-
not deal with static methods and code that has been developed following the
functional programming paradigm. Furthermore, even though the author claims
that the code is multi-threading enabled, we found out that this is not entirely true.
The author dabbled at applying synchronisation and mutual exclusion. Due to
the idempotence of most of the POP3 operations those errors barely show up in
a non-replicated environment. In a replicated scenario where a client can connect
to any replica, those may become an issue.

2.2 Set-up
For the demo session we used the set-up shown in Figure 2. Two replicas were
located on hykrion and hynreck in ULM. In addition, we had set-up other en-
tities running on qvin – also located in ULM. MessageGenerator is a tool
built by ULM that generates e-mails at a configurable rate and injects them in the
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Figure 2: Set-up of demo application

replicas using the Virtual Nodes protocol (denoted by RMI*). Registry is an
entity similar to a Java RMI registry. Here, the replicas store their contact infor-
mation. Clients use it to retrieve this information and thus to contact the replicas.
Finally, Pop3Proxy is an entity that translates incoming POP3 messages to re-
mote method operations to the replicas resulting in messages in Virtual Nodes
format. In addition, a mail client (Thunderbird) resided on a laptop in Rennes and
contacted Pop3Proxy in order to retrieve mails from the server group.

The goal of the demo was to show Virtual Nodes are working, so it is not sur-
prising that the set-up is not fully fault-tolerant. Clearly, the replica state located
on hykrion and hynreck is replicated and thus protected against failures of indi-
vidual replicas. All entities on qvin, however, are not fault-tolerant as they are
not replicated. That means, if qvin fails, the mail service becomes unavailable.
In order to make the entire set-up fault-tolerant, one might apply multiple other
XtreemOS entities. First of all, replacing the registry with the XtreemOS direc-
tory service, allows to have a stable instance that replicas as well as clients can use
to store and retrieve contact information. For the proxy to become fault-tolerant,
it is possible to apply Distributed Servers [3] and allow each replica to have its
own proxy instance, as discussed in Section 5. Note, that it is not required to
provide resilience for MessageGenerator, as this entity represents a sending
client whose fault-tolerance can never be guaranteed. The same holds for the mail
agent.
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3 Modularisation
Virtual Nodes is highly configurable. This leads to the fact that parts of the system
are entirely independent of other parts. Thus, for re-using individual components
not all of the Virtual Nodes code is required. Consequently, we decided to mod-
ularise the code. As a result of those modularisation efforts, Virtual Nodes now
consist of a set of around 40 modules. In most cases each component is mapped to
an interface and an implementation module. In case of schedulers and replication
strategies there are multiple different implementation modules. In order to allow
exchanging existing or adding new implementations easily, implementation mod-
ules purely depend on interface modules. As well as interface modules depend
only on other interface modules.

Apart from that, individual modules now (together with their transitive clo-
sure of dependencies) can be used as stand-alone components such as the group
communication abstraction or the schedulers. In particular such a set-up permits
that components be tested individually, but nevertheless be started by the standard
Virtual Nodes mechanisms.

Loading and initialising modules is realised by a new configuration infrastruc-
ture that is implemented as an own software module. Similar to the OSGi frame-
work, the configurator requires that each module comes with an Activator.
An activator specifies properties it depends on and properties it provides. In ad-
dition, an activator can initiate that other activators be loaded. In particular this
allows activators of interface modules to specify which implementation shall be
used. Depending on provided and required properties, the configurator loads the
activators in the correct order or aborts initialisation if dependencies cannot be
satisfied.

Our efforts of modularising our system have already proven to be useful, as
extensions for both AEM and Distributed Server integration can be implemented
as mostly stand-alone modules without interfering with Virtual Nodes core code.

4 AEM Integration
In an XtreemOS system there are two kinds of nodes: core nodes and resource
nodes, differ on the kind of services they run. Basically, a resource node is just a
server where jobs are run, while a core node manages higher level concepts such
as job, reservation, dependence and user metric.

From the fault tolerance perspective, resource node services are not worth
being replicated. They store data that is exclusively relevant to the node they run
on. If the node fails, and thus the job does as well, this data is of no use for any
other node. Thus, replicating its data will not represent any added value. On the
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other hand, if a core node fails, the jobs it managed should not be affected. User
requests for jobs that are managed by a failed core node can be also handled by
another core node if it has a replica of the job’s state.

Summarising, the following core node entities may be subject to replication:
Job Manager, Reservations Manager and Checkpoint/Restore Job Manager. In a
first proof-of-concept approach we will focus on replicating the Job Manager.

In the following subsection we will first present a short overview on AEM.
Then we discuss the DIXI communication infrastructure. AEM is based on DIXI
so that an integration requires an adapter that wires Virtual Nodes to DIXI. Finally,
we conclude with a report on the current status and future tasks to be carried out.

4.1 AEM System Architecture
The AEM architecture is based on the Staged Event Driven Architecture (SEDA [14])
first published by Matt Welsh and presented in Deliverable D3.3.3-4 [5, 6]. From
a simplified point of view, services in this architecture are asynchronous event
machines and communication consists of event/message passing. A system con-
sists of a stack of stages. Each stack has an incoming and an outgoing queue. The
incoming queue of stage si contains messages that have arrived from stage si−1,
the stage below si in the stack. Messages in the outgoing queue are put there by
stage si+1. External messages enter the system at the bottom-most stage. Internal
messages are created at any stage and can be used for inter-stage communica-
tion. When a message enters a stage from the lower (upper) layer, it is processed
according to the stage policies. Afterwards, it is passed up (down) one stage if
required. In order to ensure isolation and re-usability of stages, each stage comes
with its own concurrency policy; that is, its own thread pool. A thread assigned to
a stage never leaves this stage, but only uses the queues for communication.

Every service in this architecture extends the Abstract2WayStage class,
which is the top stage of the SEDA stack. Below this stage, there are the Mes-
sage Bus and the Communication Stage that build on the MINA2 communication
framework. Services and stages are initialized by the XtreemOS Daemon, as rep-
resented in Figure 3. Stages’ event queues are grouped in the EventMachine
root object.

The Message Bus Stage3 provides communication capabilities between ser-
vices and stages. It parses message headers and sends events to the corresponding
service.

The Communication Stage4 uses Apache Software Foundation’s MINA li-

2http://mina.apache.org/
3eu.xtreemos.system.communication.bus
4eu.xtreemos.system.communication.net

6



Message Bus Stage

Communication Stage

AEM Services

MINA

Abstract2WayStage

E
M

XOSd

Figure 3: A view of the SEDA stack inside the XOS Daemon

brary as network framework. The XtreemOS Daemon creates a thread to listen
to the selected port for incoming event messages. Those messages are serialized
ServiceMessage objects.

4.2 Communication Stack
Overview

Recall from Figure 3 that the communication happens according to the communi-
cation stack. Messages come into the system and are passed up the SEDA stack
as events until they are either dropped or reach a service that is able to process
them. The messages that pass through CommunicationStage are of type
ServiceMessage whose implementation does directly represent the fact that
messages are supposed to carry information of a remote method call.

Virtual Nodes use two kinds of communication systems. The group com-
munication system (GCS) is used for internal, i.e. intra-replica communication,
whereas the clients use some external communication interfaces to access the Vir-
tual Node. This infrastructure is depicted in Figure 4. The external communica-
tion interfaces do also serve as a means to access other, i.e. remote, services from
within a replica of a Virtual Node.

For an integrated approach it is necessary to have all messages that are targeted
to a replicated entity (say a JobMng) be received by its corresponding Virtual
Nodes instance. Subsequently, this instance hands the message over to the repli-
cation protocol, which, finally, hands it over to the replicated entity. More clearly,
messages/events must not arrive at, for instance, the JobMng except when the Vir-
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tual Nodes framework has handed over the message. The same holds for replies
and invocations to other services: any message directed to a replicated service
must pass the Virtual Nodes framework. Accordingly, all interaction of a service
has to be intercepted. In addition, the fact that a request issued by a client might
be directed towards a crashing (crashed) replica, requires to re-execute requests.
This is only possible if messages can be identified uniquely and thus trackable
starting from the first client. Furthermore, it is required to map nested invocations
to their original request which results in another id to be added to messages. As
we try to minimise changes to existing code, we do not directly add these ids at
client-side, but use a level of indirection.

Figure 5 sketches the communication stack that is used in replicated scenarios.
We introduced an additional stage, the ReplicationStage. Messages that
are not directed towards replicated services just pass through this stage without
any modifications. For messages directed to replicated services there are two
options. If the message is issued by a client, and thus not yet replication aware,
it is passed on to a replica stub stage where the message is modified to fulfill
replication requirements (e.g., ids are added) and then relayed to the replicas. Of
course this approach is only resilient to node failures when only requests from
local clients are proxied. This is ensured by the way an AEM-extension treats
addresses of replica groups. The extension is subject to work package 3.3, so
that we will not discuss this issue in detail here. Requests from remote hosts are
directly forwarded to their respective vnode stage each containing an instance of
a Virtual Node as well as a replica. Accessing Virtual Nodes from the replication
stage requires some extensions to Virtual Nodes that are discussed in the next
section.
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Virtual Nodes Perspective

From the perspective of the Virtual Nodes architecture two custom extensions are
required in order to be able to deal with the DIXI stack, namely the external com-
munication layer and the middleware layer. Conceptually, those two layers are
unrelated. The external communication layer is concerned with receiving mes-
sages, while the middleware layer deals with parameter (un-)marshalling. How-
ever, as in DIXI messages and parameters are tightly coupled, both entities will
share functionality for handling DIXI messages.

The flow of messages and data is shown in Figure 6. As one can see, mes-
sages arrive at the vnode stage using the regular DIXI stack. Here, they are not
directly handed over to the service implementation, but have to pass the repli-
cation infrastructure. For that reason the Virtual Nodes framework uses its own
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Abstract2WayStage where messages can be enqueued. That is the external
communication layer implemented for DIXI. Here, the message is wrapped into
a Virtual Nodes message and relayed to the replication protocol. From there, it is
relayed to the middleware layer (DixiDispatcher) where the DIXI message
is unwrapped and then inserted in the in-queue of the service implementation. The
reply uses the same route in inverted direction.

In addition, DixiDispatcher is registered as the services’ out-queue. This
allows to intercept messages in the service implementation issues a nested invo-
cation, and to let them be processed by the regular Virtual Nodes mechanisms.

4.3 Current State
At the time of writing this, the integration is as far as supporting the replication
of individual self-contained DIXI services. Services are self-contained if they
do neither depend on other service nor access the file system. Adding support
for services interacting with each other is considered future work and will be
supported by the end of the project.

5 Distributed Server Integration
In a previous deliverable discussing the integration of Virtual Nodes with dis-
tributed servers [3], we agreed that one of the replicas functions as a contact node
and receives all incoming requests. We further stated that active replication is the
only replication scheme that makes sense, as providing fault-tolerant distributed
servers means replicating socket state. Nevertheless, from a Virtual Nodes per-
spective there is no need to distinguish both protocols. Our approach uses already
existing mechanisms within the replication protocols, so that it is totally agnostic
regarding the replication protocol. Nevertheless, some modifications and exten-
sions to the workflow are required.

10



Appl.

Replication Framework

Client MW

vnode Sender

Server MW

Repl. Protocol

Impl.

Middleware
Layer

Replication
Layer

Client
Replica/
Server

vnode Rec

Protocol
Message

vnode
Message

Protocol
Message

vnode
Message

(a) In Orginal Version

Appl.

Replication Framework

Client MW

Abstract Rec

Server MW

Repl. Protocol

Impl.

Middleware
Layer

Replication
Layer

Client Replica/
Server

Protocol Rec
Middleware
Layer

ProcolMessage
+ SocketState

Protocol
Message

vnode
message

Protocol
Message

S
o
ck

e
tT

ra
ck

e
rSocket

State

(b) With Protocol-specific Receiver using Distributed
Servers

Figure 8: Invocation Flow

In order to allow Virtual Nodes to use distributed server functionality slight
changes to the architecture where necessary. One of the most outstanding fea-
tures of an integrated version is that clients do not require Virtual Node-specific
code anymore. Instead they can use an off-the-shelf middleware system to ac-
cess the replicated service. Such a middleware system might be a regular RMI
stub, a SOAP interface or any specified protocol. Figure 7 sketches how the demo
scenario from Section 2 may look in an integrated version. Now, each replica is
linked to its own (basically state-less) proxy instance that translates messages to
Virtual Nodes messages. It is worth noting that the client is unaware of the fact
that there are more than one node processing its requests. Location and replication
are kept transparent by the underlying mobile IPv6 protocol. Thus, the client does
not have to rely on a registry anymore. Instead, it uses a well known IPv6 address.
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Replicas only understand Virtual Nodes messages. Thus, we have to add an
adapter-like entity that is able to transform protocol-specific messages to Virtual
Nodes-messages. Figure 8(a) shows the previous layout and workflow, Figure 8(b)
sketches the current approach. As one can see, the Virtual Node-specific receiver
has been replaced by a protocol-specific receiver whose input is piped into an
abstract Virtual Nodes receiver.

It is crucial to keep track of open sockets on other nodes. As soon as a replica
fails, another replica takes over all its open sockets and re-executes the requests
respecting at-most-once semantics, so that it is able to send a reply to the waiting
client. Taking over a socket means that a serialised socket state is installed in the
operating system, gets initialised, and the client connection is taken over following
the mobile IPv6 protocol. We decided to let the oldest replica take over all open
sockets of the failed replica. Note that it is indeed possible that multiple replicas
have open connections to clients. This may happen, because distributed servers
come with their own group management functionality including a failure detector,
which decides which group member is the current contact node. As discussed pre-
viously, the task of this failure detector is to minimise the down-time experienced
by clients. Thus, it uses a very short timeout that may result in many false pos-
itives and in consequence in many relatively light-weight contact node switches.
In contrast the Virtual Nodes failure detector will use much higher timeouts in
order to avoid false positives, because on this level, they result in a member being
excluded from the group. Excluding a member in turn means that this member’s
state is not kept consistent with the other replicas’ respective state anymore. Con-
sequently, diagnosing a member as failed requires to initiate a new state transfer
in order to let the falsely excluded machine re-join the group again.

The whole functionality of socket recovery and re-execution of requests is
implemented in a module called SocketTracker that is brought up by the
protocol-specific receiver. Accordingly, the protocol-specific receiver serialises
the socket state after a complete message has been received (where the meaning
of complete depends on the protocol being used). The serialised socket is ap-
pended to the message and passed on to the replication protocol. In order for the
SocketTracker to get the required information, we introduce a Message-
FilterRegistry that is invoked before a request is actually being executed
(i.e. is inserted in the scheduler). Yet, in order to stay generic MessageFilter-
Registry is not tied to SocketTracker, but introduces a specific interface
MessageFilter. Instances of MessageFilter can be installed at the reg-
istry. SocketTracker implements this interface.

Summarising, the new workflow for processing a request is as follows. New
steps are marked with *.

1. The client sends a request to the contact node via mobile IP6 using a regular
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protocol such as SOAP, RMI, or POP3.

2. The contact node freezes the state of the socket that the request was received
through and appends it to the request.*

3. The modified request is handed on to the replication protocol where it is
made persistent.

• For active replication this means that the request is broadcast to all
other nodes where it is processed.

• For passive replication this means that either the request or its effect is
made persistent by the persistency layer.

• For passive replication this means that the request or its effect is made
persistent by the persistency layer.

– In case of requests, no additional work has to be done, because
the request already contains the serialised socket.

– Application states, do not include any information about socket
states, as the application does not know about sockets. Thus,
the passive replication protocol has to ensure that the Message-
FilterRegistry including all information about socket states
is serialised together with the application state.*

4. After having processed the request, the contact node sends the reply to the
client.

Discussion
The protocol does allow that open (in fact any) client-side protocols are used as
long as connections are not multiplexed. That is, a second requests is not sent
concurrently to another request using the same connection (i.e. socket). For now
two requests are considered concurrent to each other if the first byte of the second
request is sent while the last byte of the reply to the previous request has not yet
been received. A request is previous to another request when the first requests first
byte is sent before the second requests first byte.

The protocol ensures that requests are processed in a fault-tolerant manner.
Yet, it does not ensure full failure-transparency. That means clients can expe-
rience a communication error (such as a connection timeout). A disconnect hap-
pens when the contact replica crashes while receiving the request before it is made
persistent by the replication protocol. During that period the system lacks trans-
parency for clients. As no state modifications are issued while a request is being
received, there is no risk of inconsistent replica states. Furthermore, a client may
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experience a connection timeout when the detection of a node failure takes longer
than e.g. a TCP-connection needs to timeout. Configuring the timeout appropri-
ately, is an administration task and cannot be handled by the framework.

5.1 Current State

At the time of writing this, we have finished the implementation of SocketTracker.
We are currently realising a Distributed Server-aware protocol-specific receiver
for POP3. In a next step, we will implement MessageFilterRegistry.

6 Verification of Scheduling Algorithms
One core feature of Virtual Nodes in order to minimize the performance loss of
replication is to allow multi-threading. But there is one invariant that must hold to
be able to replicate a service while allowing this feature: the determinism of the
scheduler. It must be guaranteed at all times, that the critical sections of the code
are accessed in the same sequence on all replicas. Only this way the state on all
replica goes through the same sequence of intermediate states and stays consistent
throughout the execution.

For this task we provide multiple scheduling algorithms that can be combined
with the active and passive replication schemes. It is relatively easy to prove the
correctness of SEQ and SAT [8]. These two algorithms execute the requests se-
quentially and only differ in their ability to allow wait/notify semantics. They do
not allow real multi-threading, i.e., there is only a single active thread at a time.
Regarding the algorithms that allow real multi-threading such as LSA (Loose Syn-
chronisation Algorithm) [2] , PDS (Preemptive Determinstic Scheduling) [1] and
MAT (Multiple Active Threads) [13], proving correctness is not trivial anymore.
So the authors of LSA and PDS used a logical proof in the proposing papers for
the algorithms to check the determinism of the algorithm and beside that – model
checking.

There are two correctness properties that must be verified to prove the correct-
ness of a distributed algorithm. The internal one regarding the correct behavior
of the algorithm on one single replica and the external one regarding the overall
behavior of multiple replicas. Basile et al. [1] only checked the internal behaviour
of their two algorithms, because it is not easy to construct a distributed model of
such an algorithm with a finite state space which is required for model checking.

The Spin Model Checker [10] was used by the authors of LSA and PDS to
prove internal correctness and so we decided to use that tool as well to test the
MAT scheduling algorithm which has not yet been checked with a model checker.
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As we wanted to have something to compare MAT against regarding the state-
space, we did a re-implementation of PDS whose original implementation is kept
private by its authors. Checking an algorithm with Spin requires to design a model
of that algorithm with a predefined limited set of commands. The so called Pro-
cess Meta Language (PROMELA)5 is a C-like language with support for con-
current processes and bounded communication channels between processes. The
restriction on a few language constructs results from the way the model-checker
works. It simply checks every possible state in the interleaving of the different
processes for a violation of formerly defined invariants. As a result, all elements
used have to be bounded with respect to the number of states they can be in. Thus,
unbounded elements (e.g. floats, random number generators, unbounded chan-
nels) do not appear in the model. Moreover, there are not even methods, but only
a slightly advanced support for macros. Consequently, the design of an easy to
read code is not easy.

As expected both algorithms passed the internal correctness tests. But the
challenge to prove external correctness still remained. It came to our mind that,
if there is only one possible access order to a critical part of the code, then the
external correctness holds for any number of replicas. We do not have to take care
of the communication layer here, because we use a group communication frame-
work that guarantees the ordered delivery of all messages to all nodes (atomic
broadcast semantics). During the verification we continually build the access se-
quence to the exclusive parts of the code. This sequence is not modified when the
model checker jumps back and forth in the tree that spans all possible executions
paths. We had to use a memory access mechanics out of the control of the model
checker to be able to do that. Normally, when the model checker has finished
the search in one path and heads back to test other subbranches, it would revert
all changes to any variable it had made during the execution of the former sub-
branch. This is inevitably necessary for normal execution testing, as otherwise the
tests would prove nothing. Normally one would hard-code the invariants into the
model checker using Linear Temporal Logic (LTL) and afterwards run the model
against them. For that approach we would have to compute the sequence of access
before the run, which would be very difficult to do for more complex scenarios.
And still this state space can grow really big without much effort. We tested PDS
and MAT with 10 parallel requests and 5 to 10 mutex variables for critical code
access and reached 3-6 million states and the memory bounds of our 4 GB RAM
test machine.

We only checked simple lock/unlock tests, because wait/notify and nested in-
vocations itself take place inside a guarded codeblock. So if the exclusive access
is guaranteed in this simple case, all other properties will hold, too. As stated

5http://www.dai-arc.polito.it/dai-arc/manual/tools/jcat/main/node168.html
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above we tested the algorithms with up to 10 parallel running requests that com-
pete for 10 synchronisation variables. This is sufficient because of two reasons.
You do not need more than n threads running on a machine, when you have n
cores (except with heavy I/O). So, there is no need for a model-checked proof of
infinitely many parallel requests. Also one has to keep in mind that the algorithm
has been proven logically for that case. And coming from that direction, if two
requests competing for one synchronisation monitor cannot break determinism,
one can prove inductively that this holds for n + 1 threads and mutexes as well.

A second approach was to directly model-check our Java implementation of
the schedulers. There is a tool called JavaPathFinder(JPF) [11] developed by
NASA to model-check mission critical Java software. While trying to model-
check our code with this tool it turned out that this is hardly possible. Currently,
JPF only supports part of the Java 1.4.2 and above, even though the source code
of JPF uses Java 6 features. Yet, the fact that our code makes heavy use of fea-
tures that have been introduced in Java 5 and Java 6, requires us to wait for future
releases of JPF.

7 Evaluation

Within this section, we present the results of an extensive evaluation of Virtual
Nodes. The results presented here are part of a much more in-depth analysis that
can be found in [12].

Figure 9 gives an overview of the evaluation process. The model of the Vir-
tual Nodes replication framework is mainly parameterised by the stochastic pro-
cesses of arrival, service, failure and recovery. Here, the stochastic processes
determine the inter-arrival, service, inter-failure and inter-recovery times. We
generate these times according to the processes’ probability distribution func-
tion/probability density function (Distribution Generation) and write them to a
plain text file (Input Data).

Based on the input data, the Client schedules the different, possibly concur-
rent, events. That is, it submits requests to the Virtual Node which simulates pro-
cessing of the request for a specified amount of time as well as it starts and stops
replicas in order to simulate failures and recovery. The collected data is written to
a Log File and is then analysed by the various Analysis Tools we implemented for
the evaluation. The Analysis Tools generate some kind of Report, which contains
the results of the analysis.
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Figure 9: Evaluation Overview

7.1 Evaluation Setup
The evaluation setup is shown in Figure 10 and involves three entities. A client
(class Client) is responsible for issuing requests, failures and recovery. The
times when requests, failures and recovery occur have to be specified by a file
that contains the times between successive requests, failures and recovery respec-
tively; for sake of brevity we will refer to requests, failures and recovery as tasks.
The advantage of specifying tasks a priori and relatively to each other and pass-
ing this timing information to the client in form of files is that the client can is-
sue tasks according to any kind of stochastic distribution and experiments can
be repeated with identical statistical properties. Tasks are scheduled by a timer
(class Timer), which is similar to the implementation of java.util.Timer
but must be started explicitly. A background thread schedules tasks for execution
using Object.wait(long) and runnable tasks are then executed in a separate
thread in order to keep the delay for the overall schedule at a minimum. The client
creates an a priori schedule for requests before starting the evaluation. In contrast,
failures and recovery are scheduled on demand; that is, the next failure is only
triggered if the number of running replicas is not zero and the next recovery is
only scheduled if not the maximum number of replicas are up.

Requests sent from the client to the service (interface Service and class
ServiceImpl) are accompanied with a service time. The service simply ex-
ecutes a for-loop for the specified amount of time in order to generate load
on the replica machines. To simulate different state sizes, the service has a field
of type byte[] which can be varied in size when initially creating the service
object. Each machine that eventually hosts a replica, runs a so-called replica man-
ager (interface ReplicaManager and class ReplicaManagerImpl). The
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Figure 10: Evaluation setup

replica managers are necessary to remotely start or shutdown replicas. Further-
more, the service uses the replica manager for logging purposes.

Figure 11 shows the experimental setup. We are using five machines, con-
nected by a switched 100 Mbit Ethernet, in total; Table 1 lists the basic configura-
tion of the machines. Two machines, Hykrion and Hynreck, are connected by
a switched 1 Gbit Ethernet. The responsibilities of the nodes are as follows:

• Client: Emma

• Registry: Emma

• Replicas: Betty, Hykrion, Hynreck, Zenzi

We use the latest development build of the Virtual Nodes replication framework
extended with capabilities to log the point in time when events happen.

For sake of brevity, we use the following names to refer to the different group
compositions:

• Group 1: Hykrion

• Group 2: Zenzi

• Group 3: Hykrion and Zenzi

• Group 4: Hykrion, Hynreck and Zenzi

• Group 5: Hykrion, Hynreck, Zenzi and Betty
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Figure 11: Experimental setup

Computer Configuration
Betty AMD Athlon 64 3800+

2 GB RAM
250 GB HDD
Ubuntu 8.04
Sun Java SE Environment 1.6.0_16

Emma AMD Athlon 64 3200+
Zenzi 1 GB RAM

160 GB HDD
Ubuntu 8.04
Sun Java SE Environment 1.6.0_16

Hykrion Intel Core 2 Duo 3 GHz
Hynreck 4 GB RAM

320 GB HDD
Ubuntu 8.04
Sun Java SE Environment 1.6.0_16

Table 1: Computer Configurations
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The basic procedure for the experiments is as follows. In order to avoid side
effects caused by the Java Virtual Machine, a warm-up phase, in which the repli-
cated service was called 1000 times, is carried out before each measurement se-
ries. Additionally, each measurement series is repeated three times with identical
input data to reveal the influence of network conditions and system footprint as
well as scheduling accuracy and influences of the Java runtime environment. Iden-
tical input data means that the same inter-arrival, service, inter-failure and inter-
recovery times files are used. Furthermore, each measurement series consists of
at least 2500 request to capture representative data.

7.2 Experiments Without Failures
In this section, we evaluate a Virtual Node using active or passive replication. The
following experiments focus on collecting data allowing to compare both repli-
cation protocols in fault-free operation. Based on preliminary results [12] we
conduct the experiments with an average inter-arrival time of 100 milliseconds
and for two state sizes (0 and 0.25 MB). A measurement series consists of 2500
requests and each measurement series is repeated three times. The stated mean
and standard deviation values are computed over the in total 7500 requests. Fur-
thermore, we perform the measurements for different utilisations of the execution
phase sub-model. The selected utilisation factors ρExecution are 0.1, 0.25, 0.5,
0.75 and 0.9; that is, the average service time is 10, 25, 50, 75 and 90 milliseconds
respectively.

Instead of parametrising the model with the theoretical values of the inter-
arrival time (100 ms) and service time (10, 25, 50, 75 and 90 ms), we use the
mean values of the sample data provided in the events file. The inter-arrival time
samples have a mean of 102.14 milliseconds and the standard deviation is 105.73
milliseconds. The mean and standard deviation of the service time samples is
shown in Table 2.

Theoretical service time
10 25 50 75 90

Mean 9.58 25.25 49.26 74.81 92.03
Standard deviation 10.24 26.34 49.22 73.29 92.86

Table 2: Mean and standard deviation of the service time (2500 samples) in mil-
liseconds

The client was configured to wait for replies from all correctly working repli-
cas. In case of active replication, we use the FairSelector which selects the
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contact replica in a round-robin fashion from the set of correctly working repli-
cas. In case of passive replication, we use the PrimarySelectorwhich always
contacts the current primary replica.

7.2.1 Active Replication

In active replication, the replicas only exchange state information if a replica is
started. That means, in fault-free operation with a fixed replica group, state size
has no influence on performance. Therefore, it is sufficient to perform the mea-
surements for one state size only; we choose to do this for state size 0 MB.

Tables 3 and 4 list the mean and standard deviation of the measured round-trip
delay times. We first note that the standard deviations are high; in some cases

Utilisation
Group 0.1 0.25 0.5

1 14.50 ± 11.54 38.77 ± 36.39 104.46 ± 101.55
2 24.29 ± 37.06 50.44 ± 49.28 110.94 ± 101.86
3 29.69 ± 23.85 56.55 ± 44.98 114.09 ± 102.06
4 30.19 ± 22.49 54.69 ± 42.90 115.08 ± 102.51
5 31.04 ± 22.62 55.12 ± 42.72 114.16 ± 101.74

Table 3: Mean and standard deviation of the round-trip delay times for active
replication in milliseconds

Utilisation
Group 0.75 0.9

1 274.00 ± 250.52 1091.40 ± 1092.98
2 279.98 ± 253.57 1095.78 ± 1082.76
3 285.37 ± 253.58 1106.54 ± 1093.97
4 284.70 ± 252.54 1102.87 ± 1086.05
5 286.88 ± 254.53 1107.63 ± 1085.37

Table 4: Mean and standard deviation of the round-trip delay times for active
replication in milliseconds

higher than the mean value. It is clear, that round-trip delay times can not be
negative as suggested here by the standard deviations but it describes the variabil-
ity of the round-trip delay times. Highly variable round-trip delay times are not
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completely foreclosed as the inter-arrival times as well as the service times also
possess a high standard deviation.

Apparent is that the round-trip delay times increase clearly with the service
time. The reason for this sharp-cut increase is the scheduling policy. Requests
are being processed in sequential order; thus, newly arriving requests are being
queued if one request is currently in service. When requests arrive almost at
the same rate at which they are being processed, it is more likely that requests
are queued and obviously the time spent in the queue increases with the num-
ber of queued requests as well as with the service time. Analysing the time it
takes until a request leaves the system, that is the time span between the arrival
at the replica machine and the end of the execution of service() of the class
ServiceImpl (henceforth simply execution time), supports this intuitive view
of sequential scheduling.

Comparing the execution times (Tables 5 and 6) to the round-trip delay times,
we see that the execution times play a dominant role in the round-trip delay times.
For utilisation 0.25, the proportion is already above 60% for all groups and in-
creases up to at minimum 96% for utilisation 0.9.

Utilisation
Group 0.1 0.25 0.5

1 10.73 ± 11.09 34.29 ± 35.66 98.98 ± 99.67
2 10.71 ± 11.07 37.72 ± 38.92 98.47 ± 98.48
3 10.72 ± 11.11 36.21 ± 38.14 98.05 ± 99.40
4 10.66 ± 11.05 34.95 ± 36.62 97.94 ± 98.58
5 10.77 ± 11.16 34.79 ± 36.66 97.47 ± 97.92

Table 5: Mean and standard deviation of the execution times for active replication
in milliseconds

Utilisation
Group 0.75 0.9

1 267.23 ± 248.79 1083.49 ± 1091.61
2 269.02 ± 252.33 1083.35 ± 1081.90
3 267.74 ± 250.68 1076.64 ± 1080.67
4 266.11 ± 248.59 1069.37 ± 1073.41
5 266.52 ± 249.34 1068.69 ± 1069.70

Table 6: Mean and standard deviation of the execution times for active replication
in milliseconds
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Moreover, the tendency of increasing round-trip delay times as the number of
replicas increases is present. Note that the client was configured to wait for replies
from all replicas; that is, the stated round-trip delay times are upper bounds and are
determined by the slowest machine. This is apparent for group 3, which consists
of Hykrion and Zenzi. Adding further machines to the group, the increase of
the round-trip delay times is small; in some cases they also decrease. Two pos-
sible reasons for this are load balancing and the point of consensus. The client
chooses the contact replica in a round-robin fashion; that is, the load of arriving
requests is balanced across the group members. In turn the overall utilisation of
the machines falls. Intuitively, we expect that group communication costs increase
with the number of group members. Here, group communication costs are mainly
determined by the costs of total-order multicast because the group composition
does not change during the experiments. Total-order multicast and consensus are
equivalent [9]. A group reaches consensus if the majority of the group agreed to
the subject in question. In turn, a total-order multicast is successful if the majority
of the group received it; that is meant by the point of consensus. If the point of
consensus is reached, the replicas that already received the request can execute
it even if not all group members received the request yet. To point this up, Ta-
ble 7 lists the mean and standard deviation of the coordination times at the group
members of group 3, 4 and 5 for the service time 75 milliseconds.

Group
Replica 3 4 5
Hykrion 6.26 ± 9.03 6.11 ± 8.61 6.34 ± 9.35
Hynreck - 8.72 ± 11.38 8.49 ± 11.73
Zenzi 10.43 ± 13.40 9.39 ± 12.82 9.13 ± 12.53
Betty - - 9.44 ± 13.01
Average 8.35 ± 11.62 8.07 ± 11.17 8.47 ± 11.81

Table 7: Mean and standard deviation of the coordination times in milliseconds
for utilisation 0.75

Not listed are the coordination times for group 1 (Hykrion) and group 2
(Zenzi); we note an average coordination time of 4.56 and 5.93 milliseconds
respectively for both. Comparing replication (group 3) to no replication (group
1 and 2), the coordination time increases due to the costs of group communica-
tion. Adding Hynreck to the group (group 4), shows the two effects mentioned
above. First, the coordination time of Zenzi decreases due to load balancing, and
second, Hykrion can already start executing the request before Zenzi already
received the request because passing the request to Hynreck is faster due to the
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switched 1 Gbit Ethernet link between both machines. In total, the average coordi-
nation time of the group decreases too. For group 5, the effect of load balancing is
again visible for Hynreck and Zenzi. In contrast, the execution at Hykrion is
now delayed because Hykrion has to wait until a further node (here Zenzi) has
received the request in order to reach consensus. Finally, we note that Hykrion
always has the lowest coordination time of the members of group 3, 4 and 5. The
reason is that JGroups establishes total ordering of the messages through a distin-
guished node called sequencer. In simple words, the contact replica sends each
request it receives to the sequencer which adds a sequence number and broadcasts
it to the other group members. The sequence numbers ensure that all nodes pro-
cess the requests in identical order. The sequencer is operated on the node that is
initially started; here, that is Hykrion.

Tables 8 and 9 list mean and standard deviation of the measured coordination
times per group.

Utilisation
Group 0.1 0.25 0.5

1 3.53 ± 2.68 3.61 ± 3.57 4.18 ± 4.92
2 3.32 ± 3.66 4.82 ± 6.95 5.38 ± 10.31
3 7.24 ± 10.94 7.77 ± 11.28 8.03 ± 11.08
4 7.25 ± 8.92 7.31 ± 10.05 7.46 ± 10.38
5 7.34 ± 10.62 7.79 ± 10.64 8.29 ± 12.65

Table 8: Mean and standard deviation of the coordination times for active replica-
tion in milliseconds

Utilisation
Group 0.75 0.9

1 4.56 ± 6.37 5.01 ± 6.86
2 5.93 ± 9.58 6.44 ± 11.16
3 8.35 ± 11.62 9.44 ± 14.75
4 8.07 ± 11.17 8.78 ± 13.45
5 8.47 ± 11.81 9.19 ± 13.88

Table 9: Mean and standard deviation of the coordination times for active replica-
tion in milliseconds
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7.2.2 Passive Replication

In passive replication, the state size plays an important role; that is, we have to
perform the measurements for both state sizes. The primary replica of the groups
of two, three and four replicas is always Hykrion. Furthermore, the primary
replica updates the state of the backup after every request with the help of the
group communication system.

Tables 10 and 11 list the mean and standard deviation of the round-trip de-
lay times for passive replication and state size 0 MB. Again, the standard devia-
tions of the round-trip delay times are high. Moreover, the tendency of increasing
round-trip delay times as the utilisation ρExecution as well as the number of repli-
cas increases is present. More apparent than in active replication is that Zenzi is
the least powerful machine. Comparing the round-trip delay times for Hykrion
(group 1) and Zenzi (group 2), the round-trip delay times of Zenzi are clearly
larger; for utilisation 0.75 and 0.9 they are several times larger. Somewhat unex-
pected are the differences of the round-trip delay times between both replication
protocols for group 1 and 2. In case of a single replica, the performance of passive
replication should be about the same size as of active replication. As for active
replication, the execution times play a dominant role in the round-trip delay times.
For utilisation 0.25, the proportion is already above 50% and increases up to more
than 90% for utilisation 0.9. Furthermore, we note that execution takes a longer
time than in case of active replication. The reason for this is that the workflow of
active replication allows more parallelism than passive replication. In active repli-
cation, only the invocation of the service method is executed in mutual exclusion.
In passive replication, also the state update of the backup replicas is performed in
mutual exclusion. Hence, the overall time operating in mutual exclusion is larger
for passive replication and thus the execution of successive requests is delayed for
a longer time compared to active replication.

Utilisation
Group 0.1 0.25 0.5

1 18.84 ± 15.37 43.26 ± 38.33 112.78 ± 106.50
2 44.57 ± 41.12 78.48 ± 69.47 197.78 ± 185.41
3 26.28 ± 22.64 54.21 ± 45.62 125.18 ± 110.79
4 26.86 ± 22.83 52.65 ± 45.02 127.21 ± 112.78
5 38.55 ± 25.87 67.60 ± 47.27 133.04 ± 112.99

Table 10: Mean and standard deviation of the round-trip delay times for passive
replication and state size 0 MB
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Utilisation
Group 0.75 0.9

1 316.06 ± 292.01 1302.43 ± 1138.11
2 1417.09 ± 1794.15 9378.41 ± 8335.96
3 333.93 ± 298.55 1338.35 ± 1151.07
4 337.38 ± 297.85 1399.65 ± 1169.43
5 346.32 ± 299.07 1392.85 ± 1156.78

Table 11: Mean and standard deviation of the round-trip delay times for passive
replication and state size 0 MB

Tables 12 and 13 list the mean and standard deviation of the measured agree-
ment times. Apparent is that the agreement times of Zenzi are several times
larger than of Hykrion. Moreover, they are several times larger than the coordi-
nation times of Zenzi in case of active replication. Furthermore, we note that the
agreement times for the group of two, three and four replicas are larger than the
coordination times for these groups in case of active replication; the difference is
in the range of 29.21% to 110.19%. Possible reasons for this are load balancing
in case of active replication and that the request size is small compared to the size
of the replicated object.

Utilisation
Group 0.1 0.25 0.5

1 4.30 ± 10.35 3.81 ± 9.10 3.97 ± 8.45
2 19.29 ± 27.44 19.91 ± 28.33 20.23 ± 28.48
3 9.36 ± 17.35 10.81 ± 21.35 11.79 ± 21.10
4 10.28 ± 17.75 11.21 ± 21.60 12.73 ± 23.06
5 14.17 ± 14.57 15.02 ± 18.42 17.42 ± 23.12

Table 12: Mean and standard deviation of the agreement times for passive repli-
cation and state size 0 MB in milliseconds

Tables 14 and 15 list the mean and standard deviation of the round-trip delay
times for passive replication and state size 0.25 MB. Again, the standard devia-
tions of the round-trip delay times are high and the round-trip delay times increase
with the utilisation. Moreover, the tendency of increasing round-trip delay times
as the number of replicas increases is present. As expected, the round-trip delay
times are larger compared to active replication as well as passive replication in
case of state size 0 MB because of increasing costs of state updates. We note
a minimum increase of the round-trip delay times of 7.4% to passive replication
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Utilisation
Group 0.75 0.9

1 3.95 ± 7.29 4.42 ± 8.57
2 20.30 ± 28.76 21.48 ± 30.42
3 14.13 ± 25.32 13.89 ± 23.58
4 13.27 ± 21.37 14.32 ± 24.49
5 17.56 ± 22.79 17.46 ± 21.71

Table 13: Mean and standard deviation of the agreement times for passive repli-
cation and state size 0 MB in milliseconds

with state size 0 MB and of 10.61% to active replication.

Utilisation
Group 0.1 0.25 0.5

1 23.98 ± 24.54 49.42 ± 43.41 122.27 ± 112.55
2 85.03 ± 61.92 147.07 ± 117.80 616.39 ± 512.48
3 33.21 ± 25.00 62.54 ± 47.27 134.45 ± 114.96
4 38.19 ± 22.17 63.16 ± 46.47 141.24 ± 116.85
5 54.73 ± 30.03 77.11 ± 46.13 171.83 ± 121.02

Table 14: Mean and standard deviation of the round-trip delay times for passive
replication and state size 0.25 MB in milliseconds

The increased costs of state updates are of course reflected in the agreement
times; Tables 16 and 17 list the mean and standard deviation of the measured
agreement times. Again, the agreement times of zenzi are several times larger
than of Hykrion. Compared to the coordination times of active replication, the
agreement times in case of state size 0.25 MB are at minimum more than 50%
larger. In case of passive replication with state size 0 MB, the agreement times
increase by at minimum 8.98% for state size 0.25 MB.

Tables 18 and 19 list the mean and standard deviation of the round-trip delay
times in case of storing state updates to local disk and to a NFS folder respectively.
Apparent is that the round-trip delay times for NFS are extremely large compared
to the ones for local disk as well as for the group communication system. The
measurements for utilisation 0.75 and 0.9 failed in case of NFS storage because
of an exception due to too many open network sockets.

More interesting, the differences of the agreement times are small compared
to the large differences of the round-trip delay times. Tables 20 and 21 list the
mean and standard deviation in case of storing state updates to local disk and
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Utilisation
Group 0.75 0.9

1 350.10 ± 317.20 1651.32 ± 1334.88
2 14350.62 ± 11342.22 40115.09 ± 26093.92
3 378.19 ± 330.52 1775.22 ± 1370.86
4 376.35 ± 331.83 1876.43 ± 1407.38
5 397.86 ± 339.57 1912.17 ± 1394.03

Table 15: Mean and standard deviation of the round-trip delay times for passive
replication and state size 0.25 MB in milliseconds

Utilisation
Group 0.1 0.25 0.5

1 8.98 ± 21.96 8.61 ± 20.91 7.74 ± 16.58
2 38.86 ± 34.08 40.07 ± 33.82 41.45 ± 33.98
3 12.53 ± 18.26 13.86 ± 21.16 14.70 ± 21.21
4 12.43 ± 12.53 13.44 ± 17.97 15.22 ± 21.04
5 17.67 ± 14.37 17.99 ± 16.64 19.89 ± 20.30

Table 16: Mean and standard deviation of the agreement times for passive repli-
cation and state size 0.25 MB in milliseconds

Utilisation
Group 0.75 0.9

1 7.27 ± 13.77 7.72 ± 14.64
2 42.84 ± 36.33 46.04 ± 39.22
3 15.40 ± 21.82 15.86 ± 21.11
4 15.67 ± 21.41 15.84 ± 20.06
5 20.88 ± 21.43 20.88 ± 21.95

Table 17: Mean and standard deviation of the agreement times for passive repli-
cation and state size 0.25 MB in milliseconds
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Utilisation
Storage 0.1 0.25 0.5

HDD 17.74 ± 12.63 41.91 ± 37.12 111.02 ± 105.11
NFS 10406.90 ± 10688.72 34522.72 ± 230404.30 55814.08 ± 35977.30

Table 18: Round-trip delay times for passive replication with alternative state
update distribution and state size 0.25 MB in milliseconds

Utilisation
Storage 0.75 0.9

HDD 307.58 ± 282.70 1293.31 ± 1157.54
NFS - -

Table 19: Round-trip delay times for passive replication with alternative state
update distribution and state size 0.25 MB in milliseconds

to a NFS folder respectively. The agreement times for NFS are round about 35
times as large as for local disk storage. Compared to the agreement times in
case of state updates using the group communication system, the agreement times
for NFS are round about 10 times larger. This explains the vast increase of the
round-trip delay times and the exception due to too many open network sockets.
Because the rate of agreement is less than the arrival rate, the number of requests
waiting for agreement grows constantly. Moreover, this delays the execution of
successive requests. In turn, the number of requests waiting for execution grows
too. For utilisation 0.1, 0.25 and 0.5, the system is still able to process the large
number of queued requests but with a large delay. In case of utilisation 0.75
and 0.9, the Virtual Node is no longer able to handle the requests. That is, it
still accepts new requests but the delay of processing is so large that the software
exceeds the number of allowed network connections and the experiment fails with
a corresponding exception.

Utilisation
Storage 0.1 0.25 0.5

HDD 3.09 ± 3.11 2.85 ± 2.18 2.87 ± 1.62
NFS 107.03 ± 53.08 109.19 ± 35.17 106.18 ± 28.97

Table 20: Agreement times for passive replication with alternative state update
distribution and state size 0.25 MB in milliseconds
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Utilisation
Storage 0.75 0.9

HDD 3.11 ± 1.62 2.97 ± 2.08
NFS - -

Table 21: Agreement times for passive replication with alternative state update
distribution and state size 0.25 MB in milliseconds

7.2.3 Comparison

We already analysed the round-trip delay times of a Virtual Node using active and
passive replication respectively. Figure 12 compares the relative difference of the
measured round-trip delay times of passive replication with state size 0 MB to ac-
tive replication. In almost all cases, active replication performs better than passive
replication. Somewhat unexpected but explainable is the better performance of
active replication in case of groups of one replica only.
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Figure 12: Relative difference of the round-trip delay times of passive replication
with state size 0 MB to active replication in percent

As already discussed before, the workflow of active replication allows more
parallelism than passive replication. Hence, the execution of successive requests is
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less delayed. For Hykrion, passive replication degrades performance by 7.96%
to 29.89%. Note that the diagram cuts off values above 40%. In case of Zenzi,
passive replication degrades performance by 55.58% to 755.87%. Passive replica-
tion provides better performance only in four cases. In case of utilisation 0.1 and
0.25, the group of two and three replicas improve performance by round about
11% and 4% respectively. Moreover, the tendency is present that the performance
gain of active replication increases as the number of replicas as well as the utili-
sation increases. A possible reason for this is load balancing. Ignoring the groups
consisting of a single replica, active replication improves performance by round
about 10% to 25%.

For the sake of completeness, we state the cut off relative deviations. The
relative difference of passive to active replication for Zenzi is 145.38% in case
of utilisation 0.1 and 50.97% for utilisation 0.25. For the group of four replicas,
the relative difference is 46.23% in case of utilisation 0.1. Figure 13 compares the
relative difference of the measured round-trip delay times of passive replication
with state size 0.25 MB to active replication. As we can see, active replication
provides better performance in all cases. For sake of clarity, the diagram cuts
off values above 45%. The improvement of active replication is in the range of
17.04% to 65.36% for Hykrion and 191.57% to 5025.54% for Zenzi. We note
a performance gain of active replication in the range of 10.61% to 60.43% for
the group of two replicas, 15.49% to 70.14% for the group of three replicas and
39.90% to 76.33% for the group of four replicas. Moreover, the tendency that
the performance gain of active replication increases as the number of replicas
increases is present. Again, a possible reason for this is load balancing.

Figure 14 compares the relative difference of the computed round-trip delay
times of passive replication with state size 0.25 MB to active replication. The
diagram cuts off values above 03%. In all cases, active replication provides better
performance.

For the sake of completeness, we state the cut off relative deviations. The
relative difference of passive to active replication for Zenzi is 423.54% in case
of utilisation 0.1, 157.72% for utilisation 0.25 and 63.55% for utilisation 0.5. For
Hykrion, the relative deviation is 43.48% in case of utilisation 0.1. Furthermore,
we note a relative difference of 35.37% for the group of two replicas and 34.51%
for the group of three replicas; both in case of utilisation 0.1. For the group of
four replicas, the relative difference is 72.82% for utilisation 0.1 and 31.91% for
utilisation 0.25.

7.3 Experiments with failures
This section evaluates active and passive replication in the presence of failures
and the influence of the replication protocol on availability. We set the average

31



-12.5
-10
-7.5

-5
-2.5

 0
 2.5

 5
 7.5
 10

 12.5
 15

 17.5
 20

 22.5
 25

 27.5
 30

 32.5
 35

 37.5
 40

 42.5
 45

0.1 0.25 0.5 0.75 0.9

Re
la

tiv
e 

di
ffe

re
nc

e 
of

 s
er

ve
r-s

id
e 

ro
un

d-
tri

p 
de

la
y 

tim
e

of
 p

as
siv

e 
to

 a
ct

ive
 re

pl
ica

tio
n 

[%
]

Utilisation

Hykrion
Zenzi

Hykrion, Zenzi
Hykrion, Hynreck, Zenzi

Hykrion, Hynreck, Zenzi, Betty

Figure 13: Relative difference of the round-trip delay times of passive replication
with state size 0.25 MB to active replication in percent
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Figure 14: Relative difference of the computed round-trip delay times of passive
replication with state size 0.25 MB to active replication in percent
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inter-failure time τF to 50 seconds; that is, a replica fails on average every 500-th
request. To capture a representative number of failures and recovery, we conduct
this experiment for 5000 requests. Hence, we expect on average 10 failures per
replica machine. The recovery rate is set to 0.1671

s ; that is, the recovery time is 6
seconds and represents the time after which considers a participating node to be
failed. Except that, we use the same configuration of the Virtual Nodes framework
as for the previous experiments but will evaluate availability only for an utilisation
ρExecution of 0.25 and 0.75.

A Virtual Node is up if it consists of at least one correctly working replica
when using active replication or if it is has a correctly working primary replica
when using passive replication. Since we are using startNewReplica() and
shutdownReplica() provided by the AdminMethods interface of the Vir-
tual Nodes framework to start and shut down replicas respectively, we can only
determine when the invocation of theses methods returns. The major issue is that
a shutdown of a replica is being executed in an asynchronous manner; that means,
shutdownReplica() returns before the replica is actually shut down. This se-
mantic might be acceptable for active replication but is not for passive replication
because we possibly have to choose a new primary. The most reliable measure for
availability is the fraction of answered requests because a Virtual Node can only
answer requests if it is up. Henceforth, we report availability as the fraction of
answered requests.

7.3.1 Active Replication

Tables 22 and 23 list the mean and standard deviation of availability for active
replication with state size 0 and 0.25 MB respectively. Using no replication (group
1 and 2), round about 15.50% of the requests are not processed for utilisation 0.25
and both state sizes; that means, the Virtual Node answers 84.50% of the requests.
The fraction of answered requests decreases slightly to 83.50% in the case of state
size 0 MB and utilisation 0.75 but is still of comparable size for Hykrion (group
1) and Zenzi (group 2). Hence, it is somewhat unexpected that Zenzi looses
about 3% more requests than Hykrion for state size 0.25 MB.

Replication clearly improves availability in case of state size 0 MB. Here, at
most 5% of the requests are not answered. In case of state size 0.25 MB, the max-
imum fraction of lost requests decreases only to 12.30%. Moreover, the tendency
of increasing availability as the number of replicas increases is present. We note
that only 1% of the requests are not answered for state size 0 MB and utilisation
0.25 if using the maximum number of four replicas (group 5). The maximum
number of replicas in case of state size 0.25 MB is three replicas (group 4) be-
cause measurements for four replicas failed with an exception due to too many
open network sockets. This error occurred also during the previous measurements
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and indicates a timing related issue because repeating the measurements some-
times resolves the problem. Furthermore, we observed that the problem occurs
more often for groups with larger size. In this case, 3.5% of the requests are not
answered for utilisation 0.25. For an utilisation of 0.75, availability also increases
with the number of replicas but is even for the maximum number of replicas above
10%. Somewhat unexpected is that availability increases for two replicas but de-
creases if adding further replicas in case of state size 0 MB and utilisation 0.75.

Utilisation
Group 0.25 0.75

1 0.84527 ± 0.00012 0.83527 ± 0.00050
2 0.84533 ± 0.00046 0.83480 ± 0.00035
3 0.97687 ± 0.00579 0.97227 ± 0.00101
4 0.98027 ± 0.00537 0.96493 ± 0.00631
5 0.98980 ± 0.00367 0.95060 ± 0.01684

Table 22: Mean and standard deviation of availability for active replication and
state size 0 MB

Utilisation
Group 0.25 0.75

1 0.84533 ± 0.00031 0.82373 ± 0.02212
2 0.84600 ± 0.00000 0.79927 ± 0.00031
3 0.96180 ± 0.02463 0.87713 ± 0.04233
4 0.96567 ± 0.01864 0.89333 ± 0.01030
5 - -

Table 23: Mean and standard deviation of availability for active replication and
state size 0.25 MB

As already mentioned, the tendency of decreasing availability as the utilisation
increases is present. Figure 15 compares the relative difference of availability
of utilisation 0.75 to 0.25. In case of state size 0 MB, the relative difference of
utilisation 0.75 to 0.25 is comparable for Hykrion and Zenzi; we note a relative
difference of −1.18% and −1.25% respectively. For the group of Hykrion and
Zenzi, the relative difference of availability is less than for the single machines; a
possible reason for this is load balancing. Moreover, the relative difference due to
higher utilisation increases with the group size. A possible reason for this is that
more requests are waiting for execution due to increased group communication
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costs and hence the average number of lost requests increases. For the largest
group, we note a relative difference of availability of −3.96%.
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Figure 15: Relative difference of availability in relation of the utilisation for active
replication in percent

In case of state size 0.25 MB, the relative difference of availability is several
times larger than for state size 0 MB. Apparent is the difference between Zenzi
and Hykrion: Its availability decreases by −5.52% compared to −2.56%. For
the group of Hykrion, Hynreck, Zenzi and Betty we have no comparative
data.

A further tendency is that availability decreases as the state size increases. This
is expected because the initial state transfer delays recovery: Since the Virtual
Node operates with less replicas for a longer time period, it is more vulnerable
to further failures. Figure 16 compares the relative difference of availability of
state size 0.25 to 0 MB. In case of utilisation 0.25, availability increases slightly
for Hykrion and Zenzi; we note an relative improvement of 0.01% and 0.08%
respectively. For the groups of Hykrion and Zenzi as well as of Hykrion,
Hynreck and Zenzi availability decreases by round about 1.5%. In case of
utilisation 0.75, availability decreases for all groups. We note the minimum of
−1.38% for Hykrion and the maximum of −9.78% for the group of Hykrion
and Zenzi.
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7.3.2 Passive Replication

Tables 24 and 25 list the mean and standard deviation of availability for passive
replication with state size 0 and 0.25 MB respectively. Using no replication (group
1 and 2), round about 15% of the requests are not processed for utilisation 0.25 and
both state sizes; that means, the Virtual Node answers more than 84.50% of the
requests. For state size 0 MB and utilisation 0.75, availability decreases slightly
by −0.04% for Hykrion but −2.03% for Zenzi. In case of state size 0.25 MB,
the availability of Hykrion increases slightly (14.99% loss) but decreases clearly
for Zenzi (23.65% loss).

Again, replication clearly improves availability. Here, the loss for the group
of Hykrion and Zenzi decreases to 5% for state size 0 MB and 8.68% for state
size 0.25 MB in case of utilisation 0.25. For utilisation 0.75, the loss is slightly
above 10% for both state sizes. Moreover, the tendency of increasing availability
as the number of replicas increases is also present. In case of utilisation 0.25, we
note a minimum loss rate of 1.5% for state size 0 MB and of 5% for state size
0.25 MB. Somewhat unexpected, the maximum availability is not provided by the
group of four replicas but by the group of three replicas. For utilisation 0.75, the
group of four replicas provides the maximum availability for both state sizes.

Utilisation
Group 0.25 0.75

1 0.84653 ± 0.00064 0.84620 ± 0.00035
2 0.84560 ± 0.00131 0.82840 ± 0.00178
3 0.95293 ± 0.02825 0.89980 ± 0.03532
4 0.98513 ± 0.00012 0.91673 ± 0.02469
5 0.97847 ± 0.00446 0.96160 ± 0.00904

Table 24: Mean and standard deviation of availability for passive replication and
state size 0 MB

As already mentioned, the tendency of decreasing availability as the utilisation
increases is present. Figure 17 compares the relative difference of availability of
utilisation 0.75 to 0.25. In case of state size 0 MB, the availability of the Virtual
Node decreases for all groups as the utilisation increases. We note the minimum
decrease of availability of −0.04% for Hykrion (group 1) and the maximum of
−6.94% for group 4.

In case of state size 0.25 MB, the relative difference of availability is several
times larger than for state size 0 MB. Apparent is the sharp-cut decrease of avail-
ability of 9.93% for Zenzi. Somewhat unexpected is that the availability of the
group of four replicas increases compared to state size 0 MB.
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Utilisation
Group 0.25 0.75

1 0.84640 ± 0.00053 0.85013 ± 0.00031
2 0.84767 ± 0.00240 0.76353 ± 0.06698
3 0.91320 ± 0.02945 0.89660 ± 0.01196
4 0.94980 ± 0.02985 0.91807 ± 0.06106
5 0.94587 ± 0.05217 0.97233 ± 0.00991

Table 25: Mean and standard deviation of availability for passive replication and
state size 0.25 MB
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Figure 17: Relative difference of availability in relation of the utilisation for pas-
sive replication in percent
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Again, the tendency that availability decreases as the state size increases is
present for utilisation 0.25. This is expected because the initial state transfer de-
lays recovery: Since the Virtual Node operates with less replicas for a longer time
period, it is more vulnerable to further failures. Figure 18 compares the relative
difference of availability of state size 0.25 to 0 MB. In case of utilisation 0.25,
availability decreases slightly for Hykrion but increases for Zenzi; we note an
relative decrease of 0.02% and increase of 0.24% respectively. For all other the
groups, availability decreases. The minimum and maximum relative decrease are
−3.33% for the group of four replicas and 4.17% for the group of Hykrion and
Zenzi. In case of utilisation 0.75, availability improves by 0.46% for Hykrion
but decreases clearly by 7.83% for Zenzi. For the group Hykrion and Zenzi,
availability decreases slightly by−0.36% compared to state size 0 MB. Somewhat
unexpected is that availability increases for the group of three and four replicas.
We note an increase of availability of 0.15% for the group of three replicas and of
1.15% for the group of four replicas.
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Figure 18: Relative difference of availability in relation of the state size for passive
replication in percent
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7.3.3 Analysis

We already analysed the availability of a Virtual Node using active and passive
replication respectively. Figure 19 compares the relative difference of the mea-
sured availability of passive to active replication for state size 0 MB. For no repli-
cation, passive replication slightly improves availability by 0.15% for Hykrion
and 0.03% for Zenzi in case of utilisation 0.25. In case of utilisation 0.75, pas-
sive replication improves availability by 1.31% for Hykrion but degrades avail-
ability by 0.77% for Zenzi.
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Figure 19: Relative difference of availability of passive to active replication for
state size 0 MB

For replication, active replication provides better availability in two of three
cases. In case of utilisation 0.25, availability of passive replication decreases by
2.45% for the group of two replicas and 1.15% for the group of four replicas but
increases by 0.50% for the group of three replicas. In case of utilisation 0.75, we
note a relative difference of availability of passive to active replication of−7.45%
for the group of two replicas and −5.00% for the group of three replicas. For the
group of four replicas, passive replication improves availability by 1.16%.

Figure 20 compares the relative difference of the measured availability of pas-
sive to active replication for state size 0.25 MB. We restrict this to groups of
at most three replicas because we have no comparative data for active replica-
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tion with this state size for the group of four replicas. Again, passive replication
improves slightly availability for the groups consisting of one replica only and
utilisation 0.25; the improvement is 0.13% for hykrion and 0.20% for Zenzi.
In case of utilisation 0.75, passive replication improves availability by 3.20% for
Hykrion but degrades availability by 4.47% for Zenzi.
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Figure 20: Relative difference of availability of passive to active replication for
state size 0.25 MB

For replication, active replication provides better availability for utilisation
0.25. We note a decrease of availability if using passive replication of −5.05%
for the group of two replicas and −1.64% for the group of three replicas. Hence,
it is somewhat unexpected that passive replication provides better availability in
case of utilisation 0.75. Here, passive replication improves availability by 2.22%
in case of two replicas and by 8.84% in case of three replicas.

7.4 Summary
The analysis of the experiments without failures aimed at several things. One goal
was to basically evaluate the performance of the Virtual Nodes replication frame-
work and the influence of the server-side configurations options on availability as
well as performance. That is, the differences of active and passive replication.
In our setup, active replication provides better performance in most of the cases.
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Furthermore, we saw that the sequential scheduling policies play a dominant role
in the round-trip delay times.

The goal of the experiments with failures was to measure the service avail-
ability depending on the degree of replication. To name the replication protocol
that provides better availability is more difficult. In some cases, active replication
provides better availability and in other cases passive replication provides better
availability. We have to further refine those results in order to make stronger and
more reliable suggestions regarding when to use which replication protocol.

8 Conclusions
In this section we proved the usability of Virtual Nodes. First, we presented the
design and layout of a replicated POP3 server. Afterwards, we showed our in-
tegration efforts in order to connect Virtual Nodes to other parts of XtreemOS.
In particular, we are working on integrating them into the Application Execution
Management and the DIXI communication infrastructure. Furthermore, we are
merging them with Distributed Servers. This provides the following benefits to
the project. First of all, job management becomes fault-tolerant so that informa-
tion about jobs is not lost if the responsible core node fails during job execution.
Second, having a DIXI front-end to Virtual Nodes opens replication facilities to
all XtreemOS services that are implemented in Java and use DIXI. Third, the in-
tegration with Distributed Servers allows to provide replication without having to
change any client-side software.

Apart from integration we have proven the correctness of the scheduling al-
gorithms being shipped with the Virtual Nodes release using a SAT solver and
a model checker. Finally, we presented an extensive performance and reliability
evaluation of Virtual Nodes.
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