
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Design of an Infrastructure for
Highly Available and Scalable Grid Services

D3.2.1
Due date of deliverable: November 30th, 2006
Actual submission date: December 21st, 2006

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.2

Task number: T3.2

Responsible institution: VUA
Editor & and editor’s address: Guillaume Pierre

Vrije Universiteit
Dept. of Computer Science

De Boelelaan 1081a
1081HV Amsterdam

The Netherlands

Version 1.4 / Last edited by Guillaume Pierre / December 21st, 2006

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments
0.0 2006/10/16 Guillaume Pierre VUA first draft (including contributions from ULM)
0.1 2006/10/30 Paolo Costa VUA Additional VU contribution
0.2 2006/10/31 Jan Stender/Bjoern Kolbeck ZIB Publish/subscribe section
0.3 2006/10/31 Michele Albano, Diego Puppin CNR Resource discovery section
0.4 2006/11/06 Guillaume Pierre VUA Many minor wording improvements
0.5 2006/11/07 Jörg Domaschka ULM Additional ULM contributions
0.6 2006/11/07 Björn Kolbeck ZIB Additional ZIB contribution
1.0 2006/11/09 Guillaume Pierre VUA Document wrap-up for internal review
1.1 2006/11/22 Guillaume Pierre VUA Updates to take internal reviews into account
1.2 2006/11/23 Jörg Domaschka ULM Minor updates following reviewer remarks
1.3 2006/11/27 Guillaume Pierre VUA Document wrap-up
1.4 2006/12/21 Guillaume Pierre VUA Changed document date

Contents
1 Introduction 4

1.1 Goals . 4
1.2 Terminology . 4
1.3 Document organization . 5

2 Design overview 5
2.1 Use-case scenario . 5
2.2 General architecture . 7

2.2.1 Collections . 7
2.2.2 The toolbox . 8

3 Node management 9
3.1 Grid-wide collection . 10
3.2 Application-wide collection . 10
3.3 Application deployment . 11
3.4 Planned demonstration applications 11

4 Application initialization 11
4.1 Application initialization . 12

4.1.1 Example: Chord . 12
4.1.2 Example: ordered IDs 13

4.2 Planned demonstration applications 13

5 Distributed server 14
5.1 Planned demonstration applications 15

6 Virtual node 15
6.1 Construction . 16
6.2 Replication . 16
6.3 Access point . 17
6.4 Planned demonstration applications 17

7 Publish-subscribe 17
7.1 General definitions . 18
7.2 Architecture . 18
7.3 Interface . 20
7.4 Implementation . 20
7.5 Longer-term prospects . 21
7.6 Planned demonstration applications 21

1

8 Directory service for node monitoring 22
8.1 System requirements and architecture proposal 22
8.2 Open problems . 23
8.3 Added value of the system . 23
8.4 Planned demonstration applications 23

9 Relationship with other work packages 24
9.1 Relationship with sub-project 2 24
9.2 Relationship with WP3.1 . 24
9.3 Relationship with WP3.3 . 24
9.4 Relationship with WP3.4 . 25
9.5 Relationship with WP3.5 . 25
9.6 Relationship with sub-project 4 25

10 Work plan 26

2

Executive summary
Workpackage 3.2 of the XtreemOS project aims at providing an infrastructure
that can support highly available and scalable grid services and applications,
such that these can be developed independently from underlying instances of the
XtreemOS operating system. This document presents an initial design of the
mechanisms we plan to build to allow service programmers to benefit from de-
sirable system functionality and non-functional properties such as node manage-
ment, application initialization, stable access points, high availability, publish-
subscribe and resource monitoring:

Node Management This is used to discover nodes in the Grid that are capable of
running a job.

Application initialization This is used to allow newly started applications to or-
ganize themselves and establish a structure between their respective nodes.

Distributed server This is used to provide a stable contact address to a group of
nodes such that the application can always be contacted there, irrespective
of changes in the membership of the application.

Virtual Node This is used to group several physical nodes into fault-tolerant vir-
tual nodes such that node failures can be hidden to the applications.

Publish-subscribe This is used as an internal communication mechanism for
many end-user applications and grid services, such as the XtreemFS shared
file system.

Directory service for node monitoring This is used to store and retrieve struc-
tured information about the Grid. The prime application is to support a job
and resources monitoring service for the Grid.

3

1 Introduction

1.1 Goals

Workpackage 3.2 of the XtreemOS project aims at providing an infrastructure
that can support highly available and scalable grid services and applications,
such that these can be developed independently from underlying instances of the
XtreemOS operating system. We propose to develop mechanisms to allow service
programmers to benefit from desirable system functionality and non-functional
properties such as node management, application initialization, stable access points,
high availability, publish-subscribe and resource monitoring.

We can perceive the XtreemOS grid as a huge heterogeneous collection of
machines that users can allocate to execute their applications. The collection can
be very big, in the order of at least 100,000 machines distributed worldwide. Such
a scale is not unrealistic for the near future if we consider that for example Google
has already reached this kind of scale [10]. How this collection has been formed
is, for now, not relevant. However, as an example, one can imagine that various
partners of the XtreemOS consortium have each contributed one or more (clusters
of) computers in a way similar to what is now done in PlanetLab [1].

Applications running on XtreemOS may require in the order of hundreds to
thousands of nodes each, depending on their specific purposes. Applications may
be standalone, in which case they barely have any interaction with the external
world except with the user that launched them. They can also be services, in which
case they present an interface to the outside world so that they can be invoked.

Given the scale that we consider, it is expected that no centralized solutions
will be feasible. Also, the infrastructure used to execute a given application will
likely change over time as some machines may fail or be allocated to other tasks,
and/or others be dynamically added during execution.

1.2 Terminology

We define a service as a group of processes that provides a standardized interface
to the outside world. External programs can query the service by sending network
messages to the service’s interface. Services can be used to implement system-
level functionality such as global resource discovery and allocation across the grid
or controlling the execution of jobs. Services can also implement application-
level functionality, for example a publicly-available Web service that exploits the
resources of the Grid to provide guaranteed response times [12]. Services may
be composed of other services, which may belong to different users and organiza-
tions.

4

From the point of view of its clients, a service is a simple interface that they
can query; from the point of view of the operating system, a service is just another
type of application that it needs to execute.

1.3 Document organization

This document describes a detailed design of the mechanisms that WP3.2 will
build. In Section 2, we outline the constituents elements of our approach which
will be detailed in the following chapters. In Section 3 we discuss our proposal to
discover nodes likely to be allocated to applications. In Sections 4, 5, 6, 7 and 8
we discuss the basic tools that we plan to build to support the development of
Grid services. In Section 9 we discuss the relationships between WP3.2 and other
workpackages within XtreemOS. Finally, in Section 10 we present our work plan
to realize the previously presented tasks.

2 Design overview

2.1 Use-case scenario

Let us consider a simple grid application that consists of a single program and
some data that are to be distributed and replicated across multiple machines. As-
sume that this application implements a service that can be accessed by other ap-
plications. To deploy this application, the developer would provide a specification
of the minimal requirements that a computer should meet. To keep matters simple,
we assume that these requirements can be formulated as a set of 〈attribute,value〉
pairs, in which the attribute refers to statically available resources such as disk
size, memory size, CPU type, available libraries, etc. In addition, the number of
required nodes is specified as well.

The application’s description, along with its system requirements are submit-
ted to one of many entry points of the XtreemOS infrastructure for acceptance.
Practically, this means that some authority will check whether the application can,
in principle, be hosted by the infrastructure. If so, then the requested nodes will
be allocated from the available resources within the relevant Virtual organization,
and the application will be uploaded and executed at each of these nodes. To allow
the application to initialize itself, the system will materialize the collection of al-
located nodes into a peer-to-peer overlay and maintain it as nodes join or leave the
application. Each instance of the application can query this overlay for a random
subset of addresses where other instances can be contacted.

What happens after this point depends entirely on the application.

5

The application will keep on running until its instance processes terminate, or
it is explicitly interrupted by its user or an authorized administrator.

Application initialization

Some applications may start their computation based entirely on their local
information without attempting to communicate among different instances. How-
ever, we will provide libraries that the applications can use to address common
needs. For example, there will be multiple libraries capable of structuring the
nodes of an application into different patterns (e.g., organize nodes into a DHT,
organize them into an N-dimensional matrix, rank them so that they can be ad-
dressed using MPI, etc.).

Virtual nodes

Given the size of the system, node failures cannot be ignored. Certain applica-
tions may be capable to operate with slightly different number of resources than
requested. Alternatively, we will provide a library that allows to define virtual
nodes, that is fault-tolerant groups of nodes capable of taking over each other’s
tasks.

Distributed servers

Certain applications need to export an interface to the outside world that client
can access to issue their requests. In such cases, the number of nodes involved and
the dynamicity can make it difficult to advertise a single entry point to the clients.
We will provide tools to build distributed servers capable of hiding the internal
organization of the application and present a single stable address that clients can
always access to reach the application.

Others

We will develop several other types of facilities to help applications solve
classical problems. Among them will be facilities to support Publish/Subscribe
communication, and a scalable directory service primarily intended for monitor-
ing and node failure detection.

6

(maintained by
XtreemOS−G)

I. Grid−wide
collection
of nodes

(maintained by
the application)

III. Application−wide
structured collection
of nodes

collection
of nodes

(maintained by
XtreemOS−G)

II. Application−wide

Figure 1: The three different collections supported by XtreemOS.

2.2 General architecture
The system to be built in WP3.2 can be seen as being made of a number of collec-
tions of nodes. Each collection is materialized as some form of overlay that keeps
the nodes in the collection connected to each other. Importantly, because of the
size and the dynamicity of the system we should build our solutions such that no
node in a collection needs to have access to the full list of nodes taking part in it
at a given moment.

Certain node collections are maintained by the node allocation system known
as XtreemOS-G. Some others are maintained by the applications themselves, and
possibly implemented in libraries provided to the application developers (see Fig-
ure 1).

2.2.1 Collections

The Grid is materialized by a grid-wide collection that comprises all nodes tak-
ing part in it. Being part of this collection is equivalent to belonging to the grid.
Once an application has been allocated nodes to run on, an application-wide un-
structured collection is created to keep all nodes taking part in the application
connected. This collection is made visible to the application, and can be queried

7

for a random subset of other nodes taking part in the same collection. This collec-
tion is maintained over time by XtreemOS-G as a background process, so when
nodes join or leave the application they simultaneously join or leave this collec-
tion. More details on XtreemOS-G can be found in Section 3.

Each application can decide to instantiate one or more application-wide struc-
tured collections. Such collections allow the nodes of an application to orga-
nize themselves in a given structure. For example, rather than requesting for ran-
dom subsets of other nodes in the application, one may organize nodes in an N-
dimensional matrix, a farmer-worker structure, a Chord ring, a ranked list likely
to be used with MPI, etc. Specialized collections are implemented in libraries or-
ganized as a toolbox. They rely on information provided by the application-wide
unstructured collection for their own management.

The last kind of collection is a virtual node. Several nodes taking part in a
given application can organize themselves into a virtual node, i.e., a fault-tolerant
group of nodes. Mode details on virtual nodes can be found in Section 6.

2.2.2 The toolbox

The toolbox contains a number of useful abstractions in the form of one or more li-
braries. It is intended to be used by end-user application programmers but also by
other system-level service developers, such as those built by WP3.3 and WP3.4.
The toolbox will contain the following tools (note that this is by no way an ex-
haustive list):

• Facilities to construct structured collections: we will provide several in-
stances of such facilities specialized for building different types of struc-
tures. These facilities are discussed in Section 4.

• Distributed servers: nodes taking part in an application can request to be
organized as a distributed server. A distributed server is a collection of
nodes with a single address that clients can contact to reach the application.
This address remains stable, even in the case of nodes joining or leaving the
application. A possible implementation of distributed servers is discussed
in Section 5.

• Virtual nodes: a group of nodes taking part in an application can request to
be organized as a virtual node. A virtual node is a fault-tolerant group where
each member can take over the task of the others in case of failure. Several
types of virtual nodes may be provided, based on active replication, passive
replication, and checkpoint/restart mechanisms provided by the XtreemOS
operating system. Virtual nodes are discussed further in Section 6.

8

• Publish/subscribe: a common form of communication between large num-
ber of nodes taking part in a given application is publish-subscribe. We will
provide a fully decentralized pub/sub communication system that applica-
tions can use for their own purpose. Note that the implementation of struc-
tured collections may require the availability of a basic pub/sub mechanism,
too. Whether both pub/sub systems can be developed as one generic entity
or if two different ones are preferable is left for future decision. Publish-
subscribe services are discussed in Section 7.

• Node monitoring and failure detection: in a large-scale environment, it be-
comes increasingly difficult to monitor resources whose utilization may
change dynamically. To address this issue, we will provide a node moni-
toring service based on a directory service. We expect that a single imple-
mentation of the directory service will not suffice and that, depending on the
dynamicity of the published attributes, different system architectures will be
used automatically. Node monitoring facilities are discussed in Section 8.

3 Node management
Node management plays a crucial role in the XtreemOS system, as it should be
able:

1. to connect the XtreemOS nodes in the grid-wide collection;

2. to provide a mechanism to discover and allocate the required set of nodes,
according to the application specification;

3. to create and maintain an overlay network connecting the nodes allocated
to the application (application-wide unstructured collection). This overlay
network can be used directly by the application or be the basis to build an
application-wide structured collection, using one of the tools described in
Section 2.

There are obviously different approaches to address these goals. In a fully
centralized approach, a node management entity can keep track of all nodes in the
infrastructure, their current allocations, and their currently available resources.
Such an approach has obvious scalability problems. Given the requirements of
our envisioned scenario, we should instead address these problems using fully
decentralized solutions, enabling scaling up to thousands of nodes, which may
join and leave in a very unpredictable way.

A radically different approach is to let the nodes self-organize into a collection
that meets the specifications. In essence, this means that the node management

9

entity is fully decentralized across the nodes that are part of the grid infrastruc-
ture. Our systems will rely on existing epidemic techniques that have shown the
potential to build very large-scale self-organizing systems [18, 19]. We plan to
extend these protocols to address the peculiarities of the XtreemOS system, by
dynamically arranging nodes in different collections according to the application
specifications.

In the following, we briefly sketch our approach to node management and
show how we can exploit it to cope with failures and dynamic topologies.

3.1 Grid-wide collection
As mentioned above, the first goal is to maintain a strong connectivity among
nodes belonging to the XtreemOS network. This can be achieved by means of
the CYCLON protocol [18]. This protocol provides a robust network connectivity
typical of a random graph and exhibits fast convergence properties.

While Cyclon provides guarantees about the connectivity of the system, it
does not support any other functionality by itself. We should therefore devise an
additional mechanism to arrange nodes according to a topology which simplifies
the process of node discovery. This, again, can be implemented on top of epidemic
protocols as shown in literature [7, 19]. Using these techniques, combined with
gossip-based decentralized aggregation methods [8], nodes can self-organize into
semantic clusters, defined by commonality criteria.

When an application issues a request for a given amount of nodes with specific
characteristics, the query will be routed to the semantic cluster which best approx-
imates its requirements. This cluster can then be passed to the resource allocation
mechanisms built in WP3.3 for further selection.

3.2 Application-wide collection
Once the nodes requested by the application have been discovered and allocated,
these will be organized in a random graph topology, which can be used by the
application to start its tasks. However, very few (if any) applications will be able
to directly exploit such a random topology. Alternatively, as exposed in Sec-
tion 2.2.1, the application may leverage additional libraries to shape this node
collection into different structured topologies.

However, given the high degree of dynamicity characterizing the scenario we
target, our system should be able to maintain these collections even in presence
of unannounced disconnections, and possibly replace failed nodes with new ones.
To this end, our proposal is to devise a cross-layer communication between the
application-wide collection and the aforementioned grid-wide collection. The lat-
ter thus becomes aware of the need of the former and as soon as new nodes become

10

available, these are added to the application collection which can resort to them
when the overall number of allocated nodes falls below the desired threshold.

3.3 Application deployment
Another service that should be provided by the XtreemOS system concerns the
deployment of the application code. A very trivial solution would be to let ev-
ery node download the binaries from an external repository (e.g., using HTTP or
GridFTP), whose address is stored in the query. Although in principle this solu-
tion could work, it may become unsuitable for large application collections which
would saturate the repository bandwidth soon. To circumvent this issue, we could
for example rely on the grid file system developed by WP3.4 or by a shared down-
load mechanism like BitTorrent [3] to spread the network load uniformly among
nodes.

3.4 Planned demonstration applications
To show the effectiveness of our approach, we will develop a test-bed running on
an existing grid infrastructure like PlanetLab [11] or Grid5000 [2]. A possible
demonstration of our technology is to select a subset of hosts to run one or more
applications, according to the techniques introduced above. During the applica-
tion execution, we will artificially shut down some nodes and our system should
be able to replace them using available nodes in a transparent way with respect to
the application.

Note that we can also imagine emulating a very large-scale grid on top of
limited resources by running multiple virtual hosts on the same physical host.

In a second phase, once our systems have been reasonable tested, we will
apply them at deploying selected applications from WP4.2.

4 Application initialization
We may not expect that the initial composition of a distributed server remains the
same during the lifetime of its hosted grid application. The grid application may
grow or shrink dynamically, causing changes in the required resources. Likewise,
we cannot expect that allocated nodes will continue to be available, requiring that
nodes are replaced when they leave the cluster (voluntarily or due to a failure).
For these reasons, the composition of the distributed server needs to be monitored
and kept up-to-requirements dynamically.

Nonetheless, thanks to the epidemic nature of our protocol, our system can
easily cope with these failures. Indeed, application-wide network connectivity

11

can be achieved by having application nodes periodically exchange the list of
neighbors. In addition, thanks to the underlining gossip protocols, as soon as new
nodes become available (either because they join the XtreemOS network or be-
cause they have been deallocated) they will be discovered by nearby nodes (i.e.,
nodes sharing similar attribute values). This way, if nodes belonging to an appli-
cation collection should detect new available nodes, they could be easily added to
the application collection and become part of the application overlay network.

The XtreemOS toolbox consists of a collection of libraries offering various
ways to organize the processes that constitute a distributed application. We refer to
the process executing application code on a specific node as a constituent process
of that application. Together, the constituent processes of an application form a
distributed process encapsulating the application analogous to the encapsulation
of a program by a process on single-processor operating systems.

4.1 Application initialization
Jelasity and Babaoglu [7], but also Voulgaris and van Steen [19] have shown how
structured overlays can be constructed using relatively simple epidemic protocols
in unstructured networks. Using the information provided by the underlining pro-
tocol described in Section 3, we can adopt a similar approach in which the higher
layer requests the lower layer for randomly selected peers, but maintains a list of
only those peers that satisfy a specific distance metric. Such a metric may be re-
lated to semantic equivalence, expressed, for example, as the number of files that
the requesting and selected peer have in common. Another example is when peers
are ranked according to the distance between IDs, which is essentially exactly
what happens in structured overlays.

The two layers need not be strictly separated, and, in fact, much higher con-
vergence speeds are obtained if they are not [19].

4.1.1 Example: Chord

As an example, consider the construction of a Chord ring [7]. We assume that
every process is assigned a randomly chosen unique m-bit identifier from the set
[0, 2m − 1]. Every process is initially assigned a random selection of nodes, for
example through a lightweight membership protocol as described in [6]. The
distance between two nodes with ID a and b, respectively, is simply defined by
their difference in IDs: d(a, b) = min{|a− b|, N − |a− b|}.

Each constituent process with ID p maintains a list of nearest nodes in order
to construct the finger table. In particular, for each 1 ≤ j ≤ m, a process stores
the peer with the smallest identifier q satisfying

p + 2j−1 mod 2m ≤ q < p + 2j mod 2m

12

Note that this approach need not guarantee that each finger table entry actually
stores the so-called successor, as required by Chord. The successor of key k is
defined as the node with the smallest identifier id ≥ k. However, the sketched
construction of a Chord-like ring establishes properties similar to that of Chord.

We anticipate that variations of well-known structured overlays such as Chord
are supported as well. For example, a more efficient version of Chord, described
in [17] does not maintain finger table entries in the key space, but in the node
space. Such a variation can be constructed on top of the basic overlay, but perhaps
not by means of another higher-level epidemic protocol.

Typically, the Chord toolbox not only organizes the processes into a ring, but
also provides the functions for looking up keys, configuring replication degrees,
and so on.

4.1.2 Example: ordered IDs

As another example, consider the situation in which we want to assign each pro-
cess a unique identifier id ∈ {0, . . . , N−1} whereN is the number of constituent
processes. Such a numbering may be needed to organize the processes into a
farmer/worker configuration in which process 0 is the farmer and communicates
with the N − 2 workers.

In this example, we need to automatically rank each process. To simplify mat-
ters, let us assume that N is known, but that each process has been assigned a
randomly selected uniquem-bit identifier, withN ≤ 2m. A simple, yet somewhat
costly algorithm is to disseminate process IDs to all nodes using epidemic-based
gossiping. Each process maintains an ordered list of all process IDs it gradually
learns (along perhaps with the associated network-level addresses), and continu-
ously recomputes its own rank in this list. Obviously, this computation converges
to the proper rank of a node, and terminates when each process will have learned
about every other process.

4.2 Planned demonstration applications

We plan to demonstrate the application initialization facilities by developing ap-
plications that require specific organization (N-dimensional mesh, MPI-like orga-
nization, etc.). The fact that nodes participating in the application do not know the
entire group membership will be hidden to applications, so that each application
can use its own preferred addressing scheme for communication.

13

5 Distributed server
As discussed in Section 1.2, a service is defined as a group of processes which
publish a standardized interface and can receive invocations by external clients.
This means, of course, that clients need to know where invocations should be is-
sued. For simple services running on a single stable machine this is relatively
easy: one can for example hardcode the service address in the stubs to be instan-
tiated at the clients.

Binding clients to service instances becomes much more difficult when the
service is implemented as a group of processes running on a varying collection of
machines. The Grid services that we envision may need to adjust the collection
of servers on which they run for many reasons, such as maintaining a guaran-
teed response time regardless of variations of the load addressed to them, or to
replace failing machines with fresh ones. In the context of frequent changes in
the membership of the service, binding clients to a suitable service instance be-
comes much more difficult. As we discussed in [16], the required feature here
is anycast, which allows to define groups of processes and allows clients to ad-
dress any one of them. However, for anycast to be useful in this case, it needs
to satisfy a number of non-functional requirements: first, the service should re-
tain control on which client request should be treated by which service instance.
This is most important in Grid services such as a distributed file system, where
for performance reasons clients must be directed to the closest possible instance
of the service. Second, the anycast implementation must support frequent recon-
figurations of the set of service instances, as this set may change at any time. This
includes cases where a service instance fails or gracefully leaves the system while
it still has long-standing connections open with a number of clients. Finally, de-
ploying the anycast implementation should be easy and require no special network
administrator privilege. None of the traditional techniques based on centralized
frontends, client-side software, DHTs, routing-based anycast and DNS redirection
can satisfy all these requirements at the same time.

Instead, we propose a solution called versatile anycast [15]. Versatile anycast
relies on the Mobile IPv6 protocol [9] to represent a group of processes running
on a varying collection of machines to be recognized by its clients as having a
single stable IPv6 address. Changes in the composition of the set of service in-
stances are totally transparent to the client application. However, the service can
control on a per-client basis which service instance should handle incoming re-
quests. Unlike other implementations of the anycast functionality, we have shown
that this solution fulfill all the previously mentioned functional and non-functional
requirements.

WP3.2 will deliver libraries that can be used by service programmers to use
versatile computing functionalities. In essence, this will allow service instances

14

to hand-off client connections between themselves, thereby controlling which ser-
vice instance should handle which client requests.

5.1 Planned demonstration applications
A possible demonstration application is to implement a replicated Web server.
Multiple service instances contain copies of the same documents, and are orga-
nized as a distributed server. Clients keep on addressing their requests to the same
versatile anycast address, and receive responses despite frequent changes in the
composition of the distributed server.

We then plan to work in cooperation with partners from WP4.2 to apply the
distributed server techniques to applications such as Wissenheim, SPECweb2005
and Web Application Server.

6 Virtual node
Normally application constituents are executed on a single node. Sometimes,
however, this may be too dangerous, because a certain constituent is a critical part
of the entire application and its failure cannot be tolerated. In another scenario
one may think to have a service for which the number of read-only operations
outperforms the number of operations that modify the service’s state, e.g. a web
server. In both cases having a constituent on a single node can lead to severe
drawbacks, namely the breakdown of the entire application in the former case and
a performance bottleneck in the latter.

We consider replication as a reasonable approach to solve both problems, as
it may provide higher availability and resilience against unrelated failures of indi-
vidual nodes and is also able to distribute read operations to a higher number of
nodes. A group of constituents running replicated is called a virtual node.

At first view a virtual node resembles a distributed server. Looking closer,
however, there are three significant differences:

• Accessors: Distributed servers are built for all kinds of clients. Virtual nodes
serve only nodes running XtreemOS and being part of the grid as they only
serve nodes that are within a distributed server.

• Transparency: Virtual nodes do not hide the fact that they are distributed.
Clients can benefit from this knowledge, if they want, but do not have to.

• Scale: The scale of a virtual node is at the very most up to a few dozen real
nodes, whereas a distributed server can easily consist up to 100,000 nodes.
Larger scales for virtual nodes will barely be feasible due to the intrinsic

15

costs of total order messaging that is an evident precondition for replication
systems.

6.1 Construction
For constructing a virtual node we can use the same process as for constructing a
distributed server [15]. In essence, a virtual node is an abstraction of a real node,
but one that provides high availability. Similar, there is a need for some speci-
fications upon which an algorithm can decide which nodes to choose. However
this algorithm will not operate on the entire set of nodes, but only on the nodes
already allocated for the application. From the grid and registration levels’ point
of view the collection of nodes built for a virtual node is just one more applica-
tion dependent overlay that also uses the mechanisms provided by lower levels
to request new nodes or to be informed about nodes failures. There will be an-
other virtual node overlay on top of the first one representing the communication
and distribution hierarchy and infrastructure of the virtual node. That is, if active
replication with total message ordering is used, the topology of this overlay will
probably be fully meshed and will guarantee total message ordering, whereas in
an extreme case of passive replication, it might be a star and with no or only weak
consistency guarantees.

6.2 Replication
When talking about replication we think about replicating distributed objects mainly
for fault-tolerance [14], but also for performance reasons. This is quite different
from database replication as the semantics of an operation are mostly unknown.
In principle there are two main strategies how to replicate: active and passive, but
of course also hybrid setups can be imagined. All three of them can be combined
with a number of different consistency and communication strategies. Due to this
diversity we will provide support for active replication first. Active replication,
however, makes evident the need for determinism in all participating replicas.
This demand makes multi-threading a non-trivial task, as all schedulers have to
take the decisions in the same logical order [13, 4]. Instead of using only single-
threaded execution as most systems nowadays do, we will also provide multi-
threading support.

In a next step we will extend this architecture to support passive replication.
Finally, we will investigate how the system can be changed so that support for
additional communication patterns and consistency requirements can be added
easily and exchanges can happen dynamically at runtime to adapt to a changing
environment. The different approaches will be integrated in the toolbox.

16

Different replication modes actually have different limitations in their partic-
ular programming model. To allow strategy exchange there is either need for a
common programming model enabling all kinds of replication or a code checker
that inspects the source code and decides which strategies can be used with the
code.

6.3 Access point
Like the distributed server, a virtual node must provide an access point that other
server nodes can use for accessing it. As mentioned above this does not have
to happen in a completely transparent way. However, as replication normally
is a non-functional requirement, transparency might be a useful feature from an
application programmer’s point of view, because the application could also be
run non-replicated. As node-to-node communication is thought to happen by the
application level communication structure presented in Section 2, accessing the
virtual node is equal to sending a message on this overlay. Thus, the way the
nodes participating in a virtual node are integrated in the application-wide overlay
and the communication pattern used are crucial for accessing a sufficiently high
number of nodes and for guaranteeing accessibility.

Regarding the non-redundant star-topology mentioned above, it would suffice
to integrate the center node, as it marks the entry point to the virtual node. In the
fully meshed scenario all of the nodes can contribute in the application overlay
(but do not have to).

6.4 Planned demonstration applications
We plan to demonstrate the functionality of a virtual node by providing a simple
multi-threaded, fault-tolerant service. Furthermore we will provide techniques
that allow clients to access this service transparently in face of location, migration,
relocation, concurrency, and replication without the need for major changes in
client code or no changes at all.

Furthermore we plan to investigate if and how virtual nodes can be applied to
the applications in work package 4.2, but also to other system wide services, like
e.g. the file system’s meta data server. Therefor we will of course depend on the
contributions and cooperation of the particular supplier.

7 Publish-subscribe
The goal of this task is to offer a scalable and fault-tolerant publish/subscribe
system for asynchronous and loose coupling of applications in a grid. The ser-

17

vice will be used by XtreemOS components for monitoring, notification of server
crashes, as well as for persistent queries in the XtreemFS and job events for exe-
cution management. In addition, the system can also be used by user applications
for different purposes.

Given that several other workpackages and tasks within our own workpack-
age rely on the quick availability of a working publish/subscribe system, we will
organize our work in two steps. First, we will build a solid implementation that
is highly scalable but has relatively limited features, and can be used as a base by
other groups. We will then explore advanced extensions, to support extra features
such as range-based subscriptions, support for generalized multicast and atomic
updates.

We decided to initially implement a topic-based system, since this type is eas-
ier to scale than content-based publish/subscribe systems. In this section we de-
scribe the ideas for a first prototype which will be implemented quickly to offer
basic services to other workpackages as soon as possible. Our prototype will be
extended with features resulting from research outlined in section 7.5.

7.1 General definitions
Event An event is a piece of information which is delivered asynchronously.

Topic In a topic-based pub/sub system, a topic describes a class of events for
which a client can advertise interest by creating a subscription.

Subscription A subscription is used by a client to advertise interest in events
pertaining to a certain topic. It consists of a communication endpoint and
some representation of a topic. In order to allow for garbage collection of
outdated subscriptions, it might be reasonable to associate a subscription
with a lease time.

7.2 Architecture
We use a two tier architecture for our system. Clients (publishers and subscribers)
register with a pub/sub server. The servers are organized in a structured overlay
network. Figure 7.2 illustrates how a topic-based publish/subscribe system can be
built on top of a structured overlay network. Information is stored using topics as
keys and lists of communication endpoints as values.

Moreover, each node in the overlay network maintains a table of connected
clients with active subscriptions. Adding a new subscription to a topic A to the
system (step 1) first causes the corresponding server to update its table of local
subscribers (step 2), and then calls the put() function of the overlay network, so as

18

Topic Client Endpoint

A ..., 209.85.135.147:8080

Local Subscribers

... ...

1. sub (A, 209.85.135.147:8080)

209.85.135.147:8080

3. put (A, 130.73.72.1:17143)

4. pub (A, msg)

5. get (A)

Topic
List of Node
Endpoints

A ..., 130.73.72.1:17143

... ...

6. ..., 130.73.72.1:17143

8. get (A) from
local table

9. event (msg)

2. put (A, 209.85.135.147:8080)
in local table

130.73.72.1:171437. pub (A, msg)

85.21.11.142:4412

Figure 2: Example for a subscribe and event notification using an overlay network

to add its communication endpoint to a globally accessible list of communication
endpoints associated with A (step 3). When an event associated with topic A is
published (step 4), a lookup of all servers with active subscriptions to A is per-
formed by invoking the get() function of the overlay network (steps 5 and 6), and
the notification is forwarded to this list of servers (step 7). Finally, the event is de-
livered to the set of local clients by each of the servers that receive the notification,
with the aid of their local subscriber tables (steps 8 and 9).

Using an overlay network in order to construct a mapping from topics to
servers implicitly disperses the responsibility for subscriptions, with the aim of
providing scalability. We believe that there will be more clients than servers, as
well as different popularities of different topics.

Another problem lies in notifying subscribed servers. A simple broadcast
scheme will become a bottleneck once the number of servers grows. One ap-
proach lies in using gossip based mechanisms to build multicast trees. Since we
are using an overlay network, it could be very promising to explore how the over-

19

lay itself can be used to construct efficient multicast mechanisms on top of it. This
has the tremendous advantage that only one network is used for routing events and
subscriptions.

7.3 Interface
Clients establish a TCP connection to the server which is used by the client to sub-
scribe and to cancel subscriptions. The server uses the same connection to send
events to the client. If the connection is closed or broken the subscription ends. A
simple, textual protocol will be used for communication to achieve platform in-
dependence. Event payload however, can be arbitrary binary data. These samples
give a first idea of the protocol we will probably use.

• Sample subscription request:

SUBSCRIBE "topic name" \r\n

• Sample unsubscription request:

CANCEL "topic name" \r\n

• Sample publish request:

PUBLISH "topic name" \r\n
Payload-length: 128\r\n
<128 byte of binary data>\r\n

• Sample event notification:

EVENT "topic name" hashID\r\n
Payload-length: 128\r\n
<128 byte of binary data>\r\n

7.4 Implementation
The system will be built on top of an existing P2P substrate. Available implemen-
tations will be evaluated according to their license, active development, usability
for production environments and functionality. In a first prototype a simple inter-
server notification scheme will be implemented. In the following implementation
this protocol will be enhanced, e.g by using more sophisticated multicast algo-
rithms.

To bootstrap the P2P substrate we require that servers register with the di-
rectory service. This information does not need to be up-to-date all the time.
However, a sufficient number of available nodes must be registered.

20

7.5 Longer-term prospects
The presented system is intended as a starting point. On the one hand, we quickly
need a simple but working prototype for other XtreemOS packages relying on
the pub/sub system. On the other hand, our design is flexible enough to allow
for a variety of research topics to be implemented later on. In this section we
give some of the research aspects of the publish/subscribe system that we will
investigate. Others may be added during the course of research.

• Hierarchical topics
Hierarchical topics are a compromise between topic and content-based pub-
lish/subscribe. While systems using flat topics are easy to scale and offer
excellent performance, they require application programmers to build work-
arounds for more sophisticated event structures. On the other hand, content-
based systems offer powerful mechanisms for event filtering but do not scale
(well). To implement a scalable publish/subscribe system with hierarchical
topics we cannot take advantage of range queries. Instead a specific topic
has to be matched onto ranges (subscriptions). We will investigate how
Chord# [17] can be modified or extended to support this kind of ”range
filters”.

• Multicast in overlay networks
To efficiently disseminate events in the system we can take advantage of
the structure of the overlay network. How this is done in detail heavily
depends on the underlying overlay network used. As part of our research
we will investigate different overlays, e.g. Pastry, Bamboo or Chord#, and
the possible multicast schemes. [5] gives more details on broadcasts in
overlay networks. Combining or applying traditional multicast mechanisms
like gossiping to very dynamic systems like structured overlays becomes a
research challenge.

• Atomic updates
To support concurrent changes on subscriber lists we need transactions to
combine a get() and subsequent put() request into an atomic update oper-
ation. This is not supported by current overlay network implementations.
Research will be conducted in close co-operation with the SELFMAN EU
project. In combination with ”range filters” for hierarchical topics this may
be extended to transactions over several lists.

7.6 Planned demonstration applications
The main application that is planned consists of the XtreemFS system (WP 3.4)
will make extensive use of the publish/subscribe system for various applications:

21

• notification of clients for persistent queries

• dissemination of OSD status information

• monitoring of services / servers

8 Directory service for node monitoring
The goal of this task is to build a scalable and efficient directory service that can
be used to register static and dynamic attributes. We expect to use it as a basis for
node monitoring in the XtreemOS platform, but it may also be relevant to other
workpackages for tasks such as resource management and discovery.

In such environments, the set of shared resources is highly dynamic, with en-
tities joining and leaving the system at unpredictable times. Moreover, features
of shared resources can change as time goes by, so information about the features
has to be updated in the system. It is therefore necessary to design the directory
service with such constraints in mind. To this end, we expect to structure the sys-
tem as a layer on top of the publish/subscribe system described in Section 7. A
more detailed analysis and discussion between the concerned partners is neces-
sary, though, to take a final decision on this design choice.

8.1 System requirements and architecture proposal
The directory service has a number of requirements. Among them, we focus on:

• Scalability: The set of resources and of participating entities must be able
to get huge without affecting seriously the system.

• Robustness: The system must be able to cope with the join/leave events of
the entities.

The system that satisfies the requirements must be efficient in searching for
resources, even in the presence of a large number of entities, and it must be able
to cope with join/leave events.

In our opinion, resources’ features are characterized by their level of dynamic-
ity, that depend both on the resource and on the feature at hand. We think that we
should not look for a “one-size-fits-all” approach to the problem, and we should
build a system that can use different mechanisms depending on the level of dy-
namicity of the search target.

We propose an alternative focus on the problem. We considered a number of
use cases of the publish/discover system where the key attributes of a query are
dynamic attributes that describe short termed features of the resources.

22

As an example, we can cite a query for disk space, that looks for a disk server
that has a certain number of free megabytes. Or a query for computing power, that
has three main attributes: a minimum number of CPUs, their minimum power and
the maximum workload pending on them.

Depending on the kind of attribute that is inserted in a query, there are different
mechanisms that are suitable for the job at hand. We will therefore implement
multiple publish and search algorithms in the directory service such that the most
appropriate one can be used depending on the dynamicity of the published/queried
attributes.

8.2 Open problems
The described system suffers from a number of problems that have no standard
solution and need to be solved by some research effort.

A first problem is the range query. A client’s query can be, for example, for
“a disk with 2 to 3 GBytes of free space”. The literature on range queries on
Distributed Hash Tables present some interesting ideas that can be used to cope
with the problem. In particular, the Chord# system developed by ZIB may be a
good substrate for such queries.

Another problem regards queries for set of resources. An example can be “1 to
6 disks, with a total free space of 10 GBytes”. The system must be able to create
subqueries for single resources and to aggregate the results for the entity which
did the query.

Another open problem is the multi–attribute query, when the attributes are of
different dynamicity. The query system will collect data using different mech-
anisms and then it will have to merge the collected data into an answer to the
query.

8.3 Added value of the system
The prime planned application of the directory service is to support a monitoring
system to store and query information about the runtime of the grid. Applica-
tions and Operating System services will access the information published by the
monitoring system in real-time. Another use of the publish/discover system, is to
broadcast messages to the entire peer-to-peer network.

8.4 Planned demonstration applications
The first release of the system will include the tools to create and manage a di-
rectory service with multiple publish and search algorithms depending on the dy-
namicity of the attributes. A daemon will publish information about the node on

23

which it will be installed, for example by exporting the information found in the
/proc directory. One can then run global queries through the system to search
nodes based on certain attributes.

9 Relationship with other work packages
WP 3.2 plays a crucial role within the XtreemOS project and must frequently
interact with the other work packages. In this section we briefly describe the
collaborations occurring with the rest of the project and propose a joint work plan.

9.1 Relationship with sub-project 2
Although most protocols we are going to develop do not require any special kernel
support, we will exploit a number of facilities provided by the XtreemOS kernel.
These relationships will result in a number of requirements that sub-project 2
should ideally support.

First of all, as specified in Section 5 we need Mobile IPv6 support to imple-
ment our distributed servers. Mobile IPv6 is implemented in all major operating
systems, including Linux, so we expect no major problem there. In addition,
we will also take benefit from the access control tools which will be used dur-
ing the node discovery and allocation to select only trusted nodes and to prevent
un-authorized users to run their code. Finally, the fault-tolerance mechanisms in-
troduced in Section 6 will leverage the checkpoint/restart services implemented in
kernel-space.

9.2 Relationship with WP3.1
Since one of our goals is to provide a set of libraries available to the applications
(see Section 2.2.2), we need a tight interaction with WP3.1 and we will work
together to define a suitable API for these services.

9.3 Relationship with WP3.3
WP3.3 represents the prime target user of our node management mechanisms.
Indeed, after our protocol has identified a suitable set of nodes based on their
static properties, it is expected that it will deliver this list to the allocation com-
ponents developed by WP3.3, which will select only a fraction of them according
to specific scheduling policies (e.g., load distribution, network latency, etc.). This
means that our node management system can be seen as the implementation of
the “ResourceDiscovery” component described in deliverable D3.3.1.

24

Beside this, we believe that other components we are going to develop could
be of interest for WP 3.3 in the development of highly available and scalable ser-
vices. For example, the node allocation components may use the fault tolerance
support through virtual nodes and the directory service to retrieve node character-
istics.

9.4 Relationship with WP3.4

Our directory service is central to the design of the file system to be developed
in WP3.4. This, therefore, will require an active collaboration among the two
work packages to jointly identify the common issues and the definition of the
components we need to implement to support their service.

Also, the share file system developed by WP3.4 could become the prime com-
munication medium for deploying Grid applications (see Section 3.3).

9.5 Relationship with WP3.5

Security represents a major concern of the XtreemOS project, but is not the prime
focus of WP3.2. We consider that global security of the XtreemOS platform is
the responsibility of WP3.5, but we will aim at securing the services that we will
build as part of WP3.2. We expect to use primitives developed by WP3.5 for that.
This will certainly require frequent interaction with WP3.5.

9.6 Relationship with sub-project 4

WP3.2 needs to closely collaborate with sub-project 4 to provide the services re-
quired by application developers. Some of these service (e.g., fault-tolerance) will
be directly supported by our workpackage (although they may affect the overall
performance) while some others (e.g., authentication, security and monitoring)
will be implemented in other work packages. In the latter case we will build the
necessary services, whose action will be mostly to mediate between existing sys-
tem components inside the system.

Together with WP3.3, we will also do our best to provide efficient communi-
cation among nodes, although it is in the general case impossible to enforce strong
guarantee in term of bandwidth and QoS between any group of nodes, even if they
are allocated inside a given cluster.

25

10 Work plan
The table below illustrates the repartition of work between the members of the
work package, as well as the planned efforts between months 1 and 18.

Partner Tasks Person-months
VUA Node management, application bootstrapping,

distributed server
45

ZIB Publish-subscribe 27
CNR Directory service and node monitoring 24
ULM Virtual node, application bootstrapping 14

References
[1] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,

T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating System Support for
Planetary-Scale Network Services. In First Symp. Networked Systems Design and
Impl., pages 245–266, March 2004.

[2] Franck Cappello, Eddy Caron, Michel Dayde, Frederic Desprez, Emmanuel Jeannot,
Yvon Jegou, Stephane Lanteri, Julien Leduc, Nouredine Melab, Guillaume Mornet,
Raymond Namyst, Pascale Primet, and Olivier Richard. Grid’5000: a large scale,
reconfigurable, controlable and monitorable Grid platform. InGrid’2005 Workshop,
Seattle, USA, November 2005.

[3] B. Cohen. Incentives Build Robustness in Bittorrent. In First Workshop on Eco-
nomics of Peer-to-Peer Systems, June 2003.

[4] Jörg Domaschka, Franz J. Hauck, Hans P. Reiser, and Rüdiger Kapitza. Determin-
istic multithreading for java-based replicated objects. In Proc. of the 18th IASTED
Int. Conf. on Parallel and Distributed Computing and Systems (PDCS’06, Dalles,
Texas, Nov 13-15, 2006), 2006.

[5] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Efficient broadcast
in structured P2P networks. In The 2nd International Workshop On Peer-To-Peer
Systems (IPTPS’03), February 2003.

[6] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The Peer Sampling
Service: Experimental Evaluation of Unstructured Gossip-Based Implementations.
In Middleware 2004, volume 3231 of Lect. Notes Comp. Sc., pages 79–98, Berlin,
October 2004. ACM/IFIP/USENIX, Springer-Verlag.

[7] Mark Jelasity and Ozalp Babaoglu. T-Man: Gossip-based Overlay Topology Man-
agement. In Third Int’l Workshop Eng. Self-Organising App., June 2005.

26

[8] Mark Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based Aggregation
in Large Dynamic Networks. ACM Trans. Comp. Syst., 23(3):219–252, August
2005.

[9] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC 3775, June
2004.

[10] John Markoff and Saul Hansell. Hiding in plain sight, Google seeks more power.
New York Times, 14 June 2006.

[11] Larry Peterson, Andy Bavier, Marc Fiuczynski, Steve Muir, and Timothy Roscoe.
Towards a Comprehensive PlanetLab Architecture. Technical Report PDN-05-030,
PlanetLab Consortium, June 2005.

[12] Guillaume Pierre. Grid services for adaptive content delivery. In Proceedings of
the Workshop on the Use of P2P, GRID and Agents for the Development of Content
Distribution Networks (UPGRADE-CDN), June 2006.

[13] Hans P. Reiser, Franz J. Hauck, Jörg Domaschka, Rüdiger Kapitza, and Wolfgang
Schröder-Preikschat. Consistent replication of multithreaded distributed objects. In
SRDS ’06: Proceedings of the 25st IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’06), 2006.

[14] Hans P. Reiser, Rüdiger Kapitza, Jörg Domaschka, and Franz J. Hauck. Fault-
tolerant replication based on fragmented objects. In Proc. of the 6th IFIPWG 6.1 Int.
Conf. on Distributed Applications and Interoperabel Systems - DAIS 2006 (Bologna,
Italy, June 14-16, 2006), 2006.

[15] Michał Szymaniak, Guillaume Pierre, Mariana Simons-Nikolova, and Maarten
van Steen. Enabling service adaptability with versatile anycast. Submitted
for publication, May 2006. http://www.globule.org/publi/ESAVA_
draft2006.html.

[16] Michał Szymaniak, Guillaume Pierre, and Maarten van Steen. Versatile anycasting
with mobile IPv6. In Proceedings of the International Workshop on Advanced Archi-
tectures and Algorithms for Internet Delivery and Applications, Pisa, Italy, October
2006.

[17] Thorsten Schütt and Florian Schintke and Alexander Reinefeld. Structured Overlay
without Consistent Hashing: Empirical Results. In Proceedings of the Sixth Work-
shop on Global and Peer-to-Peer Computing (GP2PC’06), May 2006.

[18] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: Inexpensive Membership
Management for Unstructured P2P Overlays. J. Netw. & Syst. Mgt., 13(2):197–217,
June 2005.

27

[19] S. Voulgaris and M. van Steen. Epidemic-style Management of Semantic Overlays
for Content-Based Searching. In 11th Int’l Conf. Parallel and Distributed Comput-
ing (Euro-Par), volume 3648 of Lect. Notes Comp. Sc., pages 1143–1152, Berlin,
September 2005. Springer-Verlag.

28

