
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Simulation-based evaluation of a scalable publish/subscribe
system
D3.2.3

Due date of deliverable: November 30th, 2007
Actual submission date: May 31th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.2
Task number: T3.2.2

Responsible institution: ZIB
Editor & and editor’s address: Thorsten Schütt

Zuse Institute Berlin
Takustrasse 7
14195 Berlin

Germany

Version 2.0 / Last edited by Thorsten Schütt / May 26th, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 2007/10/11 Thorsten Schütt ZIB first draft
0.2 2007/10/17 Thorsten Schütt ZIB extended different pub/sub styles
0.3 2007/10/31 Thorsten Schütt ZIB future work
0.9 2007/11/27 Thorsten Schütt ZIB included the reviewers’ suggestions
1.0 2007/11/30 Thorsten Schütt ZIB final changes
1.1 2008/05/20 Thorsten Schütt, Alexander

Reinefeld
ZIB rewrite after rejection at review

2.0 2008/05/26 Thorsten Schütt, Alexander
Reinefeld

ZIB updated after internal review

Reviewers:
Thilo Kielmann (VU), Björn Kolbeck (ZIB)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.2.2 Design and implementation of a scalable publish/subscribe

system
ZIB*

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive summary
This deliverable presents the state of the design and evaluation of the XtreemOS
software component “Publish/Subscribe System”. This system is a key compo-
nent of the highly available and scalable infrastructure as described in deliverable
D3.2.1 under the responsibility of WP 3.2.

Distributed hash tables and structured overlay networks are inherently scalable
systems which are usually used for key-value stores. The main design principle is
that each node knows only a very small part of the system and delegates tasks to its
neighboring nodes if he can not perform the task himself. Maintenance happens
in a similar way, that each node only tries to repair its neighborhood. This results
a simple algorithms. We present in great detail the inner workings of Chord#and
SONARand simulations showing their scalability.

Chord# is a DHT which allows to efficiently execute range queries. It elimi-
nates the hash function, which is the center piece of traditional DHTs, and instead
stores the items in lexicographical order. The lexicographical order ensures that
similar keys are stored on the same or on neighboring nodes. The support of
range queries is an important pre-requisition for implementing publish/subscriber
systems because they allow to build group based notification systems with hierar-
chically structured topics. The simpler model of a topic-based publish/subscribe
system can be seen as a special case of hierarchical topics with a flat hierarchy.

SONAR is generalization of Chord# to a multi-dimensional key space. Where
Chord# supports a one-dimensional key space with total order, like e.g. strings,
keys in SONAR are multi-dimensional vectors. Again as in Chord# similar items
are stored on neighboring nodes, which allows to efficiently perform range-queries
of almost arbitrary shapes. A 2-dimensional instance of SONAR could be used
as a geographic database, supporting queries like, give me all hotels north-west
of my current position less than 1000m away. For publish/subscribe, the high-
dimensional key space can be used to support content-based models.

As a basis for our publish/subscribe system we designed, implemented and
evaluated the Chord# and SONAR algorithms. We extended them towards a full-
fledged publish/subscribe system and proved their scalability by means of simula-
tion. The system is shown to scale up to some thousands of nodes (i.e. publishers
and subscribers).

1

Contents
1 Introduction 3

2 A Pub/Sub Backend for Simple Queries: Chord# 4
2.1 Logarithmic Routing Performance 6

2.1.1 Finger Placement in Chord 7
2.1.2 Finger Placement in Chord# 9

2.2 k-ary Search . 9
2.3 Fast Finger Check . 11
2.4 Simulations . 12

2.4.1 Latency . 15
2.4.2 Checking the Propagation of Misplaced Fingers 16

2.5 Summary . 16

3 Backend for Content-based Pub/Sub: SONAR 17
3.1 Overlay . 18
3.2 Routing in the Node Space . 18
3.3 Size of the Routing Table . 19
3.4 Handling Churn . 21
3.5 Range Queries . 21
3.6 Simulation . 22

3.6.1 Average Routing Performance 25
3.6.2 Routing Load per Node 26
3.6.3 Accuracy of the Routing Table Information 27
3.6.4 Worst Case Behavior . 29

3.7 Summary . 31

4 Publish/Subscribe System Architecture 32
4.1 Topic-Based Publish/Subscribe System 32
4.2 Publish/Subscribe System for Hierarchical Topics 32

4.2.1 Trees vs. Range Queries 33
4.3 Content-Based Pub/Sub . 33

5 Conclusion 34
5.1 Simulation Results . 34
5.2 Ongoing work . 35
5.3 Dissemination . 35

2

1 Introduction
One important goal of Workpackage 3.2 of the XtreemOS project is to provide
a highly scalable/publish subscribe service (pub/sub). This service will be used
by XtreemOS services to notify other services and users about important, possi-
bly time-critical events within the XtreemOS operating system. A typical event
could be an unexpected termination of a job, an update in the file system, or the
availability of new resources and services. Hence, the herewith described pub/sub
system is at the core of many services in XtreemOS.

Typical publishers will be services like the file system, the monitoring com-
ponent, or the scheduler. Subscribers, on the other hand, may be services as well
as users, e.g. on mobile devices.

There exists a wealth of literature on pub/sub systems (for an overview see [10]).
Most of them are based on some kind of group communication. Only few pub/sub
systems provide scalability up to thousands of publishers or subscribers. Pub/sub
systems comprise two components:

1. a component used to register those entities that must be notified at the arrival
of a given event, and

2. a component used to notify the entities.

Structured overlays with distributed hash tables (DHTs) are a natural candi-
date for implementing services that are truly scalable. However, it became only
recently possible to support complex queries (such as range queries) on DHTs.
One of these systems is Chord# which we use as a basis for our implementation.
With Chord#, complex queries can be used to map the database part on a DHT.
With increasing complexity of the supported queries, the pub/sub system is able
to provide powerful subscription styles [10] like the following:

DHT Capability Pub/Sub Style
simple lookup topic-based
1D range queries hierarchical topics
multi-dimensional range queries content based pub/sub

This deliverable documents the design, implementation and evaluation of the
proposed pub/sub architecture based on simulations.

The next two sections introduce Chord# resp. SONAR and show their scal-
ability based on simulations. Sections 4.1, 4.2 and 4.3 introduce the architecture
of the pub/sub service. Section 5 gives a short summary of the simulation results.
An outlook on the next steps is given in Sect. 5.2, including a short summary of
the papers [31, 32, 33] which resulted from this deliverable.

3

2 A Pub/Sub Backend for Simple Queries: Chord#

Chord# is a DHT that supports range queries. It is more efficient than the well-
known Chord DHT, and it does so with the same logarithmic number of entries
in the routing table. In the following, we introduce Chord# by deriving it step by
step from Chord as illustrated in the four parts of Fig. 1.

Fig. 1a: Chord organizes the nodes N0, . . . , N15 in a logical ring, each of
them being responsible for a subset of the keys 0, . . . , 28 − 1. In each node a
finger table holds the addresses of the peers halfway, quarter-way, 1/8-way, 1/16-
way, . . ., around the ring. When a node (e.g. N0) receives a query, it forwards it to
the node in its finger table with the highest ID not exceeding hash(key). This
halves the distance in each step, resulting in O(log n) hops in networks with n
nodes, because the hashing ensures a uniform distribution of the keys and nodes
with a high probability [36].

Fig. 1b: Because this scheme does not support range queries, we eliminated
the hashing of keys as shown in Fig. 1b. All keys are now sorted in lexicographic
order, but unfortunately nodes responsible for popular keys (e.g. ‘E’) will become
overloaded—both in terms of storage space and query load. Hence, this approach
is impractical, even though its routing performance is still logarithmic.

Fig. 1c: When also eliminating the hashing of nodes, we need to introduce
a scheme for explicit load balancing [17]. Part (c) shows that nodes can now be
placed at any suitable place in the ring to achieve an almost even key distribution.
However, without adjusting the fingers in the finger table, much more hops are
needed to retrieve a given key. The lookup started in node N13 for key ‘R’, for ex-
ample, needs six instead of four hops. In the extreme case, routing could degrade
to O(n).

Fig. 1d: Here, we introduce a scheme that dynamically adjusts the fingers in
the finger table. The lookup performance is now again O(log n) – just as in Chord.
But in contrast to Chord this new variant does the routing in the node space rather
than the key space, and it supports complex queries – all with logarithmic routing
effort.

The most important step is the substitution of Chord’s hash function by a key
order preserving function. When doing so, the keys are no longer equally dis-
tributed over the nodes but they follow some unknown density function. To still
obtain a logarithmic routing effort, the fingers must be computed in such a way
that they cross a logarithmic number of nodes in the ring. The following finger
placement algorithm does this (the infix operator x . y retrieves y from the routing
table of a node x):

finger i =

{
successor : i = 0
finger i−1 . finger i−1 : i #= 0

4

(a) Chord (b) Chord without hashing

!"#

!$

!"$

!%

!"&

!#

!""
!'

!&

!(

!)

!"*

!+

!"+

),'
-,.

/,0

1,2

3,4

5,6

7,8

9,!:,;

<,=
>,?

 ,A

&,%

#,+

B,C

!*

!"

DEF'HI JKIIHJLEKF

IK-LEF' NKO

!#

-,.
011KJE0LH2
3H41O0JH

FK2H

KIE'EF0U6NKO

FK2H 1O0JH76!# 8 !"$
3H4 1O0JH 76-6, '

!# 1H0IJN EFYK3HI

:,[

(c) Chord without hashing but (d) Chord#

with load balancing

Figure 1: Transformation steps from Chord to Chord#

5

To calculate the ith finger in its finger table, a node asks the remote node, to
which its (i− 1)th finger refers to, for its (i− 1)th finger. In general, the fingers in
level i are set to the fingers’ neighbors in the next lower level i− 1. At the lowest
level, the fingers reference to the direct successors.

Routing in the node space allows us to remove the hashing function and to
arrange the keys in lexicographical order among the nodes so that no node is over-
loaded. This new finger placement has two advantages over Chord’s algorithm:
First, it works with any type of keys as long as a total order over the keys exists,
and second, finger updates are cheaper than in Chord, because they need just one
hop instead of a full search. This is because Chord# uses better informed remote
nodes for adjusting the fingers in its finger table by recursive finger references.

2.1 Logarithmic Routing Performance
Before we prove the routing performance of Chord# to be O(log2 N), we briefly
motivate our line of argumentation. Let the key space be 0 . . . 2m−1. In Chord, the
ith finger in the finger table of node n refers to the node responsible for fi with1

pi = (n⊕ 2i−1) for 1 ≤ i ≤ m

This procedure needs O(log N) hops for each entry. It can be rewritten as

pi = (n⊕ 2i−2)⊕ 2i−2

Having split the right hand side into two terms, the recursive structure becomes
apparent and it is clear that the whole calculation can be done in only 1 hop! The
first term represents the (i− 1)-th finger and the second term the (i− 1)-th finger
on the node pointed to by finger i− 1.

For proving the correctness, we describe the node distribution by the density
function d(x). It gives for each point x in the key space the reciprocal of the width
of the corresponding interval. For a Chord ring with N nodes and a key space
size of K = 2m the density function can be approximated by d(x) = N

2m (the
reciprocal of K

N and K = 2m) because it is based on consistent hashing:

Theorem 1 (Consistent Hashing [16]): For any set of N nodes and K keys, with
high probability:

1. Each node is responsible for at most (1 + ε)K
N keys.

2. When node (N + 1) joins or leaves the network, responsibility for O(K
N)

keys changes hands (and only to or from the joining or leaving node).
1We assume calculations to be done in a ring using (mod 2m).

6

The most interesting property of d(x) is the integral over subsets of the key
space:

Lemma 1 The integral over d(x) equals the number of nodes in the correspond-
ing range. Hence, the integral over the whole key space is:

∫

keyspace

d(x) dx = N.

Proof. We first investigate the integral of an interval from ai to ai+1, where ai

and ai+1 are the left and the right end of the key range owned by a single node.

ai+1∫

ai

d(x) dx ?= 1.

Because ai and ai+1 mark the begin and the end of an interval served by one
node, d is constant for the whole range. The width of this interval is ai+1 − ai

and therefore according to its definition d(x) = 1
ai+1−ai

. Because we chose ai and
ai+1 to span exactly one interval the result is 1, as expected.

The integral over the whole key space therefore equals the sum of all intervals,
which is N :

∫

keyspace

d(x) dx =
N−1∑

i=0

ai+1∫

ai

d(x) dx = N

Note that Lemma 1 could also be used to estimate the amount of nodes Ñ in
the system, having an approximation of d(x) called d̃(x). Each node could com-
pare 1

2 log(Ñ) to the observed average routing performance in order to estimate
and improve its local approximation d̃(x).

2.1.1 Finger Placement in Chord

Both, Chord and Chord# use logarithmically placed fingers, so that searching is
done in O(log N). Chord, in contrast to our scheme, computes the placement of
its fingers in the key space. This ensures that with each hop the distance in the
key space to the searched key is halved, but it does not ensure that the distance
in the node space is also halved. So, a search may need more than O(log N)
network hops. According to Theorem 1, the search in the node space still takes
O(log N) steps with high probability. In regions with less than average sized
intervals (d(x) & N

K) the routing performance degrades.

7

Chord places the fingers fi in a node n with the following scheme:

pi = (n⊕ 2i−1), 1 ≤ i ≤ m (1)

Using our integral approach from Lemma 1 and the density function d(x), we
develop an equivalent finger placement algorithm as follows. First, we take a look
at the longest finger fm. It points to n + 2m−1 when the key space has a size of
2m. This corresponds to the opposite side of n in the Chord ring. With a total of
N nodes this finger links to the N

2 -th node to the right with high probability due
to the consistent hashing theorem.

With Lemma 1 key fm, which is stored on the N
2 -th node to the right, can be

predicted.

pm∫

n

d(x)dx =
N

2

Fingers to the N
4 -th, . . . , N

2i -th node are calculated accordingly.
As a result we can now formulate the following more flexible finger placement

algorithm:

Theorem 2 (Chord Finger Placement): For Chord, the following two finger
placement algorithms are equivalent:

1. fi = (n⊕ 2i−1), 1 ≤ i ≤ m

2.
∫ pi
n d(x) dx = 2i−1

2m N, 1 ≤ i ≤ m

Proof. To prove the equivalence, we set d(x) = N
2m according to Theorem 1.

∫ pi

n
d(x) dx =

2i−1

2m
N

∫ pi

n

N

2m
dx =

2i−1

2m
N

N

2m
(pi ' n) =

2i−1

2m
N

pi = n⊕ 2i−1

The equivalence of Chord’s two finger placement algorithms will be used in
the following section to prove the correctness of Chord#’s algorithm.

8

2.1.2 Finger Placement in Chord#

Theorem 3 (Chord# Finger Placement):

finger i =

{
successor : i = 0
finger i−1 . finger i−1 : i #= 0

Proof. We first analyze Chord’s finger placement (ref. Theorem 2) in more
detail.

pi∫

n

d(x) dx =
2i−1

2m
N, 1 ≤ i ≤ m (2)

First we split the integral into two equal parts by introducing an arbitrary point X
between n (the key of the local node) and finger i (the key of finger i):

X∫

n

d(x) dx =
2i−2

2m
N (3)

pi∫

X

d(x) dx =
2i−2

2m
N (4)

In Eq. 3 and Eq. 4, the only unknown is X . Comparing Eq. 3 to Theorem 2,
we see that X is fi−1.

In summary, to calculate finger i we go to the node addressed by finger i−1 in
our finger table (Eq. 3), which crosses half of the nodes to finger i. From this node
the (i−1)th entry in the finger table is retrieved, which refers to finger i according
to Eq. 4. So, Eq. 2 is equivalent to

finger i = finger i−1 . finger i−1

Instead of approximating d(x) for the whole range between n and fi, we split
the integral into two parts and treat them separately. The integral from n to fi−1 is
equivalent to the calculation of finger i−1 and the remaining equation is equivalent
to the calculation of the (i − 1)-th finger of the node at finger i−1. We thereby
proved the correctness of the pointer placement algorithm in Theorem 3.

With this new routing algorithm, the cost for updating the complete finger
table has been reduced from O(log2 N) in Chord to O(log N) in Chord#.

2.2 k-ary Search
The protocol described so far has a routing performance of O(log2 N) hops. Fol-
lowing the lines of DKS [3], this can be improved to O(logk N) hops for arbitrary

9

k by simply adding fingers to the routing table. We first review k-ary search in
Chord and them apply it to Chord#.

In Chord the longest finger (fm−1, where m is the number of bits in the iden-
tifiers) and the key of the current node (f) split the ring into two halves ((f, fm−1]
and (fm−1, f]). The next shorter pointer fm−2 splits the first half again into two
halves ((f, fm−2] and (fm−2, fm−1]). This scheme is recursively applied until the
subsets contain only one key. It can be easily seen, that this scheme cuts the
distance to the goal in half with each hop, resulting in O(log2 n) hops.

By dividing into k equally sized subsets at each level, each hop reduces the
distance to 1

k -th and the overall number of hops per search to O(logk n). This ex-
tension is implemented by adding k− 2 columns to the routing table and calculat-
ing the fingers as follows: f ⊕ (i+1)2m

kl , where 1 ≤ i ≤ k and 1 ≤ l ≤ logk(2
m).

1 # ask node n t o f i n d t h e s u c c e s s o r
2 # o f i d
3 n . f i n d _ s u c c e s s o r (id)
4 i f (id ∈ (n , successor])
5 re turn successor ;
6 e l s e
7 n′= c l o s e s t _ p r e c e d i n g _ n o d e (id) ;
8 re turn n′ . f i n d _ s u c c e s s o r (id)
9

10 # s e a r c h t h e l o c a l t a b l e f o r t h e
11 # h i g h e s t p r e d e c e s s o r o f i d
12 n . c l o s e s t _ p r e c e d i n g _ n o d e (id)
13 f o r i = m downto 1
14 i f (finger[i] ∈ (n , id))
15 re turn finger[i] ;
16 re turn n ;

(a) Chord’s original routing algorithm [36].

1 # ask node n t o f i n d t h e
2 # p r e d e c e s s o r o f i d
3 n . f i n d _ p r e d e c e s s o r (id)
4 i f (id ∈ (n , successor])
5 re turn n ;
6 e l s e
7 n′= c l o s e s t _ p r e c e d i n g _ n o d e (id) ;
8 re turn n′ . f i n d _ p r e d e c e s s o r (id)
9

10 # s e a r c h t h e l o c a l t a b l e f o r t h e
11 # h i g h e s t p r e d e c e s s o r o f i d
12 n . c l o s e s t _ p r e c e d i n g _ n o d e (id)
13 f o r i = m downto 1
14 i f (finger[i] ∈ (n , id])
15 re turn finger[i] ;
16 re turn n ;

(b) Improved routing algorithm for Chord.

Figure 2: Improving the finger checks to O(1)

Chord# can be improved analogously by k-ary search, but here we need to
calculate the fingers differently. A closer look at the above algorithm reveals that
the i-th finger in the l-th row points to the i ∗ bl−1-th neighbor of the current node.
This can be rewritten to make the recursive structure more obvious. Depending
on i, two cases must be distinguished:

i = 1: In this case, i ∗ bl−1 can be rewritten as t ∗ bl−2 +u ∗ bl−2, where t+u = b.
Note, that t and u can be chosen arbitrarily as long as their sum equals b.

As explained in Sect. 2.1, the a + b-th neighbor can be found if the a-th
neighbor is known and the a-th neighbor knows its b-th neighbor. When
both facts are locally known, the target can be found in one hop. This
property was used in the 2-ary Chord# and is also the base for the k-ary
implementation.

10

All nodes can always find their t∗bl−2-th as well as their u∗bl−2-th neighbor
in the local routing table by going one row up from the current entry without
any accesses to the network. So, in this case the entries can be updated with
one network hop.

i #= 1: Here we rewrite i∗bl−1 as t∗bl−1+u∗bl−1, where t+u = i. Again, t and u
can be chosen arbitrarily. As in the former case, the necessary information
can be obtained by looking at the entries to the left of the current entry.

In summary, the finger updates are as efficient as the ones for the 2-ary Chord#.
But with a slight twist, the whole system is dynamic and therefore routing table
entries might be incorrect or missing. To adapt, Chord# can exploit that t and
u may be chosen within certain limits and thereby avoiding stale entries. This
flexibility can also be used to find inconsistencies in routing tables.

Theorem 4 (Chord# Finger Placement with k-ary Search): The following al-
gorithm for computing finger i,j with 1 ≤ j ≤)logb N*, 1 ≤ i < k routes in
O(logk N) hops.

finger i,j =

successor : i = 1, j = 1
finger l,j . fingerm,j : i > 1, l + m = i
finger l,j−1 . fingerm,j−1 : i = 1, j > 1,

l + m = b

The update process may be further improved by piggypacking information
with search operations. This on-thy-fly correction has almost no traffic overhead
and allows more frequent updates. Unrolling the equation would increase the
number of hops, but it would also increase the adoption rate under churn.

2.3 Fast Finger Check
In Chord, all keys in the interval (n, n.successor] are stored at the successor of n
[36]. We propose to store the keys at node n instead. For lookups, Chord searches
for the predecessor of a key first, and then returns the succesor of this key. In our
approach we search for the key and return the node itself. Thereby most operations
on keys need one hop less than in normal Chord.

Furthermore the check in closest_preceding_node (line 12 in Fig. 2 can then
search for the closed instead of the open interval (line 14). This makes no dif-
ference for most routing requests, but in case of updating a finger that is already
up-to-date, it reduces the costs for this from O(log n) to O(1).

In a Chord-search for a node that is already in the finger table, it is not able
to simply follow the finger itself, because this actually points to the successor of

11

the wanted key. But all routing requests have first to visit the predecessor of the
wanted key. A routing to the predecessor of a finger represents the worst case for
routing, inducing O(log n) hops.

With our modifications routing operations do not have to traverse anylonger
through the predecessor, but routes directly to the wanted node. In case of routing
table entries, a finger points directly to the wanted node and a check of this finger
can be performed in O(1).

All our simulations (Chord and Chord#) were done using this improvement
(see Sect. 2.4). In case of Chord# this improvement has no effect whereas Chord’s
bandwidth consumption benefits from it.

2.4 Simulations
To evaluate Chord# under practical conditions, we implemented an event-based
simulator following the approach of Li et al. [19, 20] who suggested to compare
P2P protocols under churn, i.e., with nodes joining and leaving with an exponen-
tially distributed lifetime of nodes. We simulated an overlay network with 1024
nodes running for a total of 6 hours. Each participating node issues every 10
minutes a lookup for a randomly chosen key, where the time intervals are expo-
nentially distributed. Messages have a length of 20 bytes plus 4 bytes for each
additional node address contained in the message. The latency between the nodes
is given by the King dataset [15] which is based on real data observed with Internet
DNS servers2.

As the simulation does not account for user data, but only for protocol over-
head, it measures the worst case behavior. Following the approach of Li et al., we
varied the same parameters for testing the algorithm’s performance, resulting in a
total of 480 resp. 1728 simulation runs3 (the parameters form a 6-tuple):

1. Base is the branching factor of each finger table entry. Each finger table
contains a total of (base− 1) logbase(n) fingers. Values: 2, 8, 16, 32.

2. Successors is the number of direct successors stored in each nodes’ succes-
sor list. Values: 4, 8, 16, 32.

3. Successor Stabilization Interval denotes the time spent between two up-
dates of the nodes’ successor lists. Values: 30s, 60s, 90s.

2We observed an inconsistency in the data given in Li et al. [19, 20], who seem to have also
used the first 1024 node entries of the King dataset, which actually have an average round-trip
latency of 197 ms. They claim, however, a latency of 178 ms which is only true when taking the
whole set of 1740 nodes.

3For Chord, we ran less simulations because e.g. it is not possible to implement piggybacking
in Chord.

12

1 # number o f nodes i n t h e r i n g
2 n . e s t i m a t e _ s i z e _ o f _ r i n g ()
3 re turn n . g e t _ d i s t a n c e (n . Key − 1)
4
5 # number o f nodes be tween n . Key and key
6 n . g e t _ d i s t a n c e (key)
7 lower = 0 ;
8 uppe r = 1 << m;
9 midd le = n . _ f i n d _ s u c c e s s o r _ l i m i t e d (key , uppe r) ;

10 i f (midd le > 0)
11 re turn n . s e a r c h _ r i n g _ s i z e (key , lower , midd le) ;
12 re turn midd le ; / / −1 : r i n g i s l a r g e r t h a n 1<<m
13
14
15 # b i n a r y s e a r c h f o r d i s t a n c e
16 n . s e a r c h _ d i s t a n c e (key , lower , uppe r)
17 i f (l ower == upper)
18 re turn l ower ;
19 midd le = n . _ f i n d _ s u c c e s s o r _ l i m i t e d (
20 key , (lower + uppe r) / 2) ;
21 i f (midd le > 0)
22 re turn n . s e a r c h _ d i s t a n c e (key , lower , midd le)
23 re turn n . s e a r c h _ d i s t a n c e (key , middle , uppe r) ;
24
25 n . c l o s e s t _ p r e c e d i n g _ n o d e _ l i m i t e d (key , l i m i t)
26 f o r i = m downto 1
27 i f (f i n g e r [i] in (n . Key , key]
28 && (1 << i) <= l i m i t)
29 re turn (f i n g e r [i] , i) ;
30 re turn (n u l l , −1);
31
32 # f i n d key w i t h o u t c r o s s i n g more than l i m i t nodes
33 n . f i n d _ s u c c e s s o r _ l i m i t e d (key , l i m i t)
34 i f (key \ in (n . Key , n . s u c c e s s o r . Key])
35 re turn 1 ;
36 e l s e
37 (next , i n d e x)= c l o s e s t _ p r e c e d i n g _ n o d e _ l i m i t e d (
38 key , l i m i t) ;
39 i f (n e x t == n u l l)
40 re turn −1;
41 d i s t a n c e = n e x t . f i n d _ s u c c e s s o r _ l i m i t e d (
42 key , l i m i t − 1 << i n d e x) ;
43 i f (d i s t a n c e == −1)
44 re turn −1;
45 re turn 1 << i n d e x + d i s t a n c e ;

Figure 3: Calculating the number of nodes in the ring.

13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

m
ed

ia
n

la
te

nc
y

[m
s]

bandwidth [byte/node/s]

Chord
convex hull

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

m
ed

ia
n

la
te

nc
y

[m
s]

bandwidth [byte/node/s]

Chord#
convex hull

Figure 4: Chord and Chord# under churn (median latency). Each ‘+’ represents
one out of the 480 resp. 1728 experiments. The convex hull (bottom line) illus-
trates the best parameter combinations.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

la
te

nc
y

[m
s]

bandwidth [byte/node/s]

Chord
convex hull

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80

av
er

ag
e

la
te

nc
y

[m
s]

bandwidth [byte/node/s]

Chord#
convex hull

Figure 5: Chord and Chord# under churn (average latency).

4. Finger Update Interval is the time spent between two finger table updates.
Values: 30, 60, 300, 600, 900, 1200 s.

5. Latency Optimizer tells whether proximity routing was used for improving
the latency. Values: 0, 1, 2.

6. Piggybacking tells whether routing information is piggy backed on data
lookups. Values: true, false.

The performance is measured in terms of latency per key lookup and the cost
in terms of bandwidth per node (bytes per node per second).

Figures 4 and 5 show the performance results of Chord (left figure) and Chord#

(right) in terms of lookup latency versus maintenance bandwidth used for keeping
the routing table up-to-date. Note that we plotted both, the average latency data
(Fig. 4) and the median latency (Fig. 5) because it was unclear to us, why Li et al.
changed from average to median in their two papers.

14

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35 40 45

fre
qu

en
cy

 o
f o

cc
ur

re
nc

e

number of hops

Chord
Chord

Chord#
Chord#

Figure 6: Number of hops for finding random keys in 1024 nodes for Chord# and
Chord. Note that Chord# needs at maximum log(1024) = 10 hops whereas Chord
guarantees the logarithmic routing performance only with ‘high probability’, that
is, there exist cases that need considerably more hops.

Each ‘+’ in the figures represents a complete simulation for one specific pa-
rameter combination. The best parameter combinations are those on the convex
hull: They represent combinations with low latency at low maintenance cost. All
other data points are inferior and can safely be ignored.

Comparing the convex hull of both protocols shows that data lookups of Chord#

are much faster. The data points in the lower left hand corner of the plots are
most interesting: They depict the favorable parameter combinations with both,
low bandwidth and low latency.

2.4.1 Latency

Chord# clearly outperforms Chord (Fig. 4, 5). Additionally, we plotted the hop
number in Fig. 6. As can be seen, Chord sometimes needs an excessive number
of hops. This is because Chord computes the finger placement in the key space,
which does not ensure that the distance in the node space is halved with each hop.
Even though a Chord search may need O(log N) network hops on the average,
this is not so in every single case as can be seen in Fig. 6 Chord#, in contrast, is
more predictable in this respect. In the worst case it needs just 10 hops compared
to 42 hops of Chord.

15

2.4.2 Checking the Propagation of Misplaced Fingers

In contrast to Chord which relies on searches for its finger updates, Chord# com-
putes its routing fingers recursively. As a consequence, Chord#’s finger update is
faster, but it may propagate outdated fingers. However, our simulations indicate
(Sec. 2.4) that there is no measurable negative effect.

This may be attributed to the fact that the finger to the direct successor is
mostly correct due to the successor stabilization process. In general, short fingers
are correct with higher probability than long fingers, because the information they
rely on is fresher. Both, the probability of an erroneous finger and the absolute
error increases with the length of the finger, but wrongly placed long fingers are
easier tolerated than misplacements of the short ones (which are more likely to be
correct). Hence, on a means/cost basis the recursive finger placement is beneficial.

Moreover, k-ary search (Sec. 2.2) provides an elegant way to check the accu-
racy of fingers by calculating them in several different and independent ways. The
results can be compared to find inconsistencies in routing tables.

Fig. 3 presents an alternative method to check whether the i-th finger is indeed
pointing to the 2i-th neighbor on the ring.

2.5 Summary
This chapter shows that Chord# is a scalable, distributed key-value store. It effi-
ciently supports lookups for individual keys as well as range queries. In Chap. 1,
we introduced the two major components (registry and delivery system) of a pub-
/sub system. Given the simulations in this chapter, Chord# will be used to effi-
ciently implement the registry for a pub/sub with simple topics as well as with
hierarchical topics. Chap. 4 will show how this is implemented in detail.

16

Node n y x

Routing-
table

Direct rou-
ting neigh-
bours are
the nodes
adjacent
to these
markers.

x-domain [0.0 – 1.0]

y-
d
om

ai
n

[0
.0

–
1.

0]

(0.84,0.24)

Figure 7: Routing table for d = 2

3 Backend for Content-based Pub/Sub: SONAR
To allow for storing multi-dimensional key/value pairs, we extended the Chord#

rings to a d-dimensional torus. In the following, we describe the resulting SONAR
system, which we used as the basis for our more advanced publish/subscriber
system (Section 4.1) which also supports hierarchical topics.

As before, we first present SONAR in its simplest form and then introduce
additional features that make the system robust under churn.

SONAR operates on a d-dimensional Cartesian coordinate space as illustrated
in Fig. 7. Each dimension represents the domain of one attribute of the keys.
Fig. 7 shows a two-dimensional data space with x- and y-intervals of [0, 1]. The
coordinate space is built on an overlay network which in turn is mapped onto
arbitrarily located storage nodes.

The key space is dynamically partitioned among the nodes such that each node
is responsible for roughly the same amount of objects. Load-balancing [17] allows
to add and remove nodes when the number of objects increases or shrinks or when
additional storage space becomes available. This process, called node join and

17

1 / / c h e c k s whe ther t h e r e s p . c o o r d i n a t e o f b l i e s be tween a and c
2 boo l I sBe tween (Dim dim , Key s t a r t , Key end , Key pos) ;
3
4 void u p d a t e R o u t i n g T a b l e (i n t dim) {
5 i n t i = 1 ;
6 boo l done = f a l s e ;
7
8 r t [dim] [0] = t h i s . S u c c e s s o r [dim] ;
9

10 whi le (! done) {
11 Node c a n d i d a t e = r t [dim] [i − 1] . g e t P o i n t e r (dim , i − 1) ;
12 i f (I sBe tween (dim , r t [dim] [i − 1] . Key , c a n d i d a t e . Key , t h i s . Key)) {
13 r t [dim] [i] = c a n d i d a t e ;
14 i ++;
15 } e l s e
16 done = t ru e ;
17 }
18 }

Figure 8: Calculation of routing pointers for one dimension dim.

node leave is detailed in Sect. 3.4. New attributes may be added at any time by
adding a new dimension to the overlay.

3.1 Overlay
Multi-attributed data is stored in a virtual d-dimensional torus topology. Fig. 7
gives an example of geospatial objects arranged in a 2D data space. One data
object, marked ‘+’, is located at coordinate (0.84,0.24). Each box is handled by
one node of the overlay, and all together they cover the complete key space. Since
the keys are usually not uniformly distributed, the boxes have different sizes to
balance the load.

Because of the different sizes, a box may have more than one direct neighbor
in each direction. The pointers to all neighbors of a node are stored in a neighbor
list. SONAR uses the neighbor list only for accessing direct neighbors; the routing
to distant nodes is done with routing tables (Sect. 3.2).

In the one-dimensional case the successors form a ring topology. Following
one successor after the other, the ring can be traversed similar as in Chord [36].
Doing the same in the d-dimensional case does not guarantee to end in the starting
node, because the rings are skewed due to different node sizes. There is no need
to care, however, because queries never need a full round.

3.2 Routing in the Node Space
The neighbor list is—in principle—sufficient for routing, as long as its links are
up-to-date. But due to the lack of far-reaching routing information, the routing

18

performance of such a system would be O(d
√

N) on average and O(N) in the
worst case.

For improved routing, SONAR maintains additional routing tables in each
node which contain pointers to nodes at exponentially increasing distances in each
dimension. With a total of log N routing pointers per node, the average number
of hops is reduced to O(log N). For a proof see [30].

Compared to Chord, which uses a DHT, SONAR does not compute the routing
pointers in the key space, but does this in the node space: When Chord jumps over
half of the key entries in the ring, SONAR jumps over half of the nodes in the ring,
which is actually the goal of Chord’s behavior. To calculate its ith pointer in the
routing table, a node looks at its (i− 1)th pointer and asks the remote node listed
there, for its (i − 1)th pointer. In general, the pointers at level i are set to the
pointers’ neighbors in the next lower level i− 1. At the lowest level, the pointers
refer to the direct successor [30]:

pointer i =

{
successor : i = 0
pointer i−1.getPointer(i − 1) : i #= 0

The shortest pointer leads to the direct successor and each following pointer
doubles the distance by combining two shorter pointers. Such a routing table
exists for each dimension. Fig. 8 sketches the pointer update algorithm in pseudo
code.

Since there may be several neighbors in each direction (ref. Sect. 3.1), we
define the one at the center of the respective side as the neighbor which is used for
the first (shortest) routing table entry. It is marked by a small tick on the edges in
Fig. 7.

Note that our pointer placement algorithm calculates each pointer in constant
time O(1), whereas Chord needs O(log N) for the same operation because Chord
does a key-lookup for calculating a pointer, which needs log N hops.

3.3 Size of the Routing Table
Given that the total number of nodes is not known locally, how do we limit the
number of routing table entries to log N? We could estimate the size of the sys-
tem (like Mercury) with a density function, but that would cause unnecessary
effort while still being imprecise. In SONAR, the maximum number log N of
routing table entries is given implicitly by successively filling the routing table
with pointers of exponentially increasing length:

Starting with the neighbor that is adjacent to the center of node n in
routing direction s, we insert an additional pointer i into the table as

19

1 double g e t D i s t a n c e (Node a , Node b) ;
2
3 Node f indNextHop (P o i n t t a r g e t)
4 {
5 Node c a n d i d a t e = t h i s ;
6 double d i s t a n c e = g e t D i s t a n c e (t h i s , t a r g e t) ;
7
8 i f (d i s t a n c e == 0 . 0)
9 re turn t h i s ; / / f ound t a r g e t

10
11 f o r (i n t d = 0 ; d < d i m e n s i o n s ; d ++) {
12 f o r (i n t i = 0 ; i < r t [d] . S i z e ; i ++) {
13 double d i s t = g e t D i s t a n c e (r t [d] [i] , t a r g e t) ;
14 i f (d i s t < d i s t a n c e) {
15 c a n d i d a t e = r t [d] [i] ; / / new c a n d i d a t e
16 d i s t a n c e = d i s t ;
17 }
18 }
19 }
20 A s s e r t (c a n d i d a t e != t h i s) ;
21 re turn c a n d i d a t e ;
22 }
23
24 Node f i n d (P o i n t t a r g e t)
25 {
26 Node nextHop = f indNextHop (t a r g e t) ;
27 i f (nextHop == t h i s)
28 re turn t h i s ;
29 e l s e
30 re turn nextHop . f i n d (t a r g e t) ;
31 }

Figure 9: Routing to a target.

long as the following equations holds true:

pointer i−1[d] < pointer i[d] < n[d]

When this condition fails, it is clear that the pointer would overspan the current
node n (i.e. making more than one round) and hence would not be included in the
routing table. Fig. 8 shows pseudo-code for the pointer update algorithm and
Sect. 3.6 shows its accuracy.

When all routing tables are filled with the appropriate routing information
using the code in Fig. 8, the tables can be used to route queries to their target
node(s). Just as in other DHTs, we use a greedy routing strategy. In each node the
pointer is taken which maximally reduces the euclidean distance to the target (see
Fig. 9).

20

3.4 Handling Churn
When a node wants to join the network, the area covered by an existing node has
to be divided into two parts and the responsibilities split over the two nodes. Two
things have to be done:

1. Find a suitable target node with a high load in terms of query- or item-load:
This can be done by randomly choosing some nodes (as in Cyclon [35]) and
selecting a candidate from the list of resulting nodes.

2. Split the data of the selected node and transfer one portion to the new node:
Splits are performed parallel to one of the coordinate system axes. Care
must be taken to select the ‘right’ axis: If a dimension is always favored
over the others, the number of nodes contacted in a range query may become
disproportionately high and leave operations may become more expensive.

The nodes and their splitting planes form a kd-tree [7]. In contrast to tradi-
tional databases, the kd-tree is here not used as an indexing structure, but only
for maintaining the topology—similar as in MURK [13]. When a node leaves the
system, the occupied space must not be merged with an arbitrary neighbor, but
only with a neighboring node which is also a sibling in the kd-tree. By keeping
the tree balanced the probability of having a sibling as a neighbor increases.

3.5 Range Queries
SONAR supports multi-attributed range queries. Given d intervals over d at-
tribute domains, the range query will return all values between the lower and
upper bounds for each domain. Because of their shape, such range queries are
named d-dimensional rectangular range queries.

In practice, circles or polygons often better fit user requests. Fig. 10 illustrates
a two dimensional circular range query where the query is defined by a center
and a radius. For this example, we assume a person located in the governmental
district of Berlin searching for a hotel. The center is the location of the person
and the radius is the acceptable ‘walking distance’. In a first step (Fig. 10b) the
query is routed to the node responsible for the center of the circle. Thereafter
the query is forwarded to all neighbors that partially cover the circle. The query is
checked against their local data and the results are returned to the requesting node.
Fig. 11 shows the pseudo code for this range query algorithm. To avoid redundant
operations, the query is only forwarded to nodes that have not been asked before.

In contrast to overlays with space-filling curves, SONAR just needs to route to
the node in the center of the circle. When space-filling curves are used (Fig. 10a),
several line segments of the curve may be responsible for the range and for each

21

(a) Z-curve (8 line segments): 8 · log2(N) (b) Neighborhood broadcast: log2(N) + 6

Figure 10: Circular range query.

segment a complete routing (each in O(log N)) must be performed to retrieve all
results.

In SONAR the neighborship is given by the key space and queries may take
arbitrary shapes. The query is sent to the center node and from there forwarded to
all neighbors which possibly may have a subset of the query range. These nodes
are then responsible for the cut-off. A more sophisticated implementation could
route to several points on the outline of the shape and start the flooding towards
the center.

3.6 Simulation

We used four different data sets to evaluate the performance of SONAR: two with
real geographic coordinates and two with synthetically generated objects. For
each data set, we did several experiments with varying data sizes. Each experi-
ment was started by partitioning the two-dimensional space into non overlapping
rectangular patches so that each patch contains about the same amount of data
items. This was done by recursively splitting the patches at alternating sides until
the number of data items in the area dropped below a given threshold. Fig. 12
illustrates the four data sets:

a) USA contains the locations of the 13,509 cities in the United States with
a population of at least 500 inhabitants. This data set is taken from the
TSPLIB, see http://www.tsp.gatech.edu/.

22

void doRangeQuery (Range r , O p e r a t i o n op , Id i d)
{

/ / a v o i d r e d u n d a n t e x e c u t i o n s
i f (p a s t Q u e r i e s . C o n t a i n s (i d))

re turn ;
p a s t Q u e r i e s . add (i d) ;

foreach (Node n e i g h b o r in t h i s . Ne ighbor s)
i f (r ∩ n e i g h b o r . Range != ∅)

n e i g h b o r . doRangeQuery (r \ t h i s . Range , op , i d) ;

/ / e x e c u t e o p e r a t i o n l o c a l l y
op (t h i s , r) ;

}

void queryRange (Range r , O p e r a t i o n op)
{

Node c e n t e r = f i n d (r . C e n t e r) ;
c e n t e r . doRangeQuery (r , op , newId ()) ;

}

Figure 11: Range query algorithm.

b) World is also taken from the TSPLIB. It contains the 1,904,711 largest cities
in the world. Each city location (longitude and latitude) was mapped onto
a doughnut-shaped torus rather than a sphere, because the poles of a sphere
would become a bottleneck and the routing direction in the western hemi-
sphere would interfere with that of the eastern hemisphere (southwards vs.
northwards).

c) Exponential was generated by running a random number generator with an
exponential distribution and placing the data points on the 2D plane.

d) Worst is a synthetically constructed worst case pattern that bends the direct
routing neighbors to nodes with few successors in the same routing direc-
tion. This makes it difficult for SONAR to find a short routing path, because
for each dimension i, the routing table holds less than log Ni pointers (with
Ni being the number of keys in this direction only).

The network was constructed by recursively splitting the rectangular area
into four patches: south-west (SW), south-east (SE), north-west (NW), and
north-east (NE).

• The SW part is slightly larger in both directions than the other parts
and it is not further subdivided.

• The NW part is split into three equally-sized vertical slices: The mid-
dle one fills the whole space, while the outer ones fill just a bit more

23

a) USA b) World

c) Exponential d) Worst

Figure 12: The four data sets used in the performance evaluation.

than half of the available space, and the remainder is recursively split
as before—up to the specified recursion depth.

• The SE part follows the same pattern as NW, but is splitted horizon-
tally.

• For the NE part, the described global pattern with the splitting into
four parts is applied recursively until the recursion depth is reached. If
the recursion depth is reached, the remaining part is added as a whole.
We used a recursion depth of 5 iterations, which lead to 348 rectangles.

The two TSPLIB data sets have been selected because their Zipf-like distri-
bution [38] is typical for many applications. Exponential was used to check the
routing behavior with a skewed distribution where the boxed have very different
sizes and Worst is an artificially constructed data pattern that causes a worst case
routing behavior.

24

We did not include results of a uniform data distribution, because it partitions
the data space into a regular grid. Each node then has a routing table with ex-
actly log N entries, that is, logN

i pointers for each dimension 0 < i ≤ d. In this
ideal data distribution, SONAR’s pointer placement algorithm calculates precisely
exponentially spaced pointers, which results obviously in an optimal logarithmic
routing performance.

3.6.1 Average Routing Performance

 0

 2

 4

 6

 8

 10

 12

 14

 4 16 64 256 1024 4096 16384

av
er

ag
e

ho

ps

nodes

½ log2 x
Exponential

USA
Worst
World

Figure 13: SONAR routing performance on networks of various sizes for 4 data
sets.

To evaluate SONAR’s routing performance we conducted an all-to-all search
by issuing a query from each node to the center of each other node, resulting in a
total of N2 queries.

Fig. 13 shows the average number of routing hops for various network sizes.
As can be seen, the curves of USA and World lie within the expected average
of 0.5 log N hops depicted by the straight line, which indicates that the scheme
works well with Zipf-distributed [38] real-world data.

The results for the Exponential data set further support the claimed log N rout-
ing performance, despite the greater variation in the box sizes which makes the
pointer placement more difficult. Only the Worst data set shows a degradation to
log2 N for the larger instances. In Sect. 3.6.4 we present a monitoring scheme that
detects and eliminates such anomalies without using global information.

25

3.6.2 Routing Load per Node

In another set of experiments, we checked the distribution of the routing load over
all participating nodes. The larger the spectrum of node sizes, so our conjecture,
the higher the routing load at those nodes that are responsible for a greater part of
the data space, because they are likely to have more incoming routing pointers.

Figure 14: All routing hops of an all-to-all search (USA, N = 128)

Fig. 14 depicts the USA data set with a network of 128 nodes. Each box is
handled by one node and contains about the same number of cities. The lines show
all routing hops (including wrap-around hops) performed in an all-to-all search.
We counted a total of 50,824 hops, resulting in an average of 50, 824/16, 256 =
3.1 hops per query, which is slightly better than the expected 1/2 log 128 = 3.5
hops.

A closer inspection of the results in Fig. 14 reveals that some nodes have a
much higher indegree than others, see for example the ‘Florida Node’ at the right
bottom. This may result in a higher CPU load, because nodes with many incom-
ing routing pointers will receive more forwarding requests from other nodes. To
further investigate this aspect, we plotted the distribution of the node indegrees in
Fig. 15. It can be seen that the indegree of most nodes is near the expected value
of log 128 = 7. Only seven nodes have an indegree > 14. With an indegree of 29,
the node covering Florida is the largest.

Another interesting aspect is the frequency of the use of long versus short
pointers. Ideally, a query would start with a long-distance hop and then succes-
sively reduce the hop distance until the target is found. Hops to direct neighbors
should only occur at the very end of the lookup. A closer look at our experimental
results reveals that 78% of all hops were indeed long-distance hops and only 22%
were direct neighbor hops. More precisely: From the 3.13 hops, that were on the

26

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

ca

se
s

indegree [node]

indegree

Figure 15: Node indegree distribution for Fig. 14 (USA, N = 128)

average required to find the target in our all-to-all search, only 0.68 hops were
direct neighbor hops, while the other 2.45 hops were long-distance hops. This is
another indication of SONAR’s lookup efficiency.

3.6.3 Accuracy of the Routing Table Information

x-
R

ou
tin

gt
ab

le

1 2
4

8?

global knowledge? just 2 steps to C!

A

B

C

D

Figure 16: Erroneous pointer lengths due to lack of global information: Node A
believes that its routing pointers span distances of 1, 2, 4, and 8 hops respectively.
From a global perspective, however, A’s longest pointer spans only 2 hops, see the
arc below.

SONAR has only local information for building the routing tables. Each node
computes its pointers by recursively asking a remote node for its pointer infor-

27

mation. This could lead to inaccuracies in the long pointers, because they are
recursively constructed using local information of other shorter pointers.

Fig. 16 illustrates a situation, where local information misleads the pointer
update algorithm to include pointers in the routing table which are too short. Each
of the shown pointers is built by recursively concatenating the next shorter local
pointers. This causes pointers of a believed length of 1, 2, 4, and 8 to be inserted
into the routing table of node A. In reality, however, the longest pointer spans
only two hops instead of eight. A global observer with an optimal routing strategy
would just make two hops via node D to arrive at node C. This information is,
unfortunately, not available in node A.

 0

 50

 100

 150

 200

 250

 300

 350

 400

-30 -20 -10 0 10 20 30 40 50

ca

se
s

pointer length deviation [hop]

pointer deviation 16
pointer deviation 32

Figure 17: Deviation of pointer lengths due to local information (World, N =
1024). The measured lengths are centered around their expected length of 16
resp. 32.

To check whether this situation occurs in practice, we plotted the actual pointer
lengths versus their expected values. Fig. 17 and 18 show the deviation of the
pointer lengths for the World and Worst data sets. The expected pointer length
is always a power of two and can be derived from the pointer update algorithm.
For the actual length we measured the number of hops an algorithm with global
information would need to get from one node to the other by only moving east- or
northwards as done by our greedy routing.

In both Figures, the large majority of the pointers is set correctly at their ex-
pected values, while only a small number of routing entries deviates. Since no
direction is preferred, the deviations in both directions compensate each other. In-
terestingly, this also applies to the Worst data set with a slight tendency towards

28

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

-14 -12 -10 -8 -6 -4 -2 0 2 4

ca

se
s

pointer length deviation [hop]

pointer deviation 8
pointer deviation 16

Figure 18: Deviation of pointer lengths due to local information (Worst, N =
1490). The measured lengths are centered around their expected length of 8 resp.
16.

shorter pointers. This indicates that the log2 N routing behavior of Worst is not
caused by incorrect pointer lengths.

3.6.4 Worst Case Behavior

SONAR exhibits a logarithmic routing performance in all but one of the four an-
alyzed data sets. Only Worst needs O(log2 N) hops on the average. Even though
this artificially constructed data pattern is very unlikely to occur in practice, it
must be dealt with. We conjecture that the degradation is caused by missing in-
formation in the routing table. This could happen if the table does not cover the
whole key space with exponentially spaced pointers or if the table is not filled
with log N pointers.

29

a) USA

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 16 64 256 1024 4096 16384

av
er

ag
e

ho

ps

nodes

#hops
½ |routing table|

½ log2 x

b) World

 0

 1

 2

 3

 4

 5

 6

 7

 4 16 64 256 1024 4096 16384

av
er

ag
e

ho

ps

nodes

#hops
½ |routing table|

½ log2 x

c) Exponential

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 16 64 256 1024 4096 16384

av
er

ag
e

ho

ps

nodes

#hops
½ |routing table|

½ log2 x

d) Worst

 0

 2

 4

 6

 8

 10

 12

 14

 4 16 64 256 1024 4096 16384

av
er

ag
e

ho

ps

nodes

#hops
½ |routing table|

½ log2 x

Figure 19: SONAR performance on four data sets for various network sizes. The
straight line shows the measured number of routing hops and the dotted line shows
the number of hops predicted from the size of the routing table.

30

Fig. 19 shows the measured number of routing hops (straight lines) and the
expected hops (dotted lines) for all four data sets. The expected hop number was
computed by counting for all nodes the sizes of the routing table and dividing it
by two. As can be seen, SONAR needs fewer hops than expected in the smaller
networks of USA and World, while it needs slightly more for the larger networks.
More pronounced is the gain in the Exponential data set, where SONAR saves one
hop at all network sizes.

This situation is quite different for the Worst data set. Here, the average hop
number (top curve) increases as the networks get larger. The degrade in the routing
performance is paralleled by a reduction in the routing table size (bottom curve).
The routing table does not grow with increasing network size because we con-
structed the Worst data set in such a way, that SONAR is not able to find enough
pointers to fill its routing table with log N exponentially spaced targets.

Self-improving routing tables. Two steps are necessary to fix the problem:
First, a monitoring scheme must be employed to detect any degradation in the
routing performance from the expected log N -routing, and then measures for im-
provements must be taken. Since global information is not available in P2P sys-
tems, both steps must be done with local information only.

The monitoring is done by piggybacking the hop count on top of queries. Sev-
eral hop counts are collected and averaged. From the construction of the routing
table with exponentially spaced pointers (Sect. 3.2), we expect it to have log N
entries. Comparing this to the observed hop number, which should be 0.5 log N
on average, we are able to assess the quality of the routing—based on local infor-
mation.

When a routing degradation has been detected, the mapping of the key space
to the nodes must be changed. This can be done, for example, by augmenting
the load metric with a factor that takes the routing load (resp. the node indegree)
into account. Nodes with a large indegree should split their key space to achieve
a better workload balance and to improve the routing table.

3.7 Summary

This chapter shows that SONAR is a scalable, distributed key-value store, which
efficiently supports supports lookups for individual keys as well as range queries
for multi-dimensional keys. Similar to Chord#, SONAR can be used to efficiently
implement the registry for a content-based pub/sub. Chap. 4 will show how this is
implemented in detail.

31

4 Publish/Subscribe System Architecture
For the delivery of notifications, we will rely on standard multi-cast algorithms,
e.g. [14]. The overlay network could be used to deliver the notifications to
nodes which are nearby the subscribers and these nodes would then deliver the
messages. By incorporating more overlay nodes into the delivery, the load can be
spread more evenly and in some instances firewall problems can be avoided.

The range queries available in Chord# and SONAR provide functions which
are missing in most structured overlay networks. In the context of pub/sub sys-
tems, they allow to implement the backend in a truly scalable way without sacri-
ficing the power of the supported topics.

4.1 Topic-Based Publish/Subscribe System
Many pub/sub systems support only topic-based subscriptions, where nodes can
publish events and subscribe to individual topics identified by keywords. Topic-
based pub/sub can be easily mapped to DHTs, by using the keywords/topics as
keys and storing for each keyword the list of subscribers. The following table
shows an example:

Key Value
NodeFailures [node1, node4, node5]
NewNodes [node3, node6, node7]

For the XtreemOS project, the topic-based pub/sub service is implemented on
Chord# [30] and standard multicast algorithms [14]. To improve the event deliv-
ery [14] the overlay structure can be exploited. We demonstrated the scalability
of this approach in [30, 29, 33].

4.2 Publish/Subscribe System for Hierarchical Topics
In the last section, we introduced topic-based pub/sub systems. They can be ex-
tended to hierarchical topics, where the topics form a tree (see Fig.20). Here,
users may subscribe to individual topics or sub-trees.

We again start from range queries supporting DHTs, which usually store data
points and perform lookups for all items in a given range. E.g., Fig. 21 shows
several data points and two range queries in a two-dimensional data space. Notice
that it is also possible to support applications which work the other way round:
Storing ranges and looking for all ranges which include a given point. In the
following we will show that this can be exploited to build hierarchical databases
on top of the DHT.

32

Failures

Software Hardware

Network Node

Figure 20: Example Hierarchy of Topics

4.2.1 Trees vs. Range Queries

We assume that all nodes in the tree have a non-unique name and ≤ denotes some
lexicographical order function on the name space. Furthermore, two special letters
/ and ω are needed which are smaller resp. larger than all other letters in the al-
phabet. Each node can be uniquely identified by the path from the root to the node
with individual path elements separated by /, e.g. /Failures/Hardware/Networkω.

Subscriptions to individual topics are handled in the same way as described in
the last section. Subscription to sub-trees are stored as ranges, e.g. “all hardware
failures” is equivalent to the range [/Failures/Hardware, /Failures/Hardwareω].
The definition of / and ω in this case guarantees that all hardware failure topics lie
in the given range.

This encoding enables a direct mapping to Chord#’s namespace because both
order keys using lexicographical order and queries like [/Failures/Hardware,
/Failures/Hardwareω] (all hardware failures) can be executed efficiently.

The step from topic-based to hierarchical subscriptions seems to be rather
small when explaining the differences with Chord# as a backend. However, the
differences are tremendous. Users can organize related topics into groups and
browse through the topics to find the relevant ones.

4.3 Content-Based Pub/Sub

Finally, hierarchical topics can be extended to a content-based pub/sub system,
where individual events are described by a list of key-value pairs, like, e.g.:

33

query0

query1

item4

item3

item0

item2

item1

Figure 21: Range Queries

Property Value
Date 2007-10-17
Temperature 17 degrees celsius
Height 50m
Latitude 52.516222
Longitude 13.377417

From the point of view of the DHT, content-based pub/sub systems can be
seen as a generalization of hierarchical topics. The subscriptions are again ranges
and the events are points. Both have to be mapped to a multi-dimensional data
space. So the subscriptions are hypercuboids in this high-dimensional space.

5 Conclusion

5.1 Simulation Results

Chord# is a DHT with support for one-dimensional range queries and explicit
load-balancing. Load-balancing is based on [17] and supports arbitrary load met-
rics, like memory consumption, cpu load, network bandwidth, etc.

34

SONAR is a generalization of Chord# and additionally supports multi-dimensional
range queries. The simulations were conducted on a variety of different data dis-
tributions. In all cases except one the lookup performance was in O(log N). The
counter example is specially designed artificial case, whereas the other examples
were derived from real world data.

For both system, we showed that lookups can be performed with logarithmic
effort – for the former even in face of high churn situations. The capacity of the
whole system scales therefore with N

log N .

5.2 Ongoing work
A prototype of the described system was already tested on PlanetLab, a testbed
for distributed applications. For the next deliverable (D3.2.7: Reproducible eval-
uation of a scalable publish/subscribe system (M30)) we will extend the prototype
to a full-fledged service building on the results of the simulations and experiments
on PlanetLab.

The outward facing interface will be developed in tight collaboration with
WP3.1 and WP3.4. WP3.1 will be the lead partner as it will include the application
interface to other applications. The collaboration with WP3.4 will be focused on
performance, scalability, and functionality. During the development phase WP3.4
will be the first user of the service.

5.3 Dissemination
The following three papers have been published as part of this deliverable:

A Structured Overlay for Multi-dimensional Range Queries.
Thorsten Schütt, Florian Schintke, and Alexander Reinefeld.
In Proceedings of the 13th International Euro-Par Conference on Parallel and
Distributed Computing

Abstract: We introduce SONAR, a structured overlay to store and retrieve ob-
jects addressed by multi-dimensional names (keys). The overlay has the shape of
a multi-dimensional torus, where each node is responsible for a contiguous part of
the data space. A uniform distribution of keys on the data space is not necessary,
because denser areas get assigned more nodes. To nevertheless support logarith-
mic routing, SONAR maintains, per dimension, fingers to other nodes, that span
an exponentially increasing number of nodes. Most other overlays maintain such
fingers in the key-space instead and therefore require a uniform data distribution.
SONAR, in contrast, avoids hashing and is therefore able to pe rform range queries

35

of arbitrary shape in a logarithmic number of routing steps—independent of the
number of system- and query-dimensions.

SONAR needs just one hop for updating an entry in its routing table: A longer
finger is calculated by querying the node referred to by the next shorter finger
for its shorter finger. This doubles the number of spanned nodes and leads to
exponentially spaced fingers.

P2P Routing of Range Queries in Skewed Multidimensional Data.
Alexander Reinefeld, Florian Schintke, and Thorsten Schütt.
Zuse Institute Berlin Technical Report

Abstract: We present a middleware to store multidimensional data sets on
Internet-scale distributed systems and to efficiently perform range queries on them.
Our structured overlay network SONAR (Structured Overlay Network with Arbi-
trary Range queries) puts keys which are adjacent in the key space on logically ad-
jacent nodes in the overlay and is thereby able to process multidimensional range
queries with a single logarithmic data lookup and local forwarding. The specified
ranges may have arbitrary shapes like rectangles, circles, spheres or polygons.

Empirical results demonstrate the routing performance of SONAR on several
data sets, ranging from real-world data to artificially constructed worst case dis-
tributions. We study the quality of SONAR’s routing structure which is based
on local knowledge only and measure the indegree of the overlay nodes to find
potential hot spots in the overlay. We show that SONAR’s routing table is self-
adjusting, even under extreme situations, keeping always a maximum of)log N*
routing entries.

Range Queries on Structured Overlay Networks.
Thorsten Schütt, Florian Schintke, and Alexander Reinefeld.
In Computer Communications: Foundations of P2P.

Abstract: The efficient handling of range queries in peer-to-peer systems is
still an open issue. Several approaches exist, but their lookup schemes are either
too expensive (space-filling curves) or their queries lack expressiveness (topology-
driven data distribution).

We present two structured overlay networks that support arbitrary range queries.
The first one, named Chord#, has been derived from Chord by substituting Chord’s
hashing function by a key-order preserving function. It has a logarithmic routing
performance and it supports range queries, which is not possible with Chord. Its
O(1) pointer update algorithm can be applied to any peer-to-peer routing pro-
tocol with exponentially increasing pointers. We present a formal proof of the

36

logarithmic routing performance and show empirical results that demonstrate the
superiority of Chord# over Chord in systems with high churn rates.

We then extend our routing scheme to multiple dimensions, resulting in SONAR,
a Structured Overlay Network with Arbitrary Range queries. SONAR covers
multi-dimensional data spaces and, in contrast to other approaches, SONAR’s
range queries are not restricted to rectangular shapes but may have arbitrary shapes.
Empirical results with a data set of two million objects show the logarithmic rout-
ing performance in a geospatial domain.

References
[1] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information

Systems. CoopIS, Oct. 2001.

[2] K. Aberer, L. Onana Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and
M. Hauswirth. The Essence of P2P: A Reference Architecture for Overlay
Networks. P2P 2005, 2005.

[3] L. Alima, S. El-Ansary, P. Brand and S. Haridi. DKS(N,k,f): A family
of Low-Communication, Scalable and Fault-tolerant Infrastructures for P2P
applications. Workshop on Global and P2P Computing, CCGRID 2003,
May 2003.

[4] A. Andrzejak, and Z. Xu. Scalable, Efficient Range Queries for Grid Infor-
mation Services. P2P 2002, 2002.

[5] J. Aspnes and G. Shah. Skip graphs. SODA, Jan. 2003.

[6] F. Banaei-Kashani and C. Shahabi. SWAM: a family of access methods for
similarity-search in peer-to-peer data networks. CIKM, Nov. 2004.

[7] J. Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, Vol. 18, No. 9, 1975.

[8] A. Bharambe, M. Agrawal and S. Seshan. Mercury: Supporting Scalable
Multi-Attribute Range Queries. ACM SIGCOMM 2004, Aug. 2004.

[9] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, and
J. Hellerstein. A Case Study in building Layered DHT Applications. SIG-
COMM’05, Aug. 2005.

[10] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many Faces of
Publish/Subscribe. ACM Computing Surveys, Vol. 35, No. 2, pp. 114-131,
June 2003.

37

[11] V. Gaede, and O. Günther. Multidimensional access methods. ACM Com-
puting Surveys, 30 (2), 1998.

[12] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online Balancing of Range-
Partitioned Data with Applications to Peer-t o-Peer Systems. VLDB 2004.

[13] P. Ganesan, B. Yang, and H. Garcia-Molina. One Torus to Rule Them All:
Multi-dimensional Queries in P2P Systems. WebDB 2004.

[14] A. Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Ta-
bles. PhD Thesis, Oct. 2006.

[15] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating La-
tency between Arbitrary Internet End Hosts. Proceedings of the 2nd
Usenix/ACM SIGCOMM Internet Measurement Workshop (IMW) 2002,
Marseille, France, November 2002.

[16] D. Karger, E. Lehman, T. Leighton, R. Panigrah, M. Levine and D. Lewin.
Consistent hashing and random trees: distributed caching protocols for re-
lieving hot spots on the World Wide Web. 29th Annual ACM Sympos. Theory
of Comp., May 1997.

[17] D. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms for
Peer-to-Peer Systems. IPTPS 2004, Feb. 2004.

[18] J. Kleinberg. The small-world phenomenon: An algorithmic perspective.
Proc. 32nd ACM Symposium on Theory of Computing, 2000.

[19] J. Li, J. Stribling, T. M. Gil, R. Morris, and M.F. Kaashoek. Comparing the
performance of distributed hash tables under churn. IPTPS 2004, Feb. 2004.

[20] J. Li, J. Stribling, R. Morris, M.F. Kaashoek, and T. M. Gil. A performance
vs. cost framework for evaluating DHT design tradeoffs under churn. Info-
com, May. 2005.

[21] P. Maymounkov and D. Maziéres. Kademlia: A Peer-to-peer Information
System Based on the XOR Metric. IPTPS, March 2002.

[22] M. Naor and U. Wieder. Novel Architectures for P2P Applications: the
Continuous-Discrete Approach. SPAA 2003.

[23] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and Im-
plementation Tradeoffs for Wide-Area Resource Discovery. 14th IEEE Sym-
posium on High Performance Distributed Computing (HPDC-14), Jul. 2005.

38

[24] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Com-
munications of the ACM, June 1990.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. ACM SIGCOMM 2001, Aug. 2001.

[26] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a
DHT. Proceedings of the USENIX Annual Technical Conference, Jun. 2004.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. Middleware, Nov. 2001.

[28] C. Schmidt and M. Parashar. Enabling flexible queries with guarantees in
P2P systems. IEEE Internet Computing, 19-26, May/June 2004.

[29] T. Schütt, F. Schintke and A. Reinefeld. Chord#: Structured Overlay Net-
work for Non-Uniform Load-Distribution. Zuse Institute Berlin, Technical
Report, August 2005.

[30] T. Schütt, F. Schintke and A. Reinefeld. Structured Overlay without Consis-
tent Hashing: Empirical Results. GP2PC’06, May 2006.

[31] T. Schütt, F. Schintke and A. Reinefeld. A Structured Overlay for Multi-
Dimensional Range Queries. Europar, Aug. 2007.

[32] A. Reinefeld, F. Schintke and T. Schütt. P2P Routing of Range Queries in
Skewed Multidimensional Data Sets. Zuse Institute Berlin Technical Report,
Aug. 2007.

[33] T. Schütt, Florian Schintke, and Alexander Reinefeld. Range Queries on
Structured Overlay Networks. Computer Communications: Foundations of
P2P.

[34] Y. Shu, B. Chin Ooi, K. Tan, A. Zhou. Supporting Multi-dimensional Range
queries in Peer-to-Peer Systems. P2P’05, Sep. 2005.

[35] S. Voulgaris, D. Gavidia and M. van Steen: CYCLON: Inexpensive Mem-
bership Management for Unstructured P2P Overlays. Journal of Network
and Systems Management, 13:197 217(21), Jun. 2005.

[36] I. Stoica, R. Morris, M.F. Kaashoek D. Karger, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for Internet application. ACM SIG-
COMM 2001, Aug. 2001.

39

[37] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz.
Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications, Vol. 22, No. 1, Jan. 2004.

[38] G. Zipf. Relative Frequency as a Determinant of Phonetic Change. Reprinted
from Harvard Studies in Classical Philiology, 1929.

40

