
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

XtreemFS prototype month 18
D3.4.2

Due date of deliverable: 30-NOV-2007
Actual submission date: 30-NOV-2007

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.4

Responsible institution: BSC
Editor & and editor’s address: Toni Cortes

Barcelona Supercomputing Center
Jordi Girona 29

08034 Barcelona
Spain

Version 1.0 / Last edited by Toni Cortes / 30-OCT-2007

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 25.09.07 Toni Cortes BSC Initial document structure and initial contents from
work documents

0.2 25.10.07 Jan Stender, BjÃűrn Kolbek ZIB Architecture of Main components and code
0.3 25.10.07 Matthias Hess NEC Architecture of client layer
0.4 25.10.07 Michael Schoettner UDUS Architecture of OSS
1.0 30.10.07 Toni Cortes and Jan Stender BSC and ZIB Final editing
1.1 16.10.07 Toni Cortes BSC Updating reviewers comments
1.2 29.11.07 Florian Mueller UDUS Updating reviewer comments related to OSS

Reviewers:
Julita Corbalan (BSC) and Adolf Hohl (SAP)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T3.4.1 File Access Service CNR∗, BSC, ZIB
T3.4.3 Metadata Lookup Service ZIB∗

T3.4.5 Grid Object Management UDUS∗

T3.4.6 Access Layer for File Data and Grid Objects NEC∗, UDUS

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Contents

1 Introduction 3

1.1 Document Structure . 3

2 Brief Description of the Prototype 3

2.1 Current Functionality . 4

2.2 Main Architecture . 5

2.3 Architecture of the Main Components 7

3 Installation and Configuration 20

3.1 Checking out XtreemFS . 20

3.2 Requirements . 21

3.3 Building XtreemFS . 21

3.4 Installation . 21

3.5 Configuration. 23

4 User Guide 25

4.1 Mounting the File System . 25

4.2 Tools . 26

4.3 OSS Developers Guide . 27

5 Conclusion and Future Work 29

5.1 Limitations of the Prototype 29

5.2 XtreemFS and kDFS . 29

1

Executive Summary

This document presents the development state of XtreemFS, the
XtreemOS Grid file system, as well as the Object Sharing Service
(OSS), as it is in month 18 of the project. Even though many more
features are currently in development or planned, we have decided to
only mention those parts of our implementation that are fully func-
tional.

We give an overview of the functionality currently supported in our
prototype, as well as the main system architecture. The XtreemFS
architecture is based on three services: Object Storage Devices (OSD)
for storing file content, Metadata and Replica Catalogs (MRC) for
maintaining file system metadata, and the access layer which allows
user processes to access the file system. The OSS is an additional
service that provides transaction-based sharing of volatile memory and
will support memory-mapped files for XtreemFS in the near future.

The staged architecture of the different services including their
stages and components are described in detail, together with the most
important algorithms used internally. Finally, a user manual with in-
structions to install and use the file system, as well as a short developer
guide for the OSS are provided.

2

1 Introduction

XtreemFS [2] is an object-based file system that has been specifically designed
for Grid environments as a part of the XtreemOS operating system. In ac-
cordance with its object-based design [3, 5], it is composed of two different
services: OSDs (Object Storage Devices) that store file content, and MRCs
(Metadata and Replica Services) that store file system metadata. A client
module provides the access layer to the file system. It performs file system
operations on behalf of users by communicating with the file system ser-
vices. The services are complemented by the Object Sharing Service (OSS),
an additional component that provides transaction-based sharing of volatile
memory objects and will support memory-mapped files for XtreemFS.

In a Grid, XtreemFS offers a global view to files. Files and directory trees
are arranged into volumes. A volume can be mounted at a any Grid node,
where any sufficiently authorized job can access and modify its files. In order
to improve performance and efficiency, XtreemFS also offers striping of files
across different OSDs. Moreover, replication of files will be supported in
later XtreemFS releases, which will provide data safety and increase access
performance.

In this deliverable, we present the main characteristics that appear in the
current prototype of XtreemFS.

1.1 Document Structure

This document is structured as follows. In Section 2 we present description of
the XtreemFS prototype and the OSS. We give an overview of the currently
available functionality and the main architecture of these components. In
Section 3, we present the procedures needed to download, install, and con-
figure the XtreemFS. Section 4 presents the interface applications can use to
access the file system, as well as a short developer guide for the OSS compo-
nent. Finally, section 5 points out the topics on which we will work in the
next few months.

2 Brief Description of the Prototype

In this section, we describe the current prototype of XtreemFS and the OSS.
We first outline the functionality that is currently implemented and working.

3

Afterwards, we present a global view on the file system architecture to finally
describe the architectural details of each component.

2.1 Current Functionality

Before starting with the description of the current functionality in XtreemFS,
it is important to clarify that the current version only supports parts of
the final functionality (e.g., no replica management is available) and that
performance was not a key issue yet. The objective of the current release of
XtreemFS was to offer a global file system that could be used transparently
by applications. For the OSS part, the first major goal was to provide basic
sharing functionality.

As already mentioned, volumes are the most high-level abstraction used to
organize multiple files in XtreemFS. A volume contains a set of files organized
in a tree structure (following POSIX semantics) which can be mounted in a
Linux tree structure. Thus, the first set of functionality offered by XtreemFS
is to create, delete, mount, and unmount these volumes.

The most important feature of XtreemFS is the global view it offers to appli-
cations. XtreemFS allows any application to access files that are physically
located anywhere in the world in a transparent way. Files and directory trees
in mounted volumes can be accessed by applications in a POSIX-compliant
fashion, by using traditional Linux system calls.

In order to improve the access time of data, XtreemFS implements striping
of files across multiple OSDs. Although in the future this striping will be
on a per-file/replica basis, our current implementation only allows striping
policies to be defined at volume level, i.e. all files in a volume have the same
striping policy.

Finally, security issues have been taken into account by supporting SSL-
secured communication channels.

As regards key functionality of XtreemFS which has not yet been imple-
mented, we should mention that no replication and fault tolerance is yet
available in the services.

The OSS component currently supports basic sharing and memory man-
agement functionality, including basic lock and replica management. Fur-
thermore, the system call ’mmap’ is intercepted to later support transparent
memory-mapped files for XtreemFS. Next development steps include specula-
tive transactions, scalable communication, and support for memory-mapped
files.

4

2.2 Main Architecture

The main components involved in our architecture are the Metadata and
Replica Catalog (MRC), the Object Storage Device (OSD) the client/Access
Layer, the Replica Management Service (RMS)1, and the Object Sharing
Service (OSS). In the following paragraphs, we describe the different compo-
nents and how they work together.

Client/Access Layer. The XtreemFS access layer represents the interface
between user processes and the file-system infrastructure. It manages
the access to files and directories in XtreemFS for user processes as
well as the access to Grid-specific file system features for users and
administrators. It is the client side part of the distributed file system
and as such has to interact with the services of XtreemFS: MRC and
OSD. The access layer provides a POSIX interface to the users by using
the FUSE [1] framework for file systems in user space. It translates calls
from the POSIX API into corresponding interactions with OSDs and
MRCs. An XtreemFS volume will be simply mounted like a normal file
system, i.e. there is no need to modify or recompile application source
code in order to be able to run applications with XtreemFS. In addition
to the POSIX interface, the access layer will provide tools for creating
and deleting XtreemFS volumes, checking file integrity, querying and
changing the file striping policies, and other Grid-specific features.

OSD. OSDs are responsible for storing file content. The content of a single
file is represented by one or more objects. With the aim of increasing
the read/write throughput, OSDs and Clients support striping. Strip-
ing of a file can be performed by distributing the corresponding objects
across several OSDs, in order to enable a client to read or write the file
content in parallel. Future OSD implementations will support replica-
tion of files, for the purpose of improving availability and fault tolerance
or reducing latency.

MRC. MRCs constitute our metadata service. For availability and perfor-
mance reasons, there may be multiple MRCs running on different hosts.
Each MRC has a local database in which it stores the file system meta-
data it accounts for. The MRC offers an interface for metadata access.
It provides functionality such as creating a new file, retrieving informa-
tion about a file or renaming a file.

1RMS will not appear anymore in this deliverable because its implementation will not
start till month 18 of the project

5

OSS. The OSS enables applications to share objects between nodes. In
the context of OSS, the notion object means a volatile memory region.
The service resides in user space co-located with the applications and
manages object exchange/synchronization almost transparently. De-
pending on the access pattern of an application and due to efficiency
reasons OSS supports different consistency models. Furthermore, OSS
intercepts ’mmap’ calls to support memory-mapped files for XtreemFS
in the near future.

To get a more general idea of how the different components work together,
we can see Figure 1. The different processes running on the client side of
XtreemFS access files normally via the regular Linux interface. The VFS
redirects the operations related to XtreemFS volumes to the Access Layer
via FUSE. In turn, the Access Layer interacts with the XtreemFS services
to carry out the requested file system operations. Metadata-related requests,
such as opening a file, are redirected to the MRC. File content-related re-
quests, such as reading a file, are redirected to the OSDs on which the corre-
sponding objects containing the data reside. The OSS is not included in the
picture because in the current prototype this service is a standalone one.

Figure 1: Relationship between XtreemFS components

6

Regarding the communication between all these components, we have de-
cided to use the HTTP protocol, as it is well-established and fully suits the
communication needs of our components.

2.3 Architecture of the Main Components

This section provides a detailed description of the architecture of the three
components that currently constitute XtreemFS, as well as the OSS compo-
nent.

2.3.1 Common Infrastructure for MRC and OSD

Both MRC and OSD rely on an event-driven architecture with stages ac-
cording to the SEDA [6] approach. Stages are completely decoupled and
communicate only via events which are sent to their queues. They do not
share data structures and therefore do not require synchronization.

Each stage processes a specific part of a request (e.g. user authentication,
disk access) and passes the request on when finished. This way, requests are
split down to smaller units of work handled subsequently by different stages.
Depending on the type (e.g. read object or write object), a request has to
pass only a subset of the stages in a request type dependent order. This
is modeled by a RequestHandler component, which encapsulates the work-
flow for all request types in a single class. It implements the order in which
requests are sent to the individual stages.

For communicating with other servers and with clients, the MRC and OSD
both use an HTTP server and client. Each is implemented as a separate
stage.

Pinky is a single-threaded HTTP-Server. It uses non-blocking IO and can
handle up to several thousand concurrent client requests with a single
thread. It supports pipelining to allow maximum TCP throughput and
is equipped with mechanisms to throttle clients to gracefully degrade
client-throughput in case of high loads. Incoming HTTP-Requests are
parsed by Pinky and passed on to the RequestHandler.

Speedy a single-threaded HTTP-Client, is Pinky’s counterpart. It can be
used to handle multiple connections to different servers and is able to
use pipelining. Speedy automatically takes care of closing unused con-
nections, reconnecting after timeout and periodic connection attempts

7

if servers are unavailable. It is optimized to reach maximum perfor-
mance when communicating with other services using Pinky.

Request Pipelining. Pinky can receive requests one-by-one or pipelined.
When sending requests one-by-one the client waits for the response before
sending the next request. With HTTP pipelining, the clients can send more
requests while waiting for responses. The one-by-one approach has significant
performance problems, especially when the latency between client and server
is high.

2.3.2 MRC

Figure 2 shows the request flow in the MRC. The stages including their
components and functionality are described in more detail in the following
sections.

Q

Replication Stage

Replication

ReplicationMechanism

Q

Speedy

Q

Disk Logger Stage

Q

Pinky

Q

Brain Stage

Brain

Request Handler

client rq.

execute operation

result / next step

if next step exists

else

log operation

if metadata was changed

distribute
logged operation

result

Q

Authentication Stage

check certificate

execute next step

StorageManager

HD

VolumeManager

DS
MRC

FileAccessManager

OSDStatusManager

Figure 2: MRC design

Stages. The internal logic of the MRC is implemented in four stages.

8

Authentication Stage checks the authenticity of the user. It performs a
validity check of user certificates and extracts the global user and group
IDs.

Brain Stage is the core stage of the MRC which implements all metadata
related file system logic such as file name parsing, authorization and
operations like stat or unlink. For each volume it stores the directory
tree, the file metadata and the access control lists. Internally it is
composed of several components.

Brain. Contains the specific logic for each operation. It decomposes
the different calls into invocations of the other Brain Stage com-
ponents.

File Access Manager. Checks whether the user is sufficiently autho-
rized for the requested operation. If not, it returns an error which
results in a corresponding notification to the client.

Volume Manager. The Volume Manager is responsible for managing
all volumes which have been created on the local MRC.

Storage Manager. For each volume held by the local Volume Man-
ager, the Storage Manager provides access to the respective data.
It translates requests for metadata modification and retrieval into
calls to the database backend.

OSD Status Manager. Regularly polls the Directory Service for the
set of OSDs that can be assigned to a newly created file.

Disk Logger Stage persistently logs operations that change file system
metadata. This allows the backend to work with a volatile in-memory
representation of the database, while recording all changes in the opera-
tions log. When the log becomes too large, a checkpoint of the database
is created from the current in-memory representation, and the log is
truncated. Thus, the MRC can recover from crashes by restoring the
state of the database from the last checkpoint plus the current opera-
tions log.

Replication Stage replicates individual volumes in the MRC backend and
ensures replica consistency.

The Replication Stage internally relies on the following components:

Replication. Sends operations to remote MRCs which hold replicas
of the corresponding volumes through the Speedy stage.

9

ReplicationMechanism. A specific (exchangeable) mechanism for
replication. It determines how operations are propagated to re-
mote replicas. Currently, only master/slave replication without
automatic failover is implemented.

Remarks on Request Processing. Pinky can receive requests one-by-
one or pipelined. With HTTP pipelining, the clients can send more requests
while waiting for responses. Since the MRC does not guarantee that pipelined
requests are processed in the same order as they are sent, different requests
should only be added to the same pipeline if they are causally independent.
Thus, certain sequences of requests such as “createVolume” with a subse-
quent “createFile” on the newly created volume should not be processed in
a pipelined fashion, as the second request could possibly be executed in the
MRC prior to the first one, which would lead to an error.

2.3.3 OSD

The OSD has four stages. Incoming requests are first handled by the Parser
stage which parses information sent together with the request, such as the
capability or the X-Locations lists. The validity of capabilities and the au-
thenticity of users is checked by the Authentication stage. The Storage stage
handles in-memory and persistent storage of objects. The processing of UDP
packets related to striping is handled by the UDPCom stage, striping-related
RPCs are handled by the Speedy stage. The internal architecture is depicted
in Figure 3.

Stages. The main stages of the OSD will be described in the following
paragraphs.

Parser Stage is responsible for parsing information included in the request
headers. It is implemented in a separate stage to increase performance
by using an extra thread for parsing.

Authentication Stage checks signed capabilities. To achieve this, the
stage keeps a cache of MRC Keys and fetches them if necessary from
some authoritative service (e.g. the Directory Service).

Storage Stage is responsible for storing and managing objects. For the
sake of performance, the Storage Stage relies on caching. The Cache is
used for fast access to objects which are still in memory. If an object

10

Q

Storage Stage

Cache

PersistentStorage

StorageLayout

Q

Pinky Request Handler
client rq.

read/write

ack

Q

Authentication Stage

check capablity

Q

Parser Stage

parse capability, xlocations

StorageLayout

Thread 1

Thread n

...

Striping

Q

Speedy

Q

UDPCom

OSD

HDs

Figure 3: OSD Design

is not available in-memory, the Cache will instruct the PersistentStor-
age component to load the object from disk. Both Cache and Persis-
tentStorage will also take care of writing objects to disk and managing
the different versions of an object to ensure copy-on-write semantics.

As part of the PersistentStorage component, the StorageLayout com-
ponent is used to map objects to the underlying storage devices. For
efficient on-disk data access, the current implementation of the stor-
age layout relies on an arrangement of objects on the OSD’s local file
system. Rather than storing all objects in a single file, we exploit the
local file system’s capability to organize files in a directory hierarchy. A
file is represented by a physical directory, and an object is represented
by a physical file. Directories representing single files, in turn, are ar-
ranged in a directory hierarchy, by means of hash prefixes of their file
IDs. Such an arrangement ensures that single objects can be retrieved
efficiently, as the amount of files contained by a single directory does
not become too large.

The Striping component implements the logic needed to deal with
striped files. Striping in a distributed file system has to take into

11

account some special considerations. When a file is read or written,
the system must compute the OSD on which corresponding stripe re-
sides. Furthermore, I/O operations like truncate are more complex.
Decreasing or increasing the size of a file may require communication
with remote OSDs (i.e. the ones where the affected stripes reside on),
since the difference between the original and the new size can involve
several stripes. Moreover, when a file has to be deleted, the system has
to contact each OSD holding a stripe of the file. A detailed description
of the striping protocols can be found at the end of this section.

Important Data Structures. Data structures should not be shared among
stages. Information should be attached to the requests instead (reference
confinement must be guaranteed!).

OpenFileTable. This table contains a list of currently opened files, time of
last access and a flag if they will be deleted on close. Keeping track
of the open state of files is necessary for POSIX compliance, since files
opened by a process need remain accessible until they are closed even
if they are concurrently deleted by a different process.

In-memory cache. The cache stage has an in-memory cache of objects to
increase performance for read operations. Accesses to objects are first
attempted to be served from the cache. In case of a cache miss, the
PersistentStorage component retrieves the corresponding object from
disk.

Protocols for Striping. We defined a set of protocols for reading, writing,
truncating and deleting striped files. The protocols are optimized in a way
that operations occurring frequently, like read and write, can normally be
handled fast, whereas truncate and delete have to be coordinated among all
OSDs holding stripes.

For each file, each OSD keeps persistently the largest object number of the
objects stored locally (localMax). In addition, each OSD keeps the global
maximum object number it currently knows (globalMax). globalMax is part
of the ”open” state and does not need to be persistently stored.

Truncate involves the MRC, a client, the head OSD for the file (OSD0),
and all other OSDs (OSD1..N).

The pseudocode for the MRC:

12

UPON truncate(fileId)
file[fileId].issuedEpoch + +
return capability(truncate, fileId, file[fileId].issuedEpoch)

END
5

UPON X-New-Filesize(fileId, fileSize, epoch)
IF epoch > file[fileId].epoch ∨

(epoch = file[fileId].epoch ∧ fileSize > file[fileId].size)
THEN

10 -- accept any file size in a later epoch or any larger file size in the current epoch

file[fileId].epoch := epoch
file[fileId].size := fileSize

END IF
END

The pseudocode for the head OSD:

UPON truncate(fileId, fileSize, capability)
file[fileId].epoch := capability.epoch
truncate_local(fileId, fileSize)
FOR osd in OSD1..N DO

5 relay truncate(fileId, fileSize, capability.epoch)
DONE
return X-New-Filesize fileSize, capability.epoch

END

The pseudocode for other OSDs:

UPON relayed_truncate(fileId, fileSize, capability)
file[fileId].epoch := capability.epoch
truncate_local(fileId, fileSize)

END

The pseudocode for the client:

BEGIN truncate(fileId)
capability := MRC.truncate(fileId)
X-New-File-Size := headOSD.truncate(fileId, fileSize, capability)

13

MRC.updateFilesize(X-New-File-Size)
5 END

Delete is performed in a fully synchronous fashion. The head OSD relays
the request to all other OSDs. All OSDs will either delete the file (and
all on disk objects) immediately, or mark the file for an “on-close”
deletion.

Write has to consider cases in which the file size is changed.

BEGIN write(objId)
write object locally
IF objId > globalMax THEN
udpBroadcast(objId) as new globalMax to all OSDs

5 send X-New-Filesize to client
ELSE IF objId = globalMax ∧ object is extended THEN
send X-New-Filesize to client

END IF
END

Read requires a special treatment of border cases in which objects do not
or only partially exist on the local OSD.

BEGIN read(objId)
IF object exists locally THEN
IF object is not full ∧ objId < globalMax THEN
send object + padding

5 ELSE IF object is not full ∧ objId = globalMax THEN
-- not sure if still is last object

IF read past object THEN
retrieve localMaxOSD1..N from all OSDs
globalMax := max(localMaxOSD1..N)

10 IF objId = globalMax THEN
send partial object

ELSE
send padded object

END IF
15 ELSE

send requested object part
END IF

ELSE

14

-- Object is full

20 send object
END IF

ELSE
-- check if it is a ”hole” or an EOF

IF objId > localMax THEN
25 IF objId > globalMax THEN

-- not sure if OSD missed a broadcast

-- coordinated operation for update

retrieve localMaxOSD1..N from all OSDs
globalMax := max(localMaxOSD1..N)

30 END IF
IF objId > globalMax THEN
send EOF (empty response)

ELSE
send zero padding object

35 END IF
ELSE

-- ”hole”, i.e. padding object

send zero padding object
END IF

40 END IF
END

2.3.4 Client layer

The XtreemFS component called client is the mediator level between an
application and the file system itself. The focus lies currently on a POSIX
compliant interface in order to support applications that are not specifically
written for XtreemFS.

The client layer is implemented as a file system based on FUSE [1].

Stages The client is built up from different stages. Each stage employs
one or more threads to handle specific requests. One stage can generate
multiple other requests for the following stages, so called child requests. The
request initiating thread can go on with other work or wait until the request
is finished. In any case the request itself is handled by a different thread.
Once the work is finished, the work handling thread calls a callback function
that finalizes the request and eventually wakes up any thread that is waiting
for the request to be finished. A simplified sequence diagram of handling a
request is presented in fig. 4.

15

Initiator: Request Stage: Handler Thread:

Request

Handle Request

Wake up

Handle next request

S
le

e
p

 o
r

d
o

 o
th

e
r

w
o

rk

Figure 4: Sequence diagram for the clients stages.

In fig. 5 we present an overview of how an I/O operation is divided into
operations on file objects and ultimately into operations on stripe objects.
An application that uses XtreemFS and interacts with it via the FUSE in-
terface does I/O operations based on bytes. Each request – read or write –
specifies an offset (in bytes) and a number of bytes starting from that off-
set. As XtreemFS is an object-based file system, these requests must first
be translated into requests that are based on file objects. XtreemFS also
allows striping over different OSDs. The next step therefore is to associate
each file object with the corresponding OSD and transferring the objects to
and from the OSD. In future versions of XtreemFS there will be also RAID
policies implemented to allow some redundancy of the data. The redundant
information (like parity calculations) will also be considered an object that
must be stored onto an OSD. Currently only RAID level 0 is implemented
in XtreemFS so there will not be any additional data.

16

Figure 6: Interdependencies of the I/O stages in the client

Figure 5: I/O operations are first divided into file objects and then associated
with stripe objects that correspond to the RAID level of a file.

I/O requests are handled by different stages that take care of a specific aspect
of the operation. In fig. 6 the control flow for an I/O operation is sketched.

File read/write stage. File requests like read or write operations are trans-
lated into requests on object level.

File object stage. File object requests are translated into stripe object re-
quests according to the striping policy (or RAID level in particular).

17

Stripe object stage. In this stage the actual communication with the right
OSDs is executed. For each stripe the right OSD is determined and
requests are prepared and submitted to them. The answers from the
OSDs are analyzed. OSDs might answer with failure of the operation,
a request to redirect to another OSD or with success. If the operation
was a success, the client knows that the data have been transferred to
the OSD successfully (in a write operation) or that a read operation
succeeded.

2.3.5 OSS

Built as an event-driven modular architecture, OSS separates the mecha-
nisms that realize basic consistency from an extensible set of policy-driven
consistency models. Furthermore, the service is independent of the under-
lying transport protocol which is used for inter-node communication. Thus
OSS consists of several modules for memory and page management, commu-
nication, and consistency protocols. We will describe their responsibilities
and dependencies in the following paragraph, also shown in figure 7.

Modules

Communication module. The communication module manages the en-
tire communication of the nodes. It is used by the heap, page and
consistency modules to exchange data over the network. The module
transfers information as messages which are encapsulated in Protocol
Data Units (PDU). PDUs are sent over the network via the underly-
ing transport protocol. Received messages are enqueued into a FIFO
message queue. However, the queue allows reordering of PDUs. This
is sometimes necessary if an affected memory page is locked locally
by the application, but the message handler must remain responsive.
The current implementation uses a TCP implementation that will be
replaced by a UDP-based overlay multicast implementation.

Page module. The page module manages the exchange and invalidation
of memory pages. A process is able to request memory pages from
other nodes or reversely to update memory pages at any other node
with its own page content. The process can also invalidate replicas
of memory pages in the grid. Before serving external requests, the
module generates an event to the appropriate consistency module to
check whether consistency constraints are fulfilled. Compression of
pages and/or exchanging differences are planned.

18

Library API

Page module

Overlay network management and message exchange

Transport layer

Network media

Consistency modules

(bc, sc, gtm, …)
Heap module

Application

OSS

C
o
m
m
u
n
ic
a
ti
o
n
 m
o
d
u
le

POSIX support library

Transaction based

applications

Legacy applications

Figure 7: OSS architecture

Heap module. The heap module manages shared objects on behalf of the
applications. It exports several functions for allocation and deallocation
of memory analogous to the standard C library functions (e.g. malloc
or mmap). Every allocated memory block is linked with a consistency
model. A hierarchical scalable 64-Bit memory management is under
development.

Consistency modules. A consistency module implements the rules of a
consistency model that defines when write accesses become visible for
other nodes. The current prototype offers strong consistency. This
model guarantees that all processes sharing an object see write accesses
immediately. Obviously, this model will not scale well and heavily
depends on the programmer to carefully allocate data to avoid page

19

thrashing. Nevertheless, there are legacy programs requiring such a
model and are (fortunately) designed to minimize conflicts.

The basic consistency modul implements basic mechanisms, e.g. lock
management, but does not define a concrete model. The goal is to pro-
vide basic operations that can be re-used to speed-up the development
of future consistency models. Furthermore, this module routes memory
access events to the appropriate consistency modules.

Currently, speculative transactions are being developed providing a
sound basis for scalable and efficient data sharing.

POSIX support library. This is the module providing the interception
facility to hook application calls to e.g. ’mmap’ (to support memory-
mapped files) and to other memory relevant functions, e.g. ’malloc’ (for
legacy POSIX applications). Our current implementation instructs the
dynamic linker of the GNU/Linux system at application load time to
additionally load the legacy support library for the object sharing ser-
vice. The library exports a subset of the C library interface used by
virtually all applications under GNU/Linux. Therefore, the applica-
tion’s memory allocation functions are linked against the legacy sup-
port library, which implements the functions by means of the object
sharing service. The Linux kernel needs not be modified in order to
support legacy applications.

3 Installation and Configuration

3.1 Checking out XtreemFS

In order to obtain XtreemFS, execute the command

%> svn checkout svn+ssh://<user>@scm.gforge.inria.fr/svn\

> /xtreemos/WP3.4/branches/internal_release_2

<user> represents your INRIA SVN user name.

XtreemFS Directory Structure. The directory tree obtained from the
checkout is structured as follows:

20

AL contains the access layer (client) source code
bin contains shell scripts needed to work with XtreemFS (e.g. start

XtreemFS services, create volumes, mount an XtreemFS direc-
tory, . . .)

config contains default configuration files for all XtreemFS services
docs contains XtreemFS documentation files
java contains the Java source code for all XtreemFS services
OSS contains source code for the Object Sharing Service (OSS)

3.2 Requirements

For building and running XtreemFS, some third-party modules are required
which are not included in the XtreemFS release:

• gmake 3.8.1

• gcc 4.1.2

• Java Development Kit 1.6

• Apache Ant 1.6.5

• FUSE 2.6

• libxml2-dev 2.6.26

• openssl-dev 0.9.8

Before building XtreemFS, make sure that JAVA HOME and ANT HOME are set.
JAVA HOME has to point to a JDK 1.6 installation, and ANT HOME has to point
to an Ant 1.6.5 installation.

3.3 Building XtreemFS

Go to the top level directory and execute:

%> make

3.4 Installation

Loading the FUSE Module. Before running XtreemFS, please make
sure that the FUSE module has been added to the kernel. In order to ensure
this, execute the following statement as root:

modprobe fuse

21

Automatic XtreemFS Setup. The fastest way to completely set up
XtreemFS on the local machine is to simply execute

%> bin/basicAL_tests

It will take about 15 seconds to set up a running system consisting of a
Directory Service, an OSD and an MRC. The shell script creates a temporary
directory in which all kinds of data and log output will be stored. A newly-
created volume called x1 will automatically be mounted to a subdirectory of
the temporary XtreemFS directory; see console output for further details.

As long as the prompt (>) appears, the system is ready for use. In order to
test the basic functionality of XtreemFS, you can enter:

> test

Note that any other command will shut down all XtreemFS services and
unmount the XtreemFS directory. If you want to manually work on the
mounted directory, you have to use a different console.

Manual XtreemFS setup. As an alternative to setting up XtreemFS
in one step, the different services can also be set up manually. For this
purpose, use bin/xtreemfs start. Note that you have to set a Directory
Service before setting up (at least one) MRC and (at least one) OSD. See
bin/xtreemfs start --help for usage details.

Example:

%> bin/xtreemfs_start ds -c config/dirconfig.properties

%> bin/xtreemfs_start mrc -c config/mrcconfig.properties

%> bin/xtreemfs_start osd -c config/osdconfig.properties

Once a Directory Service and at least one OSD and MRC are running,
XtreemFS is operational.

XtreemFS relies on the concept of volumes. A volume can be mounted to
a mount point in the local file system. In order to create a new volume,
execute bin/mkvol. See Section 4.2.1 for usage details.

Example:

%> bin/mkvol http://localhost:32636/MyVolume

22

After having created a volume, you can mount it by executing AL/src/xtreemfs.
See Section 4.1 for usage details.

Example:

%> bin/xtreemfs -o volume_url=http://localhost:32636/MyVolume,\

> direct_io ~/xtreemfs-mounted

3.5 Configuration.

Sample configuration files are included in the distribution in the config/

directory. Configuration files use a simple key = value format.

3.5.1 Directory Service Configuration File.

#an integer value between 0 (errors only) and 4 (full debug)
debug_level = 0

#TCP port the server listens on, default port is 32638
listen_port = 32638

absolute path to the directory in which to store the database
database_dir = /var/run/xtreemfs/dir

3.5.2 MRC Configuration File

an integer value between 0 (errors only) and 4 (full debug)
debug_level = 0

TCP port the server listens on, default port is 32638
listen_port = 32636

absolute path to the directory in which to store the database
database_dir = /var/run/xtreemfs/mrc

absolute path to the file which is used as operations log
append_log = /var/run/xtreemfs/mrc/dblog

interval in seconds between OSD checks
osd_check_interval = 300

23

hostname or IP address of directory service to use
dir_service.host = localhost

TCP port number of directory service to use
dir_service.port = 32638

flag indicating whether POSIX access time stamps are set
each time the files are read or written
no_atime = true

interval between two local clock updates (time granularity, in ms).
Should be set to 50.
local_clock_renewal = 50

interval between two remote clock updates (in ms).
Should be set to 60000.
remote_time_sync = 60000

defines whether SSL handshakes between clients and the MRC
are mandatory
if use ssl = false, no client authentication will take place
use_ssl = false

file containing server credentials for SSL handshakes
ssl_server_creds = /tmp/server_creds

file containing trusted certificates for SSL handshakes
ssl_trusted_certs = /tmp/trusted_certs

3.5.3 OSD Configuration File

an integer value between 0 (errors only) and 4 (full debug)
debug_level = 0

TCP port the server listens on, default port is 32638
listen_port = 32640

absolute path to the directory in which to store objects
object_dir = /var/run/xtreemfs/osd/objects

24

hostname or IP address of directory service to use
dir_service.host = localhost

TCP port number of directory service to use
dir_service.port = 32638

interval between two local clock updates (time granularity, in ms).
Should be set to 50.
local_clock_renewal = 50

interval between two remote clock updates (in ms).
Should be set to 60000.
remote_time_sync = 60000

4 User Guide

In this section we give a brief outline on how to use the Xtreem File System.
As stated earlier, the main use for applications is through the normal POSIX
File API which is described in [4]. So we focus on some aspects that are not
related to this API.

4.1 Mounting the File System

The file system itself is a user-space implementation based on FUSE. Such
kind of file systems can be mounted with one call and several standard FUSE
options. This call starts the user-space part of the file system. For the sake
of brevity we will focus in this section on the relevant and additional options.

The XtreemFS will be mounted by the call

xtreemfs -o <xtreemfs opts>,direct io,<fuse opts> <mount point>

The option direct io is necessary for proper operation when multiple clients
access the same file. Otherwise data corruption may occur.

25

Option Effect
-o volume url=<volume url> Specify the URL of the volume that

is to be mounted. This URL is
composed of the MRC URL and the
volume on that MRC, ie. the vol-
ume url http://demo.mrc.tld/vol1

would specify the volume vol1 on the
MRC demo.mrc.tld.

-o logfile=<log file> Write logs to specified file
-o debug=<dbg lvl> Set debugging level
-o logging=<enabled> Allow tracing of program execution.
-o mem trace=<enabled> Trace memory allocation and usage for

debugging purposes.
-o monitoring=<enabled> Allow monitoring of client. Option is

available but has no effect right now.
-o ssl cert=<SSL cert file> Use the specified certificate to identify

the client host. Option is available but
has no effect right now.

-o stack size=<size> Set stack size for each thread of the
client.

Table 1: Table with available mount options of the XtreemFS client

Because XtreemFS is a distributed file system, the filesystem can be mounted
on several clients. These clients can access the same volume and the volume
is uniquely identified by its volume url.

4.2 Tools

XtreemFS has the notion of volumes which is not covered by a POSIX like
standard. So the additional tools are mainly for volume handling.

4.2.1 Volumes

There are three tools that deal with volumes: mkvol, lsvol and rmvol.
Anyone familiar with UNIX command line interfaces can guess their purpose:

mkvol This tool is used to create a new volume on a given MRC. The syntax
of this command is

26

mkvol [-a <access policy>] [-p <striping policy>] <vol url>

<access policy> Specifies the policy how access to the volume
is controlled:
1 Access is allowed for everyone (no ac-

cess control at all)
2 Access is controlled in a POSIX like

fashion.
<striping policy> This parameter has the generic form <name>,

<size>, <width>. For instance, the pol-
icy string RAID0,32,1 specifies a RAID0 pol-
icy across one OSD with a stripe size of 32
kB. Right now, the only supported policy is
RAID0.

<vol url> This is the location of the volume to be created
as an URL.

The mkvol can be executed on any client and must not necessarily be
executed on the MRC itself. Permissions to create new volumes will be
checked for the user who executes this command.

lsvol In order to list all the volumes that are available on a specific MRC
this tool can be used. Its calling syntax is simple

lsvol <mrc url>

This will currently list the volumes names and their internal identifi-
cation. Future versions will allow more fine grained information like
available replica, available space etc.

rmvol If a volume is no longer used, this tool can be used to delete it from
the MRC permanently. Afterwards the volume is no longer available
and all data that might have existed on that volume before are lost.
The calling syntax is similar to lsvol:

rmvol <volume url>

4.3 OSS Developers Guide

The prototype is built as a shared library which is linked to the applications
and manages all operations regarding shared memory nearly transparent in
the background. Applications are linked to the library by specifying the flag
“-loss” to the linker.

27

4.3.1 Requirements

The following requirements must be fulfilled:

• x86 Processor (currently only IA-32 mode supported)

• Linux Kernel 2.6 or newer

• GNU C-Compiler 4.1.2 or newer

• libreadline5-devel 5.2 or newer

• libglibc-devel 2.6.1 or newer

• libglib2-devel 2.14.1 or newer

4.3.2 Building the Library

At the top level of the OSS directory run the build script by typing

%> make

After successful build, the library resides in the subdirectory build. Before
using the shared library the developer has to register it to the system. In
future versions the Makefile will allow to install and uninstall the library
automatically. For the prototype we prefer to extend the library path without
copying it to the system’s library directory. This is done by typing

%> export LD_LIBRARY_PATH=<path to osslib>:$LD_LIBRARY_PATH

4.3.3 Application Development

When developing applications using OSS, the developer explicitly defines the
memory regions for shared objects. A call to the function hm alloc() returns
a new shared memory region which is bound to a certain consistency model.
Afterwards, applications on other nodes can access these memory regions. As
a parameter to hm alloc(), the developer can choose between the following
two models: the basic (CONSISTENCY BC) and the strict (CONSISTENCY SC)
consistency model. On every access to a shared object, OSS will check the
consistency constraints.

Nevertheless the application can also manually deal with shared objects by
using the low-level request, update and invalidate functions.

28

5 Conclusion and Future Work

In this deliverable, we have presented the architecture and the functionality
available at month 18 for both XtreemFS and OSS. If we check the current
prototype with the list of requirement in D4.2.3, we could mention that
around 35% of the requirements have already been fullfiled.

Regarding the future work in XtreemFS, we plan to include replica manage-
ment within the next few months. After replicas are implemented, the file
system will be tuned to improve its performance and advanced functionality
will start to be developed.

The prototype of the OSS component is able to share objects across multiple
nodes in the grid using a strong consistency. The event-driven architecture
is designed to support different consistency models. Obviously, strong con-
sistency models will not scale well. One of the major goals of OSS is to
implement a Grid Transactional Memory (GTM). This GTM uses specula-
tive transactions each bundling a set of write operations thus reducing the
synchronization frequency. Further transaction-based optimizations to hide
network latency and to reduce the number of nodes involved during a trans-
action commit have been designed. The implementation of transactions is
one of the next steps in the development roadmap for OSS. Furthermore, we
will align OSS within the next months with the XtreemFS client to support
memory-mapped files (see also 5.1.1).

5.1 Limitations of the Prototype

FUSE does not support mmap in connection with direct I/O. In order to
get applications running on XtreemFS that rely on mmap, volumes currently
have to be mounted without using the FUSE option -o direct io. However,
this might lead to inconsistencies if different clients concurrently work on the
same file, as requests might be serviced from the local page cache.

5.2 XtreemFS and kDFS

Currently, within the XtreemOS project, two file systems are being devel-
oped with very different objectives. On the first hand, we have XtreemFS
(presented here) that aims at giving a global Grid view of files from any
node in the Grid. On the other hand, kDFS’s objective is to build a cluster
file system for all then nodes in a cluster running Linux-SSI and its main
objective is performance.

29

In the future, we plan to allow files from kDFS to be accessed via XtreemFS
and allow all performance optimization is the files ain kDFS are accessed
form the nodes in the same cluster as the file system.

References

[1] FUSE Project Web Site. http://fuse.sourceforge.net.

[2] XtreemFS Consortium. D3.4.1: The XtreemOS File System - Require-
ments and Reference Architecture, 2006.

[3] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, and Julian
Satran. Object storage: The future building block for storage systems. In
2nd International IEEE Symposium on Mass Storage Systems and Tech-
nologies, 2005.

[4] The Open Group. The Single Unix Specification, Version 3.

[5] M. Mesnier, G. Ganger, and E. Riedel. Object-based Storage. IEEE
Communications Magazine, 8:84–90, 2003.

[6] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. SIGOPS Oper. Syst. Rev.,
35(5):230–243, 2001.

30

	Introduction
	Document Structure

	Brief Description of the Prototype
	Current Functionality
	Main Architecture
	Architecture of the Main Components

	Installation and Configuration
	Checking out XtreemFS
	Requirements
	Building XtreemFS
	Installation
	Configuration.

	User Guide
	Mounting the File System
	Tools
	OSS Developers Guide

	Conclusion and Future Work
	Limitations of the Prototype
	XtreemFS and kDFS

