
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Security Services prototype month 18
D3.5.5

Due date of deliverable: 30/11/2007
Actual submission date: 10/12/2007

Start date of project: June 1st 2006

Type: Deliverable
WP number: 3.5

Task number: 3.5.3

Responsible institution: Rutherford Appleton Laboratory,
Science & Technology Facilities Council,
Harwell Science and Innovation Campus,

Didcot, Oxon OX11 0QX, United Kingdom
Editor & and editor’s address: Ian Johnson

Version 1.4 / Last edited by Ian Johnson / 10/12/07

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.0 18/10/07 Ian Johnson STFC first draft
0.1 02/11/07 Ian Johnson STFC Expanded on current functionality and limitation-

s/missing features
0.2 05/11/07 Gregor Pipan XLAB VOPS instalation guide
0.3 05/11/07 Matej Artač XLAB Added the first draft of the VO Policy Service descrip-

tion
0.4 05/11/07 Gregor Pipan XLAB Second draft of the VOPS description
0.5 05/11/07 Ian Johnson STFC Incorporate comments from team and resolved

changes
0.6 06/11/07 Aleš Černivec XLAB Added the first draft of the VOPS API
1.0 06/11/07 Ian Johnson STFC Identify areas needing more description
1.1 06/12/07 Aleš Černivec XLAB Updated user guide for the VOPS
1.2 06/12/07 Ian Johnson STFC CDA now only needs PEM files, not JKS format. In-

corporate suggestions from XtreemOS partner review-
ers

1.3 07/12/07 Ian Johnson STFC References include URLs for distributions of CDA and
VOPS

1.4 10/12/07 Ian Johnson STFC Incorporate suggestions from STFC internal review

Reviewers:
Thilo Kielman (VUA) and David Margery (INRIA)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T3.5.3 Autonomic Security Policy Management and Enforcement STFC∗, XLAB, ICT

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Contents
1 Executive Summary 3

1.1 Services for Security and VO Management 3
1.2 Current Limitations and Missing Functionality 4
1.3 Standards and Profiles used . 4

2 Prototype Description 5
2.1 Functionality in the first prototype 5
2.2 Architecture of the first prototype 6

3 Individual Services in the First Prototype 7
3.1 The VO Membership Service . 7
3.2 The Credential Distribution Authority 7
3.3 VO attributes . 8
3.4 Extracting user VO attributes from the XOS Certificate 8
3.5 Description of the VO Policy service 9

3.5.1 Background information 9
3.5.2 Node address . 9
3.5.3 VO Policy Description 9

4 Installation and Configuration of Security Services 11
4.1 The VO Management Service . 11

4.1.1 Requirements . 12
4.1.2 Installation . 12

4.2 Running the CDA Service . 13
4.3 Installation and Configuration of the VO Policy Service 14

4.3.1 Requirements . 14
4.3.2 Installation . 14
4.3.3 Configuration . 15

5 User Guide for Security Services 16
5.1 Using the CDA Client to obtain an XOS Certificate 16
5.2 User Guide for VO Policy Service 17
5.3 API of the VO Policy Service . 19

5.3.1 List policy . 19
5.3.2 Modify policy . 19
5.3.3 Remove policy . 19
5.3.4 Create policy . 19
5.3.5 Request policy decision 20
5.3.6 Reload VOPS . 20

1

6 Conclusion and Future Work 21
6.1 Current Status of VO Management 21
6.2 Current Status of VO Policy Service 21
6.3 Next steps in the first prototype 22

2

1 Executive Summary

1.1 Services for Security and VO Management

The first prototype of the services for security and VO management implements a
subset of the services specified in D3.5.3, First Specification of Security Services.

The services produced by XtreemOS WP3.5 are the fundamental mechanism
to prove a user’s identity for authentication purposes in the Grid. These user
credentials can then be evaluated in Grid-level VO policies to enable authoriza-
tion decisions to be made concerning actions requested by subsystems (such as
resource matching in AEM job submission) on behalf of the user.

The credentials are contained in an XOS Certificate identifying a user; this is
submitted along with, for example, an AEM job request to authenticate the job
requester. The user’s VO attributes (such as their Global ID) are contained in the
certificate and will be used by the VO Policy Service in making VO-level policy
decisions, and in mapping to local UIDs/GIDs for node-level access control.

The principle of establishing trust between XtreemOS users and XtreemOS
services is to use a Trusted Third Party - the Credential Distribution Authority - to
enable clients to trust servers.

The security services use Public Key Infrastructure (PKI) standards and OGF
profiles defining public key certificates to reflect best practice and to allow for the
possibility of future interoperability with existing Grid middleware authentication
systems.

VO policies are expressed in the XACML language, allowing flexibility and
the possibility of tool support for creating policies in the future.

The specification of Secure Virtual Organization Management in D3.5.3 de-
fines the following VO services:

• VO Management Service to allow creation of VOs, management of VOs,
and checking of VO membership

• VO Policy Service A Policy Decision Engine for VO-level policies

• Credential Distribution Authority (CDA) to issue XOS Certificates to XtreemOS
users

• Resource Certification Authority (RCA) to issue resource certificates to hosts

• Identity Service and Attribute Service are supporting services only used by
the VO Management Service, CDA and RCA.

3

1.2 Current Limitations and Missing Functionality
Of the services listed above, the Resource Certification Authority is not planned
for delivery in the first prototype. Work on the RCA will start in M19.

The Identity and Attribute services are internal services, not directly visible to
users of the security services.

The functionality of the VO Management service is represented in the current
version of the first prototype by a hard-coded VO setup, sufficient for authenticat-
ing and issuing an XOS Certificate for a pre-defined set of three users.

1.3 Standards and Profiles used
The fundamental principles and standards for Public Key Infrastructure are de-

scribed in IETF RFC3280 [7]. The XOS Certificate conforms to the Public Key
Certificate profile defined in RFC3280, and also to the Proxy Certificate Profile
defined in RFC3820[8]. The XOS Certificate conforms to the most relevant rec-
ommendations in the OGF Grid Certificate Profile [6].

The VO Policy Service defines policies in the XACML 1.1 language [5]. The
CDA, VOPS and RCA are first defined in [3], First Specification of Security Ser-
vices, and are further refined in [4], Second Specification of Security Services.

4

2 Prototype Description

2.1 Functionality in the first prototype
We define an XtreemOS user as a user that has registered with a VO and been
accepted as a member of that VO - this process normally involves some vetting of
registrations by an offline process (e.g. a VO administrator calling the applicant
to check their identity).

The first prototype provides a means for an XtreemOS user to request an XOS
Certificate, proving their identity within the VO and carrying with it the users’
attributes, such as their Global ID in the VO and the VO groups that they belong
to. Policies at the VO level are dealt with by the VO Service.

The VO Management Service provides the following functions -

• VO Membership - access to a database of VO members

• Credential Distribution Authority - providing XOS Certificates to XtreemOS
users

The VO Policy Service provides the following functions -

• Administration - loading and deleting policies

• Information - listing policies

• Decision Engine - taking requests and making decisions

5

2.2 Architecture of the first prototype
To provide an adequate level of trust in the credentials issued by the CDA, we pro-
pose a small number of highly trusted servers running the CDA service - initially,
we propose just one CDA service for use during the creation of the XtreemOS
integrated prototype.

Requests to the CDA service can be made from a CDA client program, which
can run on an XtreemOS client machine.

6

3 Individual Services in the First Prototype
This section describes in more detail the functionality provided by the susbsys-
tems comprising the VO Management Service, and the VO Policy Service. Cur-
rently, the VO Management Service currently comprises the VO Membership Ser-
vice and the Credential Distribution Authority.

3.1 The VO Membership Service
The main functionality of the VO Membership service is to provide a database of
VO users. In the current version of the first prototype, a static VO configuration
is hard-wired into the CDA service for the purpose of testing the CDA service
functionality. No VO Administration functionality is available yet.

The VO Membership service provides means of authenticating a user in a VO.
In the current version, this is a check of username and password against details
stored in an authentication database. Future versions of the membership service
will contact the appropriate Home Authentication Authority to authenticate users.

3.2 The Credential Distribution Authority
An XtreemOS user requests an XOS Certificate by running the CDA client to
contact the CDA service. The user is prompted to specify the name of the VO,
and their username and password in the VO. The CDA client generates a keypair
(consisting of a private key and its corresponding public key). The private key is
stored in an encrypted form, protected by a user-specified password.

The CDA client and server use the SSL protocol to establish a secure commu-
nications channel before transmitting any information. The client performs server
authentication by checking that the CDA server certificate presented in the SSL
handshake contains the same Subject principal as a local copy of the CDA public
certificate accessible by the CDA client.

The CDA client authenticates the user against the specified VO by sending the
VO name, VO username and password to the CDA service, which calls the VO
Membership Service. If this authentication succeeds, the CDA client sends the
user’s public key to the CDA service.

Upon receiving the user’s public key, the CDA service generates an X509v3
public key certificate in the format given in the appendix of D3.5.3. The user’s VO
attributes are added as certificate extensions, and the XOS certificate is returned to
the CDA client program. This program verifies the certificate, checking that it has
been issued by the trusted CDA service (by checking the Issuer principal in the
XOS Certificate against the Subject principal in a local copy of the CDA public
certificate).

7

3.3 VO attributes

The attributes carried in the XOS Certificate fall into the following categories:

Attributes for XtreemFS to facilitate file sharing on a global scale:

• GlobalPrimaryVOName - The primary VO that this user is a member of

• GlobalSecondaryVONames - A list (possibly empty) of secondary VOs that
this user is a member of

• GlobalUserID - The globally unique user name for this user, comprising the
unique VO name plus the user name

• GlobalPrimaryGroupName - The globally unique name of this user’s pri-
mary group

• GlobalSecondaryGroupNames - A list (possibly empty) of secondary groups
that this user is a member of

Attributes for generating local UIDs/GIDs and for VO Policy Service and local
policy decision points:

• Role - The role of the user

• Group - The group this user belongs to

• Subgroup - The subgroup containing this user

The eight attributes listed above are well-defined and can be processed with
the current version of the first prototype.

3.4 Extracting user VO attributes from the XOS Certificate

The VO attributes in a XOS Certificate can be retrieved by the method getVOAt-
tributeValue(X509Certificate cert, VOAttribute attr) in the CertificateProcessor
class. Given an enum for the required VO Attribute, this returns the String value
of tthe attribute.

8

Field name Type Explanation
host java.net.InetAddress The address the node’s daemon is running at.
gateway java.net.InetAddress The address of a gateway to the subnet with the node.
port int The port the node’s daemon is listening for traffic at.

Table 1: : CommunicationAddress class fields.

3.5 Description of the VO Policy service
3.5.1 Background information

Selection of the nodes available for job processing follows the data flow depicted
by Figure 1. The XJobMng service receives the job’s resource requirements in
an XML formatted according to the JSDL schema. The service uses the JSDL
as a resource query for the XResMng service which returns a collection of ad-
dresses pointing to the nodes that conform to the resource query. The VOPS
service checks whether the VO policies grant the user, identified by an XOSD
certificate, the access to the resources. The collection of permissible nodes re-
turns to the XJobMng service in a signed and certified form.

Resource query The JSDL schema for XML files represents a job description,
packed along with the resource requirements for the job. JSDLs can therefore be
used for querying for computation nodes that can provide the resources required
by the job.

Figure 2 shows a sample JSDL file. The example represents a simple job
that runs latex. The JobDefinition.JobDescription.Resources section expresses the
resource requirements as required RAM, CPU speed, ...

3.5.2 Node address

The node address structure represents the network address of a node and the port
the node’s daemon listens for the requests at. Table 1 shows the details of the
CommunicationAddress class that holds the node address.

3.5.3 VO Policy Description

The policy structure follows the XACML schema for XML documents. Essen-
tially, the descriptor contains a set of subjects that require certain resources or
actions, a set of resources subject to policies, and a list of rules that describe the
actual policies that should be enforced when subjects try to access the resources.
Figure 3 shows an example policy structure which defines a set of subjects to be
the users whose accounts reside at users.example.com. The resources subject to

9

Figure 1: Node selection data flow.

the policies have a common address server.example.com. The action permissible
by the subjects is performing the CVS commit.

To test the policy enforcement, another XML using the XACML schema can
be used. The structure shown at Figure 4 shows a structure for submitting a com-
mit action by the user seth that is a member of developers group to the server.example.com.

10

<?xml version="1.0" encoding="UTF-8"?>
<JobDefinition xmlns="http://www.example.org/"

xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<JobDescription>

<JobIdentification>
<JobName>My sample job</JobName>
<Description> A sample JSDL.</Description>

</JobIdentification>
<Application>

<ApplicationName>latex</ApplicationName>
<POSIXApplication>

<Executable>/usr/local/bin/latex</Executable>
<Argument>/home/user/thesis.tex</Argument>
<Input>thesis.tex</Input>
<Output>thesis.div</Output>

</POSIXApplication>
</Application>
<Resources>

<IndividualPhysicalMemory>
<Range>

<LowerBound>268435456.0</LowerBound>
<UpperBound>1073741824.0</UpperBound>

</Range>
</IndividualPhysicalMemory>
<IndividualCPUCount>

<Exact>1.0</Exact>
</IndividualCPUCount>
<IndividualCPUSpeed>

<LowerBoundedRange exclusive="true">
1073741824.0

</LowerBoundedRange>
</IndividualCPUSpeed>
<CPUArchitecture>

<CPUArchitectureName>x86</CPUArchitectureName>
</CPUArchitecture>
<OperatingSystem>

<OperatingSystemType>
<OperatingSystemName>LINUX</OperatingSystemName>

</OperatingSystemType>
</OperatingSystem>

</Resources>
</JobDescription>

</JobDefinition>

Figure 2: A sample JSDL.

4 Installation and Configuration of Security Services

4.1 The VO Management Service

The main functionality in the VO Management Service at present is the Credential
Distribution Authority. This requires the Java Runtime Environment version 1.6
or later to run.

11

4.1.1 Requirements

The Credential Distribution Authority is a Java application and needs JRE 1.6 or
later to run.

The following JAR files must be on the CLASSPATH:

bcprov-jdk16-137.jar
mail.jar

The first is the Bouncy Castle library providing a Java Cryptography Extension
(JCE) provider. Version 1.37 or later is required. This library is used for creating
and processing public/private keypairs and public key certificates.

The second is the JavaMail library, and provides a definition of a Java class for
representing email addresses. The CDA doesn’t send or process mail messages.

4.1.2 Installation

The CDA prototype is released as a tarball [1]. When the distribution archive is
untarred. the following files will be extracted:

CDA.jar
README
(directory) keys
-- cdacert.pem
-- cdakey.pem
(directory) lib
-- bcprov-jdk16.137.jar
-- mail.jar
runclient
runserver

The classes for the CDA client and CDA service are contained in the CDA.jar
file. The ’lib’ subdirectory contains the two required JAR files described above.
The shell files runclient and runserver are used to run the client and server
respectively.

Files used by CDA Service The CDA service needs to read its private key and
the CDA server certificate - these can be stored in the working directory of the
CDA service. The private key for the test CDA can be stored in unencrypted form
(purely for the purpose of testing), or encrypted.

12

The CDA certificate is used to obtain the Issuer Principal used in the XOS
Certificate. The CDA private key is used to sign the XOS Certificate, proving that
is was issued by the entity whose public key is stored in the CDA certificate.

• cdakey.pem Private key of the CDA service

• cdacert.pem Public certificate of the CDA service

4.2 Running the CDA Service

Use the supplied script ’runserver’, specifying a TCP port number that the server
should listen to, for example:

./runserver 9090 &

This port number, and the name of the host running the CDA service, have to
be advertised to XtreemOS users wishing to access the CDA.

Files used by CDA Client The CDA client uses the public certificate of the
CDA server to verify the identity of the issuer of the XOS Certificate.

The CDA client also uses the CDA service public certificate in negotiating the
SSL protocol handshake with the CDA server.

• cdacert.pem Used by client to verify the source of the XOS Certificate it has
received

Files generated by CDA Client If the user authenticates against the CDA ser-
vice successfully, the following files are generated:

• Private key User private key, encrypted by passphrase (default filename is
privkey.pem)

• User Certificate XOS Certificate holding the public key associated with the
user’s private key and containing user VO attributes (default filename is
usercert.pem)

13

4.3 Installation and Configuration of the VO Policy Service
The VO Policy Service - VOPS is based on the infrastructure developed by WP3.3,
which provides following common facilities wrapped in a simple to use frame-
work. The facilities are: Event driven communication layer, providing TCP and
SSL capabilities, configurable service infrastructure based on the concepts of the
Staged Event Driven Architecture [9], configuration file framework, automatic
service wrapper generation and a set of supporting services like XML parser, Cron
service, and more.

In the following sections we shall first describe required software to start
VOPS service, then we shall describe the installaton procedure, and finally, we
shall give some basic information about the configuration file used by VOPS ser-
vice.

4.3.1 Requirements

VOPS is developed in Java and therefore needs JRE 1.6.* for execution. In
addition to standard java libraries following jar files have to be included in the
CLASSPATH environment variable:

vsuite-findbugs-0.4b.jar
slf4j-api-1.4.3.jar
mina-core-1.1.2.jar
mina-filter-ssl-1.1.3.jar
log4j-1.2.14.jar
commons-logging-1.1.jar
dom4j-1.6.1.jar

4.3.2 Installation

As the final packages will be provided by WP 4.1, the installation procedure pro-
vided in this workpackage is not ment to be final, and is to be used only until
packages will be provided in the M24. The installation is provided as a tarball
containing all the files [2], which are needed to run the VOPS service. To unpack-
age the service, user has to execute following steps:

cd ~/my/vops/directory
tar xfvz aem-vops-rev1168-clean-compiled-source.tar.gz
rm aem-vops-rev1168-clean-compiled-source.tar.gz

The tarball file contains the initial configuration file - XOSdConfig.conf ,
which can be used as a template for the configuration. The details about how to
configure the service are provided in the following subsection.

14

Certificate file The procedure to create a server certificate involves the ’openssl’
command and will be described fully in a later version of this document.

4.3.3 Configuration

VOPS v1.0, which is developed for the M18 is configured to run as a one instance
service per VO. As such the service has to make itself known to other services
using its functionality.

Configuration file - vops.conf is looked for in following directories in the
order in which the directories are listed:

~/my/vops/directory/AEM_VOPS_clean/Support/XOSdConfig.conf
./ - working directory

The configuration file the following has to provide VOPS the access points
to the services, to which it will register its availability. At this moment VOPS
registers to two services AEM and XtreemFS. The configuration file in this section
looks like following:

AEM.AccessPoint = 21.2.132.24:60000
XFS.AccessPoint = 21.2.132.24:10025

VOPS provides only an SSL socket connection and has therefore to load a site
certificate, in order to process an SSL handshake. certificate can be provided in
the same directory as the configuration file, and has to be named vops.cert. In
addition the configuration file can define a new certificate file name.

Certificate.filename = ~/my/vops/directory/AEM_VOPS_clean/
Support/cert/vops.cert

The VOPS has to load VO policies, which will define resource usage. The
policies are by default stored in the ./policy directory, but an override can be
defined:

Policy.directory = ~/my/vops/directory/AEM_VOPS_clean/
VOPS/files/policy

VOPS will load all the policies defined in this directory at the start of the
service. Because the VOPS has been written as a service of the AEM (build uppon
AEM), user has to use XConsole application provided by the AEM in term to use
the functionalities provided by the VOPS.

15

5 User Guide for Security Services

5.1 Using the CDA Client to obtain an XOS Certificate

The supplied shell script ’runclient’ takes the following arguments:

• host The DNS entry or IP address of the machine running the CDA service

• port The port that the CDA service is running on

• keyfile Optional filename to store the user’s private key (default: privkey.pem)

• usercert Optional filename to store the user’s XOS Certificate (default: usercert.pem)

An example of running the CDA client to connect to the CDA service:

./runclient localhost 9090 mykey.pem mycert.pem

The user is prompted for the following information:

• voname VO that the user is registered with (currently, only ’esvo’ is config-
ured)

• username User’s name in this VO (currently, users are ’alice’, ’bob’, and
’eve’)

• password Password for this VO user (currently, passwords are ’alicepass-
word’, ’password’ and ’evepassword’ respectively)

If the user supplies the correct details and is successfully authenticated, they
are then prompted for the following item:

• passphrase A passphrase to protect the user’s private key (8 characters or
more, must be entered twice to confirm)

The user’s private key is written to the specified file (mykey.pem in the exam-
ple), and the user’s XOS Certificate requested from the CDA service and stored in
the specified file (mycert.pem in the example).

16

5.2 User Guide for VO Policy Service
VOPS functionality is divided into two parts. One part is primarely called by
other services in the XtreemOS like JobMng, which require policy decision. This
part is also called Policy Decision Point or PDP, and is described in the specifi-
cation deliverables provided by this WP. The second part provides administration
interface to add, remove and change VO policies. This functionality provides an
Policy Information Point - PIP, also described in previosly mentioned documents.

The simplicity of the first prototype is obvious but to exploit the strength of the
XACML policy language, a framework has to be written. First VOPS prototype
enables user to create, remove and modify policies as described below.

Policy is composed of two main sections:

• TARGET - which resource does this policy apply to,

• RULEs - set of rules which enforce limited actions that can be taken with
resource, described in TARGET section.

When user (he will have to present his identity through certificate, maybe it
would be correctly to use the word administrator) wants to create policy for some
resource usage, he must first create a policy. When creating a policy, he must
provide policy’s id, policy’s description (for now this has to be one string without
spaces, reason for this is limitation when using XConsole) and resource, to which
this policy will apply to. Using XConsole, user creates policy with

xcreatePolicy -pid HomeComputer2 -desc
ThisIsForTestingPurposes -res 192.168.2.102

This creates policy for resource 192.168.2.102 - file ./VOPS/files/policy/Home-
Computer2.xml is created. At the beginning this is just an empty policy, which
would deny every access to this resource. User can list this policy with command

xlistPolicy -id HomeComputer2

The answer would be as shown in figure 5.
If user wants to list all VOPS’ policies, he can execute next command:

xlistPolicies

and gets response as depicted in figure 6.
Response is a description of policy storage as list of all policies, which reside

on that VOPS policy storage. One line contains path to policy file, policy’s id and
resource. As described above, policy comprises of rules, which user has to fill in.
He can do that by using command

17

xaddRuleToPolicy -rid ISLsRule -pid HomeComputer2 -action
createJob -attr group -attrVal isl

Rule to earlier policy with id HomeComputer2 is added as depicted in figure 7
This rule is added just before last FinalRule which denies every action taken.

Because policy has changed, administrator has to reload VOPS policy storage with
command

xreloadVOPS

It re-initializes PDP with all policy files in policy storage. After doing that,
user can test, if policy permits action createJob with resource 192.168.2.102 to a
user from group isl. We assume that XOSd and VOPS are running on a computer
192.168.2.102. Using command

xverifyPolicyResNoCert -ggn isl -ugn ales -action
submitJob

we get an empty list, but with command

xverifyPolicyResNoCert -ggn isl -ugn ales -action
createJob

we obtain list [Address = [:///192.168.2.101:60000]]. This is resource on
which user ales from group isl has a permit to execute createJob command.

In conclusion, next commands have been implemented:

• listPolicies - returns list of policy files (policy Id and resource for which
this policy applies to)

• listPolicy - lists the whole policy file with provided policy Id

• addRuleToPolicy - adds rule to policy provided. Rule is described with
attribute, attribute’s value and action taken

• removeRuleFromPolicy - removes rule from distinct policy

• verifyPolicyResNoCert - verifies policy with no certificate present. User
has to provide his name, group name and action taken. Daemon returns
available (filtered) resources for that request.

• createPolicy - creates policy with provided parameters. File is created in
policy storage. This file contains policy for resource provided.

• removePolicy - removes (deletes) policy from policy storage.

• removePolicy - removes (deletes) policy from policy storage.

API is listed below.

18

5.3 API of the VO Policy Service

We argued in preceding section that policies are in the folder defined in vops.conf
(or ./policy directory). This is VO Policy Service’s local storage for policy files.
With each VOPS command user’s certificate has to be passed as an argument to
verify user’s credentials.

5.3.1 List policy

listPolicies()

Lists content of policy files which are stored locally by this VOPS.

5.3.2 Modify policy

• addRuleToPolicy(String ruleId, String policyId,
String action, String attr, String groupName)

• removeRuleFromPolicy(String ruleId,
String policyId)

Modifies policy by adding or removing rules from or to the policy.

5.3.3 Remove policy

removePolicy(String policyId)

Removes a policy file from a local storage. Policy file is selected based on values
of attributes passed to PDP. Policy with policyId will be removed from policy
storage.

5.3.4 Create policy

createPolicy(String policyID, String description,
String targetResource)

Adds policy into local storage of policies. A new policy file is created in policy
storage. Policy comprises policyID, description and resource as provided with
parameters. Newly created policy is shown in figure 5.

19

5.3.5 Request policy decision

verifyPolicyResNoCert(String groupGlobalName,
String userGlobalName,ArrayList<CommunicationAddress>
resources, String action)

Verify policies based on groupGlobalName and userGlobalName without certifi-
cate. In the future this (slightly changed function) will verify policy request based
on user’s certificate and resources passed to this action. It will return signed re-
sources which will be allowed for user to use with specific command (e.g. job
manager’s createJob action).

5.3.6 Reload VOPS

reloadVOPS()

Reloads and initializes PDP module of VOPS from local policy files. Administra-
tor should call this action after policies have changed.

20

6 Conclusion and Future Work

6.1 Current Status of VO Management
The current version of the prototype provides a minimal set of features to:

• Request Credentials - The CDA client allows an XtreemOS user to request
an XOS Certificate authenticating them and containing their VO attributes
from the CDA service

• Process the VO Attributes - A supporting Java routine allows the extraction
of the user’s VO attributes from an XOS Certificate

• Present a minimal VO - A minimal VO consisting of a small group of users,
merely for testing purposes, is ’hard-wired’ into the first prototype.

Whilst severely limited in scope at this time, the CDA service in this initial
version of the prototype shows that many of the conceptual challenges involved in
implementing the CDA have been overcome.

The XOS Certificates generated have been successfully tested for compatibil-
ity with the OpenSSL library via the use of the command ’openssl -verify’. In
addition, the XOS Certificate is designed to conform to the following:

• IETF RFC3280 - Public Key Infrastructure Certificate Profile - the funda-
mental format of certificates used for authentication purposes

• IETF RFC3820 Proxy Certificate Profile - Constraints on the above to allow
short-lived certificates for delegation purposes

• OGF Grid Certificate Profile - Further constraints and recommendations to
reflect good practice in the Grid computing field and to assist interoperabil-
ity with independent implementations

• OpenSSL Library Restrictions - The OpenSSL library imposes some restric-
tions e.g. minimum and maximum length of passphrase protecting private
keys, and not processing non-standard critical extensions in certificates, etc.

6.2 Current Status of VO Policy Service
Current version of VO Policy Service prototype provides these basic features:

• Access point to other services to query policies provided by administrator
and stored locally where VOPS resides.

21

• Simple policy generation for testing purposes.

• Generation of requests also for testing purposes.

• Enables administrator to list, supply, delete or modify policies.

• VOPS prototype has been implemented with parallel to Application Execu-
tion Management so it’s architecture enables simple integration to existing
AEM prototype.

6.3 Next steps in the first prototype
Major revisions of the code will be undertaken to provide a single interface to
the CDA and VO Membership functions, and to allow administration of the VO
(adding and removing users and resources).

Main focus in the future for VO Policy Service implementation will be en-
abling dynamic generation of XACML requests and decision made by PDP mod-
ule. Exact definitions for subject, resource and action segments in XACML re-
quests has to be made.

Work on the Resource Certification Authority will be start in December. The
RCA will be incorporated into the VO Management Service.

22

References
[1] Release of the first cda prototype. https://gforge.inria.fr/frs/download.php/3660/cda-

dist.tar.gz.

[2] Release of the first vops prototype. https://gforge.inria.fr/frs/download.php/3652/aem-
vops-rev1168-clean-compiled-source.tar.gz.

[3] XtreemOS Consortium. First specification of security services.
http://purl.oclc.org/NET/xtreemos-d353-firstspecofsecurityservices.pdf,
May 2007.

[4] XtreemOS Consortium. Second specification of security services.
http://purl.oclc.org/NET/xtreemos-d354-secondspecofsecurityservices.pdf,
December 2007.

[5] Simon Godik and Tim Moses. extensible access control
markup language (xacml) version 1.0. http://www.oasis-
open.org/committees/download.php/2406/oasis-xacml-1.0.pdf, February
2003.

[6] David L Groep, Michael Helm, Jens Jensen, Milan Sova, Scott Rea, Reimer
Karlsen-Masur, Ursula Epting, and Mike Jones. Grid certificate profile
(draft). http://purl.oclc.org/NET/OGF-CAOPS-draft-GridCertificateProfile-
v25.pdf, November 2007.

[7] R. Housley, W. Polk, W. Ford, and D. Solo. Rfc 3280 - internet x.509 pub-
lic key infrastructure certificate and certificate revocation list (crl) profile.
http://www.ietf.org/rfc/rfc3280.txt, April 2002.

[8] S. Tuecke, W. Welch, D. Engert, L. Pearlman, and M. Thompson.
Internet x.509 public key infrastructure (pki) proxy certificate profile.
http://www.ietf.org/rfc/rfc3820.txt, June 2004.

[9] Matt Welsh. Seda: An architecture for highly concurrent server applications.
http://www.eecs.harvard.edu/ mdw/proj/seda/.

23

<?xml version="1.0" encoding="UTF-8"?>
<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="GeneratedPolicy" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:

rule-combining-algorithm:ordered-permit-overrides">
<Description>
This policy applies to any accounts at users.example.com accessing
server.example.com. The one Rule applies to the specific action of
doing a CVS commit, but other Rules could be defined that handled
other actions. In this case, only certain groups of people are allowed
to commit. There is a final fall-through rule that always returns Deny.

</Description>
<Target>
<Subjects> <Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

users.example.com </AttributeValue>
<SubjectAttributeDesignator

DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name"
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" />

</SubjectMatch>
</Subject> </Subjects>
<Resources> <Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">
http://server.example.com/

</AttributeValue>
<ResourceAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#anyURI"
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>
</Resource> </Resources>
<Actions><AnyAction /></Actions>

</Target>
<Rule RuleId="CommitRule" Effect="Permit">
<Target>
<Subjects><AnySubject /></Subjects>
<Resources><AnyResource /></Resources>
<Actions> <Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">commit
</AttributeValue>
<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" />

</ActionMatch>
</Action> </Actions>

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<Apply FunctionId= "urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="group" Issuer="admin@users.example.com" />

</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> developers
</AttributeValue>

</Condition>
</Rule> <Rule RuleId="FinalRule" Effect="Deny" />

</Policy>

Figure 3: A sample policy descriptor using the XACML schema.

24

<?xml version="1.0" encoding="UTF-8"?>
<Request xmlns="urn:oasis:names:tc:xacml:1.0:context"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Subject>

<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">
<AttributeValue>seth@users.example.com</AttributeValue>

</Attribute>
<Attribute AttributeId="group"

DataType="http://www.w3.org/2001/XMLSchema#string"
Issuer="admin@users.example.com">
<AttributeValue>developers</AttributeValue>

</Attribute>
</Subject>
<Resource>

<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">
<AttributeValue>http://server.example.com/</AttributeValue>

</Attribute>
</Resource>
<Action>

<Attribute
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>commit</AttributeValue>

</Attribute>
</Action>

</Request>

Figure 4: A sample action request structure.

<Policy PolicyId="HomeComputer2" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:
rule-combining-algorithm:ordered-permit-overrides">

<Description>ThisIsForTestingPurposes</Description>
<Target>

<Subjects>
<AnySubject/>

</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">192.
168.2.102</AttributeValue>

<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:
resource:resource-id" DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>

<AnyAction/>
</Actions>

</Target>
<Rule RuleId="FinalRule" Effect="Deny"/>

</Policy>

Figure 5: Listing of a newly created policy.

25

Policy fileName:C:\razvoj\xtreemOS\VOPS\files\policy\generated.xml; PolicyId=GeneratedPolicy;
Resource http://server.example.com/

Policy fileName:C:\razvoj\xtreemOS\VOPS\files\policy\HomeComputer.xml; PolicyId=HomeComputer;
Resource 192.168.2.101

Policy fileName:C:\razvoj\xtreemOS\VOPS\files\policy\HomeComputer2.xml; PolicyId=HomeComputer2;
Resource 192.168.2.102

Policy fileName:C:\razvoj\xtreemOS\VOPS\files\policy\myPolicy1.xml; PolicyId=myPolicy1;
Resource 192.168.0.233

Policy fileName:C:\razvoj\xtreemOS\VOPS\files\policy\newID.xml; PolicyId=newID;
Resource localhost

Policy fileName:C:\razvoj\xtreemOS\VOPS\files\policy\test_policy1.xml; PolicyId=testPolicy1;
Resource localhost

Figure 6: Response of the xlistPolicy command.

<Rule RuleId="ISLsRule" Effect="Permit">
<Target>

<Subjects>
<AnySubject/>

</Subjects>
<Resources>
<AnyResource/>

</Resources>
<Actions>
<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">createJob

</AttributeValue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:

action:action-id" DataType="http://www.w3.org/2001/XMLSchema#string"/>
</ActionMatch>

</Action>
</Actions>

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<SubjectAttributeDesignator AttributeId="group" DataType="http://www.w3.org/2001/

XMLSchema#string"/>
</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">isl</AttributeValue>

</Condition>
</Rule>

Figure 7: Listing of an updated policy.

26

	Executive Summary
	Services for Security and VO Management
	Current Limitations and Missing Functionality
	Standards and Profiles used

	Prototype Description
	Functionality in the first prototype
	Architecture of the first prototype

	Individual Services in the First Prototype
	The VO Membership Service
	The Credential Distribution Authority
	VO attributes
	Extracting user VO attributes from the XOS Certificate
	Description of the VO Policy service
	Background information
	Node address
	VO Policy Description

	Installation and Configuration of Security Services
	The VO Management Service
	Requirements
	Installation

	Running the CDA Service
	Installation and Configuration of the VO Policy Service
	Requirements
	Installation
	Configuration

	User Guide for Security Services
	Using the CDA Client to obtain an XOS Certificate
	User Guide for VO Policy Service
	API of the VO Policy Service
	List policy
	Modify policy
	Remove policy
	Create policy
	Request policy decision
	Reload VOPS

	Conclusion and Future Work
	Current Status of VO Management
	Current Status of VO Policy Service
	Next steps in the first prototype

