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1 Executive Summary
XtreemFS is a distributed, object-based storage system, built on a network of
Object-Based Storage Devices (OSD), made accessible via capablities issued by
a central Metadata and Replica Catalog (MRC), enabling the creation of self-
managed, heterogeneous, shared storage by moving low-level storage functions
into the storage device itself and accessing the device through a standard object
interface rather than a traditional block-based interface such as SCSI or IDE[7].
XtreemFS defines the concepts and mechanisms towards distributed data manage-
ment within the XtreemOS project. The concern for XtreemFS in this deliverable
is that of secure data management.

Besides robust security, we face the challenge of making this into a truly vi-
able technology for storage and retrieval of mass distributed data objects, with
frequent and sporadic access patterns. There are various applications in need of
such data management technology, but each also require that the storage, access
and transport of the application data be done with the assurance of confidential-
ity and integrity yet without imposing unacceptably on the performance of the
application.

At the root of these problems is robust and efficient capability and key man-
agement. Capability management refers to how rights are issued to Clients by the
MRC, requesting access to files that are stored on one or more OSDs. Capabilities
must be correct, unique and unforgeable, such that availability, integrity and confi-
dentiality of files can be assured and validated. Cryptographic keys and algorithms
are the instruments and mechanisms employed in order to achieve robust capabil-
ities. However, there is a performance penalty to be paid whenever cryptographic
schemes are introduced. These performance bottlenecks can be introduced via
more scalable capability and key management i.e. avoidance of exponential key
explosion and/or by selecting a cryptographic algorithm with simple computa-
tions. Both avenues have been explored within the document. With respect to
efficient capability management, the work from Leung [11, 12] and earlier work
from Miller et al.[13] have been referenced. They suggest the usage of capability
groups in order to avoid the capability explosion problem, which can negatively
impact on issuing, validation and revocation procedures. The second suggestion
we make for secure data management with XtreemFS is to explore the perfor-
mance of capability management with less expensive cryptographic algorithms
such as Elliptic Curves. Further investigation into the drawbacks of this technical
approach are still to be conducted.

Finally, the deliverable discusses the way in which XtreemFS is integrated
with the existing XtreemOS security services, using scenarios taken from job sub-
mission.
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2 Introduction
XtreemFS is an object-based distributed file system. In addition to distributed
file accessing, it also offers advanced file management features, such as facilities
to enable inter-process communication for applications (Object Sharing Service),
and fault-tolerant file replication service (Replica Management Service). Two
challenges for implementing XtreemFS are making it robust yet efficient. How-
ever, the conflict between performance and security is a well-known dilemma for
security engineering and administration, where the security mechanisms selected
to protect a system must be done so in a manner that is aware of the performance
expectations of the software. On selecting security mechanisms, they may still
need to be tuned in order to satisfy the performance objectives of the system as
well. It is this particular problem that we see as fundamental to the success of
XtreemFS as a distributed, peta-scale object-based distributed system.

The correlation of security and performance can be expressed in a simplified
way as in figure 1. The correlation itself is characterized by parameters of a solu-
tion, multiple available solutions and combinations of these.

Figure 1: Security comes at a price

This deliverable is about providing several security solutions in the area of
object based storage system which could be adapted for XtreemFS and be rated
in terms of performance and security. The solution map given is a two dimen-
sional space. Alternatives are either the concepts/variants and the algorithms
which could be used for their implementation.

2.1 XtreemFS Architecture and Security Overview
2.1.1 XtreemFS Components

Three components are typically involved in accessing (i.e. create, delete, read,
write) a XtreemFS file. They are:

• Metadata and Replica Catalog (MRC)
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• Object Storage Device (OSD)
• XtreemFS client (XFS client)

To be self-contained, we have included the description of MRC, OSD and XFS
client from the WP3.4’s deliverable - D3.4.1 [4]. See also Figure 2 for the relation
of these components.

The MRC is responsible for maintaining all file system metadata, extended
(user defined) metadata as well as information on replica locations. It also hosts
access control policies and makes authorisation decisions.

The task of the OSD is to provide functionality for data access in the file sys-
tem. It offers an object-based storage interface to hide the complexity associated
with underlying block-based storage mechanisms. Capabilities of the component
include read and write access, concurrency control and communication with re-
mote storage hosts.

(XtreemFS) Clients are hosts running components of the access layer, i.e. the
file system adapter or the XtreemFS library. Applications and user processes use
the access layer to communicate with XtreemFS components. This can be done
transparently to the application through the traditional Linux file system inter-
face. XtreemOS aware applications can take advantage of the native XtreemFS
interface through a library provided by the access layer.

Figure 3 illustrates the interactions among MRC, OSD, and XFS client (aka.
XFSc). The following interactions between XtreemFS components are origi-
nated from our discussion with WP3.4. Specifically, it was first presented in an
XtreemOS internal workshop between WP3.5 (security) and XtreemFS (work-
shop took place in October 2007). In the figure, we have abstracted away the
internal details of XtreemFS, such as how XtreemFS makes use of the Virtual
File System (VFS) to implement a uniform file access interface and how it relies
on the Filesystem in Userspace (FUSE) module to intercept file operations to the
kernel. Instead, we continue to use XFSc to represent all these internal complexity
of XtreemFS. Therefore, from the perspective of WP3.5, the following steps are
involved in a typical file operation with XtreemFS:

1. A file (operation) request (e.g. create, open, delete, read, write a file), ini-
tiated by a user (application) process, comes into the XFSc via the Linux
kernel1.

1.1 The XFSc requests local credentials from the FUSE daemon by pass-
ing in the PID of the calling process

1.2 The XFSc receives UID/GIDs back
1This kernel must be compiled with the Filesystems in Userspace (FUSE) kernel module and

support the Virtual File System. See the deliverable D3.4.1 [4] and D3.4.2 [5] for more details
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Figure 2: Overview of the components of the XtreemFS file system. It showcases
also the architecture of most other approaches mentioned in this document.

2. The XFSc asks the MRC whether the operation is permitted.
3. If the operation is allowed, the MRC returns with a set of capabilities. Oth-

erwise, the operation is deemed as denied.
4. With the capabilities, the XFSc contacts the appropriate OSD(s) (Only one

OSD is contacted in the diagram to illustrate the scenario. But in reality, a
file may be stored in multiple OSDs.)

5. The OSD(s) transfers the file to the XFSc. If this process fails, errors will
be reported.

6. XFSc presents the file back to the user process.

2.1.2 XtreemFS Security

In this section we list the known threats an access control mechanism in the
XtreemFS file system has to be able to deal with. The assumption is at this point
a trustworthy client. We don’t consider the case of e.g. an illegal login from client
or a rogue user process e.g. a trojan.
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Figure 3: Interactions of an XtreemFS client with the MRC and the OSDs in
the file system. The sequence of interactions shows the rough protocol flow in
systems like these. It is assumed here, that a user is authenticated and checks via
the MRC if he can get an authorization token to access data on the OSDs.

1. Man in middle or impersonation attacks that cause MRC to issue capabili-
ties to a false client.

2. Man in middle attack between Client and MRC, such that capabilities can
be intercepted, stolen or replaced in communication.

3. An attacker is able to gain access to an OSD and potentially corrupt its
objects or read illegally.

4. Corrupted or malicious data is stored on OSDs and potentially returned to
clients.

5. An attacker is able to read confidential contents or a user receives corrupted
data without being able to validate it.

In order to achieve these goals, mechanisms from classic cryptography are
applied, as listed below:

• Authentication of messages.

• Hashing of messages.

• Generating signatures.
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• Encryption schemes.

• Replay detections.

There are also some preliminary assumptions and properties that must be ex-
plicitly ensured during system set up:

• All Clients are authenticated with the MRC such that the MRC knows
all Clients and all Clients know the MRC based on a either a shared key
KC,MRC or they have exchanged public keys KC and KMRC respectively.

• The MRC can "speak for" any Client in the file system to OSDs, such that
an OSD believes that any capability signed by the MRC and issued to a
Client C, really represents a valid access to an object.

• The MRC can "speak for" any OSD in the file system to Clients, such that
any OSD returned as a response to an open file request is assumed to be
authentic by the requesting Client.

2.1.3 XtreemFS Performance

The usage scenario of XtreemOS covers applications that exploit a huge amount
of nodes and a huge amount of data. What this means in detail depends on the
concrete application, but a scale in the region of thousands of nodes and data
servers is a reasonable estimate. Thus XtreemFS needs to be fast in terms of
throughput for data and computation intense applications. On the other hand the
use cases describe the execution of database applications as well which need a
very low latency in order to run fast enough.

The applications themselves may organize their data according to the design
and implementation of their developers. There are no restrictions on the amount
of files or their size. Thus we can conclude that the amount of files may be huge,
ranging upwards to several millions of files, amassing a volume to the order of
peta-bytes. Furthermore the metadata operations have to work very effectively to
support handling this amount and volume of files efficiently.

Especially on the "first touch" of files, a metadata operation is necessary for
the purpose of creating the capability required for granting access to the requested
file and the requested privilege. It is very important, that the secure generation and
issuing of capabilities in the metadata operations is fast for low latency and has
a high throughput in terms serving capabilities to a huge amount of authorized
requests. Consider that the amount of requests must scale with the number of
clients, files, requests and replicas of files. The metadata server or servers are
hence at risk of becoming the overall bottleneck in the file system, causing the
throughput not to scale upwards.
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2.2 Contributions of Deliverable
The document addresses the problem of efficient security for XtreemFS, as out-
lined in the introductory paragraphs. It is intended that this document supply
knowledge that guides the continued architectural and technology decisions made
within XtreemOS, in particular with regards to the integration of XtreemFS as the
file system.

The first set of knowledge provided by the document surrounds the topic of
capabilities and capability management. This topic covers related work in the
area of generating, distributing, validating and revoking capabilities in distributed,
object-based file systems. The topic of capability management could be addressed
in a broader context such as distributed systems in general, but we chose to limit
our discussion to closely related work in the area of object-based storage and
networked storage devices.

Secondly, one means of achieving more efficient capability handling, besides
the approaches discussed in the capability management section, is to change the
actual cryptographic algorithms and mathematics being applied to one with lower
computational demands. By considering various, existing cryptographic approaches
that aim to be more efficient, we identified that ECC (Elliptic Curves Cryptogra-
phy) is still a frontrunner with respect to speed and maturity. We therefore de-
scribe the way it works and consider past experimental results, in order to show
that it can achieve the objectives set forth for a more efficient metadata server and
capability handling.

Finally, the document describes how to integrate the XtreemFS file system
with the existing VO and user management security services. This is done by con-
sidering integration with the Application Execution Management (AEM), compo-
nent when doing job submission. This is an important integration use case to
consider, as XtreemFS will need to scale with the number of jobs and volumes of
data the AEM components handle. Security should not be a bottleneck in these
processes, given the service level agreements that will be in existence.
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3 Capabilities and Capability Management
In this section, the requirements for smart capability management for object stor-
age are described. Secondly, related work that further validates these requirements
and offers some solutions are provided.

The classical challenge facing access control in distributed parallel file systems
is the large amount of numbers that have to be multiplied to guess the complexity
of access control decisions and expressions in the form of a capability.

The amount of capabilities in a distributed parallel file system are character-
ized by the amount of:

• Users: capabilities are traceable to unique User identities

• Clients: capabilities may be bound to Client identities

• Files: capabilities are issued for particular files and particular access modes

• OSDs: capabilities may be bound to particular OSDs

• Objects per file: capabilities may be issued at a finer grain for access to
objects as opposed to coarse-grained access to files or volumes

In the evolved design of using stateless OSDs to store data and the MRC or
Metadata Directory Server (also referred to as "MDS" in most other approaches)
mitigating between Client requests and the OSDs the MRC/MDS is at risk to
become the bottleneck.

3.1 Requirements
Since the capabilities have a semantic meaning and are used to express that its
owner is allowed to perform a set of actions with a certain object, there are a set
of mandatory requirements. They have to be:

• Provably bound to client and MRC identities.

• Issued at the granularity of object blocks on a particular object storage de-
vice; capabilities should be for the most part self-contained such that there
is little need for an OSD to reference many other tables or data structures
when executing client requests. All meta-data is maintained by the MRC,
which should be capable of maintaining the object map.

• Uniqueness and freshness such that no replay is permitted.

• Fast generation and scalable storage.
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• Revocation should be implicit (i.e. time out) as opposed to explicit broad-
casts by the MRC or constant polling from OSD to some central capability
management server (which may or may not be the MRC).

A lot of research was and is being done in the field of distributed parallel
file systems with the advent of GRID computing and the needs for processing
very large data sets. However security in these distributed system built using cost
efficient off the shelf hardware seemed to be neglected. Since large GRID systems
exceed a single trust domain and span over multiple administrative domains and
since distributed file system approaches find their way into the datacenter, security
becomes a major issue.

The major findings of these efforts are presented in the related work section.

3.2 Related Work
This section presents the major findings of research done in the field of secure
access to distributed parallel file systems. Due to the large extent distributed file
systems can grow and due to the fact of their distribution this task is more difficult
than securing a file system in the past.

Substantial work was done by Miller et al.[13]. They formed the term of a
Secure Network Attached Disks (SNAD) and evaluated three different schemes;

SNAD 1 The first SNAD scheme provides security on each block of data. Writes
in this scheme encrypt each data block, compute a hash over the entire data object
(including the metadata), and sign the hash using the user’s private key. This hash
can then be verified by anyone with the user’s public key. In particular, the disk
can recompute the hash and compare it against the hash signed by the user who
sent the block. If they match, the disk successfully verifies the provided signature,
and the user has the permission to write the file, the SNAD server writes the block
to disk. The block security information for this scheme thus consists of a signed
secure hash. Reads in this scheme require no operations by the SNAD server
CPU, but do require that the client CPU check the hash and signature just as the
SNAD server did on a write. Additionally, the client must decrypt the data.

SNAD 2 Scheme 2 replaces the SNAD serverŠs signature verification with a
HMAC (Hashed Message Authentication Code)[2]. In this scheme, the client
performs a cryptographic hash on the block and signs it. However, this signed
hash, which is stored with the secure block, is only verified by the client when it
reads the block. The client also calculates an HMAC on the secure block using
the secret HMAC key it shares with the server and sends the HMAC to the SNAD
server. The SNAD server computes an HMAC using the shared secret key from
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the certificate object and checks it against the HMAC received from the client.
Recalculating the entire hash including the HMAC key would be time-consuming;
instead, the client simply performs an HMAC over the hash. The replacement of a
signature verification by an HMAC reduces the load on the SNAD disk CPU, but
does not reduce the load on the client CPU, which still must perform signatures
on writes and verifications on reads.

SNAD 3 The third scheme uses a keyed-hash (HMAC) approach to authenti-
cate a writer of a data block and verify the blockŠs integrity. HMACs differ from
signed hashes in that a user able to verify a keyed-hash is also able to create it.
Scheme 3 still uses public-key authentication for key objects because writing key
objects, while slower with public-key controls, is very infrequent. Write opera-
tions in this scheme require the client to encrypt the secure block and calculate
an HMAC over the ciphertext. This information is then sent to the disk, which
authenticates the sender by recomputing the HMAC using the shared secret key
from the certificate object. If the write is authentic and the user has the permis-
sions to modify or create the secure block, the SNAD disk commits the write to
disk, updating structures as necessary. Note that the disk does not store the HMAC
because it must recalculate a new HMAC if the reader is a different user from the
user who wrote the block. Unlike the previous two schemes, this scheme requires
the SNAD disk to perform a cryptographic operation on a read: the disk must
calculate a new HMAC using the key from the user requesting the data. The data
object, along with the new HMAC, is then sent to the client requesting the data.
If the disk were forced to write blocks without the proper encryption key, a client
could detect this during a read by recomputing the non-linear checksum over the
cleartext and comparing it to the stored checksum.

Aguilera et al.[1] implement a capability-based schema for network-attached
disks (NADs) with capability groups for managing revocation and Bloom filters
for replay detection. NADs are storage devices that accept block read/write re-
quests over a network. Object Storage Devices (OSDs) are similar to NADs from
a networking perspective, but NAD requests refer to blocks on the disks as op-
posed to object identifiers. OSDs are therefore more portable than NADs, as
block identifiers are bound to the platform. Nevertheless, the security problem
remains the same in both systems. In the work of Aguilera et al., they assume
that servers and disks are trusted, while clients connecting to the NADs may be
compromised. Secondly, they assume that the network is not secure, which is one
of the assumptions that we also make as the basis of our design. One of the ma-
jor concerns of capability-based approaches to security is the demands on RAM
usage and access. Depending on the granularity, access frequency of objects and
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lifetime of capabilities, large amounts of RAM might be required for storing capa-
bilities. In addition, they may have to be persisted on the storage devices (NADs,
OSDs), cached at Clients or at the Filesystem Server (i.e. MRC) in order to main-
tain security and performance of the distributed filesystem. The capabilities used
by Aquilera et al. have the following schema:

CAP c = {
capID: <identifier for the capability>,
groupID: <group to which capability belongs>,
diskID: <target disk>,
extents: <physical block range or block-map>,
mode: <read, write, rw>

}

The protocol for interaction between the components in the NADs system they
assume is shown below, but this can be generalized for any storage area network
including OSDs. NADs and OSDs are represented as Disks (D1 - Dn) in the
protocol, while blocks and objects are referred to as targets (B) and the MRC is
the server. The protocol is discussed afterwards.

1. Client → MRC: (open (target, req))/KMRC,Client;

2. MRC → Client: (CAP(target, req), s = h(CAP, KMRC,D))
/KMRC,Client;

3. Client → D1: (req, CAP, h(req, s))/KD1,Client;

4. ON valid(CAP): D1 → target: execute(request);

5. Client → Dn: (request, CAP, h(req, s))/KDn,Client;

6. ON valid(CAP): Dn → target: execute(request);

7. D1 → Client: (response, h(resp, s))/KD1,Client;

8. Dn → Client:(response, h(resp, s))/KD1,Client;

Step 1 shows the Client making a request to the MRC, where it is assumed
that there is a key KMRC,Client shared between the Client and the MRC in order to
create a secure channel. Otherwise, if may be assumed that the network between
the Client and the MRC is secured. In one configuration, every network domain
may have an on-site, trusted MRC. In the case that they have a shared filesystem,
it is however expected that there is one MRC. In step 2, the MRC responds to the
Client with a capability CAP(target, request) that gives the Client the permission
to execute the request on the stated target. In addition, in step 2, the key KMRC,D
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is a shared key between the MRC and a disk D, while a secret s is generated at the
MRC by performing a keyed hash of the capability CAP using the key shared with
D. This serves to generate both a capability that is unforgeable, proves that it is
created by the MRC (or by the disk) and can be validated by the disk D, given that
KMRC,D has not been compromised. Steps 3 and 5 are parallel requests to target
disks D1 to Dn. It is currently assumed that the Client has shared keys with D1 to
Dn, KD1,Client and KDn,Client respectively. Note that the additional keyed hash or
MAC h(req, s) is done in order to prove that the Client has really been issued
with the capability CAP and has possession of s, which can be determined by the
OSD. Steps 4 and 6 are the parallel executions of the requests (read, write, delete)
on the target blocks or objects, corresponding to steps 3 and 5 respectively, while
7 and 8 are the respective responses. The disks also perform a hash with s on the
response, to prove that this is a valid response to the Client’s request.

The work from Aguilera et al.[1] has been presented as it provides some ba-
sic requirements and approaches for handling cryptographic capabilities for dis-
tributed storage. However, the work of Miller et al[13] has had more influence on
the standardization of ANSI T10 SCSI OSD, described in the next section.

3.2.1 ANSI T10 SCSI OSD Extensions

The OSD Technical Work Group of the Storage Networking Industry Association
(SNIA) consisting of various industry and academic partners have defined the
ANSI T10 SCSI OSD command set and works on further extensions. First, a
rough sketch of the architecture is presented before security related questions are
addressed. The shared secret security architecture is described by Factor et al. in
detail in [6].

The goal is to provide a solution which combines the best attributes of block
oriented Storage Area Networks (SAN) and file oriented Network Attached Stor-
age (NAS). While SANs provide excellent performance for most access patterns
they suffer from sharing. This is the domain of NAS systems. The new approach
should provide:

• Improved storage management

• Data sharing among clients

• Aggregated performance

• Security

The goals are addressed by leveraging the interface of disk drives from a pure
block layer access model to an object based access model where data is not ad-
dressed by block number, but by an unique identifier of an object. The object
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itself contains the Object Identifier (OID), metadata and attributes and its physical
location on the disk.

Factor et al.[6] describe a set of requirements, design tradeoffs for a security
protocol to support the ANSI T10 Object-based Storage Devices (OSD) Standard,
also discussed in more detail below in subsection 3.2.1. They refer to the main
outcome as "the OSD Protocol" in their paper. The protocol is based on a se-
cure capability-based model that enables fine-grained access control that protects
both entire storage device and individual objects from unauthorized access. This
variability in granularity and protection coverage is one of the features that is
important in XtreemFS security. The protocol defines three methods of security
based on the applicationsŠ requirements with different security assumptions:

1. CAPKEY: basic mechanism for protecting credential integrity, focusing on
binding a credential to a particular secure channel between a client and an
object store. The security goal here is to protect against replay of credential
over another secure channel created by a rogue Client. This therefore relies
on an underlying security transport mechanism such as IPSEC or TLS

2. CMDRSP: protects the integrity of commands and their arguments. It is not
reliant on the underlying security transport mechanism for verification of
credential integrity but still relies on the secure transport for transported data
integrity. That is, it adds built-in command integrity to CAPKEY instead of
relying on the lower layers of the system

3. ALLDATA: protects the integrity and confidentiality of credentials and data
without relying on an assumption of a secure network. If it is implemented
over a VPN or within a closed, trusted network, then it might be considered
redundant.

They also place an emphasis on quick key management such that normal opera-
tions are not disrupted. Their key management schema also introduces a key hi-
erarchy, which is covered in section 3.2.1. At the time of publication referenced,
they had not yet determined how to deal with complex capabilities for applications
that need to access and perform operations on multiple objects in one request. We
however adapt their basic capability schema as shown below:

CAP c = {
SecurityInfo {

h(K, PRN, c),
Algorithm

};
ObjectDescription {

16



}
Permission {

[read],
[write],
[delete],
[etc]

}
Expiration: dd/mm/yyyy:00:00:00;
[Audit: <optional field>]

}

Four different objects are defined in the standard, which correspond to the
purpose and types of keys in the standard:

• User Objects: Objects which are created on behalf of users, e.g. their appli-
cations.

• Collection Objects: A group of user objects with some attributes in com-
mon.

• Partition Objects: A partition object contains user and collection objects.
They have same security and space management attributes.

• Root Object: Represents the object storage device and contains partition
objects.

At the time of writing this deliverable, there was no concept for differenti-
ating between different types of objects and enclosures in XtreemFS. Objects in
XtreemFS are therefore assumed to be semantically equivalent to User Objects
in the ANSI T10 standard. As security and group management becomes more
advanced in XtreemFS, we should further consider adopting this particular classi-
fication of object types and corresponding keys, as further concerns such as illicit
information flows and violations of digital rights arise.

Keys in the Standard

For this set of different objects an extended SCSI command set is defined. Of
special interest are the security related commands to set keys, e.g. for an object
or a master key for an entire OSD and the check of the validity of object based
operations such as read, write, append, create, . . . .

The following lists the defined shared secret keys and the possible operations
which could be performed:
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Master Key: allows for unrestricted access to the drive and is used to bootstrap
the system’s security. It is associated with the drive owner and used to set a
root key:

→ Root Keys: used to create OSD partitions on a single device and to set
the partition keys. Allows full access apart from initializing the drive
and changing the master key.

→ Partition Keys: for creation of partitions (i.e. a form of root key
for partitions) and to derive working keys:
→ Working Keys: Frequently changed keys for the generation

of capability keys for accessing objects. Keys are versioned
and up to 16 refreshed keys can be marked as valid to prevent
invalidation of all cached credentials.

It has to be noted, that the standard does not say how the keys have to be
maintained. A scheme such as Kerberos may do.

Protocol flow

In order to access an object with a certain operation the following protocol has
to be processed. It ensures security by only performing actions of integrity check
commands. A parameterized integrity checksum in the form of a 160 bit keyed
HMAC-SHA1 is used to identify commands containing the object and the allowed
operations. Note that the decision as to if some principal has access to a certain
object is taken at the level of a separate policy manager, which implements the
desired semantic.

Involved in the protocol is a client who wants to perform actions on a cer-
tain object storage device. A metadata server mediates the requests by the client.
The metadata server also performs the authentication of a client via the use of
an identity database and grants or denies the authorization request using a pol-
icy/authorization database.

1. Exchange of a shared secret between security manager and OSD.

2. Client requests access to object (requests a capability) at a certain object
storage device, in a certain partition object.

3. Metadata server performs client authentication via identity database.

4. Metadata server determines client authorization via authorization database.

5. If client is authorized, a credential (capability plus integrity checksum) is
issued to the client
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6. Client uses the capability to perform the requested action at the object.

Summary The ANSI T10 SCSI OSD standard is a purely symmetric key based
approach to create capabilities for user requests. A major drawback is the es-
tablishment and the maintenance of the security associations and the respective
key material. Since it builds on the SCSI protocol, it implicitly defines the inter-
connect types. Today, the SCSI protocol is used in DAS (Direct Attached Stor-
age) environments, in iSCSI based SAN (Storage Area Networks) environments
and in SRP (SCSI RDMA Protocol) using the RDMA (Remote Direct Memory
Access Protocol) over Ethernet or Infiniband as interconnects. They have all in
common, that these protocols are usually used in closed environments. For the
secure establishment of keys additional identification/authentication information
and protocols are necessary.

3.2.2 pNFS - NFSv4.1

For the well known file sharing protocol NFS, which is well adopted in indus-
trial and productive environments, efforts are going on to extend it to fulfill future
needs. Major architectural changes were made in the version 4.1 of the NFS pro-
tocol. This version is also called parallel NFS or pNFS. This name indicates the
major changes where a set of data servers, coordinated my a metadata server ag-
gregates its performance and enables the parallel use of a set of data servers at
the same time. The NFS server is no longer one single entity and separates data
and metadata. Thus it follows a similar setting than most object oriented storage
architectures and their trust model.

The major difference of pNFS in regard to other approaches is the ability to
handle files, blocks and objects on a set of distributed data servers. In the follow-
ing we will review the latest specification for object handling. Here the standard
assumes the presence of ANSI T10 compliant devices and provides the interfaces.

Please note, that although pNFS may look similar in terms of its architecture
as other object oriented storage architectures the application scenarios may look
very different. Up to now there is no information available which allows estimates
on the ability to scale it into large dimensions.

As other approaches, pNFS splits the former NFS protocol in two parts and
decouples metadata from content. Therefore the protocol for metadata has to be
enriched by a set of commands which reflect the consequences of this design.
However, pNFS is designed to handle objects, files and blocks and thus have to
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provide different ways of addressing and mediating access to these objects.

A client system mounts a pNFS file system at the pNFS MDS. There it can also
get a list of used storage devices, their IDs and their hostnames. After a mount
of the remote pNFS file system the usual protocol starts with at the client side
with issuing an OPEN request with a subsequent LAYOUTGET request. The MDS
(MRC in XtreemFS) replies to geometry of how the requested file is distributed
over the set of NFS servers. The response of a LAYOUTGET request represents
the right to access that specific file and thus the capability. In order to get a capa-
bility, the client has to be authenticated and his permissions for that object have to
be checked. More precisely the LAYOUTGET returns in case of a success a set of
capabilities for the objects which are associated with the file.

Via a LAYOUTRETURN remote procedure call a client can free a LAYOUT
which will not be used any more. Also a MDS can request a LAYOUT back via
the callback CB_LAYOUTRECALL remote procedure call.

Up to now the file-based access method is the only mechanism which is de-
scribed in detail in the standard. When this access method is used, the storage
devices use the NFS version 4 protocol to deliver files to the client.

In case the access method is object based, the object storage protocol must
implement the security aspects described in the ANSI SCSI T10 OSD extensions
in the chapter before.

To recall, these are NOSEC, CAPKEY, CMDRSP, and ALLDATA. As the
name says, the NOSEC variant does not provide any security. In order to provide
a minimum level of security the CAPKEY variant or better has to be used. From a
key management perspective not only the object keys which have to be managed
by the security manager in the form of the MDS have to be maintained. Since it
is a symmetric protocol, additional steps have to be performed in the setup phase
to negotiate on secure channels to setup and maintain keys. These tasks should be
achieved using a framework such as GSS_API.
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3.2.3 Ceph

Leung [11, 12] describes the implementation of a security protocol called Maat,
which is intended to address the peta-scale security problem, identifying that the
problem lies in the tie between the number of security operations to the number of
devices and requests. The expected scale is hundreds of thousands of clients and
storage devices, which is a lot more than traditional notions of storage networks.
The main feature of their work is the idea of extended capabilities, where binary
Merkle Trees are used to create tokens that can authorize I/O for any number of
clients to any number of files, based on the ability of a capability to prove the
integrity and authenticity of any client and request within the capability’s tree
structure. Secondly, the implement automatic or implicit revocation by allowing
capabilities to expire within a lifetime t. They also feature secure delegation as a
means of enabling scalable, cooperative computation across many devices.

Key Analysis of the Approach from Olsen and Miller

Olsen and Miller [14] presents a secure capability protocol for an object based dis-
tributed file system. This has a comparable understanding of objects to XtreemFS,
although there is an emphasis on the massive use of mapping and hashing func-
tions for the statistical equalized distribution of data. Thus their mapping function
may be replaced by a query to a map. Their work is embedded into the work on
the CEPH petascale filesystem.

Their initial, non secured protocol looks like this (where U denotes the user
on behalf this request is made):

1. Client → MRC: U,(open (path, mode))

2. MRC → Client: H

3. Client → D(H,i): read(oid,(H,i),bno)

4. D(H,i) → Client: data

5. ...

From the overall protocol flow it can be compared to other approaches with
the difference that the OSD is referenced by the mapping function D(H,i). They
consider a cascade of metadata servers for high availability reasons. A MRC may
forward the initial response to an authoritative MRC first.

Starting from this point, they introduce security mechanisms into the setting
and show different variants. The protocol uses symmetric key cryptography for all
communications to ensure integrity and authenticity. It is assumed, that a shared
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key between the Client and the MRC(KCM ) is provided by an appropriate mech-
anism.

Regarding XtreemOS, the certificate infrastructure could be reused for the dis-
tribution of certificates. However it should be noted, that the storage infrastructure
itself may be used outside the context of VOs and may have a longer persistence
than VOs itself. This has the consequence that an infrastructure supporting the
distribution of these shared secrets should not logically be bound to VOs itself.

It should be noted, that the MRC trusts in the authenticity of the user U, given
that they have access to the Client. The integration of a user identity infrastructure
is therefore not considered. It is also assumed, that the MRC is keeping the shared
secret KCM with the client and shared secret with the OSD KMD secret. A further
assumption is that a reasonable synchronous time information is available among
all OSDs and MRCs.

The protocol then looks like this (where C is a security token from an au-
thentication service which is associated with U and τ={H,perm,KCD,Ts,Te}KMD

where Te, Ts expressing the validity period):

1. Client → MRC: C,{open (path, mode)}KCM

2. MRC → Client: {H, KCD, Ts, Te}KCM, τ

3. Client → D(H,i): τ,{read(i,bno), T1}KCD

4. D(H,i) → Client: {T1, data}KCD

5. ...

Regarding a fine/coarse grained key assignment this protocol can best be com-
pared with a master key or a partition key in the ANSI T10 SCSI OSD standard,
where, a key is used to access or initialize a disk. Note that no object-based keying
scheme is used, as the disk gets an individual, unique key for each Client.

The protocol is designed to protect honest clients from clients which were ren-
dered dishonest. This could happen by malicious software or by a malicious user.
In such a case the KCM key can be misused and actions on the metadata channel
on behalf of the belonging user can be performed. Also the shared key KCD and
the connection with the OSD can be misused. The timeframe in which this can
occur is limited by the validity time of the ticket τ .
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The following figure visualizes the security associations for this protocol.
As in the protocol, the clients are denoted with C, the OSDs with D and the
MDS/MRC with M. All keys are symmetric. This implies that an authentication
procedure with the establishment of secure channels between the Clients and the
MDS and the MDS and the OSDs has to take place in advance. These associations
are not taken into account here. For the applicability of this scheme to XtreemFS
it would be desirable to connect the MDS into the tree or trust chain for one to
several VOs. This makes it possible to authenticate users and to perform access
control decisions. A different scheme may be used to authenticate the MDS with
the OSDs.

Figure 4: Security associations in their first approach based on symmetric key.

Figure 5 shows the keys which has to be maintained at each entity in the first
approach of Olsen and Miller.

A Refined Protocol

A refined protocol is presented in the following. This protocol introduces public
key signature scheme to authenticate the capability. Scalability and the reduction
of failure domain are the reason for this change. The authors state that within a set
of 1000 and more OSDs a shared secret can no longer be maintained effectively.
A compromise of one OSD reveals the secret which is shared with all other OSDs
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Figure 5: Key repositories in their first approach.

and the MDS. This would allow an attacker to forge capabilities to other non-
compromised OSDs. Now, a public key scheme is used to build individual security
associations between the MDS and the OSDs. A compromise of one OSD will not
lead the secret to compromise other OSDs as well.

The capabilities which were signed in the former protocol using the secret
shared key are now signed using the privat key of the MDS. The MDS has a pri-
vate denoted as KR

M and a corresponding public key denoted as KU
M .

It is assumed that the shared key KCM between the clients and the MDS as
well as the shared key KCD between the client and individual OSDs is kept secret.
This also holds for KMD between the MDS and the OSDs. Similar as in the pro-
tocol before τ={P,H,perm,Ts,Te}KR

M where Te, Ts expressing the validity period,
H the file handle, perm the permissions. P denotes a set of principals which are
allowed to access the same handle as well. It is powerful concept to reduce the set
of capabilities to create and maintain.

The tupel ι={C,G,KC,D(H,i),T ′
s,T ′

e}KM,D(H,i) forms a ticket which is handed
to the client by the MDS. It states that any client, knowing KC,D(H,i), is user C,
a member of group G within the timeframe starting from T ′

s to T ′
e will be able to

perform actions with the provided capability at the OSD. Since this ticket is en-
crypted symmetrically with the key KM,D(H,i) of the security association between
the MDS and an OSD, only they can decrypt it. The ticket keeps confidentially
the key KC,D(H,i) which the client must use to pass the actual request to the OSD.

Regarding XtreemFS with a representation of rights in the form of access con-
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trol lists, such a concept may be applied as well by maintaining a reverse mapping
stating all qualified users for an object with a certain right. Another aspect is the
reduction of load at the MDS since a capability may be reused instead of creating
a new one. However the use of this feature makes this approach unsuitably to
implement a coarse grained locking scheme.

1. Client → MDS: C,{open (path, mode)}KCM

2. MDS → Client: {τ}KCM

3. Client → MDSD(H,i): C,D(H,i)

4. MDSD(H,i) → Client: {KC,D(H,i),D(H,i),Ts,Te}KCM,ι

5. Client → D(H,i): ι,{τ,read(i,bno), T1}KC,D(H,i)

6. D(H,i) → Client: {T1, data}KC,D(H,i)

7. ...

Figure 6 shows the security associations between the entities in the distributed
file system. It shows the cipher type (shared key or public key) with which these
associations are maintained.

Figure 7 shows the key repositories that have to be maintained at each entity
in the distributed file system. It also includes the capabilities and the tickets. Note
that there is still the assumption of pre-authenticated users on the clients.

Again the protocol is stateless for the OSDs which is beneficial for fault tol-
erance and recovery. By caching the capabilities and the tickets the OSD may be
seen as stateful. Successfully verified capabilities and tickets may be cached for
the lifetime or a shorter period and provide a shortcut for the verification process.
However this information can be reconstructed at any point in time with the sole
consequence of a performance reduction. An evicted, cached, but still valid entry
may be reconstructed at the OSD by extracting the symmetric key for the client
security association in the capability.

In contrast to the former protocol, this one needs two more iterations. This
increases the time gap of the first request to the time when data is read or written by
at least two additional network round trip time units (assuming the data processing
at the MDS is negligible in regard to the round trip time).

Focussing on the MDS itself, the additional communication significantly in-
creases the overall MDS traffic. Thus the MDS is at risk to become a bottleneck
itself. The MDS also maintains the security association for the clients and the
OSDs.
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Figure 6: Security associations in their second approach with symmetric and
asymmetric keys

Figure 7: Key repositories in their second approach
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According to Olsen and Miller[14] the refined protocol solves these issues by
letting the clients maintain their security associations with the OSDs themselves.

Further refined protocol

In order to tackle latency issues and to avoid the risk of making the MDS or the set
of MDS’s a bottleneck a further refinement of the protocol is proposed by Olsen
and Miller[14]. The major difference in regard to the former protocol which uses
a ticket as a token of authorization for users and their group relationship is that the
ticket and the credential can be used in a more decoupled way.

While the ticket is issued in the former protocol in the mid of the protocol,
it can be transmitted at the beginning of the protocol explicitly. Having a longer
lifetime of the ticket this process is performed not frequently. Thus the remaining
part of the protocol does not need these steps for most cases any more and one
round-trip can be saved in most cases.

A further detail of this protocol is the use of public key cryptography to es-
tablish a security association between the client and the OSD. This association is
maintained still via symmetric algorithms.

The MDS does not maintain the security association between the client and
the OSD. It just sends an initialization vector within the ticket. Based on this, the
client computes a symmetric key which he transmits to the OSD encrypted with
the OSDs public key KU

D(H,i). The OSD can rebuild the used symmetric key in
order to check that it was generated by C. Therefore it uses the inverse of the used
keys for exponentiation. These are the public key of the client and the private key
of the OSD itself.

1. Client → MDS: C,request ticket

2. MDS → Client: {τ}KCM

3. Client → MDSD(H,i): C,{open (path, mode)}KCM

4. MDS → Client: {ι}KCM

5. Client → D(H,i): {KC,D(H,i)}KU
D(H,i), {ι, τ, read(i, bno), T1}KC,D(H,i)

6. D(H,i) → Client: {T1, data}KC,D(H,i)

7. ...

The following figure 8 shows the security associations which have to be main-
tained with this protocol. Note that since the trust model is still the same, the
amount of associations is pretty much the same as in the former protocol.
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Figure 8: Security associations in their third approach with focus on asymmetric
keys

In figure 9 there is however a notable difference. Since the MDS delegated
the maintenance of the security associations between the clients and the OSDs to
the entities involved in the association, the MDS is significantly relieved of this
additional overhead.

Regarding the applicability of this protocol to XtreemFS this protocol may fit
as well. The address space of objects is flat and does not contain a group or hier-
archy of objects as the ANSI T10 OSD standard does.
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Figure 9: Key, ticket and capability repositories in the third approach of Olsen and
Miller. The key repository in the MDS shrinks by the introduction of public key
cryptography for the client-OSD communication.

However, with the massive use of public key cryptography, although this makes
the maintenance of security associations a lot easier, requires additional mecha-
nisms to reduce CPU load, as it consumes much more resources than symmetric
cryptography.

From the current point of view there are two ways to achieve this:

1. Reduce the amount of public key creation and verification operations that
need to be done.

2. Use public key crypto algorithms that consume less resources.

Since effective crypto algorithms are discussed in the next section, we first
place emphasis on an approach to reduce the amount of capabilities in a distributed
filesystem. The approach taken is to broaden the scope within which capabilities
are valid.

It should be noted, that the following approaches require a thorough under-
standing of users at the MRC/MDS and their relationships among each other. The
following facts within current XtreemOS design make it unfeasible to apply this
concept.
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• Users are maintained at a the VO level which up to now does not have a
tight relationship with the MRC/MDS and

• The semantic of grouping may not known or not be defined depending on
the VO model. It also may get complicated in case the MRC/MDS has to
deal with mapped users.

Independent of these issues the architecture of XtreemOS is evolving and may
provide the chance to apply these promising approaches. In the following the
rough idea should be sketched to show the achievable advantages.

Coarse Grained Credentials

The basic idea behind reducing the amount of capabilities is to extend their valid-
ity. An easy approach would be to extend just their lifetime. However the gains
by that are limited especially when a number of different files are accessed just
once. Leung et al. [12] follow a different approach which is visualized in figure
10. Instead of issuing a capability for just a single user on a single client for a
single file or object they group entities with the same attributes.

Figure 10: Extending the validity of a capability to span across multiple users and
files.
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In order to group entities, the MRC/MDS needs to be able to query its database
of access policies for who else is allowed to access object o with rights r?. The
same has to be done for the other constellations of subjects and rights2. Note that
in the CEPH petabyte file system [16] in which this approach should be imple-
mented a file may consist of several object. These are addressed by a mapping
function.

A similar situation occurs in XtreemFS, where files may consist of several
objects as well, due to striping. However, currently, the MRC/MDS maintains
parts of files.

Figure 11: Capability used to have a constant size for its identifiers. Dealing with
list to describe groups would be cumbersome. Here, only the identifiers for the
client and the file are shown of the capability.

The question then remains: how can these groups be efficiently expressed
through capabilities? For a solution see figure 11. Transmitting just a list of
identifiers instead of just one would increase the size of the capability and more
important would bind the understanding of a group to the lifetime of a capability.

Instead of transmitting a list of identifiers in the capability an efficient mecha-
nism is proposed to identify the group with a fixed size identifier and maintain the
groups in a condensed way using a Merkle tree [10]. All identifiers now describe
a subject or object by its hashed value.

The Merkle tree itself is a tree3 which keeps a hash of its elements in the

2Also, the use of public key cryptography for signing a capability is a way of grouping. It
allows to verify a capability on any OSD with a trust relationship with the MRC/MDS.

3A binary tree in that case.
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Figure 12: Using fixed size identifiers for groups using Merkle trees. The trees
itself are updated at the OSD in case the group identifier is not known.

leafs. The layer above is generated by applying a hash function to the neigh-
boured elements. Usually the hashes of the above layer is calculated hashing the
concatenation of the hashes below.

When the MRC/MDS now issues a capability with identifiers not known by the
OSD, the OSD needs to update its database of group information. The advantage
of using Merkle trees here is that updates or larger groups can be expressed by
already known groups to the OSD since two joined Merkle trees will result in a
Merkle tree again.

The savings in capabilities using this scheme depend heavily on the ability to
find group of users with the same (or a significant union) of access rights to a set
of files. If this can be achieved often the amount of capabilities can be divided
roughly speaking by the average group size of user and file identifiers.

3.3 Applicability to XtreemFS
In this section we will summarize the applicability of the approaches for XtreemFS.
This was already covered in the descriptions but will be presented here in a con-
densed form:

• Seperation of VO certificates and certificates and capabilities of the XtreemFS
file system: In XtreemOS a lot of attributes are expressed using X.509 cer-
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tificates and with an extended attribute set. While this container is designed
for expressiveness and flexibility, the tickets and capabilities in the file sys-
tem have to be designed for high performance and low latency generation
and verification. This can currently not be achieved with X.509 containers:

– The extended X.509 or VO certificates may be used to authenticate the
user once, e.g. the user via the FUSE client to the MRC.

– Very different lifetimes for VO certificates and file system capabilities
and tickets.

– Seperation of duties of the MRC/MDS and the VO certificate and user
management.

– For all further interactions a very efficient scheme has to be used in
order to keep latency low and throughput high.

• The architecture of the presented approaches and their understanding fit
to the architecture of XtreemFS or at least a subset may be mapped to it.
Within XtreemFS the MRC/MDS mediates access from clients to objects
within one namespace.

– The SNAD schemes which influenced the NAD and finally formed
the basis for the ANSI T10 SCSI OSD standard uses an object hierar-
chy and thus different namespaces. However focussing on the work-
ing keys of the ANSI T10 SCSI OSD standard this is applicable to
XtreemFS.

– The approach for ceph uses a flat namespace for file handles and ob-
jects. Thus their architecture fit exactly the one of XtreemFS. Their
schemes can be applied omitting the mapping function D(H, i) which
directs a client with a known file handle and the i-th byte to the OSD
keeping the object. Since in XtreemFS this job is in the responsibil-
ity of the MRC/MDS, it has to provide the exact object identification
instead of a file handle.

• Scalability: From an architecture point of view the approaches of SNAD,
NAD, pNFS , ceph and XtreemFS they are all similar. However pNFS
(which may use the ANSI T10 SCSI OSD standard) is still a datacenter
approach. It features parallel access to data servers using NFS protocol ver-
sion 4 on the client to the data server path. Traditionally there are a few
reliable data servers in the data center. Currently there is no hint that the
amount of data server is considered to scale up to the often mentioned thou-
sands of nodes as in other approaches.
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We consider the use of public/private key cryptography as a reasonable way
to simplify the key management. At the same time it solves untackled mu-
tual authentication questions in the pure symmetric capability shemes.

The use of public/private key cryptography turns also around the way a
signature is created. Using symmetric schemes with all individual security
associations, the signature asserts: "this capability is signed for OSD x by
the MRC as opposed to this capability is signed by the MRC and valid for
all OSDs. This simplifies the maintenance of security associations by the
number of OSDs. This is visualized in figure 7 in regard to 9.
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4 Efficient Cryptography
In order for XtreemFS to be both scalable and secure, more efficient cryptographic
mechanisms should be considered. In this section we discuss alternative crypto-
graphic algorithms other than the mainstream algorithms i.e. RSA (integer fac-
torization) and DSA (discrete logarithms). This is done with the expectation of
achieving more efficient performance of the secure XtreemFS protocols. Efficient
protocols and algorithms should provide better scalability with respect to stor-
age, communications and CPU usage. This suggests smaller keys, smaller cipher
text and less complex cryptographic algorithms. Nevertheless, the robustness of
security should remain with the selected solution.

Previous sections have already described approaches to more efficient key
management. This section further supports the improvement of security efficiency
in XtreemFS by investigating more efficient cryptographic mechanisms other than
the traditional public-key crypto-mechanisms used. In doing so, the Elliptical
Curves Cryptography (ECC) and NTRU algorithms are investigated.

4.1 Elliptic Curves Cryptography
The strength of any crypto algorithm is determined by the complexity or difficulty
of solving a solution to a mathematical problem. If all parameters are known
then the problem is trivial but solving for unknowns is complex. Cryptographic
keys are therefore the values that must be kept secret such that the mathematical
problem is just an arithmetic calculation.

Most of the processing power and effort when using RSA for signatures or
encryption is attributed to the complexity of computing modular exponentials and
the usage of large integers. RSA’ one way function capability is based on the fact
that given b, e and m in the equation c ≡ be(modm), finding c is trivial; however,
given c, b and m, the determination of e is non trivial. Work towards more efficient
crypto mechanisms is based on finding mathematical problems that have a suffi-
ciently strong one-way function property without having the high computational
requirements. There are as well other efforts towards using parallelization or more
linear modular exponentiation algorithms, but these are not mainstream and typ-
ically require specialized hardware. The presence of such specialized hardware
cannot be assumed for XtreemFS nor for XtreemOS.

ECC is a public-key cryptographic scheme based on arithmetic operations on
elliptic curves over a finite field [3, 15]. A finite field containing q elements exists
if and only if q is a power of a prime number. In addition, for each field element q
there is precisely one finite field denoted as Fq. There are then two types of finite
fields - prime finite fields and 2-finite fields. The prime finite field is described
below:
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Time to
break in
MIPS years

RSA/DSA
key size

ECC key
size

RSA/ECC
key size
ratio

104 512 106 5:1
108 768 132 6:1
1011 1,024 160 7:1
1020 2,048 210 10:1
1078 21,000 600 35:1

Table 1: Key Size Equivalent Strength Comparison from Certicom [3]

Prime finite fields Fp: q = p and p is an odd prime number and the field is the
set of integers (0, 1, ..., p − 1). If a, b ∈ Fp then the addition modulo p is
expressed as a+ b = r such that r ∈ [0, p−1] is the remainder of (a+ b)/p;
otherwise stated, a + b ≡ r(modp). Similarly the multiplication modulo
p is expressed as a.b = s such that s ∈ [0, p − 1] is the remainder when
(a.b)/p; otherwise stated, a.b ≡ s(modp). Determining the additive inverse
and multiplicative inverse is as follows:

• If a ∈ Fp then the additive inverse (−a) of a ∈ Fp is the solution
a + x ≡ 0(modp)

• If a ∈ Fp, a &= 0 then the multiplicative inverse a−1 of a ∈ Fp is the
solution a.x ≡ 1(modp)

ECC’s point multiplication out-performs RSA’s modular exponentiation and
requires smaller key sizes for the same relative cryptographic strength, as shown
in Table 1.

The only real drawback with ECC is the relative lack of available implemen-
tations and libraries in comparison to RSA and DSA. Sun microsystems has how-
ever produced a release of OpenSSL that now includes ECC4. For Java implemen-
tations, Bouncy Castle5 is a noted provider.

4.2 NTRU
NTRU [8] is another very efficient crypto-algorithm. It is known to only require
O(N2) operations to encrypt or decrypt a message of size N , while key lengths
are O(N). It uses a mixing system based on polynomial algebra and reduction of
modulo two numbers p and q. However, NTRU has been commercialized since
the initial release of its algorithm, such that this cannot be suggested as an option.

4Sun’s OpenSSL with ECC available from research.sun.com/projects/crypto/
5www.bouncycastle.org
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4.3 Applicability to XtreemFS
Using an efficient cryptographic mechanism in XtreemFS would contribute to bet-
ter scalability, alongside a more efficient capability management approach. Given
that a 160-bit ECC public key is as robust as a 1,024 bit RSA/DSA public key,
devices with limited storage resources can still store 7 times more capabilities,
given the formats remain the same. A second point to note is that XtreemOS is
intended to support many different flavors of machine architectures with different
capabilities. These are expected to range from embedded and mobile devices to
large-scale cluster and supercomputers. This would provide far more flexibility
with respect to types of devices and disks that can be used as OSDs or act as
Clients to XtreemFS. Furthermore, increasing the CPU throughput at the MRC
would provide less risks of it becoming a bottleneck as the amount of users, files,
objects, replicas and accesses increase.

The main disadvantage of using ECC is that it has less technical support than
the more established DSA and RSA algorithms. However, as discussed above,
this is changing. Additionally, based on the fact that ECC is more recent and
less deployed than DSA and RSA, it has not been subjected to the same extent
of testing. A further disadvantage for ECC is that there are more parameters that
need to be considered than in the more classical algorithms. As there are more
parameters, the amount of bootstrapping and negotiation communication is larger.
For settings that require negotiation per-message or per-requests, ECC would be
the wrong choice. However, considering the types of scenarios considered for
integration, as presented in the next section, per-message negotiation is not often
the case, such that ECC is a viable solution for efficient capability creation and
verification.
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5 Integration
XtreemFS is a distributed file system that directly leverages the VO support fea-
tures embodied in XtreemOS, a Grid-aware operating system. In contrast to the
conventional middleware approaches that require constant awareness of the very
existence of distributed files (e.g. users are often required to shift their data around
themselves and explicitly make sure the outputs are stored at stable storage), the
direct integration with operating system level mechanisms provides a possibility
to reduce user awareness of distributed Grid environment and enhance the trans-
parency of using the Grid as a ’black-box’ computing resource.

The aim of this section is to describe such integration in the context of the
XtreemOS project. Section 5.1 describes two XtreemFS usage scenarios that mo-
tivate the integration and highlight the typical settings of such usages. The remain-
ing sections present the necessary steps that are required to setup and operate such
scenarios. Especially, we will look at how XtreemFS could leverage the security
services developed by WP3.5 to support secure file access and volume mounting.

5.1 Motivating Scenarios
The job submission is a process which involves a VO user’s preparation of the job
description, then submitting it along with the user’s certificate into the AEM, and
finally, if all goes well, executing the job on the node designated by the AEM. The
user needs to register with one or more VO(s) hosted by a VOHost system before
the job submission process can be started.

Figure 13 shows this process. The user obtains her certificate from the CDA
service, and she states the job details and requirements in a JSDL document. AEM
has components running on the target nodes which use the user’s certificate to
provide the PAM authentication.

In this section we focus on the details of the interaction between the job ex-
ecuted on the node and the XtreemFS volumes. The user is a member of a VO,
and the job submission occurs within the VO. The XtreemFS access should there-
fore occur within the VO as well. To clarify these interactions, we introduce two
scenarios:

• Scenario 1: file system support for job submission in static mounting (vol-
umes mounted before a job is submitted), start a job, given the path, the
JobManager to specify the input and output files on a mounted volumn of
XtreemFS.

• Scenario 2: file system support for job submission in dynamic mounting
(volumes mounted on-the-fly while/after a job is submitted)
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-PAM Authentication 
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Cert
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Figure 13: Basic AEM Job Submission Process. The dash line means that users
need to join a VO hosted by the VOHost system before the job submission process
can be started.
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Each of the scenarios implies certain requirements that need to be heeded in or-
der for scenario to be feasible. The requirements stem from the way the user (i.e.,
the person submitting a job) sets up the job submission, the way the XtreemFS
services pass the submission and execute the job, and provide a way for the user
to collect the job results.

5.1.1 Static mounting

A convenient way, as far as the user is concerned, is to provide a path to a binary
in a way that is independent of the node that would actually execute the file. A
default mount point, with a known volume name, is used to mount XtreemFS
volume(s) on the nodes, along with the machine booting process, to reduce the
complexity of interacting with XtreemFS. Such volumes are pre-mounted once the
nodes are ready. As they are being pre-configured, and available for use without
users’ intervention, this kind of mounting is referred as static. This scenario is
illustrated in Figure 14.

Assuming the volume has been statically mounted, the user does not have
to express specifically which volume to use. However, to make such a usage
possible, the following requirements need to be fulfilled:

• Designated volumes. Upon creation of a VO, certain volumes need to be
designated to be assigned to the VO only, each of these volumes to be used
for specific purpose (e.g., binary and library storage or data storage). Ac-
cording to the current agreements between WP3.3 and WP3.4, this assump-
tion will be followed.

• A unique mount point. The mount point of the volumes will have to be the
same on all the nodes that execute jobs within a VO. This means that its path
and name should not clash with any existing and possible future paths used
on the node. We could ensure that by agreeing on a root path to all mount
points (e.g. /mnt/xtreemfs), following by the VO’s ID. However, using the
ID might disagree with the following requirement.

• A well-known mount point path. The users submitting the job need to
know the exact path to the volume’s data as mounted on the nodes. This
means that the path would have to either be an obvious one (e.g.,
/mnt/xtreemfs/voSurveys_bin for a volume containing binaries in the VO
named voSurveys), or there should be some means for the members of the
VO to list these default mounting points. The system should therefore pro-
vide the means to map the volume’s ID into a generic, user-friendly name.

• Mount before the first use. The node designated for an execution of a job
needs to have a service that ensures the volume to be mounted before the
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job needs it. This would have to be either a separate service which runs and
mounts the volume as soon as the node is ready for execution, or an AEM
service which mounts the volume before submitting the first job on the node
for the VO.

From the requirements, and to make the usage of the statically mounted vol-
umes, the following steps need to be taken:

• VO creation: the VO administrator should ensure the designated volumes
(one for binaries, another one for data, possibly some other) are created.
This could possibly happen automatically with the VO creation, thus mak-
ing it part of a VO creation process. In Figure 14, the dash line between
X-VOMS and MRC illustrates this interaction.

• Job submission preparation: the volume needs to be populated with the
files needed for the job execution. This means that the VO administrator
needs to copy the files commonly needed throughout the VO to the volumes.
Additionally, each user that wants to submit a job would have to mount the
volume on the client and copy the job-specific files there.

• Internal node initialisation: if the volume is to be mounted before any
jobs are executed, then the services on the node have to mount the volume
when the machine is added to the VO. The machine already having been
added to the VO has to mount the volume upon boot-up.

• Job execution: alternatively, if the mounting occurs after the node initial-
isation, the node’s services need to check whether the volume is mounted
before executing the job, and if not, they should trigger the mounting.

5.1.2 Dynamic mounting

In the dynamic mounting scenario, as illustrated in Figure 15, the user requests a
custom (i.e., a non-VO-default) volume to be mounted for the duration of the job.
In the process of the job submission preparation, the user specifies the volume
used as well as the mount point. We focus here just on attaching an existing
volume to the node where the job is going to be executed. Since the resource
management is considered as a task of the VO management a user has to canalize
it this way. We can thus observe the following requirements for the scenario:

• Mount point availability. Currently, the job specification includes the
paths to files that have to be known and valid in advance. This means that
the mount point specified by the user has to exist on the node executing the
job, and it needs to either be available or already host the required volume.
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Figure 14: Static mounting with AEM job submission, with the volume infor-
mation passed in the user’s certificate, JSDL, or directly translated by the MRC
based on the VO information embedded in the certificate. A few steps, illustrated
by the dash lines, happen before the job can be submitted: a VO is created by the
VO administrator on a VOHost; this triggers the creation of a volume for the VO
on the XtreemFS; before a job can be submitted, the user should make sure the
needed files (e.g. binaries) on the designated mounted volume on a well-known
mount point.

• User allowed to use the volume. While in the static case the user is gen-
erally allowed the access to the volume, in the dynamic scenario this may
not be the case. An attempt to mount a volume on behalf of a user not
authorised for the volume usage will fail, and thus the whole job will fail.

The following steps need to be taken in their respective phases:

• Job submission preparation: the volume content preparation is up to the
user submitting a job. The user thus needs to mount the volume on the client
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machine and place the files required by the job into the volume. Next, the
user needs to form up the job submission specification to include the volume
information and the mount point in the way that the job’s processes expect
them. Note that the mount point of the volume and the mount status on the
client machine is independent of the mounting points and their respective
status on the target nodes.

• Job execution: a service designated for the job execution on the node (usu-
ally AEM’s Execution Manager) needs to mount the volume in the specified
mount point before executing the job, and unmount it after the job finishes.
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Figure 15: Dynamic mounting with AEM job submission, where the mounting
occurs for the job on user’s demand according to the job specifications in the
JSDL. The green line illustrates a mounting action particular to a specific job
submission.
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The JSDL specification6 is flexible enough to provide for the user the possi-
bility to express a requirement of a volume to be mounted for the job. This can be
done within the FileSystem element of the JSDL, providing the name of the VO
volume needed to be mounted in the MountSource element, and, possibly, using
MountPoint element to provide a fixed path where the volume has to be mounted
in.

Here is an example of the JSDL catered for this purpose:

<jsdl:FileSystem name="Custom VO volume">
<jsdl:Description>

An example of expressing a requirement for the job
to have the volume with the name/ID myVOvolume
available from the node’s local path
/mnt/xtreemfs/myVOvolume. Here we assume that
the volume can be expressed with:
xtreemfs:volumeID

</jsdl:Description>
<jsdl:MountPoint>

/mnt/xtreemfs/myVOvolume
</jsdl:MountPoint>
<jsdl:MountSource>

xtreemfs:myVOvolume
</jsdl:MountSource>

</jsdl:FileSystem>

5.2 Integration points
5.2.1 User Account Management

Like the conventional Linx/Unix based file systems, XtreemFS itself doesn’t man-
age users. Instead, it relies on the user management facility provided by the
XtreemOS VO Membership Service (X-VOMS), a component being developed
by WP3.5 - security and VO management. In XtreemFS, a user is identified by a
Global User Identifier (GUID). Two distinguished GUIDs represent two different
users. These GUIDs, like its counterpart UIDs in Linux, provide a unique way to
identify users across the entire system. Upon registration with a VO Hosting sys-
tem (VOHost), a user is allocated a GUID, which is a 32-byte alphanumeric iden-
tifier in hexadecimal format, such as: db7749c4-1972-42d6-807c-6ef550c90e9b7.
The GUIDs are globally unique even when multiple VOHost systems are present.

6http://www.gridforum.org/documents/GFD.56.pdf
7Note that the hyphens are not part of the GUID. They are included for presentation purpose.
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It should be pointed out that it is possible for a user to register with a VOHost
(thus, giving a GUID) without being associated with any VOs. This is supported
in the current X-VOMS/VOHost implementation. A user can register with one
VOHost multiple times or with multiple VOHosts, thus acquiring distinct GUIDs.
However, in those cases, the user will be treated as different users, each identified
by a GUID.

5.2.2 User Credential Management

In addition to GUIDs, Global Virtual Organization Identifiers (GVIDs) and Global
Group Identifiers (GGIDs) are also useful credentials for XtreemFS. Similarly,
these IDs are also managed by the X-VOMS. A GVID, generated when a VO is
created, is associated with a user (i.e. the corresponding GUID), thus effectively
making the user the owner or a normal user of the VO. Such an association can
occur while the VO is created or after8.

GGID, also generated by the X-VOMS upon the creation of a new group in a
VO, is associated with a user when a user joins a group in a VO. The relationship
between a VO group and a GGID is one-to-one. This is a VO model being sup-
ported in the M24 release. Putting it simply, a VO model is the type of attributes
that a VO supports. For example, the EGEE VO membership service (VOMS)
supports four types of vo attributes: role, group, subgroup, and capability. A VO
creator can choose which attributes his VO supports.

In the future releases, GGIDs can be associated with other attributes under
different VO models. For example, it is possible to associate a GGID with a role
of a group within a VO. That is, a GGID is uniquely mapped to a VO role within a
VO group of a VO. Depending on the VO model, furthermore, it is even possible
to associate a user (i.e. GUID) with different GGIDs, one for each combination
of attributes in various VO models.

We have described GUIDs in the previous section. This section will concen-
trate on GVIDs and GGIDs, especially on how they can be used, together with
GUIDs, to manage the Access Control Lists (ACLs) in XtreemFS.

To support file sharing among users globally, XtreemFS uses the concept of
Global Groups. A global group, identified by a Global Group Identifier (GGID),
is uniquely defined across the entire XtreemFS. GGID mimics the GID concept
in conventional Linux based file systems to allow users to share their files glob-
ally, regardless of the number of physical machines that files reside on and the
administrative domains under which files are being managed.

8The former is being supported in the first XtreemOS release (i.e. May/June 2008, also refered
as M24 release).
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5.2.3 Credentials Used in Mounting

Before a user or a job can access the data in the volume, the volume needs to be
mounted on the local file system. The rights to mount a volume differ from the
rights to access the contents/files of that volume. For the job execution purposes,
there are two options:

1. User’s credentials. The user on whose behalf the job is running needs
the rights to access the volume and to have it mounted on the node. The
service performing the mounting also needs to have the mounting rights on
the node. This case will be necessary in the dynamic mounting scenario.

2. Node’s credentials. The machines providing resources to the VO have the
machine certificates, and they also have an attribute certificate for each VO
they are members of. This means that the service making static mounts
to the VO can provide the machine certificate with attributes proving the
membership in a VO to mount a VO-related volume.

Mounting a volume is typically managed by a privileged process on a node.
Like other conventional network file systems, MRC can also control how and who
can access XtreemFS volumes. This is the access control on volumes. On the
other hand, accessing the contents on a volume is jointly determined by a user’s
credentials stored in the user’s XOS-Cert and the file access control rights/lists
managed by the MRC. Let us focus on the former case as this section is concerned
with mounting volumes.

Privileged Accounts for Performing Mounting There are two sides of the
story. First of all, the account which performs mount needs to be a privileged
one. Quoting from the Linux man page,

Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required
to mount and unmount filesystems.

Thus, the service, be it a stand-alone daemon service or an AEM service, per-
forming mount has to be run by such a privileged user. For static mounting, this
may not be an issue as the mount operation is performed by the node before-
hand, for example, during the system boot process. The operation has nothing to
do with users who use the volume. As long as the volume is pre-mounted, any
non-privileged user can access it.

However, this could be a problem for dynamic mounting. One solution is
to have a prvileged daemon service awaiting for such an on-demand mounting
request, for example, based on some specific privileges given in the user’s XOS-
Cert. Once the service authenticates the mounting request, it shall mount the
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volume on behalf of the user. Subsequently, this volume can be made available to
the user and others.

An alternative is to map (for example, by the PAM module) the user, to a
privilege account so that the job can trigger mount itselve on the nodes without
contacting an separate privileged service.

Volume Mounting Controls on MRC On the other hand, the MRC, the re-
ceiving end of a mounting operation, also needs to have security control in place.
Similarly, this can either rely on user or node credentials. For example, it is pos-
sible to have a ACL on MRC to control who, be it a user or a node, is allowed to
mount a particular volume. There are various conventional ways of coping with
such. For the approaches using PKI, there are utilities such as pam_mount, which
can mount volumes for a user session and unmount it when a user logs out. An-
other approach, also based on PKI is sshfs, which is part of FUSE and allows
mounting using the SSH protocol. For further details, please refer to [9].

5.3 Discussion
5.3.1 How to obtain volume information?

Although volumes can be mounted in different ways, it still remains open how the
volume information gets into the nodes. Essentially, this can occur via one of the
following routes:

1. volume info is known to users so that they can specify it in the JSDL;
2. volume info is kept by X-VOMS/VOHost and disseminated via the XOS-

Cert; or
3. volume info is well-known among all nodes (i.e. to the resource admins

who own the nodes) so that the nodes know how to ’look up’ the volume
information locally, given a XOS-Cert.

Option (1) is most demanding as it requires users to keep track of volumes
themselves. This is cumbersome, and does not scale well as resource owners (of
the nodes) need to keep all users informed of their volmne setups. Option (2)
has better scalability than (1) as resource owners only need to keep the VOHost
system informed and users are kept transparent to the volume issue. Option (3) is
most transparent to users. They are not required to be aware of the existence of
XtreemFS volumes as the complexity of facilitating the interactions between jobs
and XtreemFS volumes is totally hidden from the users.

It should be emphasised that all these choices are based on the fact that vol-
umes are created per VO. Effectively, this demands the following settings:
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• there is an interface between VOHost and MRC to allow creation of vol-
umes for VOs.

• there is an agreed volume naming scheme among users and resource own-
ers. One candidate of naming volumes is to use a VO name as a volume
name in the static (and default) mounting setting.

5.3.2 Optimizing Static Mounting
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Figure 16: When we have multiple XtreemFS providers and VOs to host on the
nodes, we can consider pre-mounting (solid lines) or lazy mounting upon need
(dotted line).

In the process of mount-use-unmount of the volumes, we need to consider the
performance of XtreemFS interactions when we have multiple storage providers.
Figure 16 illustrates this case where, on the nodes, we host multiple VOs, each of
which might have one or more XtreemFS provider. In this case, keeping all the
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possible volumes mounted statically all the time may introduce a large overhead
into the system.

Alternatively, we can consider ”lazy“ mounting procedure even for the static
case. In this procedure, we do not actually mount the volume until the first job
requires the data from the volume. However, while lowering the overhead, the pro-
cedure would complicate the system, requiring it to keep accounts on the accesses
and periodically unmount those volumes that have not been used for a certain time
duration.

5.3.3 Lifecycle of VOs and Volumes

So far, the discussion has been based on one volume per VO. This strategy gives
the benefit of managing files belonging to different VOs easily. However, in some
cases (e.g. short-lived VOs or sharing among VOs), the one volume per VO strat-
egy may incur unnecessary overheads or even make the mount-unmount opera-
tions overly expensive.

An alternative solution would be to allow all VOs belonging to a VOHost to
share one common volume. In this strategy, files belonging to all VOs can be
found on a well-known mount point on a single volume. Thus, the mount point
and path to the volume remain the same throughout the lifetime of the volume,
regardless of

• whether it is static or dynamic mounting and
• however many VOs are created dynamically.

For example, a VOHost system hosts three VOs: V O_1, V O_2, and V O_3.
The named volume on a well-known mount point, say /mnt/xtreemfs/V O_-
FOR_V OHOST1, for the VOHost is allocated when the VOHost establishes
connections with the MRC. The path to each VO directory becomes:

• /mnt/xtreemfs/V O_FOR_V OHOST1/V O1,

• /mnt/xtreemfs/V O_FOR_V OHOST1/V O2 and

• /mnt/xtreemfs/V O_FOR_V OHOST1/V O3.

This strategy may be able to reduce the complexity of managing volumes
and could be suitable for hiding away the complexity of managing VOs from
XtreemFS. However, because files belonging to all VOs are mounted, it still re-
mains unclear whether the overheads are acceptable.
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6 Conclusion
In this document we addressed the aspects which are of increasing interest at
that point in time since the XtreemOS project more and more will be integrating
the different components. The goal is to provide different variants of possible
solutions and support an efficient decision process within XtreemOS.

The first question we picked up is how access control within XtreemFS can
work. Here we reviewed the literature and pointed out the applicability of these
approaches to XtreemFS. This work is actually two dimensional, since on one
dimension different mechanisms can be used and on the second dimension differ-
ent cryptographic mechanisms are proposed for the application within XtreemFS.
Since crypto algorithms can usually be exchanged very quickly due to their simi-
lar interfaces we put into account if implementations exist and are compatible to
in terms of the software license.

The third part of the document is focussing on the integration of XtreemFS
together with XtreemOS. Here we focus on what has to be prepared to have ev-
erything in place once a job starts its execution. Starting from the current state of
implementation we sketched what kind of information has to be provided in order
to make the binaries and the job data available in order to execute the job. Again
we provide different alternatives in order to prepare an efficient decision process
within XtreemOS.
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