
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

XtreemOS-G for MDs/PDA
D3.6.3

Due date of deliverable: November 30th, 2008
Actual submission date: December 16th, 2008

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP3.6
Task number: T3.6.3

Responsible institution: Telefónica I+D
Editor & and editor’s address: Santiago Prieto

Telefónica I+D
Parque Tecnológico de Boecillo

47151 Boecillo (Valladolid)
SPAIN

Version 1.0 / Last edited by Santiago Prieto / December 16th, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 24/9/08 Luis Pablo Prieto TID Initial template
0.2 13/10/08 Luis Pablo Prieto TID Introduction
0.3 22/10/08 TID Team TID Credentials chapter
0.4 27/10/08 Jesús Malo, Luis Pablo Prieto TID, BSC XtreemFS chapter
0.5 3/11/08 TID Team TID Finishing credentials chapter
0.6 4/11/08 Luis Pablo Prieto TID Future work chapter
0.7 5/11/08 Luis Pablo Prieto TID Execution client chapter
0.8 6/11/08 TID Team TID XOSAGA and AIK chapters
0.9 7/11/08 Luis Pablo Prieto TID Finishing touches. Ready for internal review

0.98 14/11/08 Luis Pablo Prieto TID Added comments from first review
0.99 27/11/08 Luis Pablo Prieto TID Added comments from second review and executive

summary
1.00 16/12/08 Santiago Prieto TID Final version

Reviewers:
Haiyan Yu (ICT), Matthias Hess (NEC)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T3.6.3 Implementation and integration of basic services in mobile

devices
TID∗, BSC

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary

Grid computing and other sibling concepts like metacomputing, virtual organi-
zations (VOs) and, more recently, “cloud computing” have been around for more
than two decades. However, they have failed to reach wide acceptance, except
among certain scientific communities and, even there, complaints are often heard
about the difficulties of using and administrating it, specially in large scale projects.
The XtreemOS project aims to change this situation by delivering a modified
Linux operating system with grid capabilities embedded in it, so that operating
inside VOs is transparent for users, easy to manage and scalable to thousands of
nodes.

Moreover, it has also been an old aspiration of grid computing to extend its
reach, not only to PC computers, but also to any machine capable of providing
any kind of computing, storage or interface capabilities, from high performance
computing (HPC) clusters to mobile phones. XtreemOS also addresses this aspira-
tion, by the inclusion of several flavours of the operating system for PCs, clusters
and mobile devices. XtreemOS-MD is the flavour of XtreemOS designed to run
in mobile devices like mobile internet devices (MIDs), personal digital assistants
(PDAs) or mobile phones, although this software could also be made to run over
other kinds of embedded devices such as set-top-boxes or satellites.

In order to realise this vision, XtreemOS-MD has been divided into two layers:
a low-level foundation layer (F-layer) which embeds virtual organization concepts
into the operating system mechanisms, and a high-level grid services layer (G-
layer), which implements and coordinates the interactions among multiple nodes
across the VO, to provide distributed computing and storage in a secure manner.

This document closes the development process for the basic version of XtreemOS-
MD, by describing the software modules that comprise the G-layer of XtreemOS-
MD. This description includes not only the technical details about the software, but
also building and installation instructions for any potential user that would like to
try the software. Moreover, it also includes the programming interfaces as well as
usage examples for each of the modules.

The modules described in this document are:

• A fully modular and flexible Credential Acquisition Framework (CAF),
which will be used in XtreemOS-MD to obtain the virtual organization user
credentials from the Credential Distribution Authority (CDA), as defined in
the XtreemOS security infrastructure. This framework not only is able to
connect to XtreemOS CDAs, but can also be customized to access other in-
frastructures like Kerberos or MyProxy. This module also includes a proxy
server for the CDA, which relieves mobile devices from several of the time-
consuming operations that public key infrastructures (PKI) impose on a mo-
bile device.

IST-033576 D3.6.3

• A XtreemFS client for mobile devices, which uses common Linux mech-
anisms like FUSE and VFS to make files stored in the grid filesystem to
appear as local files. It is a porting of the PC flavour XtreemFS client, with
additional options suitable for mobile devices enabled (e.g. caching mecha-
nisms) and several bugfixes, which have already been ported back to the PC
flavour of XtreemFS.

• An Application Execution Management client for mobile devices, which
will allow mobile users to launch, monitor and manage jobs running in the
virtual organization’s resources. This module is based on the C implementa-
tion of the XtreemOS Application Toolkit Interface (XATI).

• A version of the XOSAGA API for mobile devices, which will allow mobile
grid applications to be developed using a simple C++ programming interface
based on the Open Grid Forum (OGF) SAGA standard. Moreover, this will
also provide portability for applications programmed with this API, indepen-
dently of the underlying grid middleware (be it XtreemOS or otherwise).

• A number of tools gathered into an Application Integration Kit (AIK) for
mobile devices, which eases the integration of XtreemOS mechanisms (such
as the aforementioned Credential Acquisition Framework) with new and ex-
isting (legacy) applications, providing single sign-on, autoconfiguration and
auto-mounting functionalities to end user applications in a transparent way
(both for application programmers and for mobile end users).

The development of XtreemOS-MD will from now on concentrate on integrate
the different software modules with each other, and with the other layers of the
XtreemOS operating system, to deliver a mobile grid operating system that is easy
to install and easy to use, even by non-expert users. Thus, the first release of
XtreemOS-MD for MIDs/PDAs will be announced some time before the summer
of 2009.

XtreemOS–Integrated Project ii

Contents

1 Introduction 4
1.1 XtreemOS-MD usage scenarios 4
1.2 XtreemOS-MD architecture . 5
1.3 XtreemOS-G modules in mobile devices 5
1.4 Document structure . 7

2 Credential Acquisition Framework for Mobile Devices 8
2.1 Main features . 8
2.2 Software description . 9
2.3 System requirements . 10

2.3.1 Hardware requirements 10
2.3.2 Software requirements 10

2.4 Installation . 12
2.5 Configuration . 12
2.6 Interface . 16
2.7 Usage examples – Testing . 20

3 XtreemFS client for mobile devices 23
3.1 Main features . 23
3.2 Software description . 24
3.3 System requirements . 24

3.3.1 Hardware requirements 24
3.3.2 Software requirements 24

3.4 Installation . 25
3.5 Configuration . 25
3.6 Interface . 26
3.7 Usage examples . 26

4 Execution management client for mobile devices 28
4.1 Main features . 28
4.2 Software description . 29
4.3 System requirements . 29

4.3.1 Hardware requirements 29

1

IST-033576 D3.6.3

4.3.2 Software requirements 30
4.4 Installation . 30
4.5 Configuration . 30
4.6 Interface . 31
4.7 Usage examples . 33

5 XOSAGA API for mobile devices 35
5.1 Main features . 35
5.2 Software description . 35
5.3 System requirements . 36

5.3.1 Hardware requirements 36
5.3.2 Software requirements 36

5.4 Installation . 37
5.5 Configuration . 37
5.6 Interface . 38
5.7 Usage examples . 38

6 XtreemOS-MD Application Integration Kit 39
6.1 Main features . 39
6.2 Software description . 40
6.3 System requirements . 43

6.3.1 Hardware requirements 43
6.3.2 Software requirements 43

6.4 Installation . 43
6.5 Configuration . 44

6.5.1 xtreemfs configuration section 44
6.5.2 xatica configuration section 44
6.5.3 Configuration file example 45

6.6 Interface . 46
6.6.1 Included utilities . 46
6.6.2 libxos_getcred API 47
6.6.3 libwrapopen API . 48

6.7 Usage examples . 48

7 Future work 49

References 50

XtreemOS–Integrated Project 2

List of Figures

1.1 XtreemOS-MD Software Architecture 6

2.1 XtreemOS credential acquisition + single sign-on framework . . . 11

6.1 XtreemOS credential acquisition + single sign-on framework . . . 41

3

Chapter 1

Introduction

XtreemOS is an open source operating system that integrates grid functionalities,
allowing its users to interact inside virtual organizations (VOs) that are secure,
highly scalable, and which are easy to setup and easy to use. The final vision
would be for users to access the resources of the virtual organization (e.g. CPU,
storage) in the same way as they would use their local computer’s resources. And
by “local computer”, we understand not only standard PCs, but also clusters of PCs
and even mobile devices.

XtreemOS-MD is the mobile device flavour of XtreemOS which, on the first
release of the software, will provide a number of open source packages for Linux
PDAs and similar devices (e.g. internet tablets), which will enable those devices to
act as XtreemOS grid clients in a transparent and easy way.

In every XtreemOS system, the software components can be grouped into two
basic layers: a low-level Foundation layer (or F-layer) which is intended to provide
operating system entities with support for VO entities (e.g. VO users, as opposed to
local users). On top of this layer, the Grid Services layer (or G-layer) provides grid-
wide functionalities such as reliable and scalable data management or application
execution management.

This document presents the implementation of the XtreemOS grid services
for mobile devices, more concretely, its basic implementation suitable for run-
ning in Linux PDAs. It will describe the functionalities provided by the different
software components, detail how to build and install them, and briefly describe
the interfaces (e.g. user interfaces, programming interfaces) through which those
functionalities can be accessed.

1.1 XtreemOS-MD usage scenarios

In order to better picture what kind of functionality can be expected from the soft-
ware described in this document, please read the following typical user scenario:

Bob has just started working for an aerospace simulation company
(ASC), which is part of a group of companies and universities who

4

IST-033576 D3.6.3

share their resources for conducting simulations more efficiently. This
group has been constituted into a virtual organization which we will
call “Simulations VO”.

When Bob joins the company, he is automatically registered as a
user of that VO, receiving for example a username and password for
using the VO’s resources.

On his first week at ASC, Bob has to visit some customers to
present the results of the latest simulations, and decide the next steps to
be taken. Bob receives from the company a brand new XtreemOS-MD
Internet Tablet.

On his way to the airport, he decides to work out some details with
his workmate Alice. To their surprise, they discover that some of the
needed simulations had not been run.

Bob uses his tablet to start the simulations, which perform com-
plex renderings and obtain 3D video renditions of the simulation. The
simulation applications and data are stored in VO servers only accessi-
ble to members of Bob’s company with a certain security qualification,
and a user/password is asked before granting access. However, the in-
terface for accessing all this grid data is the same as with any other
local file or program.

Once the simulations are ended, Bob accesses from his device the
(gigabyte-sized) video files which are stored in other VO machines,
and visualizes them without having to enter additional credentials.
Now that all the simulations have been performed, Bob and Alice can
continue preparing the meeting...

1.2 XtreemOS-MD architecture

This first version of the XtreemOS-MD software is structured in a series of open
source software packages that should be easily integrated in any modern mobile
Linux distribution for PDAs or Internet tablets which use the ARM architecture.
Although most of the code is independent of the rest of the software stack, XtreemOS-
MD will be packaged for easier installation in two Linux distributions: Maemo [4]
and Ångström [1].

The typical archictecture of a XtreemOS-MD software stack is pictured in fig-
ure 1.1.

As it has been already mentioned, the current document relates to the G-layer
of the software (in yellow in the figure).

1.3 XtreemOS-G modules in mobile devices

The modules described in this document include:

XtreemOS–Integrated Project 5

IST-033576 D3.6.3

Figure 1.1: XtreemOS-MD Software Architecture

• A version of the XtreemOS API (XOSAGA) for mobile devices. This is the
official XtreemOS API for grid applications, which is based on the Open
Grid Forum’s Simple API for Grid Applications (SAGA) [6]. By using this
API, any SAGA-based grid application will be able to run on XtreemOS (re-
gardless of the original grid infrastructure used when it was first designed).

• A credential acquisition agent, which is a modular, extensible infrastruc-
ture for obtaining security credentials, either XtreemOS user certificates (ob-
tained from a Credential Distribution Authority [15]) or other kinds of cre-
dentials.

• A XtreemFS grid filesystem client [11] for mobile devices, which uses FUSE
[3] to make the grid-wide filesystem to appear as any other local filesystem
for accessing grid data securely.

• An XtreemOS Application Execution Management (AEM) client [2] for mo-
bile devices, used for launching and managing grid jobs.

• An Application Integration Kit, containing a number of utilities, libraries
and scripts that can be used for easily integrating XtreemOS functionality
into legacy and new mobile end-user applications.

XtreemOS–Integrated Project 6

IST-033576 D3.6.3

1.4 Document structure

The rest of the document is structured as follows: chapters 2 through 6 will present
the different modules included in the software: the credential acquisition agent
(chapter 2), the XtreemFS client (chapter 3), the AEM client (chapter 4), the
XOSAGA interface (chapter 5) and the Application Integration Kit (chapter 6).
These chapters will cover the user’s guide to building, installing and configuring
the software, the interfaces for usage and programming, and will also include ex-
amples of how to use it.

Afterwards, chapter 7 explains some of the next steps to be taken after the first
software release, in order to design and implement the advanced version of the
XtreemOS-MD software which, among other things, will add support for smart-
phones.

XtreemOS–Integrated Project 7

Chapter 2

Credential Acquisition
Framework for Mobile Devices

In order to securely authenticate and interact with a virtual organization, a XtreemOS
user has to obtain adequate credentials which guarantees his identity. In an XtreemOS
system, this is done by obtaining a kind of X.509 credentials (called XOS-Certificate,
or just XOS-Cert) from a XtreemOS credential distribution service, called Creden-
tial Distribution Authority (CDA). Please refer to deliverable D3.5.5 [15] for more
information about this process and about the CDA.

In XtreemOS-MD, and using the CDA client program as a starting point, we
have developed an extensible, modular framework for obtaining user credentials,
which includes the current XOS-Cert request, as well as other enhancements that
make this process more adequate to a mobile device environment.

2.1 Main features

By installing this software, an XtreemOS-MD client will be able to:

• Obtain XOS-Cert certificates directly from the CDA for a certain VO, and
store them securely in the device, either permanently (hard disk/permanent
storage) or in memory (for single sign-on functionalities – see chapter 6).

• Obtain other kinds of certificates, or use other methods for obtaining them
(e.g. from MyProxy, Kerberos) and store them securely in the device, either
permanently or in memory (for single sign-on functionalities – see chapter
6).

• Obtain the certificates through what we call a CDAProxy (proxy as in me-
diator, not as in proxy certificate) node, which can also act as a credentials
cache, or as a kind of “authentication method converter” (in case the VO or
the device support different authentication methods).

8

IST-033576 D3.6.3

• Configure this framework to use one of the many possible authentication
methods, with or without using a CDAProxy, and to use different kinds of
graphical interfaces to authenticate the user.

• Extend this framework to other authentication methods, or to different graph-
ical interface stacks, by implementing a simple API.

2.2 Software description

The framework for the acquisition of certificates presented here is designed for
flexibility and modularity, so that it can be used even outside the XtreemOS grid
system, allowing grid and security implementors to mix and match different pro-
cesses for interacting with the credential distributor and with the users.

The software is composed of several packages:

libxos-credagent is a modular library for obtaining credentials. It is designed to
abstract the request of credentials, and make it independent of the concrete
method used for getting them. The different methods have been developed
in separate libraries in a plugin fashion, and new ones can be easily added,
since they are dynamically loaded as needed, in a similar vein as Pluggable
Authentication Modules (PAM) do. The current software implementation
includes four different modules:

• xos_credagent_example.so is a simple example implementation, where
the credential is expected to be in the module’s configuration file.

• xos_credagent_runprogram.so is another simple example, that in-
vokes a custom application, which is expected to return the credential
over its standard output (e.g. could be a script that downloads the cre-
dential from a web server and uses cat to return it).

• xos_credagent_cdaclient.so asks for the credential to an XtreemOS
Credential Distribution Authority (CDA). This is the typical method to
be used in a XtreemOS system.

• xos_creadgent_readfile.so expects the credential to be read from a lo-
cal file. This file can be encrypted, and several ways of interacting with
the user are supported (e.g. to confirm that it is the user who wants to
read the file, or to ask for a passphrase, etc).

Apart from these modules, the interactions with the user have also been ab-
stracted so that different implementations can be used interchangeably, de-
pending on the device’s software and the concrete authentication methods
desired. Currently, only one implementation is included:

• xos_creduiagent_gtk.so uses the GTK+ graphical interface toolkit for
graphical interaction with the user, which is present in all XtreemOS-
MD devices.

XtreemOS–Integrated Project 9

IST-033576 D3.6.3

cdacclient includes the concrete implementation of the protocol to obtain XOS-
Certs from an XtreemOS CDA, both as a library and also as a configurable
application which uses this library.

cdaproxy implements a proxy (mediator) process, residing in a non-MD node,
which can be used to alleviate the load that generating private/public keys
pose for limited devices, and which can also double as credentials cache, or
even as an authentication system converter, in case the device and the infras-
tructure use different authentication methods (e.g. Kerberos, MyProxy).

Figure 2.1 shows the relationships among these pieces of software, as well as
with other security and VO-related components in XtreemOS-MD (see chapter 6
and D2.3.4 [17] for a more detailed explanation of those modules), providing a
fully customizable and extensible security and single sign-on framework suitable
for mobile devices.

2.3 System requirements

2.3.1 Hardware requirements

XtreemOS-MD is built to be run in ARM devices (such as PDAs or internet tablets).
However, the source code will build and install equally well in standard PC ar-
chitectures, and in any other architecture that supports the software dependencies
below (e.g. MIPS, PowerPC).

2.3.2 Software requirements

This framework has been developed with the design goal of making it integrable
with almost any mobile Linux distribution, thus eliminating all but the most in-
dispensable software dependencies. The software dependencies of each package
are:

For libxos-credagent:

• GLib2

For cdacclient:

• OpenSSL 0.9.8

For cdaproxy:

• OpenSSL 0.9.8

• GLib2

XtreemOS–Integrated Project 10

IST-033576 D3.6.3

Figure 2.1: XtreemOS credential acquisition + single sign-on framework

XtreemOS–Integrated Project 11

IST-033576 D3.6.3

For xos_creduiagent_gtk:

• GTK+ 2

For xos_credagent modules:

The software dependencies vary with the different modules in use, but no module
uses more than:

• OpenSSL 0.9.8

• cdacclient

2.4 Installation

The process for building and installing the packages that form the framework is
straightforward:

1. Download the packages from the XtreemOS SVN repository:

svn co
svn+ssh://user@scm.gforge.inria.fr/svn/xtreemos
/xtreemos/grid/mobile/caf

2. Execute as root: install.sh

2.5 Configuration

In order to configure the framework to function in the desired mode, a number of
configuration files have to be edited. The following commented examples will help
in understanding the way they operate:

For libxos-getcred:

The different configurations for this library (e.g. there can be one configuration for
each end user application, groups of applications or just a single configuration for
the whole system) are specified in the files /etc/xos/creds/<configuration>.conf.
An example file can be seen below:

[general]
credagent=xos_credagent_cdaclient
creduiagent=xos_creduiagent_gtk
[credagent]
cda_host=192.168.15.45
cda_port=8080

XtreemOS–Integrated Project 12

IST-033576 D3.6.3

cda_vo=votid
cda_user=bob
#cda_password=password
#ask_confirm=true
use_ssl_proxy=false
use_proxy=true
#server_pem=server_pem
#ca_pem=ca.pem
cache_file=/tmp/credential.pem
fsuidisuid=true
renew_if_expire_before=36000

The format of files is similar to that of “.desktop” files in GNOME and KDE,
and are also very similar to the Windows “.ini” files 1.

A configuration file must include at least three sections: general, credagent
and creduiagent (the creduiagent section may be omitted if the credagent
does not use interactions with the user).

[general] section

Inside [general] section, five parameters are available. The only mandatory one is
credagent:

• credagent: This parameters sets the name of the credential acquisition
module to be used. The module must be a similarly named “.so” file present
in /lib/security.

• creduiagent: This parameter sets the name of the user interaction mod-
ule that must be present in /lib/security. This module is optional,
since the credential acquisition module may not interact with the user, or
may interact with him using a method hardcoded in the module itself.

• alloweduser: If this parameter is used, the module may be used only by
programs with the UID (real UID, not EUID!) of the username specified. If
this parameter is used in combination with allowedgroup, members of
the group specified in the group allowed are also authorized.

• allowedgroup: If this parameter is used, the module may be used only
by programs with the GID (real GID, not GUID!) of the specified group. If
this parameter is used in combination with usergroup, the user specified
is also authorized even if it is not a member of the allowed group.

• fsuid_isuid: If this parameter is true (the default value is false), then
FSUID (the UID used to control the access to files and to set the owner of

1For more details about the valid syntax of these files see the Desktop Entry Specification in
http://www.freedesktop.org/wiki/Specifications/desktop-entry-spec

XtreemOS–Integrated Project 13

IST-033576 D3.6.3

the files created by process) is filled with the real UID instead of with the
EUID. This option is useful, for example, when the program that invokes
libxos-credagent is SUID root, but the files should be accessed or
written as the user that launched the program. Note: this variable doesn’t
change FSGID, which is the EGID.

[credagent] and [creduiagent] sections

The contents of credagent and creduiagent sections are only used by the credagent
and creduiagent modules and may contain arbitrary parameters that only each par-
ticular module may interpret. Therefore, information about the values inside creda-
gent and creduiagent sections are described in the documentation of each particular
module.

For CDAProxy:

CDAProxy configuration file has the same syntax as GNOME/KDE “.desktop”
files. The configuration file has a mandatory section ([proxy]) with the general
configuration of the proxy (e.g. information about ports, whether to use or not SSL,
proxy server certificate etc). Additionally, it has a section for each of the user it sup-
ports. For example, if proxy accepts connections from user bob, a [bob] section
should exist in the configuration file. A optional section [all_users_defaults]
contains parameters that are will be inherited by all users in the different user sec-
tions. Finally, the configuration file may have a special user section: [other_users].
If this section is present, the configuration is applied to any user that does not have
its own user section. If this section is missing, the proxy will deny access to any
user that has no user section.

[proxy]

proxy server use SSL in connections with clients?
usessl=false

TCP port where the proxy listen connections
proxyport=8080

File with the RSA key and certificate of the proxy
server. If you want to generate a self-signed certificate,
run cdaproxy_createproxycert.sh script.
This parameter is mandatory if proxy server use SSL.
proxypem=server.pem

For each username accepted by the proxy, you must
include a section named with the username. In this

XtreemOS–Integrated Project 14

IST-033576 D3.6.3

example, we included the users "bob" and "mary"
##
all_users_default section contains values that are
inherited by all users section. Users sections may overwrite
these parameters.
##
Optionally, you may include a other_users section. If this
section is present, it apply to any user not listed
explicitly. If section is missing only users with a section
in the configuration file are authorized to use the proxy.
##
For each user, it’s possible to load the credential
from a local file (attribute type=local) or request
it to a CDA server (attribute type=cdaserver). In both
cases, attribute "proxy_password" is optional: if
present the proxy authenticates user. If omited and
type=cdaserver, only cdaserver authenticates. If it is
omitted and type=local, user password is used
to decrypt the RSA private key.
##
If type=local, parameter credential_file with the
path of a PEM file with the RSA key and public
certificate is mandatory.
If type=cdaserver, parameters cdahost and cdaport are
mandatory; proxy_password, cda_user, cda_password,
servercert and cacert are optative.

[all_users_default]

Certificate of the server or of the CA that sign the
server certificate. If this parameter is missing,
don’t check the server certificate (this is insecure but
useful for debugging).
#servercert=cdacert.pem

Root certificate of the CA that signs the obtained
certificate. If this parameter is missing, don’t
check the obtained certificate.
#cacert=cacert.pem

The CDA server hostname
cdahost=xtreemos-b.esc.rl.ac.uk

The CDA server port

XtreemOS–Integrated Project 15

IST-033576 D3.6.3

cdaport=6730

credential_file=credential.pem

[bob]
credential is inside credential.pem; the RSA key is
encrypted with the password of "bob". Proxy check
password trying decrypting the RSA key. In the
example file, key is crypted with passphrase "password".
type=local

[mary]
#type=cdaserver
password to authenticate client in our proxy (if it is
missing, authenticate only with server)
#proxy_password=1417

user to authenticate with cda server (not required
if it’s the same as the username on the proxy)
cda_user=mary

password to authenticate with cda server (only
needed if proxy_password is present and the
password is different)
#cda_password=ax!48591XjzFl

[other_users]
type=local

2.6 Interface

libxos-credagent

As mentioned above, libxos-credagent is a library to implement a plug-
gable, modular system to get credentials. The objective of the library is to allow
administrators to change the method used by applications to get the credentials to
authenticate in a Single Sign-On (SSO) system, without source code modification.
The basic interface for this library is:

char *xos_credagent_getcred(char *configuration);

This function returns the credential using the credagent configuration specified
in file /etc/xos/creds/<configuration>.conf. The function returns
NULL if there is any error (e.g. the user is not authorized to read the credential).
The returned credential must be free’d by the caller.

XtreemOS–Integrated Project 16

IST-033576 D3.6.3

Additionally, and in order to read any additional parameters from these config-
uration files, applications have the following interface available:

int xos_setconfigenv(char *config_name,char *section);

This functions maps all the parameters of the specified section in environment
variables, which can be read using getenv. The function returns zero on success.

However, it is recommended that end-user applications do not invoke
libxos-credagent directly, but run a wrapper such as startxtreemos
(see chapter 6) instead. This kind of application has permission to read the
/etc/xos/creds directory.

The advised behavior of applications is to try to obtain the credential from a
cache (a credential store, e.g. using libcredstore, see D2.3.4 [17]) and then, only if
it is not available, to run startxtreemos (which in turn invokes libxos-credagent).
This behaviour is implemented in libxos-getcred, see chapter 6.

libcdaclient

libcdaclient is a C library developed in order to get a credential from a CDA
server or from a CDAProxy. It is used in several applications such as cdacclient,
cdaproxy and in the xos_credagent_cdaclient.so module. A program
that uses libcdaclient must include the header cdaclient.h and be linked
with the -lcdaclient option.

The ordinary method to obtain a credential from a CDA server is:

int cda_client(char *hostname,
int port,char *CDAcertfilename,
char *RootCAcertfilename, char *username,
char *password, char *voname,char **credential,
char **certificate);

Where the parameters are:

• The hostname and port of the CDA server (mandatory).

• CDAcertfilename (optional): if not NULL, it should contain the name of
a file containing the server certificate of the CDA server in PEM format, to
test that the SSL connection is really with CDA server and not with a rogue
server (to prevent a man-in-the-middle attack).

• RootCAcertfilename (optional): if not NULL, it should be the name
of a file containing the root CA certificate (in PEM format) that signs the
obtained credential. This is used to verify that the credential is authentic.

• username and password (mandatory): these are used to authenticate in
the CDA server, and in order to indicate the user for whom the credential
will be generated.

XtreemOS–Integrated Project 17

IST-033576 D3.6.3

• voname (mandatory): the VO to which the user belongs (in this credential,
at least).

• credential (mandatory): a pointer to a variable that will be filled with
the credential in PEM format. If the certificate parameter is also filled
in, only the private key will be stored in credential. If certificate
is NULL, the certificate will also be included in credential.

• certificate (optional): the certificate part of the credential. This pa-
rameter may be NULL, and in that case credential will store the private
key and the certificate.

The function returns zero on success.
A variant of this function is:

int cda_client_defergen(char *hostname,
int port,char *CDAcertfilename,
char *rootCAcertfilename, char *username,
char *password, char *voname,char **credential,
char **certificate);

This function is a variant of previous one. The only difference is that the RSA
private key is generated after connecting and authenticating. This variant is useful
for the implementation of CDAProxy, where the RSA key is generated by the proxy
and the proxy does not authenticate the user but the CDA server. This is done to
avoid denial of service attacks.

int cda_client_nossl(char *hostname,int port,
char *username,char *password,
char *voname, char **credential,
char **certificate);

This function is another variant of the first function, that uses a plain connection
with the CDA server instead of a TLS/SSL one. Currently this function is not very
useful, since the CDA server only accepts TLS/SSL connections, but could be
useful in special cases where the connection with the CDA is trusted.

The libcdaclient library also supports obtaining credentials through a
CDAProxy. In this case, the interface is slightly different:

int cda_client_proxy(char *hostname,
int port,char *Proxycertfilename,
char *RootCAcertfilename, char *username,
char *password, char *voname,char **credential,
char **certificate);

XtreemOS–Integrated Project 18

IST-033576 D3.6.3

The parameters of this function are similar to those in cda_client(), but
in this case the the host and port are those of the proxy, not the CDA ones. This
function returns zero on success.

A variant of this function, for use when connecting to the CDAProxy through
a plain connection (i.e. without TLS/SSL), is also available:

int cda_client_proxy_nossl(char *hostname,int port,
char *username, char *password,
char *voname, char **credential,
char **certificate);

cdaclient

cdaclient is a version of the CDA Client written in C instead of the original
Java version. It was written using libcdaclient and therefore it inherits all of
its features, as CDAProxy support.

This small application prints the credential (RSA private key unencrypted +
X509 certificate signed) in PEM format, using standard output. Its usage follows
the syntax:

cdaclient [options] user@cda_host:cda_port/vo

With the following options available:

• -h : shows help message

• -a : ask password using getpass Unix function instead of reading from stdin

• -p : use a proxy

• -n : don’t use SSL in connection with proxy

• -c <server_cert.pem>: check server/proxy certificate

• -v <caroot_cert.pem>: verify the obtained certificate

When a credential is requested, it is required to provide the CDA address
(cda_host:cda_port), the username (user) and the Virtual Organization
(vo; each user may be member of several virtual organizations and each credential
is valid only for authenticating users in one VO).

CDAProxy

To launch CDAProxy, simply run cdaproxy. CDAProxy admits two parameters,
but both are optional:

XtreemOS–Integrated Project 19

IST-033576 D3.6.3

• -c <configfile>: Use configfile as the configuration file for the
proxy. If this option is missing, configuration file is
/etc/xos/cdaproxy/proxy.conf.

• -f: run in the foreground. By default, cdaproxy runs as a daemon in the
background. This option is useful for debugging purposes.

Apart from the proxy itself, a number of command line utilities are included in
the package:

• dump_server_chain: This program receives as parameter a TLS/SSL
server address in form hostname:port. It connects with the specified
server and dumps the server chain certificates to the standard output. This
utility can be used to obtain the CDA server root CA certificate, in order to
include it in the file referenced by the servercert parameter in the proxy
configuration.

• cdaproxy_createproxycert.sh: This script generates a RSA pri-
vate key and a self-signed certificate valid for 365 days. The content is saved
in server.pem. This file may be used as the private key and certificate of
the SSL proxy server socket (see proxypem parameter in the proxy config-
uration file).

• cdaproxy_createtestcred.sh: This script generates a test creden-
tial, with a RSA private key encrypted.

2.7 Usage examples – Testing

Once the software has been built and installed in a mobile device, a small test appli-
cation can be used to check that everything is working correctly. xos-getdumpcred
is a very small application that asks for the credential (using libxos-getcred
– see chapter 6 –, which in turn uses the Credential Acquisition Framework) and
displays it on the standard output.

The configuration files used in these examples are located in the examples/
directory of the package, and should be put into /etc/xos/creds for making
them effective.

Very simple example

In this case, use the simple.conf configuration file, and just run into your terminal2:

xos_getdumpcred simple

2It is recommended to run the examples in a console inside a X-Window desktop, because the
creduiagent module used in some of the examples uses dialog windows to interact with user.

XtreemOS–Integrated Project 20

IST-033576 D3.6.3

This example uses the example credagent module (which reads the credential
directly from the module’s configuration file) and the GTK creduiagent module
(thus, a dialog window will appear asking for user permission to read the credential
from disk).

If we execute the same command again, the credential will be shown imme-
diately without asking for confirmation, since the credential was already stored in
the single sign-on system (also known as the credstore).

Encrypted credential example

In this example, we will use a different configuration in order to read an en-
crypted credential from /etc/xos/creds/credential.pem, and ask the
user a password for decrypting it. Thus, copy readfile.conf to /etc/xos/creds/
and run:

xos_deletecred # past credentials deleted from credstore
xos_getdumpcred readfile

In this case, the dialog window will appear asking for a password to decrypt the
credential (which is, by the way, “password”). You will also notice that no other
window can be used until the password is entered or the operation is canceled; this
is another option that can be set in the configuration file.

Please note that the credential files are not readable by common users, but
only through the startxtreemos wrapper application, which libxos-getcred uses (see
chapter 6).

Credential from CDA example

To run this example, a CDA server should be available and reachable from the
mobile device. Also, a virtual organization must be already created and a user
should be part of that VO for this example to work. All these parameters must be
used to edit the /etc/xos/creds/cda.conf configuration file, which can be
taken from the examples/ directory. If we just run:

xos_deletecred # past credentials deleted from credstore
xos_getdumpcred cda

In this case, the VO user’s password for authenticating with the CDA server
will be asked and, if correct, the unencrypted RSA key and X.509 certificate in
PEM format will be printed. Alternatively, to examine the certificate, the following
command can be used:

xos_getdumpcred cda | openssl x509 -noout -text

(In this case, the credential should be printed immediately since it was already
in the credstore)

XtreemOS–Integrated Project 21

IST-033576 D3.6.3

Credential from CDAProxy example

In this case, apart from all the requisites of the previous section (CDA server, VO
and VO user), a CDAProxy must be running in a fixed node. Please refer to the
above sections on how to install and configure a CDAProxy. In this case, we can
use the cdaproxy1.conf file that is provided, customising it for our concrete
data.

xos_deletecred # past credentials deleted from credstore
xos_getdumpcred cdaproxy1

(If running on a real mobile device, a substantially shorter wait time should be
noticed)

XtreemOS–Integrated Project 22

Chapter 3

XtreemFS client for mobile
devices

As it happens in any other grid system, in XtreemOS it is very important to manage
the data of the users, which is distributed across the virtual organization. The ability
to store and access all this information in an scalable, reliable and efficient way is
the goal of XtreemFS, the grid filesystem that is included within the XtreemOS op-
erating system. With XtreemFS, users can store and access data in remote servers
across the VO, with the permissions and policies that such a VO dictate, as if they
were any other kind of local files. Please refer to deliverable D3.4.2 [11], or to the
XtreemFS website [8] for more detailed information about XtreemFS.

XtreemOS-MD allows access to this grid filesystem through a client access
layer, which is a slightly modified version of the original module, to work in
ARM architectures and function more efficiently, through the use of cahing mech-
anisms. In fact, these modifications have been found so useful that they have also
been incorporated into the main development line (e.g. for the PC flavour) of the
XtreemFS client.

3.1 Main features

By installing this software module, XtreemOS-MD users will be able to:

• Mount and unmount XtreemFS volumes from the mobile device.

• Access files in XtreemFS volumes through the same interface (POSIX) as a
user would use to access any other Linux filesystem.

• Store files in an XtreemFS volume, with the consequent guarantees of relia-
bility and scalability that the XtreemFS system implies (see [8]).

• Both access and storage will be done in a secure way, by using XtreemOS
certificates, and will be controlled by the virtual organization’s policies.

23

IST-033576 D3.6.3

• Improved file access performance thanks to caching mechanisms.

3.2 Software description

This software module is based on XtreemFS’s access layer, a client software that
uses Filesystem in Userspace (FUSE, [3]) and Linux’s Virtual Filesystem (VFS) to
make this object-based grid filesystem to look like any other normal, local filesys-
tem. More details into the internal workings of the XtreemFS access layer can be
found in other documents like D3.4.1 [10].

The main modifications of the XtreemOS-MD version of this access layer is
that it has been gone through an additional stage of testing and development to
enable the caching mechanisms that are crucial to obtain acceptable performance
in mobile device environments.

This process has also helped to correct uncovered errors and improve the over-
all stability and performance of the client. In fact, all the changes done in the orig-
inal code have also been added to the latest release of the PC version of XtreemFS
(version 0.10.0).

3.3 System requirements

3.3.1 Hardware requirements

XtreemOS-MD is built to be run in ARM devices (such as PDAs or internet tablets).
However, the source code should build and install equally well in standard PC
architectures, and in any other architecture that supports the software dependencies
below (e.g. MIPS, PowerPC,...).

3.3.2 Software requirements

In order to build the XtreemFS client for mobile devices, the following dependen-
cies must be met:

Build-time dependencies:

• openssl-dev 0.9.8

• gmake 3.81 or higher

• gcc 4.1.2 or higher

Run-time dependencies:

• openssl 0.9.8

• libxml2

• kernel-module-fuse (2.6 or higher kernels)

XtreemOS–Integrated Project 24

IST-033576 D3.6.3

• fuse-utils

• libfuse2 2.6

3.4 Installation

The process of building and installing this client software in mobile devices is
similar to that of the PC flavour. The basic process consists of downloading the
code (in a tarball or directly from SVN), building and installing it.

Download the code

You can download the XtreemFS client for mobile devices source code from the
XtreemOS website [9]. Alternatively, since the modifications for mobile devices
were integrated into the main line of XtreemFS in revision 4392, and this is the
version of the code that has been throughly tested, users can download it from the
SVN repository:

svn co -r4392 \
svn+ssh://user@scm.gforge.inria.fr/svn/xtreemos/WP3.4/trunk

Build and install

To build and install the client, just enter the source code directory and type:

make client

3.5 Configuration

No additional configuration is necessary for beginning to use the client, since the
parameters for connecting to XtreemFS servers are specified in each command.
However, before starting to use it, we have to make sure that the FUSE module is
loaded:

root# modprobe fuse
xtfs_mount -o dirservice=http://DIRSERVICE,\\
volume_url=YOUR_VOLUME,direct_io \\
YOUR_MOUNT_POINT

In order to test XtreemFS from mobile devices, users can find a test script in
the bin/ directory: remote_ALtests. In order to test XtreemFS:

• Start a XtreemFS installation (OSD, MRC and DS) in a remote (fixed) node.

• In the mobile device, run the remote_ALtests, specifying the host where
XtreemFS was started.

• Type test and wait until the results are shown.

XtreemOS–Integrated Project 25

IST-033576 D3.6.3

3.6 Interface

The XtreemFS client for mobile devices does not have a specific API in order to
access the files in the grid filesystem, since that is precisely the goal of the system,
to be transparent and appear to the user as any other local filesystem. This is
achieved using Linux’s Virtual File System (VFS).

However, there are a number of commands and utilities that are distributed with
the client, in order to perform basic operations in the filesystem, such as mount-
ing and unmounting XtreemFS volumes in your mobile device. These commands
include:

• xtfs_mount is used for mounting XtreemFS volumes:

xtfs_mount -o dirservice=http://DIRSERVICE,\\
volume_url=http://remote.mrc.machine/myVolume \\
/mount_point

• xtfs_umount is used for unmounting XtreemFS volumes:

xtfs_umount /mount_point

• xtfs_stat displays XtreemFS specific file information such as the striping
policy and the OSDs where the file resides:

xtfs_stat filename.ext

For more information, please refer to the XtreemFS documentation [8].

3.7 Usage examples

An example session, running the XtreemFS tests as described above, is depicted be-
low. XtreemFS services are supposed to be installed in a desktop PC (in /XtreemFS),
and the mobile client is supposed to be built in the mobile device (in /XtreemFS).

1. Start the XtreemFS services (in a PC):

user@PC:~$ cd /XtreemFS
user@PC:/XtreemFS$./start.sh

2. Execute the test script in the mobile device

user@MD:~$ cd /XtreemFS
user@MD:/XtreemFS$ cd bin
user@MD:/XtreemFS/bin$./remote_ALtests --host PC

XtreemOS–Integrated Project 26

IST-033576 D3.6.3

Temporary directory for cfg, logs and data is
/tmp/xtreemfs_XXLVPDJc
making volume x1 (stripesize=128, width=1) in
mounting volume to /tmp/xtreemfs_XXLVPDJc/mnt/x1
+ set +x
Enter ’test’ if you want to run the tests.
Anything else will skip the tests and cleanup.
> + ./xtfs_mount -f -d -o volume_url=http://bscib04/x1
-o direct_io,logfile=/tmp/xtreemfs_XXLVPDJc/x1.log,debug=4
-o caching=1 /tmp/xtreemfs_XXLVPDJc/mnt/x1

3. Write test and press ’Enter’:

test
PID CMD RSS SZ

*** Starting parallel ddwrite tests ***
==== Writing in volume x1 ====
--- 10MB, 1 client(s) ---
5.34759 MB/s
PID CMD RSS SZ
--- 10MB, 2 client(s) ---
1.19474 MB/s
...

During the tests, the output will tell if tests proceeded correctly or not.

XtreemOS–Integrated Project 27

Chapter 4

Execution management client for
mobile devices

One of the core functionalities of any grid system is the ability to launch and man-
age the lifecycle of computing processes (be them either batch jobs or interactive
applications) across the whole grid or virtual organization, crossing the bound-
aries not only of users’ local machines but also of their administrative domains.
In XtreemOS this functionality is provided by the Application Execution Manage-
ment (AEM) subsystem, which is in charge of. Please refer to previous WP3.3
deliverables (D3.3.2 [13] and D3.3.3-4 [2]) for more information about the AEM.

In the same way, one of the most important functions of XtreemOS-MD is to
allow mobile users to do this launching and management of processes from mobile
devices. The module described in this chapter is a porting of the C implementation
of the XtreemOS Application Toolkit Interface (XATI-C or CXATE), to run in
ARM architectures and in the limited computing environment of a mobile device
(a PDA/Tablet, in this case).

4.1 Main features

Once this module has been installed in a mobile device, its users will be able to:

• Manage jobs

– launch
– suspend (stop execution, leaving the job in memory)

– resume
– cancel (kill the job)

– wait on a job

• A mechanism to monitor running jobs. Monitored information includes:

28

IST-033576 D3.6.3

– launch time
– estimated time to end
– status (running, suspended, awaiting execution etc)
– resource consumption
– special notifications

4.2 Software description

As it is already detailed in deliverable D3.3.3-4 [2], the job-related requests from
clients are issued from through the XATI interface to the XOSD, a distributed fault-
tolerant daemon that resides in every XtreemOS computing node.

Although native communication with the XOSD is normally performed via
Java objects, in order for non-Java applications to access the AEM, a C transla-
tion of this XATI interface was created, and is delivered in the form of an static
library (libXATICA.a). In this case, communication is achieved through XML-
formatted messages, for which the parameters are set through a configuration file
(XATICAConfig.conf).

The main components of this interface are:

• A XML wrapper and parser, used to exchange XML-formatted messages
with the XOSD

• A communication module, used to communicate with the XOSD via sockets.
The parameters for this connection are retrieved from the aforementioned
configuration file.

• A CDA module that manages the user certificates through the XtreemOS
CDA server.

• A job execution module, which is used to launch jobs and get the overall
execution information.

• A job management module, which is used to perform actions over a deter-
mined job.

• A resource management module, used to manage all the available resources

4.3 System requirements

4.3.1 Hardware requirements

XtreemOS-MD is built to be run in ARM devices (such as PDAs or internet tablets).
However, the source code should build and install equally well in standard PC
architectures, and in any other architecture that supports the software dependencies
below (e.g. MIPS, PowerPC,...).

XtreemOS–Integrated Project 29

IST-033576 D3.6.3

4.3.2 Software requirements

In order to build the execution management client for mobile devices, the following
dependencies must be met:

• openssl 0.9.8

• libxml2

4.4 Installation

The building and installation of the execution management client library for mobile
devices is very simple:

First, download the code of the client, be it either from the SVN,

svn co
svn+ssh://user@scm.gforge.inria.fr/svn/xtreemos
/WP3.4/trunk/XATICA

or as a source tarball, and decompress it.
Go into the source directory and build it:

cd src
make all
make install

This process will generate a static library file, libXATICA.a, which can then
be installed to the path where applications can find it.

4.5 Configuration

The main configuration file for this module is named XATICAConfig.conf,
and it is also included in the package. This file should be installed in /.xos.

Properties File for the client application
Host address and port where the nearest XOSD can be found
xosdaddress.host=PORTATIL
xosdaddress.port=55000
Address and port where the client is listening
address.host=PORTATIL
address.port=10001
Location of the DIXI truststore for SSL
trustStoreSSL=/etc/xos/truststore/certs/dixi_ssl
Whether to use SSL for connecting to the XOSD or not
useSSL=false

XtreemOS–Integrated Project 30

IST-033576 D3.6.3

Another configuration file that must be installed in /.xos is XATIConfig.conf.

userCertificateFile=::xos::cert

Once these files have been adequately edited, and in case the user wants to run
some simple tests using this library, some simple test programs can be found in the
test/ directory of the package. These tests can be run just by typing:

cd ../tests
make all
./testXATICA
./testXATICA2
./testXATICA3

4.6 Interface

Once it is built and installed, the execution management client for mobile devices
takes the form of a (static) library, which provides an API for other applications to
launch and manage jobs in a XtreemOS virtual organization. The main functions
of this API are described below. A complete description of the API is available in
the API documentation of the AEM.

Execution management module

int getJobsResource(char** returnValue);

This function returns a string with the information of the jobs that the user has
running at the moment.

int createProcess(char* __jobId,char* __JSDL,
char* __reservationID,char* __resourceID,
char* __userCtx, int* returnValue);

This function is akin to a fork, but in the context of XtreemOS. If JSDLPath
is NULL, it will use the provided in createJob() (see below). If a reservationID
is provided, the reservation will be used; otherwise, if resourceID is provided,
the specified resource will be used. Otherwise, the process will be created locally.

int getJobSelf(int __pid, char** returnValue);

Returns the JobID of the calling process process, identified by its PID.

XtreemOS–Integrated Project 31

IST-033576 D3.6.3

Job management module

int createJob(char* __jsdlFile,char __startJob,
char* __reservationID,char* __userCtx,
char** returnValue);

Creates a job in the AEM based on the JSDL description. The job can be
automatically scheduled or just created, depending on the value of startJob.
jsdlFile is the job description of the job to be created in JSDL format (the
actual contents of the file, not the path to the JSDL file).

int runJob(char* __jobId,char* __reservationID,char* __userCtx);

Starts the scheduling process of a previously created job. JobId must be a
valid jobId in the system.

int jobControl(char* __jobId,int __ctrOp,char* __userCtx);

Applies a control operation to the specified job:

• 0: SUSPEND JOB

• 1: RESUME JOB

• 2: CANCEL JOB

int exitJob(char* __jobId,int __exitValue,char* __userCtx);

Finishes immediately the specified job (all the processes of the job), with the
exit code passed as a parameter.

int getJobsInfo(ArrayList __jobIds,int __flags,
char* __infoLevel,ArrayList __metrics,
char* __userCtx, char** returnValue);

Returns the monitoring information of a list of jobs. flags denote the kind of
information to return (in mask format):

STATUS return the job/process status

METRICS return all the metrics defined by the job

RESOURCES return the resource information

PERFORMANCE return the performance metrics

int getJobInfo(char* __jobId,int __flags,
char* __infoLevel,ArrayList __metrics,
char* __userCtx, char** returnValue);

XtreemOS–Integrated Project 32

IST-033576 D3.6.3

Returns the monitoring information of a given job.

int getJobsUser(char* __userId,char* __userCtx,
void* returnValue);

Returns all the jobIDs of the jobs belonging to the given user.

int sendEvent(char* __jobId,int __signal,
int __operation,ArrayList __list,
char* __userCtx);

Sends a specified event to a job.

int jobWait(char* __jobId, int* returnValue,
char* __userCtx);

Blocks the calling process until the indicated job finishes.

Resource management module

int getResources(char* __query,char* __userCtx,
int __howMany, void* returnValue);

Retrieves a collection of resources that match the job’s resource demands. The
resource query is expressed in a JSDL document with its contents in a string.

int getResInfo(char* __userCtx, void* returnValue);

Returns the monitoring information associated with the resource. Only the
users authorised for access to the resource can obtain the information.

int getResMetrics(char* __userCtx, void* returnValue);

Returns the list of metrics available on that resource. Only the users authorised
for access to the resource can obtain the information.

4.7 Usage examples

The following source code exemplifies the use of this execution management client
from a mobile application:

#include <stdio.h>
#include <stdlib.h>

#include <XCExecMng.h>
#include <XCJobMng.h>

XtreemOS–Integrated Project 33

IST-033576 D3.6.3

#include <XCResMng.h>

int main (int argc, char **argv)
{

/* variable definition */
char *job_id; /* store job ID */
/* file containing the job definition */
char *jsdl_file = "/home/xtreemos/myjob.jsdl";
/* no reservations required */
char *reservation_id = NULL;
/* start job once created */
char start_job = TRUE;
/* job’s exit value when finished */
int exit_value = 0;

/* job creation and starting */
createJob (jsdl_file, start_job, reservation_id, &job_id);

/* print job ID */
printf ("Job ID = %s\n", job_id);

/* immediately finish job */
exitJob (job_id, exit_value);

return 0;
}

XtreemOS–Integrated Project 34

Chapter 5

XOSAGA API for mobile devices

In the world of grid computing, currently there exist a great variety of middlewares
and architectures which are used to achieve the common vision of distributed exe-
cution and storage across a virtual organization. This, together with the complex-
ity of this kind of system, makes the development of applications that use grid
computing a daunting task. In XtreemOS, the approach has been to adopt OGF’s
Simple API for Grid Applications (SAGA, [6]) as the official API for grid applica-
tion developers, extending it to cover XtreemOS functionalities (and thus, termed
XOSAGA). This will have the additional advantage of making existing SAGA-
compliant grid applications able to run over a XtreemOS system.

As a gateway to XtreemOS grid’s resources, the mobile flavour of XtreemOS
will also support C++ SAGA-aware grid applications, so that any of those appli-
cations which is able to run in ARM architectures is also capable of working with
XtreemOS mobile devices. Due to the limitations of mobile Java Virtual Machines,
only the C++ SAGA implementation will be supported in the basic version.

5.1 Main features

At this stage of the development, the XOSAGA interface allows C++ applications
to access the following functionality:

• Authenticate on behalf of the user, by means of the XtreemOS credentials
system.

• Access files hosted on the XtreemFS filesystem.

5.2 Software description

The package presented here is based on the SAGA C++ Reference Implementation
(SAGA++), which is the first complete implementation of the OGF SAGA standard
for high-level Grid programming interfaces. As it is well explained in other WP3.1
documents (D3.1.3 [14]), this implementation is divided into:

35

IST-033576 D3.6.3

• A core engine which contains a set of common “look and feel” classes, as
well as the functional aspects of the engine, dealing with files, jobs, security
contexts etc.

• A number of so-called adaptors, which implement each of those functional-
ities in the concrete grid implementation that lies underneath (in this case,
the XtreemOS implementation).

Having this in mind, this package for mobile devices contains:

• The SAGA C++ reference implementation 1.0 (core engine plus a few ex-
ample adaptors).

• The XtreemFS File adaptor for accessing files in the grid filesystem.

• The XtreemOS Context adaptor, in order to authenticate users that want to
use any other XtreemOS servies, using XtreemOS certificates.

For more details on the SAGA C++ reference implementation, please refer to
its official documentation [5].

5.3 System requirements

5.3.1 Hardware requirements

XtreemOS-MD is built to be run in ARM devices (such as PDAs or internet tablets).
However, the source code should build and install equally well in standard PC
architectures, and in any other architecture that supports the software dependencies
below (e.g. MIPS, PowerPC,...).

5.3.2 Software requirements

In order to build the mobile XOSAGA API for mobile devices, the following de-
pendencies must be met:

• GNU make

• g++ 3.4.6 or newer

• libboost 1.34.1 or higher version (and all its sub-packages, such as libboost-
date-time etc)

XtreemOS–Integrated Project 36

IST-033576 D3.6.3

5.4 Installation

The installation procedure of the mobile version of XOSAGA is very similar to the
PC version one:

First, download the XOSAGA source code, directly from the SVN repository
at,

svn co
svn+ssh://user@scm.gforge.inria.fr/svn/xtreemos
/xtreemos/grid/xosaga/trunk/c++

Once inside the source code directory, and if all dependencies are met, the user
can just type:

./configure --prefix=$(INSTALL_DIR) --with-boost=$(BOOST_DIR)
make
make install

Please refer to the SAGA Installation Guide [7] for more information on this
subject.

5.5 Configuration

Once it has been installed, the SAGA engine can be configured (please refer to [7]
for more information).

First, the following environment variables must be set, in case custom paths
were chosen at installation time:

export SAGA_LOCATION=/saga/install/path
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SAGA_LOCATION/lib

In order to test the installation, a number of tests are included with the distri-
bution, which can be run by typing:

make check

The main configuration file for the SAGA engine is saga.ini, which con-
tains the information about the location of SAGA and the available adaptors. This
file should be already preconfigured on installation, but a simple example is shown
below:

[info]
ini_path = ${SAGA_LOCATION}/share/saga/

[saga.adaptors.<adaptor_name>]
name = <adaptor_instance_name>
path = <adaptor_path>
enabled = true

XtreemOS–Integrated Project 37

IST-033576 D3.6.3

5.6 Interface

The complete API of SAGA can be accessed at the C++ Reference Implementation
section of the SAGA official site [5].

5.7 Usage examples

The following code snippet shows how a simple client application can access grid
functionality (accessing a file, in this case) by using the XOSAGA interface:

#include <string>
#include <iostream>
#include <saga.h>
int main () {

try {
// open a remote file
saga::file f ("gsiftp://ftp.university.edu/pub/INDEX");
// read data
while (string s = f.read (100)) {

std::cout << s;
}

} catch (saga::exception e) {
std::cerr << e.what() << std::endl;

}
}

XtreemOS–Integrated Project 38

Chapter 6

XtreemOS-MD Application
Integration Kit

In most grid systems, the modification of existing applications to work with grid
features, or the development of new applications that use the grid infrastructure
is often a difficult subject, especially for application developers. In its efforts to
make grid development as easy and transparent as possible, XtreemOS provides
the XOSAGA programming interface, for developers of new grid applications, so
that they can ignore the details of the myriad of different middlewares that they
could use.

XtreemOS-MD takes this goal a step further, by providing a set of tools and
libraries that can be used by mobile application developers in order to make the
integration of grid features (such as the usage of credentials and single sign-on)
very easy for those developers, and even to use these features in existing (legacy)
applications, without modifications to their source code. Moreover, these features
could also be useful for any desktop application developer, and will probably be
available in next releases of the XtreemOS PC/cluster flavour1.

6.1 Main features

By building and installing the Application Integration Kit described in this section,
users (and/or developers) will be able to:

• Obtain credentials transparently to the applications, through a very simple
programming interface, from a wide variety of credential acquisition mech-
anisms, either external (through the Credential Acquisition Framework, see
chapter 2) or internal (through the credential storage framework developed
in WP2.3 [17]).

1NB: Some of the modules described here were first proposed in WP2.3 (see D2.3.4 [17]), as part
of the VO support for mobile devices package. However, the evolution of the development of those
modules and their application-oriented goals prompted for their separation from the VO support
package and their inclusion in WP3.6 as an independent package.

39

IST-033576 D3.6.3

• Have single sign-on capabilities in a transparent way, regardless of the actual
implementation of the credential scheme.

• Extensibility of these features to new authentication and credential acquisi-
tion schemes.

• Extensibility of these features to different user interface paradigms and GUI
software stacks.

• Access to the single sign-on features from legacy applications without mod-
ificating their code, by just opening a specially-named file.

6.2 Software description

The Application Integration Kit, together with the Credential Acquisition Frame-
work (see chapter 2) and the credential storage developed in WP2.3 (see D2.3.4
[17]), provide a comprehensive authentication and single sign-on solution for mo-
bile clients, which is:

• Flexible

• Modular

• Extensible

• Easy to use

• Legacy application friendly

• Portable to other architectures and distributions

• Internationalized (support for various languages)

How all these modules interact to provide this single sign-on solution is shown
in Figure 6.1:

The figure shows (in yellow) the three building blocks of the Application Inte-
gration Framework:

• A simple credential acquisition library (libxos_getcred) designed for
use by end user applications, that hides all the complexity and means for
getting the certificates and provide single sign-on access to them.

• A set of launcher applications (startxtreemos) designed to transpar-
ently perform all the necessary operations for initializing XtreemOS VO
support features in a Linux distribution, under a number of VO and mo-
bile device configurations. startxtreemos loads credential in credstore,
mounts XtreemFS volume and creates XATICA configuration files at /.xos
directory.

XtreemOS–Integrated Project 40

IST-033576 D3.6.3

Figure 6.1: XtreemOS credential acquisition + single sign-on framework

XtreemOS–Integrated Project 41

IST-033576 D3.6.3

– startxtreemos is the simplest implementation, which does not
rely on external software and does not isolate grid applications. Ideal
for systems that do not support PAM modules (i.e. libpam) and do not
require special isolation for grid-related applications. startxtreemos
may be invoked either manually or automatically by libxos-getcred.

– startxtreemos-ams provides isolation for grid-related processes
by mapping the current user session to a new (temporary) local iden-
tity generated on the fly, mapped to the grid identity represented in
the XtreemOS credentials. Requires the xos-nss-pam and libpam
packages.

• A way for legacy (XtreemOS-unaware) applications to get access to this cre-
dential acquisition and storage system (libwrapopen).

The basic workflow of this system is as follows:

1. End user (potentially graphical) applications ask for the credentials of the
current user, by using either the high-level API of libxos_getcred, or
simply by opening a file with the syntax “::xos:configname” (which
will provoke libwrapopen to be executed, which in turn invokes the same
libxos_getcred).

2. libxos_getcred will invoke libcredstore to obtain the credential from cred-
store. If credential is found in credstore, it inmmediately returns the creden-
tial (whichever the implementation of this credstore is). If the credential was
not found in the credstore, libxos_getcred executes the startxtreemos appli-
cation 2, whose mission is to ensure that credential is obtained and saved
in credstore. After running startxtreemos, libxos_getcred invokes again lib-
credstore to read the credential and return it if available.

3. If startxtreemos is invoked by libxos_getcred, it uses the Credential Acqui-
sition Framework (libxos_credagent) to try to obtain the credentials from
whichever means it is configured to use (e.g. from a CDA server, see chapter
2) and returns it. During this process, diverse (potentially graphical) interac-
tions with the user can be needed, for security reasons (e.g. password input
or user request authorization).

4. If startxtreemos successfully obtains a credential from libxos_credagent, it
stores it in credstore using libcredstore. Then it reads configuration sec-
tion "xtreemfs" from credagent configuration file and mounts the xtreemFS
volume. Finally, it reads configuration section named "xati" and creates con-
figuration files at /.xos directory.

2Actually, libxos_getcred searches an executable file named "credagent", but startxtreemos pack-
age creates a link to startxtreemos with name credagent. This behavior is because libxos_getcred is
independent from XtreemOS: different implementations of "credagent" are possible in other projects.

XtreemOS–Integrated Project 42

IST-033576 D3.6.3

Startxtreemos includes launch-xtfsmount utility. An interesting feature
of startxtreemos is that it allows a user to mount a specific XtreemFS volume
although the user has no privileges to mount a FUSE volume. This is not a security
weak, because the volume and mount point are configured by the administrator in
the configuration file under /etc/xos/creds and the user cannot change it. To
achieve this, it is only required that /dev/fuse is writable by root and group fuse
only.

6.3 System requirements

6.3.1 Hardware requirements

XtreemOS-MD is built to be run in ARM devices (such as PDAs or internet tablets).
However, the source code will build and install equally well in standard PC ar-
chitectures, and in any other architecture that supports the software dependencies
below (e.g. MIPS, PowerPC,...).

6.3.2 Software requirements

This Application Integration Kit has been developed with the design goal of mak-
ing it integrable with almost any mobile Linux distribution, thus eliminating all but
the most indispensable software dependencies. The software dependencies of each
part of the kit are:

For startxtreemos-ams:

• libpam

• xos-nss-pam and all their dependencies, including OpenSSL 0.9.8

For libwrapopen, libxos-getcred and startxtreemos:

No software dependencies worth noting.

6.4 Installation

The process for building and installing the packages is straightforward:

1. First download the libcredstore package from the XtreemOS SVN
repository:

svn co
svn+ssh://user@scm.gforge.inria.fr/svn/xtreemos
/foundation/linux-xos-md/libcredstore

XtreemOS–Integrated Project 43

IST-033576 D3.6.3

2. Execute as root: make install

3. After that, download the aik packages from the XtreemOS SVN repository:

svn co
svn+ssh://user@scm.gforge.inria.fr/svn/xtreemos
/xtreemos/grid/mobile/aik

4. Execute as root: install.sh

6.5 Configuration

startxtreemos executable makes use of the same configuration files described
in chapter 2 where the libxos-credagentwas described. The main difference
is that startxtreemos uses now two more sections: one section with parame-
ters to configure the automount of XtreemFS volume and another section to create
the XATI configuration in /.xos directory.

6.5.1 xtreemfs configuration section

The configuration parameters to mount a XtreemFS volume are included in section
[xtreemfs] of credential configuration file:

1. xtreemfs_server: XtreemFS server, and optionally the port. E.g. my-
server.acme.com:8081.

2. xtreemfs_dirservice: XtreemFS directory service server (and op-
tionally, port). If this parameter is omitted, default value is the value of
xtreemfs_server parameter.

3. xtreemfs_volume: XtreemFS volume created with xtfs_mkvol. E.g.
xtreemfs_volume=MyVolume.

4. xtreemfs_mountpoint: filesystem directory where XtreemFS volume
will be mounted. Path my be absolute (starting with /) or relative to home
directory user. If a home directory is shared between several users (e.g.
/tmp), relative paths may be problematic: to fix this situation, if path starts
with ’%’, this character is replaced by /<user>/.

6.5.2 xatica configuration section

The xatica configuration section parameters are:

1. xatica_remoteserver: The remote XATI server hostname or IP ad-
dress.

XtreemOS–Integrated Project 44

IST-033576 D3.6.3

2. xatica_remoteport: The TCP port of XATI server.

3. xatica_localport: The TCP port where the client listens to notifica-
tions from the XATI server.

4. xatica_localserver: The IP address of the local server where the
client listens to notifications from the XATI server. It is possible to provide
xatica_showmyipserver and xatica_showmyipport instead of
this parameter.

5. xatica_showmipserver, xatica_showmipport: A remote TCP
server that is used to know what is the IP address used by the client to connect
to the Internet. This is an alternative to provide xatica_localserver
parameter.

6.5.3 Configuration file example

[general]
credagent=xos_credagent_readfile
creduiagent=xos_creduiagent_gtk

[credagent]
credential_file=/etc/xos/creds/cred.pem
file_is_encrypted=false
ask_user_confirmation=true

[creduiagent]
autokill_after=5
grabserver=true

[xtreemfs]
xtreemfs_server=10.95.38.166
xtreemfs_volume=myVolume
xtreemfs_mountpoint=MyDocs/xtreemfs

[xatica]
xatica_remoteserver=10.95.38.166
xatica_remoteport=55000
#xatica_localserver=192.168.15.82
xatica_localport=10000
xatica_showmyipserver=192.168.15.45
xatica_showmyipport=8080

XtreemOS–Integrated Project 45

IST-033576 D3.6.3

6.6 Interface

6.6.1 Included utilities

Here is a short list of the utilities and commands included in this Application Inte-
gration Kit. Please refer to chapter 2 in D2.3.4 [17] for more information.

startxtreemos [-c <configuration_name>]
[-t <seconds_timeout>] [-s]
[<program_name> [<program_parameters>] | -]

This multipurpose program is designed to run one or more of this tasks:

• Loading credentials in the current user credstore or starting a new session
credstore and loading credentials in it.

• Running a program or a script read from standart input, which has access to
the credstore.

• Setting a credential timeout.

The -c option is used to specify the configuration name of the requested cre-
dential to use. If no configuration_name is specified, it is assumed that the user
would like to use the credential currently present in the credstore; if the credstore
is empty, the “default” credential is requested.

The -t option is used to set a timeout (expressed in seconds) over the creden-
tial. When the timeout expires, the credential is removed. A zero value cancels
timeout.

The -s option launches a program (or a shell, if no program specified) in a
private session, with its own credstore that is destroyed when program/shell ends.

A program to run may be specified, or use “-” parameter to get shell com-
mands from stdin. If no program_name or “-” parameter is specified, then
a shell is executed (if using “-s”) and the ENV variable is defined with value
/etc/xos/shrc_xtreemos. Otherwise, startxtreemos only guarantees
that a credential is available in the credstore and sets the timeout, if specified.

startxtreemos-ams [-c <configuration_name>] [-r]
[<program_name> [<program_parameters>] | -]

This program obtains the credential corresponding to configuration_name (or
gets it from the current user credstore if available) and runs the program specified
(or a shell if none is specified) with a new UID. This UID is computed using the
Account Mapping System rules (see [12]) and the data present in the certificate of
the credential.

The -c option is used to specify the configuration name of the requested cre-
dential to use. If no config_name is specified, it is assumed that the user would like

XtreemOS–Integrated Project 46

IST-033576 D3.6.3

to use the credential currently present in the credstore; if the credstore is empty, the
“default” credential is requested.

The -r option replicates the credential in the credstore of the user that in-
vokes startxtreemos-ams. The goal of this action is to cache the creden-
tial and avoid asking the user again if he prefers running other commands with
startxtreemos-ams using the same configuration.

A program to run may be specified, or use “-” parameter to get shell commands
from stdin. If no program_name or “-” parameter is specified, then a shell is exe-
cuted and /etc/xos/shrc_xtreemos is specified in the ENV variable. Before
the program/shell is executed, current environment is cleared and variables HOME,
SHELL, PATH, USER, LOGNAME and XOS_ENV are filled with appropriate values.

xos_getdumpcred [<configuration_name>]

This program is a usage example of libxos_getcred. It dumps the cur-
rent credential present in the credstore; if the credstore is empty, or a configura-
tion_name is specified and the credential in the credstore is labeled with a different
configuration name, startxtreemos is invoked to load the new credential in
the credstore.

6.6.2 libxos_getcred API

This API just includes one function:

char * xos_getcred(char *configuration_name);

This function returns a credential in PEM format. The API uses libcredstore
to implement single sign-on: if the credential is stored in the credstore, it is auto-
matically retrieved, but if the credstore is empty or the credential is labelled with
other configuration name different from the configuration_name parameter,
startxtreemos (or startxtreemos-m depending on the compilation op-
tion which was set in the Makefile) is launched (with configuration_name
as the paremeter, if not NULL) to obtain a credential that is then saved in the cred-
store.

xos_getcread reads the configuration file /etc/xos/configname_alias
to convert the configuration name from any of its aliases, as defined in that file.

The configuration_name parameter can be NULL. In this case, if the
credstore is not empty, the credential is accepted without checking the configu-
ration name registered. If the credstore is empty, a new credential is stored with
configuration name “default”.

In order to compile an application using this library, use the -lxos_getcred
compilation option. The source code must include xos_getcred.h.

XtreemOS–Integrated Project 47

IST-033576 D3.6.3

6.6.3 libwrapopen API

This library does not have a specific API, since transparency is its main objective.
In order to use it, an environment variable must be set:

export LD_PRELOAD=/usr/lib/libxos_wrapopen.so

Once this is done, applications which are not SUID nor SGID will be able to
read the credential corresponding to a configuration name whenever they open the
file ::xos:configname or /::xos:configname.

Additionally, libwrapopen can be further automatized to load the credential
specified in the environment variable XOS_WRAPOPEN_CONFIGNAME when a
directory listed in environment variable XOS_WRAPOPEN_DIRS (a comma sepa-
rated list) is opened. This feature can be very useful for automounting XtreemFS
volumes.

If the application only needs the private key part of the credential then it should
open the following file ::xos::key:configname. However, if the applica-
tion only needs the certificate part of the credential then it should open the follow-
ing file ::xos::cert:configname.

6.7 Usage examples

The xos_getdumpcred.c file, used in several examples in chapter 2, is a min-
imalistic example application which obtains the credential and shows it on the
screen. Its source code is shown below:

#include <stdio.h>
#include <stdlib.h>
#include "xos_getcred.h"

int main(int argc,char **argv) {
char* data=xos_getcred(argc==2?argv[1]:NULL);
if (data) {
printf("%s\n",data);
return 0;

} else exit(-1);
}

An example of the use of the libwrapopen library for legacy applications is
shown below. Once the LD_PRELOAD environment variable is set, just type the
following:

cat ::xos:default

or

mousepad ::xos:simple

XtreemOS–Integrated Project 48

Chapter 7

Future work

Once the source code of all the elements of the XtreemOS-MD distribution (both
those developed in WP2.3 and in WP3.6) is available, the operating system will en-
ter into the final integration phase, that will end when the final packaged binaries
(both as flashable ROM images and as separate installable packages) are delivered.
The public release of this components is expected by the end of February 2009.

From then on, the work of WP3.6 will flow upon two parallel paths:

• A pure development path, which will take the basic release as a base, and
continue to make bugfixes, modifications and enhancements to it, following
the design directives detailed in deliverable D3.6.2 [16], to enhance the soft-
ware’s stability and performance in mobile environments. This development
path will also deal with the porting of the software to new platforms such as
smarphones.

• A more research-oriented path, which will investigate the feasibility of new
mobile grid functionalities and advanced services for XtreemOS-MD, such
as context awareness or even the ability to run mobile grid services in mo-
bile devices, and using the mobile device as a grid resource, under the con-
straints imposed by the mobile device hardware. This path will follow a
similar approach to the one followed so far, with requirements, design and
implementation phases.

The software that was described in this document is just the first of a series of
development milestones, which will mark the different releases of the XtreemOS-
MD software. As mentioned above, the first one of these is scheduled for Febru-
ary/March 2009, and a final release is expected near the end of the project, in
February/March 2010. Intermediate releases (e.g. after 6 months, in September
2009) will be subject to the number and nature of the modifications that are made
in the next months.

49

References

[1] The Ångström Distribution.
http://www.angstrom-distribution.org.

[2] XtreemOS Consortium. Merge of deliverables D3.3.3 (Basic services for
application submission, control and checkpointing) and D3.3.4 (Basic ser-
vice for resource selection, allocation and monitoring) - Deliverable Number
D3.3.3-4. Integrated Project, December 2007.

[3] Filesystem in Userspace.
http://fuse.sourceforge.net.

[4] Official Maemo web site.
http://maemo.org/.

[5] Open Grid Forum (OGF). Saga c++ reference implementation, 2007.
http://saga.cct.lsu.edu.

[6] SAGA :: A Simple API for Grid Applications (SAGA official website).
http://saga.cct.lsu.edu/.

[7] Ole Weidner and Hartmut Kaiser. Saga c++ installation manual, 2008.
https://svn.cct.lsu.edu/repos/saga/trunk/docs/manual/
installation_guide/saga_installation_guide.pdf.

[8] XtreemFS official web site.
http://www.xtreemfs.com/.

[9] XtreemOS official web site.
http://www.xtreemos.eu/.

[10] XtreemOS Consortium. The XtreemOS File System - Requirements and Ref-
erence Architecture D3.4.1. Integrated Project, December 2006.

[11] XtreemOS Consortium. Basic XtreemFS object-based file system and basic
Object Sharing Service D3.4.2. Integrated Project, December 2007.

[12] XtreemOS Consortium. Design and Implementation of Node-level VO Sup-
port D2.1.2. Integrated Project, December 2007.

50

http://www.xtreemos.eu/
http://www.angstrom-distribution.org
http://fuse.sourceforge.net
http://maemo.org/
http://saga.cct.lsu.edu
http://saga.cct.lsu.edu/
https://svn.cct.lsu.edu/repos/saga/trunk/docs/manual/installation_guide/saga_installation_guide.pdf
https://svn.cct.lsu.edu/repos/saga/trunk/docs/manual/installation_guide/saga_installation_guide.pdf
http://www.xtreemfs.com/

IST-033576 D3.6.3

[13] XtreemOS Consortium. Design of the architecture for application execution
management in XtreemOS D3.3.2. Integrated Project, June 2007.

[14] XtreemOS Consortium. First Prototype of XtreemOS Runtime Engine
D3.1.3. Integrated Project, December 2007.

[15] XtreemOS Consortium. Security Services prototype month 18 D3.5.5. Inte-
grated Project, December 2007.

[16] XtreemOS Consortium. Design of basic services for mobile devices D3.6.2.
Integrated Project, June 2008.

[17] XtreemOS Consortium. Linux-XOS for MDs/PDA D2.3.4. Integrated
Project, June 2008.

XtreemOS–Integrated Project 51

	Introduction
	XtreemOS-MD usage scenarios
	XtreemOS-MD architecture
	XtreemOS-G modules in mobile devices
	Document structure

	Credential Acquisition Framework for Mobile Devices
	Main features
	Software description
	System requirements
	Hardware requirements
	Software requirements

	Installation
	Configuration
	Interface
	Usage examples – Testing

	XtreemFS client for mobile devices
	Main features
	Software description
	System requirements
	Hardware requirements
	Software requirements

	Installation
	Configuration
	Interface
	Usage examples

	Execution management client for mobile devices
	Main features
	Software description
	System requirements
	Hardware requirements
	Software requirements

	Installation
	Configuration
	Interface
	Usage examples

	XOSAGA API for mobile devices
	Main features
	Software description
	System requirements
	Hardware requirements
	Software requirements

	Installation
	Configuration
	Interface
	Usage examples

	XtreemOS-MD Application Integration Kit
	Main features
	Software description
	System requirements
	Hardware requirements
	Software requirements

	Installation
	Configuration
	xtreemfs configuration section
	xatica configuration section
	Configuration file example

	Interface
	Included utilities
	libxos_getcred API
	libwrapopen API

	Usage examples

	Future work
	References

