
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Evaluation Report
D4.2.6

Due date of deliverable: November 30th, 2009
Actual submission date: December 23rd, 2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP2.2, WP2.3, WP3.1, WP3.2, WP3.3, WP3.4, WP3.5, WP3.6, WP4.2

Task number: T2.2.13, T2.3.8, T3.1.5, T3.2.7, T3.3.14, T3.4.10, T3.5.7, T3.6.7, T4.2.4, T4.2.5

Responsible institution: SAP
Editor & and editor’s address: Bernd Scheuermann

SAP Research, CEC Karlsruhe
Vincenz-Prießnitz-Str. 1

76131 Karlsruhe, Germany

Version 3.0 / Last edited by Bernd Scheuermann / December 23rd, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

1.0 28/04/09 Bernd Scheuermann SAP Initial version
1.1 31/05/09 WP4.2 all teams Test plans included
1.2 30/06/09 Maik Jorra, Barry McLarnon,

Samuel Kortas, Roman Talyan-
sky, Enric Tejedor

BSC, EDF,
SAP, ZIB

Application descriptions added

1.5 04/12/09 Bernd Scheuermann SAP Evaluation of Installation and Configuration added
1.8 10/12/09 WP4.2 all teams test results from WP4.2 consolidated
1.9 10/12/09 Alvaro Arenas, Matej Artac,

Eugenio Cesario, Mathijs den
Burger, Aleš Černivec, Jörg
Domaschka, Noé Gallego,
Ian Johnson, Thilo Kielmann,
Mathijs den Burger, Ramon
Nou, Marko Novak, Marko
Obrovac, Guillaume Pierre,
Alvaro Reol, Santiago Prietro

BSC, CNR,
INRIA,
STFC, TID,
ULM, VUA,
XLAB

test results from SP2 and SP3 consolidated

2.0 11/12/09 Bernd Scheuermann SAP submitted to internal review
2.1 18/12/09 Bernd Scheuermann SAP revised according to internal reviewers’ comments
2.2 21/12/09 Samuel Kortas EDF Further test results included
2.3 21/12/09 Marjan Sterk, Bojan Blazica XLAB Further test results included
3.0 23/12/09 Bernd Scheuermann, Roman

Talyansky
SAP final consolidation and polishing

Reviewers:
Franz Hauck (ULM), Ian Johnson (STFC), Yvon Jégou (INRIA), Peter Linnell (INRIA)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T2.2.13 Performance evaluation KER∗, INRIA, XLAB, UDUS.
T2.3.8 Integration testing TID∗, INRIA
T3.1.5 Performance evaluation VUA∗

T3.2.7 Performance evaluation ULM, VUA∗

T3.3.14 Performance evaluation BSC∗, XLAB, INRIA, UDUS
T3.4.10 XtreemFS Testing, Performance, Compatibility and Mainte-

nance
BSC,CNR∗,ZIB

T3.5.7 Integration STFC∗, XLAB, INRIA, ICT, SAP, ULM
T3.6.7 Integration and testing TID∗, BSC
T4.2.4 Implementing and porting applications to XtreemOS BSC, EADS, EDF, SAP∗, TID, UDUS, VUA, XLAB,

ZIB
T4.2.5 XtreemOS experiments and evaluation BSC, EADS, EDF, SAP∗, TID, UDUS, VUA, XLAB,

ZIB

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary

The experimental evaluation of XtreemOS is an essential supporting activity for
the project as it identifies critical bugs and gives feedback on performance, scal-
ability, stability, correctness and usability of the system. This feedback provides
guidance to developers, distribution packaging and also to project management.
For the first time, an evaluation report from WP4.2 is used to collect and present
experimentation results from the consortium in a common document. Contributors
are WP4.2 as well as the development work packages from SP2 and SP3. The em-
phasis of the evaluation by WP4.2 is on testing from the end-user perspective using
applications from the scientific and business domain. The tests carried out by SP2
and SP3 concentrate on lower-level performance benchmarking.

The evaluation is sub-divided into four different test categories: evaluation of
installation and configuration, evaluation of XtreemOS components, comparison
with other Grid solutions and usability evaluation of the XtreemOS MD flavor. The
evaluation of installation and configuration includes a long term survey carried out
by WP4.2. The purpose is to record and track end-user experience with multiple
releases of XtreemOS starting with XtreemOS 1.0, three intermediate internal re-
leases and finally XtreemOS 2.0. The second category covers the evaluation of
a wide range of XtreemOS components including node-level VO support, check-
pointing and restart, LinuxSSI, DIXI message bus, XtreemOS API, Distributed
Servers, Virtual Nodes, application execution management, data management, se-
curity services and the mobile device flavor. Experiments for this category were
performed by SP2, SP3 and WP4.2. Furthermore, a theoretical comparison of
XtreemOS with other Grid solutions is complemented by a description of experi-
mental comparisons between XtreemOS and Globus. Finally, WP4.2 evaluated the
MD flavor of XtreemOS in terms of assessing the usability of the MD installer and
of the JobMA application.

All evaluations are documented giving detailed specifications which shall ac-
count for comprehensive and reproducible test setups. Test results are analyzed
and corresponding feedback is provided to XtreemOS developers. The deliverable
is concluded with a summary of all test results, an assessment of the fulfillment
status of the requirements and an outlook on forthcoming evaluation activities.

1

Contents

Executive Summary . 1

1 Introduction 6

2 Application Descriptions 8
2.1 Overview . 8
2.2 Hmmpfam on COMP Superscalar 9
2.3 openTurns . 10
2.4 SAP NetWeaver Search and Classification (TREX) 11
2.5 SAP MaxDB Replayer . 12
2.6 Rule-based System Management 13
2.7 Cloud Computing . 16

3 Evaluation of Installation and Configuration 19
3.1 Survey Setup . 19
3.2 Survey Results . 20

3.2.1 Overview . 21
3.2.2 Installation . 23
3.2.3 Configuration . 24
3.2.4 Basic Usage . 24
3.2.5 Documentation . 25

3.3 Summary . 26

4 Evaluation of XtreemOS Components 28
4.1 Evaluation Overview . 28
4.2 Evaluation of Node-level VO Support 31

4.2.1 Test Plan . 31
4.2.2 Test Unit 01: Correctness of VOlife 32
4.2.3 Test Unit 02: Performance of VOlife 35
4.2.4 Test Unit 03: Correctness of account mapping 37
4.2.5 Test Summary Report 40

4.3 Evaluation of Checkpointing and Restart 42
4.3.1 Test Plan . 42
4.3.2 Test Unit 01: Job checkpoint and restart 44

2

4.3.3 Test Unit 02: Incremental checkpointing 45
4.3.4 Test Unit 03: Channel flushing 47
4.3.5 Test Unit 04: Kernel-level checkpointing of Java applica-

tions with RBSM . 50
4.3.6 Test Unit 05: Container checkpointing benchmarks with

SPECweb . 55
4.3.7 Test Unit 06: Checkpointing with Zephyr 61
4.3.8 Test Summary Report 65

4.4 Evaluation of the DIXI Message Bus 67
4.4.1 Test Plan . 67
4.4.2 Test Unit 01: co-located service staging 69
4.4.3 Test Unit 02: distributed service staging 72
4.4.4 Test Summary Report 75

4.5 Evaluation of XtreemOS API . 76
4.5.1 Test Plan . 76
4.5.2 Test Unit 01: Java XOSAGA – Performance 77
4.5.3 Test Unit 02: C++ XOSAGA – Performance 80
4.5.4 Test Unit 03: Python XOSAGA – Performance 82
4.5.5 Test Unit 04: Java XOSAGA – Applications 87
4.5.6 Test Summary Report 88

4.6 Evaluation of Distributed Servers 89
4.6.1 Test Plan . 89
4.6.2 Test Unit 01: Handoff Latency 90
4.6.3 Test Unit 02: Handoff Throughput 91
4.6.4 Test Summary Report 92

4.7 Evaluation of Virtual Nodes . 93
4.7.1 Test Plan . 93
4.7.2 Test Unit 01: Comparison to Java RMI 95
4.7.3 Test Unit 02: Comparison of Replication Protocols 96
4.7.4 Test Unit 03: Effects of Node Failures 98
4.7.5 Test Summary Report 99

4.8 Evaluation of Application Execution Management 101
4.8.1 Test Plan . 101
4.8.2 Test Unit 01: COMPSs 102
4.8.3 Test Unit 02: SPECweb2005 104
4.8.4 Test Unit 03: Customizable SSI Scheduler 108
4.8.5 Test Unit 05: Moderato 111
4.8.6 Test Unit 06: AEM vs. Globus Toolkit 112
4.8.7 Test Unit 07: AEM scalability 114
4.8.8 Test Unit 08: Power computational Performance depend-

ing on client flavour . 118
4.8.9 Test Unit 09: Customizable SSI Scheduler 121
4.8.10 Test Summary Report 124

4.9 Evaluation of Data Management 126

3

4.9.1 Test Plan . 126
4.9.2 Test Unit 01: MaxDB Replay 129
4.9.3 Test Unit 02: TREX . 135
4.9.4 Test Unit 03: Wissenheim - XFS 138
4.9.5 Test Unit 04: Wissenheim - OSS 139
4.9.6 Test Unit 05: POSIX Compliance 141
4.9.7 Test Unit 06: Parallel I/O Evaluation 145
4.9.8 Test Unit 07: Non-Parallel I/O Evaluation 148
4.9.9 Test Unit 08: kDFS . 150
4.9.10 Test Summary Report 156

4.10 Evaluation of Security Services 158
4.10.1 Test Plan . 158
4.10.2 Test Unit 01: DTokens vs. GSI Proxy Certificates 161
4.10.3 Test Unit 02: VOPS evaluation 164
4.10.4 Test Unit 03: Evaluation of CDA Server 172
4.10.5 Test Summary Report 174

4.11 Evaluation of Mobile Device Flavor 176
4.11.1 Test Plan . 176
4.11.2 Test Unit 01: XtreemOS support on ARM architectures . . 178
4.11.3 Test Unit 02: VO support by XtreemOS-MD 179
4.11.4 Test Unit 03: Lightweight security for mobile devices . . . 180
4.11.5 Test Unit 04: Performance comparison with XtreemOS PC

flavor and no-Grid solutions 182
4.11.6 Test Unit 05: Creation of new jobs using JobMA application 188
4.11.7 Test Unit 06: Defining new jobs using JobMA application 190
4.11.8 Test Unit 07: Using JobMA for monitoring jobs 192
4.11.9 Test Unit 08: Using JobMA for viewing info about a job . 194
4.11.10 Test Unit 09: Using JobMA for running a job 195
4.11.11 Test Unit 10: Using JobMA to suspend running a job . . . 197
4.11.12 Test Unit 11: Using JobMA to resume a suspended job . . 198
4.11.13 Test Unit 12: Using JobMA to cancel a job 199
4.11.14 Test Unit 13: Communications using IMA application . . 200
4.11.15 Test Unit 14: IMA and XtreemFS integration 201
4.11.16 Test Summary Report 202

5 Comparison of XtreemOS with other Grid Solutions 204
5.1 Overview . 204
5.2 Theoretical Comparison . 204

5.2.1 Comparison with Grid Middleware 207
5.2.2 Comparison with other Grid Operating Systems 209

5.3 Experimental Comparison . 211
5.3.1 Comparison of Job Submission and Delegation on Globus

and XtreemOS . 211
5.3.2 Comparison of Galeb on Globus 4.0 and XtreemOS 211

4

6 Usability evaluation of XtreemOS for Mobile Devices 215
6.1 Introduction and goals . 215
6.2 Methodology . 215
6.3 Results . 216

6.3.1 JobMA . 216
6.3.2 XtreemOS-MD installer 229

7 Conclusion 233

8 Acknowledgments 240

5

Chapter 1

Introduction

WP4.2 provides a range of applications from the scientific and business domain.
Using these applications, experimental tests are carried out to evaluate XtreemOS
features from the end-user perspective and to provide feedback to developers, pack-
aging and project management. This deliverable presents the specifications and the
results of the experimental evaluation which is structured into four different cate-
gories:

1. evaluation of installation and configuration,

2. evaluation of XtreemOS components,

3. comparison with other Grid solutions and

4. usability evaluation of the XtreemOS mobile device (MD) flavor.

The evaluation of installation and configuration includes a long term survey
conducted among XtreemOS end-users starting with XtreemOS 1.0 (the first pub-
lic release), continuing with three intermediate internal releases and finally the sec-
ond public release XtreemOS 2.0 (which is the latest version at the time of writing
this deliverable). The survey aims at recording the degree of end-user satisfaction
with the install CDs of the various XtreemOS releases and to monitor the change
of results as the software evolves during project execution. This allows us to track
user experiences with the install CDs and also to collect comments and recom-
mendations for improvements. Results of the survey have been reported to project
management and packaging providers in order to support development and project
planning.

The second category comprises the in-depth evaluation of XtreemOS compo-
nents including node-level VO support, checkpointing and restart, DIXI message
bus, XtreemOS API, Distributed Servers, Virtual Nodes, application execution
management, data management, security services and the mobile device flavor.
Experiments conducted in this category put emphasis on evaluating the perfor-
mance, scalability, stability and correctness of the respective XtreemOS develop-
ments. Apart from WP4.2, each work package in SP2 and SP3 contributed to the

6

planning, specification, execution and documentation of the experiments. For this
purpose, each development work package introduced a dedicated task (cf. DoW)
and devoted manpower to organize the performance evaluation. The respective
contributions from the various work packages and partners are marked to clearly
indicate the responsibilities for each test unit. Generally, WP4.2 focuses on the
application-centric evaluation from the end-user’s view whereas SP2 and SP3 put
emphasis on lower-level performance benchmarking.

Another category deals with the comparison of XtreemOS with alternate Grid
solutions. This comparison includes a theoretical comparison and experiments with
the Globus toolkit as a well-established representative of Grid middleware tools. A
further application-centric comparison of both Grid approaches is being executed
at the time of writing this deliverable which gives an outline of these tests.

The final test category examines the usability of XtreemOS MD. The focus is
on the XtreemOS-MD installer and the mobile application JobMA which provide
many graphical user elements and are therefore considered as the best choice for
the first sequence of XtreemOS usability evaluation. Usability evaluation starts
with the analysis of the MD flavor as users expect intuitive usability for applica-
tions running on mobile devices providing only small screens and limited input
capabilities. The experiments examine the ease of installation of XtreemOS-MD
using the installer provided and the ease of use of the JobMA application. The
methodology followed is based on a heuristic evaluation, which is a method to
evaluate the possible usability problems of a user interface.

The remainder of this deliverable is structured as follows: Chapter 2 gives
an overview and description of the new or changed applications contributing to
WP4.2. The setup of the long term survey and the results of the evaluation of
XtreemOS installation and configuration from install CD are provided in Chapter
3. Chapter 4 describes the test plans, specifications and results of the evaluation
of the various XtreemOS components. The comparison with other Grid solutions
is outlined in Chapter 5. The last evaluation category is addressed by Chapter 6
which presents the usability analysis of XtreemOS MD. Finally, the results of the
evaluations are summarized in Chapter 7, and an outlook on future work concludes
this deliverable.

7

Chapter 2

Application Descriptions

This chapter gives an updated overview of WP4.2 applications and further intro-
duces the new applications added to the portfolio. These new applications will also
be used for the evaluation of XtreemOS.

2.1 Overview

Table 2.1 provides an overview of the current set of applications in WP4.2.
Compared to the set of applications used for deliverable D4.2.5 [9], the follow-

ing new applications have been added:

• Hmmpfam on COMP Superscalar (BSC), replacing GRID superscalar fastD-
NAml

• openTurns (EDF) replacing Simeon

• Trex, MaxDB and RBSM (SAP) replacing SAP Netweaver Application Server

• Cloud Computing (VUA/ZIB) as new application scenario

Another application, DBE from T6, was removed from the set of applications
due to the withdrawal of the partner from the Consortium. During the execution
of the experimental evaluation, the above-mentioned applications were identified
as more suitable to exploit XtreemOS and to demonstrate the strengths of the sys-
tem. In particular, the spectrum of applications has been widened and therefore
provides an improved coverage of XtreemOS capabilities. Furthermore, the Cloud
Computing scenario (currently being implemented) has been added to demonstrate
the benefit of using XtreemOS in a cloud computing landscape.

The subsequent section provides descriptions of the new applications added to
the WP4.2 portfolio.

8

Table 2.1: Applications in WP4.2.

Partner Application Name Short Name Application Area
BSC COMP Superscalar COMPSS Bio-informatics

BSC SpecWeb SPECWEB Enterprise solutions

EADS Elfipole ELFIPOLE Electromagnetics

EADS jCAE JCAE Computer aided engineer-
ing

EDF Moderato/Maestro MODERATO Particle physics

EDF OpenTURNS OPENTURNS Sensitivity and reliability
analysis

EDF Zephyr ZEPHYR Fluid mechanics

EDF Secured Remote Computing SRC Enterprise solutions

SAP SAP NetWeaver Search and Classi-
fication

TREX Enterprise solutions

SAP SAP MaxDB replayer MaxDB Enterprise solutions

SAP Rule-based System Management RBSM Enterprise solutions

TID TID Instant Messaging Application IMA Instant messaging

TID Job Management Application JOBMA XtreemOS job management

UDUS Wissenheim WISS Virtual Presence

VUA/ZIB Cloud Computing CLOUD Image Archive

XLAB Galeb GALEB Economics, optimization

2.2 Hmmpfam on COMP Superscalar

BSC will contribute to XtreemOS with a COMP Superscalar enabled version of
hmmpfam. hmmpfam is a bioinformatics application that compares sequences of
amino acids against a database of Hidden Markov Models, which represent protein
families, searching for significantly similar sequence matches with each model.
The analysis performed by hmmpfam is computationally intensive and embarrass-
ingly parallel, which makes it a good candidate to benefit from COMP Superscalar.

COMP Superscalar (COMPSs) is a framework that facilitates the development
and execution of Java Grid-unaware applications. In the COMPSs programming
model the user selects some methods of a sequential Java application, which should
be run on the Grid. At execution time, COMPSs will be in charge of automatically
replacing the invocations of these methods by the creation of remote tasks. More-
over, the COMPSs runtime will schedule and control the execution of these tasks
on the available Grid resources, controlling the data dependencies between them.

COMPSs has to take into account the different file systems, resource manage-
ment and scheduling, etc. The features offered by XtreemOS release this system
from many of these duties, making it more efficient and portable. More precisely,
COMPSs tests the following XtreemOS features: resource discovery and reserva-

9

Figure 2.1: The hmmpfam application sits on top of COMPSs, which is in charge
of parallelizing its execution. The COMPSs has been ported to XtreemOS (AEM
API), which provides it with access to resource and job management capabilities,
for the application to be run on the available resources.

tion, job management and scheduling, file system.
COMPSs-hmmpfam provides a good use case for XtreemOS since it demon-

strates the parallelization of a scientific bioinformatics application using XtreemOS.
In addition, we should note that the porting of the COMP Superscalar environment
to XtreemOS allows not only hmmpfam, but also any other application intended to
use the Grid transparently, to run on top of XtreemOS.

2.3 openTurns

Since the beginning of 2005, a partnership of three companies has been working
together on building a tool designed to perform uncertainty treatment and reliability
analysis in a structured industrial approach. This tool is “OpenTURNS” standing
for an Open source initiative to Treat Uncertainties, Risks’N Statistics.

Running an OpenTURNS study often consists of running thousands or millions
of independent calculations from which a global, consolidated answer is gathered.

The typical use case consists of launching these calculations on the grid formed
by all connected XtreemOS nodes belonging to the same dedicated virtual organi-
sation (VO).

10

Figure 2.2: Through the XtreemOS scheduler, the OpenTURNS platform will use
all the available resources to run a high number of independant calculations

In 2009, OpenTURNS will be able to sequentially use the resource of only a
single node that it has been installed on. Then by June 2010, it will take advantage
of the whole grid of computers sharing the same dedicated VO.

Through XtreemOS Job Manager, OpenTURNS will be able to submit jobs
transparently and in parallel, reaching a sustained performance with minimum
modification to the OpenTURNS framework.

2.4 SAP NetWeaver Search and Classification (TREX)

SAP BI runs a distributed middleware system over SAP TREX. Figure 2.3 shows
the architecture of TREX. In the document mode, TREX indexes a large collection
of documents. At the indexing stage, one TREX node reads the documents and
indexes them, resulting in a collection of index files that are written onto the dis-
tributed file system imposing write load. At this stage, placing source files on the
XtreemFS file system enables high read throughput of reading the source files, due
to the striping capabilities of XtreemFS. At the write phase of the index creation
stage, the index is written back to XtreemFS, exploiting high write throughput of
XtreemFS, once again due to XtreemFS striping. To summarise, striping capabil-
ities of XtreemFS open the opportunity of scaling out, as opposed to scaling up
with most of the commercial filer solutions.

At the search stage, search queries are issued in parallel at all TREX nodes. To
answer a search query, a TREX node reads relevant portions of the index, imposing
read load on the distributed file system.

TREX uses the XtreemFS component of XtreemOS to distribute search in-
dices among its landscape nodes. When a stream of search queries is applied to

11

the TREX search engine, the striping mechanism of XtreemFS widens the overall
throughput of answering queries due to parallel reading of striped index data. In the
future, when replication is implemented within XtreemFS, it will make index data
highly available and further widen throughput of answering search queries thanks
to the mechanism of placing replica close to its reader. Overall, XtreemFS enables
to reduce TCO, providing high QoS storage backend for TREX as an alternative to
expensive filer technologies used currently.

Figure 2.3: TREX - Enterprise Search Engine

2.5 SAP MaxDB Replayer

SAP Web Application Server runs over SAP MaxDB database. Thus the IO ac-
cesses generated by MaxDB represent transactional IO load that is applied to
filesystem. SAP Web Application Server is a very complex system and it is hard
to install, maintain and use it directly in performance testing. To avoid those diffi-
culties, MaxDB symptoms are rather recorded in a trace file at the recording stage,
using our Tracy tool, as depicted in Figure 2.4. The symptoms are the actual access
sequences of MAXDB to the underlying file system. The recorder captures details
of each access as well as the identity of the process and thread that issued it.

At the replaying stage the trace file is replayed over the distributed file system
using our Tracy tool, thus porting the actual MaxDB load to the tested file system.
To create parallel load on the file system in the distributed landscape of multi-node
cluster, several trace files are replayed in parallel (one trace file on each node of the
distributed system).

12

MaxDB uses the XtreemFS component of XtreemOS to achieve high overall
throughput of handling DB accesses due to the striping mechanism of XtreemFS.
Cross WAN data access of XtreemFS is used for disaster recovery purpose. XtreemFS
is also used to provide low-latency access to data across LANs and WANs. Striping
capabilities of XtreemFS enable us to achieve low response times in case of concur-
rent accesses to the file system. In the future, when replication of XtreemFS is im-
plemented, it will be used for high availability of MaxDB data. Overall, XtreemFS
enables to reduce TCO, providing high QoS storage back-end for MaxDB as an
alternative to expensive filer technologies used currently.

Figure 2.4: Enterprise Scenario - MaxDB Replay

2.6 Rule-based System Management

Rule-Based System Management (RBSM) is a graphical system management tool
which aims to reduce the amount of administrative overhead required in managing
large scale networks. This is achieved by providing a management framework and
encoding frequently repeated tasks as a set of rules. Different decision models
can be used to determine the actions chosen by the rules for a particular need;
for example, efficiency, reliability, scalability or performance. RBSM has been
designed as a framework, allowing administrators to tailor the system to their needs
and set the level of automation that is required. This piecemeal automation allows
for changing rule sets depending on the decision model, adding new rules and
control scripts, and changing the data gathered by the landscape generator, as well
as its frequency of updates and length of retention.

The main elements of the program (as shown in Fig. 2.5) are:

• Landscape Generator - Generates a model of the System Landscape under
Control, consisting of a monitoring interface and a Landscape Manager.

13

Figure 2.5: Simplified diagram showing main components of the RBSM system

• Rule Engine - Uses rule-based logic to automatically perform routine ac-
tions.

• Control Manager - Performs the actions on the system landscape as decided
by the administrator or rules, implemented through a control interface.

Landscape Generator

The Landscape Generator is an information aggregation component used to pop-
ulate the system landscape. The generator gathers data from each node in the
landscape (e.g. CPU load, free memory, users and installed software) and returns
it to the main RBSM component, where it is used to create a live model in Java.
This Java model forms a hierarchy that can then be viewed by the administrator,
or used by the rulebase, which analyses the landscape state to generate control ac-
tions, such as deploy software, or migrate virtual machines. This model remains
constantly updated with the information changes from the landscape.

Rule Base

The Rule Base provides a set of rules that are used to decide what actions are
required to be performed on the landscape depending on the decision model in use.
The rules are used to automate decisions that are performed repeatedly or regularly
to reduce the amount of effort required from the administrator. The different areas
covered by rules include installation, configuration, start up and shut down of
components, as well as replication and migration of software, services, data and
virtual machines.

14

For example, an administrator may wish to install a piece of software to a single
machine (physical or virtual) within a domain. RBSM can be used to decide which
of these machines matches the criteria for installing the software based on a number
of dynamic attributes, such as pre-installed dependencies, hardware requirements,
machines with low CPU load, and so on.

Control Manager

The control engine component is responsible for performing actions on the system
landscape as decided by the rules engine. It connects to a daemon program running
on each machine in the landscape that uses a repository of scripts to manage the
different elements of the landscape. Actions can include installing software, adding
users, changing access rights, shutting down redundant machines and much more.
This can be added to as more administrative patterns and repetitions are identified.

RBSM in XtreemOS

Benefits to XtreemOS

RBSM provides a management utility that enables large-scale distributed systems
to be controlled more efficiently. Given the intention to scale to a large number of
nodes, it is hoped that this will allow management of an XtreemOS deployment to
be more streamlined, and allow new features to be tested and integrated as they are
needed in the management system.

RBSM will also provide an evaluation of a number of features already pro-
vided by XtreemOS, such as Checkpointing, Migration and Single Sign On. The
RBSM system will also provide a demonstration of these features and their value
for Systems Management, Dependability and Cost Efficiency.

Benefits to RBSM

By developing RBSM for the XtreemOS platform it can use the functionality pro-
vided for Checkpointing, Migration and Single Sign On without requiring addi-
tional implementation. These features of the XtreemOS platform also means writ-
ing scripts for distributed deployment is simpler, and scalable storage is beneficial
for storing the system landscape data for a large network.

Using the already existing functionality provided by XtreemOS, management
within RBSM is made simpler, more secure, and more reliable, providing a robust
and useful manageability interface.

Status

This application is currently under development, with a prototype administration
interface already available and a subset of the control actions implemented. It is
currently targeted to be shown in a demonstration for WP4.4.

15

2.7 Cloud Computing

XtreemOS will be utilized as the underlaying platform for Zmile. Zmile will be
an on-line photo archive, where users will be able to upload and categorize there
photos, as well as browsing and searching images which are available to the public.

Being a photo archive, Zmile has two major needs. On one hand it requires a
huge amount of stable and scalable storage to store the images. And on the other
hand it requires computational resources for tasks like the scaling or rotating of
photos which a user uploads.

The outlined needs can be satisfied by services offered by XtreemOS. The first
demand is addressed by the file-system of XtreemOS: XtreemFS. It can be ac-
cessed from the Zmile-server like a local file-system using the XOSAGA adapter.
The gained advantage is that the server doesn’t have to care where to put a file to
reach the best fill rate and thanks to XtreemFS reliability it even doesn’t have to
care about backups. Thanks to the fact that the stored images are read-only (ex-
cept for their deletion) Zmile can uses the full advantage of XtreemFS’s read-only
replication.

The second demand is satisfied by the job management system of XtreemOS:
AEM. Again XOSAGA will be used on the server-side to send jobs like an Im-
ageMagick command to shrink a photo to AEM. And again Zmile doesn’t need to
worry about the load-balancing.

An additional benefit is that Scalaris, which is also used in XtreemOS’s SRDS,
can be utilized to store image meta-data like EXIF information.

To this point, these are just the advantages from the usage of XtreemOS as a
platform for a scalable memory and storage consuming Web-service. But this can
even be driven further by lifting the whole application into a cloud. In this case,
Amazon’s EC2 [26] is the target cloud for the application. In the Amazon cloud
it is possible to prepare images of XtreemOS with an installed an ready to use
Zmile-server and store them into S3 storage [25].

Whenever the Zmile-server detects a shortcoming of one of its resources, may
it be storage or compute power, it deploys a new application-instance from a stored
image and thus compensates the bottleneck. As mentioned above, the Zmile-server
doesn’t need to take care about distributing its state or memory to the new instance.
The scalability of XtreemOS, respect to its services, first and foremost XtreemFS,
ensures that the new instance will be seamlessly integrated. This is shown in figure
2.6 where all the application traffic passes Amazons Elastic Load Balancing, which
can be configured to detect overloaded nodes. If all nodes have too much load, a
new node will be spawned, having access to the data of the other Zmile-Servers.

One can easily imagine that as long as the Zmile-Server can handle the load of
incoming requests and only requires more storage, it will be sufficient spawning a
plain XtreemOS image. Plain means here that there is no need for this images to
have the Zmile-application installed.

This scenario is shown in figure 2.7 where the Zmile-server acts as a gateway to
the cloud. When the user uploads a picture, it is dispatched through the XOSAGA

16

Client

 GWT

 Browser

Zmile-Server

 SpringContainer

 XOSAGA

 XtreemOS

Elastic Load Balancing

Zmile-Server

 SpringContainer

 XOSAGA

 XtreemOS

Zmile-Server

 SpringContainer

 XOSAGA

 XtreemOS

{Requests}

{Requests}

{Requests}

Zmile-Server

 SpringContainer

 XOSAGA

 XtreemOS

{Requests}

Storage and compute power sharing

Figure 2.6: Zmile with replicated servers.

adapter an stored on one of the XtreemOS nodes marked as storage. If the picture
should be preprocessed this is done by the XtreemOS-computing nodes. Of course
a mixture of both scenarios is possible.

As closing note, it should be mentioned that for the development, only the Java
programming language together with standard Java web-frameworks like Spring
and GWT will be used. The whole integration with XtreemOS will be performed
over the Java implementation of the XOSAGA adapter. So from the point of view
of an application developer, there is hardly any overhead in utilizing XtreemOS but
a big gain of scalability and stability. The developer doesn’t need to worry about
these aspects and thus can fully focus on implementing the application logic and
GUI itself.

Given the early state of the Zmile development, no tests have been performed
yet. It is planned to release the first public screen-shots in January 2010. The
deployment of a public version is currently scheduled for late spring of 2010. This
deployment will consist of only a single web-server. Until late summer of 2010 it
planned to have the final version of the application running on Amazons EC2.

17

Zmile-Server

 SpringContainer

 XOSAGA

 XtreemOS

XtreemOS-Node

 Compute

XtreemOS-Node

 Storage (XtreemFS)

XtreemOS-Node

 Compute

XtreemOS-Node

 Storage (XtreemFS)

XtreemOS-Node

 Storage (XtreemFS)
XtreemOS-Node

 Storage (XtreemFS)

Client

 GWT

 Browser

Figure 2.7: Zmile-server with some XtreemOS instances.

18

Chapter 3

Evaluation of Installation and
Configuration

WP4.2 carried out a long-term survey to record the degree of end-user satisfaction
with various XtreemOS releases and to monitor the change of results as the soft-
ware evolves during project execution. Starting with the first public release until
the latest release when writing this deliverable (public release XtreemOS 2.0), user
experiences with the install CDs have been collected along with comments and
recommendations for improvements. Results of the survey have been reported to
project management in order to support development and project planning. Sub-
sequently, the setup of the survey is explained followed by a presentation of the
results and their analysis.

3.1 Survey Setup

The survey was conducted in the form of an online questionnaire collecting feed-
back from XtreemOS end users regarding their satisfaction and experience with the
XtreemOS install CDs and the accompanying documentation. For each question,
user satisfaction was rated on a scale from 1 (lowest satisfaction) to 6 (highest sat-
isfaction). Experience could be expressed by additional fields where participants
could enter plain text describing e.g. problems and further recommendations.

The questionnaire is sub-divided into four different categories:

Installation: This category comprises the activities related to the acquirement of
the install media and the subsequent installation process. The question items
are:

• Ease of getting the installation media (CDs/ISOs).

• Ease of installation.

• Ease of installing additional packages after install.

• Speed of installation.

19

Configuration: The activities for this category comprise the configuration and
customization procedure of the installed XtreemOS. The question items cor-
respond to the different types of XtreemOS nodes:

• Ease of configuring core nodes.

• Ease of configuring resource nodes.

• Ease of configuring client nodes.

Basic usage: After successful installation and configuration follow basic usage
activities with the operating system. The respective question items include:

• Stability of the software.

• Ease of managing users.

• Ease of managing VOs.

Documentation: The install CDs are accompanied by user guides. The assessed
properties include:

• Clarity of the documentation.

• Completeness of the documentation.

• Correctness of the documentation.

Test items are different versions of the install CD-ISOs available from the
XtreemOS homepage:

• v1.0: The first public release of XtreemOS.

• v1.1 RC5: An internal release candidate with facilitated installation and con-
figuration procedure.

• v2.0 beta 1: First internal beta release of XtreemOS 2.0

• v2.0 beta 2: Second internal beta release of XtreemOS 2.0

• v2.0 public: The second public release of XtreemOS.

3.2 Survey Results

A total of 17 end-users from the XtreemOS consortium participated in the survey.
Participants were required to download the install media and to install and con-
figure a small grid of 3 nodes (1 core node, 1 resource node and 1 client node) on
inhouse testbeds. They were asked to follow the instructions given in the documen-
tation and also to keep records of the progress and incidents discovered (feedback
to developers and packaging providers was given via bug trackers).

20

3.2.1 Overview

Figure 3.1 shows the mean satisfaction with the different test items (XtreemOS
releases) averaged across all survey categories. It can be observed that the re-
sults increase monotonously from a level of 2.78 for XtreemOS 1.0 to 3.92 for
XtreemOS 2.0 public release. This increase can mainly be attributed to facilitated
installation and configuration tools, automatized setup, enhanced user interfaces
(more graphical user interfaces) and advancement in the documentation.

Average over all categories

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

v1.0 v1.1 RC5 v2.0 b1 v2.0 b2 v2.0 public
release

av
er

ag
e

sa
tis

fa
ct

io
n

Figure 3.1: Overview of user satisfaction for all test items averaged across all
categories.

Averaging the satisfaction across all test items, Figure 3.2 presents the results
for the different survey categories (installation, configuration, basic usage and doc-
umentation). Installation receives the highest rating of 4.06 as people encountered
least problems with the download and matured installation tools provided for the
underlying Linux distribution. The subsequent configuration procedure, however,
was rated with the worst average value of 2.63, which can be accounted to many
bugs and manual work-arounds needed in particular for the early releases 1.x. Ba-
sic usage and documentation are rated on the second and third rank, respectively.
Details and results are discussed and broken down later in sections 3.2.4 and 3.2.5.

Figure 3.3 gives an overview of the average satisfaction level for the different
categories and test items. Starting from the first public release all categories show
clearly increasing trends. Especially the latest version made a noticeable leap in
quality in terms of stability, ease of usage and also supported by a revised docu-
mentation.

21

Average over all releases

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

installation configuration basic usage documentation

category

av
er

ag
e

sa
tis

fa
ct

io
n

Figure 3.2: Overview of user satisfaction for all categories averaged across all test
items.

v1.0
v1.1 RC5

v2.0 b1
v2.0 b2

v2.0 public

configuration

documentation

basic usage

installation

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

av
er

ag
e

sa
tis

fa
ct

io
n

release

Overview all categories

Figure 3.3: Overview of average user satisfaction for all categories and test items.

22

3.2.2 Installation

In Figure 3.4, the rating of the installation procedure is given per question. The
ease of getting the install media, namely CD-ISO, has received the highest aver-
age results in a consistent manner. Nevertheless, some improvements have been
recommended such as facilitating the access to the install media on the XtreemOS
home page. The visibility of XtreemOS as a product has improved with the pub-
lication of XtreemOS 2.0, however, still too many mouse clicks are required to
get to the download link. Occasionally, a slow ftp download connection has been
reported but this may have been a temporal issue. Ease and speed of installation
have also improved noticeably. In particular, starting with XtreemOS 1.1, pre-
configured node types were introduced which became increasingly mature in the
beta and public versions of XtreemOS 2.0. Meta-packages for different node type
made the installation process much easier. Some inconsistencies of the installation
steps with the instructions in the user guide(s) have been reported in the earlier ver-
sions. Though these problems have been tackled with the appearance of XtreemOS
2.0. Also post-installation of packages is easier, packages have been made avail-
able from the XtreemOS repositories. Some packages still fail to install, feedback
has been reported.

v1.0
v1.1 RC5

v2.0 b1
v2.0 b2

v2.0 public

Ease of installation

Ease of post-installing additional packages

Speed of installation

Ease of getting the installation media

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

av
er

ag
e

sa
tis

fa
ct

io
n

release

Installation

Figure 3.4: User satisfaction for category installation.

23

3.2.3 Configuration

Similar to the installation procedure, also the configuration has improved, espe-
cially for core and resource nodes (cf. Figure 3.5). The configuration of these
nodes was a relatively tedious task in the earlier XtreemOS versions, whereas the
configuration of a client is simpler and caused less problems reflected by the better
rating. Coinciding with the introduction of automatized configuration procedures
and pre-configured node types in the beta and public releases of XtreemOS 2.0
the execution of the configuration has been facilitated and is now at least as easy
as the configuration of the client. Still the configuration of the latest XtreemOS
release can be further improved by reducing the number of manual steps and work-
arounds, e.g. by introducing configuration scripts (either with default setup or with
interactive parameter entry) and further self-explaining GUIs for the xosautoconfig
tool. Also some lower level automation of certificate setup would be useful even if
this process cannot be automated entirely.

v1.0 v1.1 RC5 v2.0 b1 v2.0 b2
v2.0

public

Ease of configuring core nodes.

Ease of configuring resource nodes.
Ease of configuring client nodes.

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

av
er

ag
e

sa
tis

fa
ct

io
n

release

Configuration

Figure 3.5: User satisfaction for category configuration.

3.2.4 Basic Usage

In Figure 3.6, a remarkable increase in the rating of basic usage actions can be ob-
served. Most striking is the ascent regarding the stability of the software since the
introduction of the public release of XtreemOS 2.0. This can be traced back to the

24

enormous efforts for system integration, continued code stabilization, testing and
debugging. Also the availability of VOLife may have contributed to a facilitated
VO management. Whereas in earlier versions, management of users and VOs was
reported to require way too much manual work, today recommendations restrict
to minor bug fixes and minor usability enhancements. Basic usage may be further
improved by, e.g., more detailed error outputs and by ensuring a proper startup of
all services avoiding manual restart.

v1.0
v1.1 RC5

v2.0 b1
v2.0 b2

v2.0 public

Stability of the software.

Ease of managing VOs.

Ease of managing users.
1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

av
er

ag
e

sa
tis

fa
ct

io
n

release

Basic Usage

Figure 3.6: User satisfaction for category basic usage.

3.2.5 Documentation

Increased user satisfaction also applies to software documentation in all three prop-
erties, completeness, correctness and clarity (cf. Figure 3.7).

Probably, issues with the documentation of early XtreemOS versions gave rise
for bad ratings in the other survey categories because the documentation did not
help much to resolve problems. One major issue reported was the lacking synchro-
nization between software development and documentation. This gap was most
evident for the internal version 1.1 which is reflected by the lowest satisfaction val-
ues. The documentation was reported to miss required steps for OS setup, or, some
instructions were incorrect or too technical for end-users. As of XtreemOS 2.0 beta
2 and the subsequent public release the situation has improved a lot. Primarily, the
separation of the XtreemOS guide into an admin and a user guide has been highly
appreciated. The synchronization between development and documentation writ-
ing has been streamlined and is reflected in way more consistent instructions. To

25

v1.0
v1.1 RC5

v2.0 b1
v2.0 b2

v2.0 public

Completeness

Correctness

Clarity
1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

6,00

av
er

ag
e

sa
tis

fa
ct

io
n

release

Documentation

Figure 3.7: User satisfaction for category documentation.

further improve the quality of the documentation it is recommended to use more
screenshots and to reduce the need to jump between sections.

3.3 Summary

The survey presented gave insights into the experiences with two public and three
intermediate internal releases from the end-user perspective. The survey examined
the satisfaction with the installation, configuration and basic usage of the install
CDs provided as well as with the accompanying documentation. In all four cat-
egories, one could detect an remarkable upward trend with respect to end-user
satisfaction. The ratings improved monotonously along all XtreemOS versions ex-
amined, most noticeable, however, is the leap made with the introduction of the
public release of XtreemOS 2.0. Early major problems with lacking integration,
instability, complicated manual setup, bugs and lacking synchronization between
software development and documentation have been addressed to a far extend. Ad-
vancements with software integration have been reported and also the automatized
installation and configurations tools have been added which render the adoption
of the new OS much easier. One further major reason for improved satisfaction
was the revised documentation which provides for more clarity, completeness and
corrected many errors. Also the separation into a user and an admin guide is highly
appreciated.

Further ways for improvements have been proposed. This includes debugging

26

of various packages which still fail to install. Also the number of manual steps and
work-arounds should be reduced, e.g. by introducing configuration scripts and fur-
ther self-explaining GUIs, e.g., for the xosautoconfig tool. Furthermore, it would
be useful to introduce lower level automation for certificate setup. Basic usage
would benefit from more detailed error outputs and from ensuring a proper startup
of all services which would avoid manual restart. And finally, it is suggested to
further work on the quality of the documentation, e.g. by adding more screenshots
and by reducing the need to jump between sections.

Summing up, end-users welcome the progress made regarding component inte-
gration, stability and basic usage and software documentation. The evolved matu-
rity of the software product is reflected by thoroughly increasing satisfaction values
and many positive comments for XtreemOS 2.0. Two of them shall be quoted here:
“A big improvement over the previous release.”, and “My main remark is that this
version has improved a lot over previous ones. Keep the good momentum.”

27

Chapter 4

Evaluation of XtreemOS
Components

In this chapter, we present the evaluation of various XtreemOS components and
features. Following an introduction to the overall test approach and test overview,
this chapter presents the specifications and results for the experiments conducted.

4.1 Evaluation Overview

The evaluation of XtreemOS components is structured as follows:

• Node-level VO support (Section 4.2)

• Checkpointing and restart (Section 4.3)

• DIXI message bus (Section 4.4)

• XtreemOS API (Section 4.5)

• Distributed Servers (Section 4.6)

• Virtual Nodes (Section 4.7)

• Application execution management (Section 4.8)

• Data management (Section 4.9)

• Security services (Section 4.10)

• Mobile device flavor (Section 4.11)

The emphasis of the experiments conducted in this category is on evaluating
the performance, scalability, stability and correctness of the respective XtreemOS
developments. In this chapter, the experimentation results from the consortium

28

shall be collected and presented in a common place. Apart from WP4.2, each work
package in SP2 and SP3 contributed to the planning, specification, execution and
documentation of the experiments. For this purpose, each development work pack-
age introduced a dedicated task (as defined in the DoW) and devoted manpower
to organize the performance evaluation. In order to indicate the responsibilities
for each test unit, the respective contributions from the various work packages and
partners are clearly marked. Generally, WP4.2 focuses on the application-centric
evaluation from the end-user’s view whereas SP2 and SP3 put emphasis on lower-
level performance benchmarking.

Table 4.1 gives an overview of the tested XtreemOS components along with
the WP4.2-applications used for evaluation.

Table 4.1: Overview of XtreemOS components and their assigned WP4.2-
applications used for testing them

Component Name C
O

M
PS

S

SP
E

C
W

E
B

JC
A

E

M
O

D
E

R
A

TO

O
PE

N
T

U
R

N
S

Z
E

PH
Y

R

SR
C

T
R

E
X

M
ax

D
B

R
B

SM

IM
A

JO
B

M
A

W
IS

S

G
A

L
E

B

ot
he

r

Node-level VO support X X
Checkpointing and restart X X X X X X
Mobile device flavor X X X
XtreemOS API X
Application execution manage-
ment

X X X X X

Data management X X X X X
Security services X

Next to these application-centric tests, SP2 and SP3 contributed to the evalua-
tion of components as listed in Table 4.2.

Table 4.2: Tested components with WPs and partners contributing to testing
Component Name Contributing WP Contributing Partner

Checkpointing and restart WP3.3 UDUS

DIXI message bus WP3.2 XLAB

XtreemOS API WP3.1 VUA

Distributed Servers WP3.2 VUA

Virtual Nodes WP3.2 ULM

Application execution management WP2.2, WP3.3 BSC, XLAB

Data management WP2.2, WP3.4 CNR, XLAB

Security services WP3.5 STFC

Mobile device flavor WP2.3, WP3.6 TID

29

The following sections present the test documentation with a structuring de-
rived from “IEEE Standard for Software Test Documentation”, IEEE 829-1998 [20].
Accordingly, the documents in these sections cover the phases test planning, test
specification, and test reporting.

Among others the test plan describes the scope, approach, resources, the items
and the features to be tested as well as the test approach. Per XtreemOS compo-
nent, one test plan is provided covering the test setup for all WP4.2 applications
evaluating this feature.

The evaluation of an XtreemOS component is sub-divided into one or more
test units where each test unit consists of exactly one test specification and one test
results document. The test specification enumerates the test items, tested features
and the test approach refinements for the given test unit. It is required that the
specification follows a sound methodological approach which shall be applied to
ensure accuracy, reproducibility and fairness of the tests. Test results have to be
analyzed and presented in a comprehensible manner.

The test summary report summarizes the tests. For each XtreemOS component,
we give a common conclusion for all applications testing it, summarize the results
and outline future test activties.

30

4.2 Evaluation of Node-level VO Support

This section covers the software for node-level VO support and VOlife. The pur-
pose, architecture and use cases are described in the XtreemOS deliverable D2.1.2
[8].

4.2.1 Test Plan

4.2.1.1 Responsibilities

These tests will be carried out by XLAB.

4.2.1.2 Test Items

The tests shall be done on Release 2.0 of XtreemOS updated with all the patches
available at the time of testing.

4.2.1.3 Features to be Tested

This test plan includes testing the following features:

• the VO administration tools VOlife, including both the command-line inter-
face as well as the web front-end (test units described in Sections 4.2.2 and
4.2.3),

• mapping global user identities to local user identities and group identities
(test unit described in Section 4.2.4).

4.2.1.4 Features not to be Tested

Evaluation of the following features will be skipped in this iteration of the tests due
to lack of time but is planned for the next iteration:

• translating VO-level access control policies into local OS-level access rights
and capabilities,

• session management.

4.2.1.5 Overall Approach

The purpose of these tests is to evaluate the current version of software from the
application and end-user perspective and to provide feedback to developers. We
will thus focus on evaluating the higher-level design, features and usability of each
module rather than covering a large part of possible inputs to each components. To
ensure the feedback will be beneficial to the development, all tests will be done
with the latest version of the software within the current major release version.

31

As not all of this software is intended to be used directly by the users or appli-
cations, some tests will be done through the application execution manager (AEM).
For example, submitting a whoami job reveals what local account the global user
identity is mapped to.

The tests will allow for assessing improvements with respect to the evalua-
tion carried out in D4.2.5. Furthermore, the scope of the tests has been expanded
towards more detailed tests also covering performance and scalability aspects.

4.2.2 Test Unit 01: Correctness of VOlife

4.2.2.1 Responsibilities

The tests in this test unit are to be carried out within WP4.2. The responsible
partner is XLAB.

4.2.2.2 Test Specification

A testbed of two virtual machines was used with 748 MB RAM for the core node
and 512 MB RAM for the resource node. They were hosted in VirtualBox 3.0.12
on a 2.40 GHz dual-core Intel-based computer with 2 GB RAM running Windows
vista. Automatic update of both nodes was done right before the start of the test.

Test Items

This test unit tests the tools for configuring VOs and their membership.

Features to be Tested

This test unit tests the functional requirements of VO administration tools VO-
life. Both the command-line and web interface are tested. A brief usability test of
the web interface is also included.

This test unit tests requirements R21, R22, R24, R29; and, to a lesser extent,
R25, R89, R91, R96.

Approach Refinements

Configuration

1. XtreemOS must be installed and configured on the two test nodes so that job
submission is possible.

2. The original state of the XVOMS database must be dumped into a file with
the command
mysqldump -u -p root xvoms -r xvoms.txt.

32

Start The following steps are to be tested:

1. User1 creates an account in VOlife and tries to edit existing VOs. He must
fail.

2. User1 creates a newVO.

3. User2 creates an account in VOlife and tries to edit existing VOs, including
newVO.

4. User2 requests being added to newVO.

5. User1 approves the request and also adds User2 to a group and a role.

6. User1 also adds himself to a different group and role in newVO.

7. User2 checks that he is now a member of newVO.

8. User2 tries to modify group and role membership of newVO. He must fail.

9. User2 creates anotherVO.

10. User1 requests being added to anotherVO.

11. User2 approves the request and also adds User2 to a group and a role.

12. User1 checks that he is now a member of anotherVO.

Note that when a user tries to perform an illegal action, it is preferrable that:

• if using the web interface, the action is not available anywhere in the menu
at all,

• if using the command-line tools, the action should return a helpful error mes-
sage but must not in any case reveal too much information, which could
hinder system security.

All these steps are to be repeated twice, once using the VOlifecycle web inter-
face and once using the corresponding command-line VOlife utilities.

When using VOlifecycle:

1. Ensure that tomcat is running.

2. Open one web browsers on each of the two machines, and use them to exe-
cute the steps of the input case.

3. Check that the state of the VOs presented in the web interface is consistent
with the expected output.

4. Check that each user can only view the properties, groups etc of his VOs.

33

5. Create multiple VOs, groups, roles, and users, and check whether this affects
usability of the VOlifecycle web interface. For example, does the user have
to scroll through long tables?

When using the command-line tools:

1. Use the command volife_run.sh to execute the steps of the input case.
Before executing any VO administration steps ensure that the local account
you are using has the XtreemOS user certificate of the VO administrator
installed.

2. Check that the state of the VOs returned by the volife_run.sh -list-all-vos
and volife_run.sh -list-all-users is consistent with the ex-
pected output.

3. Re-login as another local user who only has the XtreemOS user certificate
of the VO user, and ensure that he cannot administrate the VO.

Wrap Up The state of the XVOMS database must be restored from dump
with the commands
echo ’drop database xvoms;’ | mysql -u root -p
echo ’create database xvoms; use xvoms; source xvoms.txt;’ \

| mysql -u root -p!

4.2.2.3 Test Results

The test was run on 2009-11-30 by Bojan Blažica, XLAB.

Procedure Results Functionality of the VOlife web interface worked as expected.
All features that the current user is not authorized for were hidden in the graphical
user interface.

On large grid deployment the administrators will have to scroll through long
tables when managing users, groups, and roles because no search method is pro-
vided. Only the list of VOs has the option of filtering. It also takes a significant
amount of time to perform certain actions. For example, listing all users takes ap-
proximately 5 seconds with 20 VOs, 1 group and role per VO and 20 users per
VO.

The command-line interface is adequate to perform all tested operations and
can be efficiently used in batch files. However, it does not use the XtreemOS user
certificates nor has any provision to log in (see the next Paragraph, Anomalous
Events).

Anomalous Events As mentioned above, the usability of VOLifecycle web in-
terface could be improved. The command-line interface, on the other hand, does
not use the XtreemOS user certificates nor has any provision to log in. This means

34

that the local root on the core node can perform all operations on the database
(which cannot be realistically prevented anyway), while no normal user is allowed
to do anything.

4.2.3 Test Unit 02: Performance of VOlife

4.2.3.1 Responsibilities

The tests in this test unit are to be carried out within WP4.2. The responsible
partner is XLAB.

4.2.3.2 Test Specification

The test was executed by on a testbed of two virtual machines. The core node
had 748 MB RAM and the resource node had 512 MB RAM. They were hosted in
VirtualBox 3.0.12 on a 2.40 GHz dual-core Intel-based computer with 2 GB RAM
running Windows vista. Automatic update of both nodes was done right before the
start of the test.

Test Items

This test case tests the VOlife tools for configuring VOs and their membership.

Features to be Tested

This test unit evaluates the scalability of VOlife by measuring the time required
for certain operation in certain circumstances, as given below. The operations being
timed are short, thus only the command-line interface can be tested because it can
be automatically timed using the Linux time command.

This test unit tests requirements R21 and R30.

Approach Refinements

The scalability parameters that we test the performance against the size of the
XVOMS database, i.e. the number of VOs, groups, roles, and users. The intent is
to check whether a large number of these entities negatively impacts the usability
or the performance of the VOlife tools.

The parameter being measured is the time needed to complete certain opera-
tions, such as creating an additional VO or checking group membership for a given
user. The database sizes (number of entities – VOs, groups, roles, and users) that
the tests are run on should be large enough to affect the performance, e.g. at least
1000 entities for the largest test. Each measurement should be repeated at least 50
times and the results averaged over the runs.

35

Configuration

1. XtreemOS must be installed and configured on the two test nodes so that job
submission is possible.

2. The original state of the XVOMS database must be dumped into a file with
the command
mysqldump -u root xvoms -r xvoms.txt.

Set Up Using the command-line VOlife tools, fill the database with as many
records as specified in the input.

Start Measure the time required for the following operations, using the command-
line tools:

1. check VO and group membership of a given user; VO, group, and user given
by names,

2. check VO and group membership of a given user; VO, group, and user given
by IDs,

3. create new VO, group, and role,

4. create a new user,

5. add a user to a VO, group, and role.

Repeat the short operations as many times as necessary to get accurate measure-
ments.

Wrap Up The state of the XVOMS database must be restored from dump
with the commands:

echo ’ drop d a t a b a s e xvoms ; ’ | mysql −u r o o t −p
echo ’ c r e a t e d a t a b a s e xvoms ; use xvoms ; s o u r c e xvoms . t x t ; ’ \

| mysql −u r o o t −p

4.2.3.3 Test Results

The test was executed by Bojan Blažica, XLAB, on 2009-11-30.

Execution Description The procedure was run on 2009-11-30 following the
above Test Unit desciption. The database sizes, i.e. the number of VOs, groups,
roles, and users, were selected to be as large as practical, with the limiting factor
being the fact that adding a VO, group, or user using the command-line interface
takes more than one second.

36

Results The last columns give the time required for the five operations given in
the Test Unit specification. Times in the table were averaged over 150 runs, except
for the create user command, which was averaged over 50 runs.

groups users average execution time [s] for
VOs and roles per membership check create VO, create add user to VO,

per VO group by names by IDs group, and role user group, and role
1 1 1 2.86 2.89 2.97 2.94 2.91
1 1 50 3.37 2.94 3.03 3 3.01

20 1 20 3.9 3.86 4.07 4.01 4.08

The measurements show a small but measurable effect of database size on the
times required to execute these operations. In case of a very large database VO-
life could fail to fulfill the times-related non-functional requirements. On the other
hand these are all administrative operations that have no effect on overall perfor-
mance of jobs, XtreemFS etc.

Anomalous Events As mentioned above, the times required to execute these op-
erations in VOlife increase slightly but measurably with the database size.

4.2.4 Test Unit 03: Correctness of account mapping

4.2.4.1 Responsibilities

The tests in this test unit are to be carried out within WP4.2. The responsible
partner is XLAB.

4.2.4.2 Test Specification

Test Items

This test unit tests the account mapping service.

Features to be Tested

The subject of this test unit is the correctness of the mapping from global VO
user credentials to local groups and accounts on the VO-aware node.

Approach Refinements

This test design covers basic tests, which are best done by submitting jobs that
run command-line utilities like whoami and id.

The input of this test case consists of the sequence in which the involved VO
users submit their jobs and of the job length. The output consists of the username
and group that they are mapped to.

37

The test will pass if the user is mapped according to her distinguished name
and VO stored in the certificate. No password should be required, except for the
passphrase of user’s private key. The feature fails if:

• an unauthorized user manages to log into the node,

• an authorized user manages to log into the node, but is mapped incorrectly,

• two distinct users are mapped to the same UID,

• two users from a different VO are mapped to the same GID,

• an authorized user is denied access,

• grid users are not isolated properly once the account pool is used up.

Configuration

1. XtreemOS must be installed and configured on the two test nodes so that job
submission is possible.

2. The original state of the XVOMS database must be dumped into a file with
the command
mysqldump -u root xvoms -r xvoms.txt.

Set Up Create a VO named VO1, containing Group1, Role1, and User1. Create a
VO named VO2, containing Group2a, Role2a, and User1. Set up the local policies
so that the default account and group mapping is used for the VO users:
xos-policy-admin-am -vo VO_ID --force
xos-policy-admin-gm -vo VO_ID --force
Add User2 to VO2 into Group2b, Role2b. Add User3 to VO1, Group1, Role1. Add
a resource to both VO1 and VO2.

Start Execute the following steps, noting the account and group mapping in
each case.

1. User1 submits ’id’, acting as member of VO1.

2. User1 submits ’id’, acting as member of VO2.

3. User2 submits ’id’.

4. User1 submits ’id’ again, acting as member of VO1. Is he mapped to the
same account as the first time?

5. Using the command xos-policy-admin, limit the account pool size to
2 accounts and 2 groups that should NOT be in the same range as the previ-
ously used account pool.

38

6. User1 submits ’id’.

7. User2 submits ’id’.

8. User3 submits ’id; sleep 60; id’. Is the first account from the pool reused?

9. User1 submits ’id; sleep 60; id’.

10. User2 submits ’id’. Is the submission rejected because of lack of free ac-
counts?

11. Increase the account pool to a normal size.

12. Expire the certificate of one of the users by issuing a very short-lived certifi-
cate and waiting for it to expire.

13. User1 submits ’id’. Submission must fail.

Wrap Up The state of the XVOMS database must be restored from dump
with the commands
echo ’drop database xvoms;’ | mysql -u root -p
echo ’create database xvoms; use xvoms; source xvoms.txt;’ | mysql -u root -p

4.2.4.3 Test Results

The test was executed by Bojan Blažica, XLAB, on 2009-12-22.

Execution Description The procedure was run on 2009-12-22 following the
above Test Unit desciption.

Results In the first seven steps of the test procedure account mapping service be-
haved as expected. Users were mapped according to their distinguished names and
VOs stored in their certificates and no passwords were required. After limiting the
account pool size to 2 accounts and 2 groups, 60501 and 60502, two distinct users
were mapped to the same UID. This happened during steps 8 - 10 in the test proce-
dure. The following commands and the contents of the output files they produced
show that User2 was mapped to the same UID (60501) as User3. Additionally, we
can see the correctness of mapping different VOs to different groups - e.g., VO1 to
group 60051 and VO2 to group 60238.

Commands:

[user3@core f i l e s] $ xsub −f i d 3 s l e e p 6 0 . j s d l −c / home / u s e r 3 / . xos /
(cont.) t r u s t s t o r e / c e r t s / u s e r 3 v o 1 . c r t

[marjan@core f i l e s] $ xsub −f i d 1 s l e e p 6 0 . j s d l −c / home / mar jan / . xos /
(cont.) u s e r 1 v o 1 . c r t

[matej@core f i l e s] $ xsub −f i d . j s d l −c / home / m a t e j / . xos / t r u s t s t o r e
(cont.) / c e r t s / u s e r 2 v o 2 . c r t

39

Output files:

[roo t@core tmp]# c a t i d 3 . o u t
u i d =60501 (/CN=6 b40da4d−8bf1−4d5f−ba64−f65058883921) g i d =60051(

(cont.)xosuse r_g60051) g ro up s =60051(xosuse r_g60051)
u i d =60501 g i d =60051(xosuse r_g60051) g rou ps =60051(xosuse r_g60051)
[roo t@core tmp]# c a t i d 1 . o u t
u i d =60502 (/CN=60 a84dfc−a269−468f−8bad−a6ca2388fc72) g i d =60051(

(cont.)xosuse r_g60051) g ro up s =60051(xosuse r_g60051)
u i d =60502 (/CN=60 a84dfc−a269−468f−8bad−a6ca2388fc72) g i d =60051(

(cont.)xosuse r_g60051) g ro up s =60051(xosuse r_g60051)
[roo t@core tmp]# c a t i d . o u t
u i d =60501 (/CN=d7eaf795−79c1−474a−9ab1−1829 d44011bc) g i d =60328(

(cont.)xosuse r_g60328) g ro up s =60328(xosuse r_g60328)

Subbmiting a job with an expired certificate failed as expected.

[marjan@core f i l e s] $ xsub −f i d s l e e p 6 0 . j s d l −c / home / mar jan / . xos /
(cont.) t r u s t s t o r e / u s e r 1 v o 1 e x p i r e d . c r t

xsub : c r e a t e J o b : −1 (G e n e r i c e x c e p t i o n)
c e r t i f i c a t e e x p i r e d on 20091222111345GMT+00:00

Anomalous Events As mentioned above, submitting a job while all UIDs in the
account pool are already mapped, causes two users to be mapped to the same UID.
Such behaviour should be prevented at job submission.

4.2.5 Test Summary Report

4.2.5.1 Summary of Tests and Results

The functional requirements of VO and user administration tool were tested thor-
oughly. The web interface VOLifeCycle worked as expected and thus satisfied all
the requirements. The command-line interface does not use the XtreemOS user
certificates nor has any provision to log in, resulting in local root being able to
do anything and no other user being able to use it at all. The former cannot be
avoided, as local root can also edit the database manually etc, thus VOlife must run
on a trusted node. The latter, however, limits the use of the command-line interface
to test environments only. This shows that the CLI is provided just as a test tool.
A VO administrator in a large grid environment thus has no practical means to
automate repetitive administrative tasks. Furthermore, the administrator will have
to scroll through long tables when managing users, groups, and roles because no
search method is provided. Only the list of VOs has the option of filtering.

The performance test of VOlife shows that its scalability over large databases
is good but not excellent. However, VOlife cannot really be a bottleneck of a grid
environment because it does not affect performance of other XtreemOS compo-
nents.

The account mapping performs as expected in normal usage, i.e. until the
account pool is used up. Distinct grid users are mapped to distinct dynamicall

40

created local accounts. The same user acting as a member of two distinct VOs is
also mapped to distinct accounts to prevent VO interference. Members of the same
VO are mapped to the same local group. The only detected problem was that once
the account pool is used up two different users can be mapped to the same local
account, thus they are not isolated - e.g., one of them can control jobs created by
the other.

4.2.5.2 Conclusion and Directions for Future Work

We can conclude that the components for node-level VO support in XtreemOS Re-
lease 2 are adequate, with all major functional requirements met but performance
and usability leaving some room for improvement.

Further testing is required for features skipped in this iteration, most of which
relate to the account mapping service. All tests will also be repeated on later re-
leases of XtreemOS to check for regressions.

41

4.3 Evaluation of Checkpointing and Restart

This section relates to the testing of the XtreemOS Checkpointing/Restart func-
tionality developed as part of WP3.3.

4.3.1 Test Plan

4.3.1.1 Responsibilities

• WP3.3:

– UDUS

• WP4.2:

– SAP

– BSC

– EDF

– XLAB

4.3.1.2 Test Items

Checkpointing and restarting have been implemented at multiple levels in the OS
stack. There is a grid-level job checkpointer (JCP) that is able to control jobs in
the grid through communication with a job-unit checkpointer (JUCP) on each node
(XtreemOS grid checkpointer version 2.1). Using a common kernel checkpointer
API, commands to the kernel-level checkpointer, which can change from node to
node, are able to be translated into native commands in such a way that the kernel
checkpointer implementation is obfuscated from the rest of the grid.

The kernel-level checkpointer used is a modified version of the Berkeley Li-
brary Checkpoint/Restart (BLCR) module (based on version 0.8.0). It is used as
the basis for checkpointing in the regular flavour of XtreemOS. The checkpointer
for XtreemOS adds functionality to BLCR so that it can save the executable and
libraries as part of the checkpoint. The patches to apply these extensions can be
obtained from svn:
svn+ssh://scm.gforge.inria.fr/svn/xtreemos/foundation/blcr/patchs

For LinuxSSI, the inbuilt LinuxSSI checkpointer is used as kernel-level check-
pointer (version 2.0).

A user guide is available in section 7.1 of D3.3.6, and further information is
provided on the wiki at https://xtreemos.wiki.irisa.fr/tiki-index.
php?page=Grid+Checkpointing+Service.

4.3.1.3 Features to be Tested

The following features will be tested:

42

https://xtreemos.wiki.irisa.fr/tiki-index.php?page=Grid+Checkpointing+Service
https://xtreemos.wiki.irisa.fr/tiki-index.php?page=Grid+Checkpointing+Service

• Checkpointing of both simple and complex applications

• Restarting checkpoints from saved states

• Checkpointing functionality at various levels

– Kernel-level

– Container-level

– Grid-level

– Cluster-level (LinuxSSI)

4.3.1.4 Features not to be Tested

Currently, the following features will not be tested as they were not available at the
time of testing:

• Checkpoint file management

4.3.1.5 Overall Approach

The purpose of these tests is to extensively evaluate the functionality, performance
and scalability of the checkpointing/restart mechanisms in XtreemOS in a range of
scenarios covering all implementations of this feature in various levels of the soft-
ware stack. Due to the varying functional requirements of the WP4.2 evaluation
applications being used in this set of tests, some applications have proved unsuit-
able for testing certain areas of the checkpoint/restart stack. Table 4.3 provides a
breakdown of the requirements of each of the applications, according to functions
that may make them suitable or unsuitable for certain tests.

Requirement RBSM Zephyr SPECWeb Galeb
External files X X X X
Sockets X X
IPC X X
Multi-threaded X X
Multi-process X X X X
GUI output X

Table 4.3: Functional requirements of WP4.2 applications involved in check-
point/restart testing

From the requirements in table 4.3, the following structure has been decided
for checkpoint/restart testing:

• Performance testing: WP3.3 CR Developers (UDUS)

– Job checkpoint and restart (BLCR and LinuxSSI) - Test Unit 01

43

– Incremental checkpointing (LinuxSSI) - Test Unit 02

– Channel flushing (BLCR and LinuxSSI) - Test Unit 03

• Application-centric performance testing: WP3.3 CR Developers (UDUS)

– Kernel-level checkpointing of Java applications with RBSM (SAP) -
Test Unit 04

– Container checkpointing benchmarks with SPECweb (BSC) - Test Unit
05

– Grid-level checkpointing with Zephyr (EDF) - Test Unit 06

4.3.2 Test Unit 01: Job checkpoint and restart

4.3.2.1 Responsibilities

WP3.3, John Mehnert-Spahn (UDUS).

4.3.2.2 Test Specification

Test Items

A synthetic sequential application allocating 5 MB of memory and sequentially
writing random values to it gets checkpointed and restarted using the grid check-
pointer of XtreemOS (version 2.1 to be released 12|18|09), BLCR (version 0.8.0),
LinuxSSI (version 2.0). The corresponding job consists of one single job-unit.
The XtreemOS guide related to the second release covers the information of how to
install and to use job checkpoint and restart. There is also a XtreemOS grid check-
pointing related wiki page located under https://xtreemos.wiki.irisa.
fr///tiki-index.php?page=Grid+Checkpointing+Service.

Features to be Tested

A job is checkpointed and restarted from the grid level by using the underlying
checkpointers BLCR and LinuxSSI.

Approach Refinements

The testbed consists of nodes equipped with Intel Core 2 Duo E6850 CPUs
(3 GHz) with 2GB DDR2-RAM. In a pre-boot execution environment LinuxSSI
(with the associated LinuxSSI checkpointer installed) and XOS PC flavor (with
BLCR 0.8.0 installed) nodes can be started. The Application Execution Manage-
ment (AEM) service suite and the BLCR checkpointer are executed on one node,
while a LinuxSSI cluster is constituted by a minimum of two machines, just one of
it executing AEM.

44

 https://xtreemos.wiki.irisa.fr///tiki-index.php?page=Grid+Checkpointing+Service
 https://xtreemos.wiki.irisa.fr///tiki-index.php?page=Grid+Checkpointing+Service

4.3.2.3 Test Results

Table 4.4 indicates the times taken for the individual checkpoint and restart se-
quences and the total duration of coordinated checkpoint/restart of a job. The ob-

Checkpoint
prepare stop checkpoint resume total

LinuxSSI (v0.9.3) 495,8 13,9 69,6 11,0 590,3
BLCR (v0.8.0) 381,2 40,1 250,5 5,3 677,1

Restart
rebuild resume total

LinuxSSI (v0.9.3) 2597,7 12,6 2610,3
BLCR (v0.8.0) 1659,3 5,7 1665,0

Table 4.4: Duration of grid checkpointing and restart in milliseconds

served overhead is in the range of several seconds, however rather small compared
to the times need to checkpoint/restart large grid applications. Future optimization
approaches include an improved identification of contents that really need to be
saved and those which can be skipped (e.g. binary files and unchanged memory
contents). The latter can be achieved with incremental checkpointing.

4.3.3 Test Unit 02: Incremental checkpointing

4.3.3.1 Responsibilities

WP3.3, John Mehnert-Spahn (UDUS).

4.3.3.2 Test Specification

Test Items

The test application is a synthetic sequential application which writes integer
values to random locations at a 1 MB memory block in at random times using
LinuxSSI (version 2.0).

Features to be Tested

In incremental checkpointing only those memory contents that have been changed
since the previous checkpoint will be saved. The mentioned test application gets
incrementally checkpointed under LinuxSSI.

Approach Refinements

45

Measurements have been performed on top of LinuxSSI whose checkpointer
has been extended towards incremental checkpointing. The testbed equals the one
described in section 4.3.2.2.

4.3.3.3 Test Results

Figure 4.1: Duration of full and incremental checkpointing

Figure 4.1 shows the checkpoint duration of full checkpointing compared to
incremental checkpointing when checkpoints are triggered in one second intervals.
The diagram data indicates incremental checkpointing taking less time especially
after the initial checkpoint. This is due to the need to save less, since pages get
modified at random times. Figure 4.2 compares the image size of checkpoints taken
under full and incremental checkpointing. In this scenario incremental checkpoint
files are smaller than those of full checkpointing, especially after the initial check-
point. Since the application modifies just a subset of pages per checkpoint interval,
less memory pages need to be saved, thus less time is needed for the snapshot pro-
cess. Incremental checkpointing does not always outperform full checkpointing.
The more intense the write behaviour of an application is, the more meta data and
modified pages occur. The later can lead to incremental checkpointing and restart
having a bigger overhead than full checkpointing.

46

Figure 4.2: Checkpoint image size of full and incremental checkpointing

4.3.4 Test Unit 03: Channel flushing

4.3.4.1 Responsibilities

WP3.3, John Mehnert-Spahn (UDUS).

4.3.4.2 Test Specification

Test Items

A synthetic distributed client-server-application gets checkpointed and restarted.
The so-called Channel Flushing Protocol (CFP) will not be part of XtreemOS re-
lease 2.x but 3.0.

Features to be Tested

Distributed applications whose parts communicate with each other require spe-
cial attention in the context of checkpointing. For consistency reasons no orphan
and lost messages may occur after a restart. Therefore communication channels
must be flushed during coordinated checkpointing. The challenge comes with pro-
viding an application transparent channel flushing mechanism running on top of
heterogeneous checkpointers that are unaware of each other. The CFP has been de-
veloped which allows to save and restore channels by having BLCR and LinuxSSI

47

cooperating with each other without modifying them. However, this protocol is
generic and allows other checkpointers to be involved as well.

Approach Refinements

The measurement of the so-called Channel Flushing Protocol (CFP), developed
within XtreemOS, is based on a distributed test application, consisting of a client
and server, communicating via a varying number of TCP channels. Per channel a
different thread has been spawned at client and server side. Channel management
is split into a pre- and post-checkpoint phase. The testbed equals the one described
in Section 4.3.2.2.

4.3.4.3 Test Results

Figure 4.3: CFP behaviour on top of LinuxSSI and BLCR checkpointers with
closed and reestablished channels

CFP can be used for two kinds of checkpointers. The first is able to save an
application with open channels, since it can handle open socket descriptors during
the snapshot procedure (LinuxSSI has recently been adapted towards this, other
checkpointers still do not support this). These checkpointers are also able to re-
store sockets at restart time. The seconds type of checkpointer, which is supported
by CFP, is incapable to save and restore sockets. Instead, CFP has to close and
restore sockets in the pre-, post- and restart callbacks. Thus, a checkpointer does
not see open socket descriptors at checkpoint and restart time.
CFP closes and reestablishes sockets: Figure 4.3 indicates the times taken for a
client (checkpointed by LinuxSSI) and a server (checkpointed by BLCR) to flush,
close and reestablish channels. The pre-checkpoint phase takes up to 4.25 sec-
onds to handle 50 channels. The duration is mainly caused by the necessity for

48

the send and recv controller threads on both channel ends to synchronize with each
other for serial channel flushing. Synchronization requires the involvement of the
channel managers knowledge about existing channels and their states. Thus, con-
trol messages need to be exchanged between these three parties which adheres
some overhead. A future solution will reduce controller thread-channel manager-
communication and increase the channel managers ability to handle server and
client requests in an improved parallel fashion.

CFP with open sockets: Figure 4.4 indicates the times taken for a client and

Figure 4.4: CFP behaviour on top of LinuxSSI and BLCR checkpointers with open
channels

server to flush channels, that do not need to be closed and re-opened in the con-
text of checkpointing. According to the pre-checkpoint phase from above, the
pre-checkpoint phase takes less time (about 3.25 seconds to handle 50 channels)
because no channels need to be closed. Furthermore, without rebuilding sockets
and without socket reconnection the post-checkpoint phase is significantly shorter
than the one from above. It takes just about 120 milliseconds for 50 channels. Ob-
viously, checkpointers that can handle open sockets are preferred and the benefits
will be even larger for wide area networks.

Another aspect is that CFP works on top of heterogeneous callback implemen-
tations without major performance drawbacks. While BLCR comes with its own
callback implementation implicitly blocking applications threads, LinuxSSI does

49

not. For the latter we have to use the generic callback implementation provided by
XtreemGCP, [27].

4.3.5 Test Unit 04: Kernel-level checkpointing of Java applications
with RBSM

4.3.5.1 Responsibilities

WP4.2: SAP

4.3.5.2 Test Specification

Test Items

We will test checkpointing with a Java application, using RBSM to automate
the test environment and make decisions on which node to migrate the checkpoint
to, and restart it.

Features to be Tested

Testing will involve checkpointing, manual migration and restarting of a simple
Java application using the kernel-level checkpointing functionality of XtreemOS.
This application will scale in memory size across the experiments, from approx.
8MB to approx. 1GB, and a timing will be taken for how long it takes to firstly
create a checkpoint of the application and restart that checkpoint, then for how
long it takes to migrate and restart a checkpoint, given variable network conditions.
This will be timed and compared against a restart of the application to its previous
state to determine the value of checkpointing for a particular application in a given
scenario.

Approach Refinements

The purpose of this experiment is to show the performance of the checkpointing
functionality within XtreemOS, and how it can be used to provide input for a rule-
based system management tool in order to make decisions on the most efficient
control method of a particular application.

To ensure that the overhead of processing the application as a job is removed,
these tests will be performed using scripts to bypass the Grid-level checkpointer
and access the kernel-level checkpointer directly. Also, due to implementation
constraints in the current version, checkpoints had to be migrated manually.

These tests were performed on 2 identical nodes with the following specifica-
tions:

• HP Compaq dc7700 Convertible Minitower

50

• Intel Core 2 Duo 6600@2.4GHz with 4MB Level 2 cache

• 4GB DDR2 667MHz Dual Channel RAM

• 250GB Hard Drive

Configuration Have 2 computers ready to be installed as nodes (these can be
virtual machines, but all must use the same architecture).

Set Up

1. Set up nodes with latest XtreemOS version, with patched kernel to enable
checkpoint/restart

2. Deploy RBSM monitoring and control package to each system and run

Start The following steps can be performed inside the RBSM program:

1. Deploy Java application on 1st node

2. Configure memory size of Java application

3. Run script to start-up Java application

4. Retrieve timing for start-up to initial state

5. Start timing and begin to checkpoint Java application

6. Stop timing when checkpoint has been created

7. Start timing and begin to restart checkpointed Java application

8. Stop timing when checkpoint has been restarted

9. Run script to time migration and restart of checkpoint onto another node

10. Repeat steps 2 - 9, doubling the memory size used each time until application
reaches approx. 1GB

Wrap Up Perform tests with varying network Quality of Service (QoS), i.e. sim-
ulated packet loss as a percentage of packets that are transferred successfully. The
network will be tested with a QoS of 99%, 95% and 75%. If this is not possible,
factor packet loss at varying QoS levels into calculations.

Contingencies If RBSM is unable to be run on XtreemOS version 2.0 for any
reason, these steps should be completed manually to ensure a successful result.
The use of RBSM is to ensure repeatable tests, and the results will feed back into
the rule definition set.

51

4.3.5.3 Test Results

The first set of experiments were to time how long it takes to start up the Java
application to its initial state, and then checkpoint and restart it as its memory size
increases. These results are shown in table 4.5.

Memory size (MB) Initial state (s) Checkpoint (s) Restart (s)
4.94 0.38 0.14 0.13
8.94 0.63 0.20 0.18
12.94 1.04 0.27 0.24
20.94 1.99 0.41 0.37
36.94 3.79 0.74 0.66
68.94 7.43 1.40 1.21
132.94 14.63 2.67 2.34
262.94 29.10 5.11 4.57
510.94 58.02 10.08 9.09
1028.94 115.87 20.80 18.88

Table 4.5: Timings for application reaching initial state compared to checkpoint
and restart for increasing memory size

These results were plotted in the graph shown in Fig. 4.5. The graph shows a
linear trend for both checkpointing and restarting up to a size of 1GB. As it was not
possible to create a Java application larger than 1GB, the trend can not be shown to
be continued up to a point. However, most applications that can be checkpointed
within the limitations of the mechanism will be less than 1GB in memory size.
For these applications, a checkpoint can be made quickly, with no impact on its
operation.

Restarting a checkpoint is also faster, and in comparing it to the time taken to
reach the initial state of the application, it can be seen to be significantly faster, al-
though time taken for initial state will change, depending on the application. For an
application with constantly changing state, there will also be the significant benefit
that the state will be captured in the checkpoint, and that the state is recoverable
very rapidly.

The second set of experiments were to migrate and restart the application on
the 2nd node, and to compare this to a fresh run of the application to determine
the case for migrating given simulated variable network conditions. The results are
shown in table 4.6.

The results from the table have been summarized in Figs. 4.6 and 4.7. Fig.
4.6 displays the trend for applications up to 64MB in size. For the first 10MB,
the curve shown is strange, but this could be due to operating system processing
overhead in interpreting the command and putting it into action. Initially, a cold
start of the application is faster than migrating and restarting a checkpoint up to
approximately 30MB. From this point on, with QoS greater than around 85%, it is
faster to migrate and restart.

52

Figure 4.5: Comparison of time taken for checkpoint and restart over increasing
memory size of application

Size
(MB)

Initial
state (s)

Migrate/Restart
- 99% QoS (s)

Migrate/Restart
- 95% QoS (s)

Migrate/Restart
- 75% QoS (s)

4.94 0.38 0.67 0.69 0.84
8.94 0.63 0.89 0.92 1.12
12.94 1.04 1.28 1.32 1.61
20.94 1.99 2.05 2.13 2.59
36.94 3.79 3.64 3.77 4.60
68.94 7.43 6.79 7.02 8.57
132.94 14.63 13.11 13.56 16.55
262.94 29.10 25.72 26.61 32.49
510.94 58.02 51.01 52.78 64.42
1028.94 115.87 102.33 105.85 129.04

Table 4.6: Timings for application reaching initial state compared to migration and
restart for increasing memory size over differing network conditions

This trend can be shown to continue in Fig. 4.7. With a QoS of greater than
85%, the time taken for migration and restart of an application up to 1GB in size is
faster than the time taken to reach the initial state of the program.

The data received from these metrics shows that the case for checkpointing
and migration, in most cases, it is faster than simply restarting the application. As
the application runs for longer and the state changes significantly, the benefits of
checkpointing and restart increase, as the state is kept in the checkpoint. However,
even from an initial state, it can be shown that checkpointing is still a better choice
in most cases.

53

Figure 4.6: Comparison of time taken for migration and restart for varying network
Quality of Service (QoS) up to 64MB

Figure 4.7: Comparison of time taken for migration and restart for varying network
Quality of Service (QoS) up to 1GB

This leads to 2 useful conclusions:

• The kernel-level checkpoint/restart functionality built into XtreemOS pro-
vides a useful and quick way of managing application state and for recover-
ing from error. However, there are limitations as to the kind of applications
that can be checkpointed, so this must be factored into the decision to use
this functionality.

• Depending on the network QoS and the current application state, there are
decisions to be made as to the most appropriate and efficient course of action

54

to take when checkpointing or restarting an application. This provides useful
feedback for the development of the Rule-Based System Management tool
being developed as part of WP4.2, and will be implemented as a set of rules
for application checkpointing/migration.

4.3.6 Test Unit 05: Container checkpointing benchmarks with SPECweb

4.3.6.1 Responsibilities

WP4.2, J. Oriol Fitó from Barcelona Supercomputing Center (BSC).

4.3.6.2 Test Specification

Test Items

We will test OpenVZ [33] [29] container-based checkpointing/restore mecha-
nism as stand-alone feature.

Features to be Tested

The main goal is the testing of the XtreemOS feature “checkpointing and
restart”. Specifically, we want to test the OpenVZ container-based checkpointing
and restore feature that will be integrated into XtreemOS.

OpenVZ is a container-based virtualization for Linux. It is free open source
software, available under GNU GPL. In particular, OpenVZ creates multiple se-
cure and isolated containers, i.e. Virtual Environments (VE), under a single kernel
instance. Thus, a container can be rebooted independently and have root access,
users, IP addresses, memory, processes and applications, among others.

OpenVZ checkpointing allows the “live” migration of a VE to the same or
another physical server. The VE is “frozen” and its complete state is saved into a
disk file. Afterwards, this file can be used to “unfreeze” (restore) the previously
checkpointed VE. The whole process takes a few seconds and from the client’s
point of view it looks like a delay in processing, since the established network
connections are also checkpointed/restored. Going more in detail, the OpenVZ
checkpointing procedure consists of the following three stages:

1. Freeze processes, which moves processes to previously known state and dis-
able network.

2. Dump the container, which collects and saves the complete state of all the
container’s processes and the container itself to a dump file.

3. Stop the container, which kills all the processes and unmount container’s file
system.

55

The restore procedure performs the same stages in an inverse mode.
Note that OpenVZ comes with a high-level command-line interface, i.e. vzctl,

which is used to manage the Virtual Environments.

Approach Refinements

Due to constraints in the current integration of OpenVZ into XtreemOS 2.0
release, we are only able to evaluate it as stand-alone feature. We have decided
to use the Apache Tomcat (v5.5) [40] as the web server to be checkpointed and
restored. Actually, we have to checkpoint the Java Virtual Machine (JVM) in which
the aforesaid web server is encapsulated.

We will consider the success of the feature if, at least, we are able to check-
point and restart on the same node a container in which Tomcat is deployed and
running. In addition, we will use SPECweb2005 benchmark [4] to validate that the
checkpointing/restore operation is successfully performed, i.e. the state of the web
server after a restore operation is the same than before the checkpointing action.
This is easy to verify through SPECweb2005, because we will be able to check
the benchmark results (i.e. web server performance) when performing a check-
pointing/restore operation during the benchmark execution. In this way, we will
be able to both validate that the web server is well checkpointed/restored and the
loss of web server’s performance due to this operation. Note that we don’t test the
migration of the container to another physical machine due to a constraint with the
SPECweb2005 benchmark, which specifies that a web server under test must be
into the same physical node during all the execution of a given test. Nevertheless,
the migration operation is based on the checkpointing and restore procedures tested
here.

Furthermore, and with the aim of testing the scalability of the OpenVZ mecha-
nism, we will perform checkpointing/restore operations for different dimensions of
Tomcat and JVM, e.g. different number of web server’s threads, memory and input
load (commonly expressed as the number of simultaneous user sessions within the
web server). In this sense, we will present the time taken to checkpoint/restore
these distinct containers.

Configuration On one hand, the configuration needed for running the Tomcat
web server is based on a Debian Linux Operating System distribution with the
2.6.26 kernel version of OpenVZ for 64-bit architecture. We choose this sys-
tem due to it is one of the recommended distributions by OpenVZ community.
On the other hand, we have configured the needed environment for running the
SPECweb2005 benchmark. It is composed by a Back-end database SIMulator
(BeSIM) and the clients required to perform the input load to the web server under
test.

Set Up The set up must follows the following steps:

56

• Create a new OpenVZ container

• Set the appropriate user beancounters (UBC), CPU, memory and disk pa-
rameters for the container

• Deploy Tomcat within this new container

• Check that the web server is available through the container IP, not the sys-
tem IP

• Checkpoint and restore the container in the same node

• Show that the web server is still accessible at the same container IP and that
its state is the same

Start The actions necessary to begin the test are:

• Check that OpenVZ kernel and application-level utilities (vzctl, vzprocps
and vzquota) have been successfully installed

• Set the proper user beancounters (UBC), CPU, memory and disk parameters
for each container created

• Configure the SPECweb2005 benchmark environment

Wrap Up There are no special actions to restore the environment.

Contingencies We have no estimation of any anomalous situation.

4.3.6.3 Test Results

We want to analyze and evaluate the OpenVZ capability of checkpointing and re-
store a container in which a Tomcat (v5.5) web server has been deployed. In this
sense, we present results regarding both the OpenVZ checkpoint/restore scalability
and the overhead introduced by this mechanisms.

OpenVZ scalability With the aim of analyzing the scalability of openvz check-
pointing/restore mechanism, we present the results obtained from checkpointing
and restore different dimensions of web servers, i.e. with different number of
threads, memory allocated to the Java Virtual Machine (i.e. to the web server) and
incoming load of the web server (expressed as simultaneous user sessions within
the server).

First of all, in Figure 4.8 you can see the time OpenVZ takes to checkpoint and
restore a Java Virtual Machine (with the Tomcat web server) with different amount
of memory allocated to it.

57

Figure 4.8: Time taken to checkpoint/restore a JVM with different amount of mem-
ory allocated to it.

If there is no JVM running (JVM heap memory usage 0 MB), the total time
is around 4 seconds, while if there is a JVM running the total times remain al-
most constant around 6 and 7 seconds for a memory usage between 256 MB and
2048 MB. Consequently, OpenVZ shows a scalable behavior with respect to an
increasing amount of memory to be checkpointed.

Secondly, in Figure 4.9 we illustrate the time differences in checkpointing/re-
store a Tomcat web server with different number of threads. Notice that all these
tests were performed with a JVM with one gigabyte of memory allocated.

Figure 4.9: Time taken to checkpoint/restore a JVM with different number of
threads, from 2 to 128.

The results suggest that the number of threads of the web server does not that
affects the time needed to perform the container-based checkpointing and restore
actions.

Finally, in Figure 4.10 we show the time needed for OpenVZ to checkpoint

58

and restore a web server with different incoming loads (i.e. simultaneous user ses-
sions). Notice that all these tests were performed using SPECweb2005 benchmark
with the Support workload. In this way, we were able to produce several tests with
different input load to the server under test. The JVM has been configured with
512MB of memory allocated and 32 threads.

Figure 4.10: Time taken to checkpoint/restore a JVM with different input loads
(expressed as the number of simultaneous user sessions within the web server.

We can state that the operation time increases more or less proportionally ac-
cording to the incoming loads. In fact, the checkpointing and restore procedures
treat all the network connections and, thus, the variability observed in Figure 4.10
can be a consequence of different connection states of the simultaneous user ses-
sions simulated by the benchmark.

OpenVZ overhead In this second part we want to examine the loss of web
server’s performance introduced due to the operation of checkpointing/restart. For
that purpose we use the SPECweb2005 benchmark in order to evaluate and obtain
web server’s performance metrics, such as throughput (expressed in requests per
second), response time (in seconds) and Quality of Service (expressed as a percent-
age of the requests which response time is within a given ranges). In fact, through
the executions of this benchmark we can check whether the state of the web server
after a restore operation is the same or not than before the checkpointing. Notice
that all these tests were performed using a JVM with 512MB of memory allocated
and 32 threads.

Figures 4.11, 4.12 and 4.13 show the performance loss expressed in through-
put, response time and Quality of Service web server’s performance metrics, re-
spectively. For the three graphics about QoS metric, we want to remark that a
‘good QoS’ is achieved if the response time is lower than a given threshold A, ‘tol-
erable QoS’ if it is between thresholds A and B and ‘fail QoS’ if the response time
is greater than threshold B (where A < B).

59

Figure 4.11: Web server’s throughput for different input loads (simultaneous user
sessions). Comparison between performing or not a checkpointing/restore opera-
tion.

Figure 4.12: Web server’s response time for different input loads. Comparison
between performing or not a checkpointing/restore operation..

The results indicate that the loss of performance due to the checkpointing/re-
store mechanism of OpenVZ is quite low. In fact, Walters et al. [45] presents a
performance comparison of different virtualization technologies. From the results
presented in this paper we can see that OpenVZ has better performance than other
virtualization alternatives like VMWare [44] and Xen [46]. Nevertheless, we have
experienced a great variability in the web server’s performance. For this reason,
we present the 95% confidence interval.

Finally, we want to remark that after a checkpointing/restore operation the
SPECweb2005 benchmark clients informs us that there are some reset connections
(through the Exception message [ERROR] Write to socket failed! IOException
was: java.net.SocketException: Connection reset).

OpenVZ bug During the setup of the environment to perform these tests we have
found a problem regarding with checkpointing a container which has a NFS volume
mounted. In fact, we have found that it is a known bug and this type of filesystem
is unsupported by OpenVZ. Due to this restriction, we have had to deploy the web
server into the local disk of the container.

60

Figure 4.13: Web server’s QoS for different input loads. Comparison between
performing or not a checkpointing/restore operation.

Conclusions This experimentation conducted shows us that OpenVZ container-
based checkpointing mechanism is a promising technique to be finally integrated
into XtreemOS. As you can see in the results presented, we were able to checkpoint
and restart a container with a Tomcat web server encapsulated. Through executions
of SPECweb2005 benchmark we have checked the success of the checkpointing
and restore operation. In addition, we were able to test its scalability and the loss
of performance introduced.

Nevertheless, we have experienced that web server’s performance on top of the
OpenVZ virtualization layer is quite varying. However, the migration operation
(i.e. checkpointing and restore) is quite efficient.

4.3.7 Test Unit 06: Checkpointing with Zephyr

4.3.7.1 Responsibilities

WP4.2: EDF

61

4.3.7.2 Test Specification

Test Items

Using the latest version of the BLCR checkpointer module available for XtreemOS:
0.8.0, we will test checkpointing features of the systems on a sequential EDF ap-
plication, Zephyr.

Zephyr is a multidomain multigrid Preconditioned Conjuguate Gradient solver
applied on academic 2D Navier Stokes driven cavity problem or 2D Bürgers vis-
cous transport equation. Used essentially to bench HPC hardware if exists either
in a standalone or distributed MPI version. In this test, we use the standalone one-
node version of Zephyr.

More information on the calculation schemes implemented in Zephyr can be
found in [24], and on their parallel efficiency in [23].

Features to be Tested

The tests for XtreemOS checkpointing and restarting mechanisms are focusing
on the following features:

1. checkpointing of a sequential running application with or without results
saved in a file.

2. restarting the application from the previously stored checkpoint.

Approach Refinements

The tests are focused on the EDF simulation application Zephyr run sequen-
tially on one XtreemOS node. We will address the interaction of Checkpoint/Restart
Mechanism with the filesystem.

The test case will perform the checkpointing and restarting tests using the EDF
Zephyr application used in different modes (i.e: with or without saving results on
files periodically).

The two individual features, the checkpointing and the restarting of an applica-
tion are tested here as well as the overhead on the required memory of the check-
pointed process and the size of the checkpointed archive file.

The tests are successful if the applications can be checkpointed and restarted
with no noticeable differences. Anything else will be considered as a failure and
reported back to the developers.

In detail, the test passes when Zephyr ends nominally its calculation with the
results correctly saved in a file if required and with the state of the graphical inter-
face correctly set if it was required.

The purpose of these tests is to see how the checkpointing and restart module
will handle a Zephyr application running in different modes :

62

• Sequential execution on one node, with no results saved in a file,

• Sequential execution on one node, with results regularly dumped in a file,

Test were run on a Virtual Box Virtual Machine, running on a Dell Precision
Laptop using Intel Dual Core T2300 1.66 GHz processor running Windows XP
SP2. The memory dedicated to the virtual machine as been set so that no swapping
either on Linux or the hosting system is observed while the tests are made : memory
usage and activity have been constantly monitored on both systems.

Installation The test requires to install and configure properly working XtreemOS
nodes from the XtreemOS 2.0 distribution.

Log Zephyr summary results are printed on standard output device and can be
easily redirected to a file. These results are checked to determine if the check-
point/restart process has succeeded.

Set Up The setup is as follows.

Start Zephyr is launched directly from command line and read the input values
through standard input. These values determine the problem Zephyr solves, and
the frequency of results to be dumped in a result file. Classically we will redirect
an input file to stdin to feed the application.

Proceed The multiprocess is launched through a shell or submitted via AEM. In
another shell the checkpoint/restart is performed as follows:

(In S h e l l A)
. / z e ph y r . exe < i n p u t . d a t > o u t p u t . d a t
t a i l −f oupu t . d a t

(In s h e l l B)
c r _ c h e c k p o i n t −−k i l l −−save−p r i v a t e −−save−s h a r e d <PID>
c r _ r e s t a r t c o n t e x t . < PID>

Measure The present test do not require special measurement setups.

Stop Zephyr has to reach the end of its calculation.

Wrap Up This test does not require an explicit wrap up. However, it is mean-
ingful to remove the stored checkpoints after the test in order to keep the hard disc
clean.

63

Contingencies In case of anomalies, the applications should simply be restarted.

4.3.7.3 Test Results

In order to estimate the overhead of Checkpoint/restart in elapsed time and mem-
ory, we run Zephyr on problems of different sizes. Zephyr solves a partial differ-
ential equation on a [0, 1]× [0, 1] square discretized in 322, 642, 1282, 2562, 5122,
or 10242 degrees of freedom.

Problem Size time per iteration (s)
(degrees of freedom) w/o C/R with C/R ratio

322 = 1024 3,55E-003 3,55E-003 1
642 = 4096 1,42E-002 1,37E-002 1,04

1282= 16384 8,39E-002 7,91E-002 1,06
2562= 66536 3,83E-001 3,84E-001 1
5122= 262144 1,39E+000 1,39E+000 1

10242= 1048576 5,62E+000 5,62E+000 1

Table 4.7: time per iteration with and without Checkpoint/Restart feature activated

Problem Size size of process (MB) size of
(degrees of freedom) w/o C/R with C/R ratio C/R file (MB)

322 = 1024 3,8 3,83 1,01 0,59
642 = 4096 5,3 5,39 1,02 1,81

1282= 16384 11,54 11,31 0,98 5,7
2562= 66049 35,75 36,29 1,01 21,75
5122= 262144 133,97 134 1 85,03

10242= 1048576 460,3 478,52 1,04 205,54

Table 4.8: Memory usage and checkpointed file size with and without Check-
point/Restart feature activated

The results from the table have been summarized in Figs. 4.14 and 4.15.
They demonstrate the following points about checkpoint/restart feature:

• it works as expected: final results from Zephyr stopped and restarted via
BLCR are exactly matching including the produced output file.

• on Fig. 4.14, its memory overhead is shown to be negligible : memory size
of the process with or without checkpointing activated is roughly constant.

• As well, the same Figure shows that the overhead observed on the calculation
time needed per iteration is less than 5%.

64

Figure 4.14: Memory use and size of the checkpointed archive file with respect to
the problem size (logarithmic scale)

• on Fig. 4.15, the size of the checkpointed archived file is shown to be less
than 5% larger than the memory used by the process.

4.3.8 Test Summary Report

4.3.8.1 Summary of Tests and Results

The experimentation completed for checkpoint/restart functionality provided good
coverage of the features provided by XtreemOS. All main functions relating to
checkpointing worked adequately, despite a number of limitations:

• kernel-level checkpointing is unable to checkpoint complex, multi-process
applications

• container functionality was not available in the 2.0 release

• graphical applications are not checkpointable in any form

Despite these limitations, checkpointing has been shown to have good perfor-
mance and scalability, as shown in the kernel-level testing, and the functionality

65

Figure 4.15: Time per iteration and memory footprint of the Zephyr process with
and without Checkpointing feature activated

provided by the checkpointing and migration of containers provides a useful alter-
native to larger virtualisation formats.

This functionality holds significant benefit for a number of WP4.2 applications,
particularly Rule-based System Management (RBSM). As the RBSM application
is able to make decisions based on the state of the systems under its control, check-
pointing and migrating processes and containers between nodes allows for a pow-
erful additional layer of control for the application.

The data received from these experiments will be fed back into the development
of the application in order to make the decision and control process more robust,
intelligent and efficient, thereby strengthening the demo being prepared for WP4.4.

4.3.8.2 Conclusion and Directions for Future Work

Given the strong base provided by the XtreemOS 2.0 release, the next step would
be to expand the usefulness of this functionality by removing a number of the
aforementioned limitations. This should be implemented without causing any re-
gression in terms of the functionality and performance already displayed in these
experiments.

Later releases should use a similar approach to testing for comparisons, and
also include a wider range of experimentation, including other test applications not
used in these experiments.

66

4.4 Evaluation of the DIXI Message Bus

DIXI is a communication bus, a middleware for staging services developed for
XtreemOS. It features the ability to stage services developed in Java, distribution
of the services throughout the grid, the facility to publish the services’ access points
and service call invocation that is abstracted from the means of the service message
exchange.

4.4.1 Test Plan

4.4.1.1 Responsibilities

The DIXI framework is the irresponsibility of WP3.2 and has been developed by
XLAB. The tests will also be carried out by XLAB.

4.4.1.2 Test Items

The focus of the tests is the main DIXI library, packaged in the dixi-main pack-
age. The client-side component in XATI, also included in the test, is packaged in
the dixi-xati package. At the time of the test, the components were the devel-
opment versions of the release 3, commonly known under version 3.0.2.

4.4.1.3 Features to be Tested

We will test the following features of DIXI:

• Staging the services and exposing their interfaces to the message bus.

• The invocation of the service calls defined by the service interface in an
asynchronous manner from another service.

• The invocation of the service calls defined by the service interface using
client library (XATI), which occurs in a synchronous manner.

• The DIXI’s ability to redirect the service requests to an access point capable
of handling the request.

We will test the features in the following combinations:

• Two services, one of which will act as a server (the invoked service), another
service, which will act as a client (the invokee service) and both will be
staged on the same node, sharing the in-memory message bus (Test 1).

• A staged service invoked by a XATI client from the same node, using the
network message bus (Test 1).

67

• Two services, one of which will act as a server (the invoked service), an-
other service, which will act as a client (the invokee service), staged on two
separate nodes. The message bus in this case will need to use the network
interface and use the built-in redirection facility (Test 2).

• A service staged on another node than the XATI client, requiring the DIXI
to use the network message bus as well as the redirection facility (Test 2).

4.4.1.4 Features not to be Tested

The DIXI framework, in part, contains tools that help develop a DIXI service. We
will not test and compare them, because they need to only be used at the design
time, and their outcome is implicitly tested within the features used during the
runtime.

4.4.1.5 Overall Approach

To find a solution to compare DIXI to, we selected CORBA. This is a well-known,
mature standard for providing distribution of functionality, meaning that it also
provides the ability of communication between components running on different
nodes. The functionality is provided in servers, which publish their presence in
CORBA’s naming service. The developer expresses the capabilities of the service
using an IDL-formatted interface. The CORBA’s tools can use the interface to
generate the stubs, imported by the client. The client then uses the naming service’s
facility to locate the registered servers, or consume a server descriptor string, to
resolve the target server’s details such as the host and port. A reference bound
in runtime can then be used like an ordinary class, with the underlying CORBA’s
layers marshaling the calls to the network and towards the server.

In this respect, the DIXI’s capabilities resemble those of CORBA’s, making it
a good candidate for testing the performance against DIXI’s. The community and
the market offers several implementations of the CORBA ORB. However, for best
comparison, we require that the implementation used for the test supports Java
for both server and client. This is due to the fact that DIXI is Java-based. As a
result, we chose the standard CORBA that ships along the Java virtual runtime and
developing environment.

The focus of the benchmarking and comparison is the speed of the communi-
cation between entities, measuring the latencies that are to be expected when using
either platforms. The basic assumption we have before benchmarking is, that the
system is properly configured and initialized, and that invoking a service call (in
case of DIXI) or the server call (for CORBA) will succeed. Both the DIXI ser-
vice and the CORBA server use the same class implementation, which exposes a
method, performing a simple multiplication. This means that the differences in the
performance will be due to the framework used, not the actual service’s implemen-
tation.

68

4.4.2 Test Unit 01: co-located service staging

4.4.2.1 Responsibilities

Both the developed code and the performance tests are the responsibility of XLAB
within the WP3.2.

4.4.2.2 Test Specification

Test Items

In this test unit we test the DIXI framework, installed in dixi-main pack-
age. The client-side component in XATI, also included in the test, is packaged
in the dixi-xati package. The packages are installable following the standard
package installation procedure. The installation and usage guides are a part of the
standard XtreemOS Administration Guide.

Features to be Tested

We will test the following features of DIXI:

• Staging the services and exposing their interfaces to the message bus.

• The invocation of the service calls defined by the service interface in an
asynchronous manner from another service.

• The invocation of the service calls defined by the service interface using
client library (XATI), which occurs in a synchronous manner.

• The DIXI’s ability to redirect the service requests to an access point capable
of handling the request.

We will test the features in the following combinations:

• Two services, one of which will act as a server (the invoked service), another
service, which will act as a client (the invokee service) and both will be
staged on the same node, sharing the in-memory message bus.

• A staged service invoked by a XATI client from the same node, using the
network message bus.

Approach Refinements

In the test we would like to measure the latencies that we can expect when
issuing a call to a service sharing a host or a DIXI daemon. This is not a very
realistic test, but it establishes a baseline performance of the framework. The per-
formance of the XATI client invocation is also a good reference for comparison
with CORBA’s performance.

69

Considering that basic CORBA provides a point-to-point invocation between
the CORBA client code and the CORBA server code, the CORBA’s benchmark
consists of a single scenario. In this case, the implementation of making a CORBA
call appears like calling the method of the class that implements the logic. We use
the synchronous calls, meaning that the service call’s stub blocks the execution of
the thread until it receives the return value, whereupon the calling thread resumes.

In the test, we are measuring the time it takes between the call to the stub and
the collection of the return value, assuming different scenarios and set-ups. To ob-
tain a more reliable benchmark, we invoke the call several times in the loop, mea-
suring the time of the whole loop. The result is therefore the whole time elapsed for
the series of invocations and, indirectly, the average call time of a single invocation.

Each call takes three parameters: multiplication factor a, multiplication factor
b and a certificate identifying the caller. The choice of adding the certificate as a
parameter stems from the fact that many API calls in XtreemOS require the inclu-
sion of the user’s certificate as a credential for performing access control, and for
extracting crucial attributes that pertain to the user. The choice of the framework
also defines the format in which the certificate can be exchanged. Namely, in the
Java code, a specific class (X509Certificate) can hold the certificate details
and is used for exchanging the credentials. In CORBA, however, one is bound to
a limited set of IDL types, and therefore the only supported way to exchange such
variables is by serializing them into a string or array. This also means that the de-
velopers using the framework need to invest additional effort to convert the custom
classes to and from the CORBA supported classes.

The result of tests, performed on a standard hardware (64-bit Intel CPU with
1.6GHz and a gigabit network interface) are measured in ms of the time elapsed
for the invocation.

4.4.2.3 Test Results

As explained in the previous section, the tests we carried out were done in a se-
ries of batch method invocations. Each batch was composed of a certain number of
subsequent method invocations, and we measured the time it takes for each batch to
complete. The Figure 4.16 shows the result of the tests performed with all the en-
tities (services, servers, clients) running on the same node. The side-by-side com-
parison shows the timings of the following test items, performed independently:

• CORBA is a reference measure, involving a CORBA client calling the CORBA
server.

• DIXI client uses a client (XATI) that invokes a DIXI call directly.

• DIXI service seq. represents the timings of one service, acting as a client,
that invokes another service’s call similar to a synchronous manner, i.e., the
next asynchronous call occurs only in the call-back of the previous call’s
result.

70

• DIXI service also involves a client service calling a server service, but the
invocations occur in an asynchronous manner, i.e., the client does not wait
for the response of the previous service call before invoking the next one.
The overall time still signifies the time elapsed between the first invocation
and the last result’s collection.

The chart on Figure 4.16 shows the time elapsed for each batch depending on
the number of iterations within each batch.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1

1
6

0
1

1
8

0
1

2
0

0
1

2
2

0
1

2
4

0
1

2
6

0
1

2
8

0
1

3
0

0
1

Ti
m

e
 e

la
p

se
d

 [
m

s]

Iteration count

CORBA

DIXI client

DIXI service seq.

DIXI service

Figure 4.16: The overall duration of the service calls with an increasing number of
subsequent calls. All client and server entities were on the same node.

The result shows a linear trend, meaning that the requests get served in due
time. This is also demonstrated in Figure 4.17, which shows the average time
of each invocation, i.e., the time elapsed for the batch divided by the number of
invocations within the batch.

The results show that the DIXI invocations take longer time than the CORBA’s.
We can explain that by additional work that the framework needs to take for mar-
shalling the service calls and demarshalling the service messages passed in the
exchange. The DIXI client and the DIXI service seq. represent the time it takes
for the invocation to yield a result. Both timings are comparable, meaning that a
client service is in a similar position as a XATI client. The interpretation of DIXI
service seq. is less straightforward because it does not show the time needed for a
single method invocation. On the average, however, it shows the throughput of the
system, which queues the requests and serves them in the order they arrive.

71

0,5

5,5

10,5

15,5

20,5

25,5

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1

1
6

0
1

1
8

0
1

2
0

0
1

2
2

0
1

2
4

0
1

2
6

0
1

2
8

0
1

3
0

0
1

Ti
m

e
 p

e
r

in
vo

ca
ti

o
n

 [
m

s]

Iteration count

CORBA

DIXI client

DIXI service seq.

DIXI service

Figure 4.17: The average duration of one service calls within an increasing number
of subsequent calls. All client and server entities were on the same node.

4.4.3 Test Unit 02: distributed service staging

4.4.3.1 Responsibilities

Both the developed code and the performance tests are the responsibility of XLAB
within the WP3.2.

4.4.3.2 Test Specification

Test Items

The test items in this test unit are the same as the ones in Test Unit 01.

Features to be Tested

We will test the following features of DIXI:

• Staging the services and exposing their interfaces to the message bus.

• The invocation of the service calls defined by the service interface in an
asynchronous manner from another service.

• The invocation of the service calls defined by the service interface using
client library (XATI), which occurs in a synchronous manner.

• The DIXI’s ability to redirect the service requests to an access point capable
of handling the request.

72

We will test the features in the following combinations:

• Two services, one of which will act as a server (the invoked service), an-
other service, which will act as a client (the invokee service), staged on two
separate nodes. The message bus in this case will need to use the network
interface and use the built-in redirection facility.

• A service staged on another node than the XATI client, requiring the DIXI
to use the network message bus as well as the redirection facility.

Approach Refinements

This test unit is identical to the Test Unit 01 in all except the distribution of the
entities taking part in the test. Here we perform a much more realistic test where
the client of the invocation runs on a different host than the server offering the
functionality. The tests therefore take into account the network transport. Further,
for DIXI, the tests also include the ability to redirect the service messages to the
access point of the host that can handle the service call.

4.4.3.3 Test Results

The basic premise of the tests is similar to the one the previous test unit:

• CORBA is a reference measure, involving a CORBA client calling the CORBA
server.

• DIXI client uses a client (XATI) that invokes a DIXI call. The client sends
service message to the DIXI daemon on the same host, and the daemon has
to redirect the service message via the network to the host running the target
service.

• DIXI service seq. represents the timings of one service, acting as a client,
that invokes another service’s call similar to a synchronous manner, i.e., the
next asynchronous call occurs only in the call-back of the previous call’s
result.

• DIXI service also involves a client service calling a server service, but the
invocations occur in an asynchronous manner, i.e., the client does not wait
for the response of the previous service call before invoking the next one.
The timing shows the time from the first invocation until the call-back of the
result that arrives last.

• DIXI Remote Client uses a client (XATI) that invokes a DIXI call by send-
ing the service message to the DIXI daemon hosting the target service, thus
involving no redirections.

73

The chart on Figure 4.18 shows the time elapsed for each batch depending on
the number of iterations within each batch. In this case we also see a linear trend,
also shown with flat averages on Figure 4.19.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1

3
0

1

6
0

1

9
0

1

1
2

0
1

1
5

0
1

1
8

0
1

2
1

0
1

2
4

0
1

2
7

0
1

3
0

0
1

Ti
m

e
 e

la
p

se
d

 [
m

s]

Iteration count

CORBA

DIXI Client

DIXI service seq.

DIXI service

DIXI Remote Client

Figure 4.18: The overall duration of the service calls with an increasing number of
subsequent calls. Server entities were on a different node than the host of the client
entities.

0,5

5,5

10,5

15,5

20,5

25,5

30,5

35,5

40,5

45,5

1

2
0

1

4
0

1

6
0

1

8
0

1

1
0

0
1

1
2

0
1

1
4

0
1

1
6

0
1

1
8

0
1

2
0

0
1

2
2

0
1

2
4

0
1

2
6

0
1

2
8

0
1

3
0

0
1

Ti
m

e
 p

e
r

in
vo

ca
ti

o
n

 [
m

s]

Iteration count

CORBA

DIXI Client

DIXI service seq.

DIXI service

DIXI Remote Client

Figure 4.19: The average duration of one service calls within an increasing number
of subsequent calls. Server entities were on a different node than the host of the
client entities.

74

The comparison between the timings show that the network communication
introduces additional delays in the service invocations. Again, the DIXI service
results show us the average speed of the server serving each request. The time it
takes for the result to requester are shown in the DIXI service seq. and it includes
the network round-trip delay. The DIXI client and the DIXI Remote Client show
comparable results with the effect of having to pass the service message back to
the client.

We can explain the high delays introduced by the network by an overhead due
to the extensive amount of information stored in each service message. A closer
examination of result logs suggests that the latencies may be introduced by the
Apache Mina networking library, and the fact that we have not yet optimised the
message transport process by reducing the size or the service message’s skeleton
or compressing the payload.

4.4.4 Test Summary Report

4.4.4.1 Summary of Tests and Results

In the tests we measured the performance of the DIXI message bus and staging
environment in terms of the time it takes to serve a request. The tests involved
various scenarios that we based on the features provided in the DIXI runtime. The
basic feature represents the ability to stage a service and thus provide the function-
ality of the service’s interface. Through DIXI, a client needing the functionality
can use a service call that is not different from making an ordinary Java call. The
client of a DIXI service may be a third-party program that uses the XATI library,
making synchronous calls to the service. In XtreemOS, the services will invoke
other services’ calls. This means that a service can appear in a role of a server, pro-
viding the functionality, or a client, invoking other services’ functionality. Further,
we can stage multiple services in one node, or, more commonly, distribute them
throughout the grid. We performed benchmarking in set-ups representing each of
these scenarios. As a reference middleware and messaging bus we used CORBA.

4.4.4.2 Conclusion and Directions for Future Work

The results show that in the current version of DIXI there is a penalty for the
middleware’s added functionality that manifests as increased time needed for each
invocation to finish with a result. This is due to the fact that, during the devel-
opment of DIXI, we have put a lot of emphasis in enriching the framework with
features, while the optimising of important aspects of the solution and speeding up
the message exchange has been planned for later stages of the development. The
speed-ups can be achieved, for instance, by replacing the generalised service mes-
sage marshalling with a content-aware one. Many of the elements of the service
message are occurring often, and the overall structure of the message is defined
in advance. Further, we need to examine the possibilities to speed up the Apache
Mina library used for the networking.

75

4.5 Evaluation of XtreemOS API

The XtreemOS API has been designed to grant access to XtreemOS’s features and
services. In order to enable as many applications as possible, the API strives for
alignment with both the Linux and the Grid world. This has been achieved by
using the OGF-standardized Simple API for Grid Applications (SAGA) [18] as the
basis for the XtreemOS API. For XtreemOS-specific functionality, SAGA has been
extended. SAGA together with these extensions is called XOSAGA, forming the
XtreemOS API. The design of XOSAGA has been an iterative process, gradually
extending to the full scope of XtreemOS functionality and improving over early
API design weaknesses. This XOSAGA design process has been documented by
the XtreemOS deliverables D3.1.1 [50], D3.1.2 [51], and D3.1.5 [52].

The XOSAGA API has been and is being implemented in three programming
languages: Java, C++, and Python. The state of the XOSAGA implementations at
the time of writing this deliverable is contained in the deliverables D3.1.8 [53] and
D3.1.9 [54]. Some parts of XOSAGA are scheduled for the final implementation
(March 2010) only.

4.5.1 Test Plan

The performed tests are divided into two categories. The first category contains
micro benchmarks for estimating the performance of the XOSAGA implementa-
tions, comparing them to the performance of using the underlying service inter-
faces directly. The second category contains application-driven evaluations of the
XOSAGA API.

4.5.1.1 Responsibilities

The micro benchmarks of the XOSAGA implementations are being performed
by WP 3.1 (partner VUA). The application-driven evaluations are performed by
WP4.2 (partner BSC).. . .

4.5.1.2 Test Items

For the performance-oriented micro benchmarks, we have created a Subversion tag
for each of the tested XOSAGA implementations. Each tag marks the exact version
of the implementation that was used in the tests. They will be referred to with the
respective test units.

4.5.1.3 Features to be Tested

The performance micro benchmarks have the sole purpose of quantifying the run-
time overhead caused by using the integrated XOSAGA API, compared to using
the plain, underlying service interfaces. Due to the size of the XOSAGA interface,
we have focused on assessing the core functionality needed by most applications:

76

file I/O using XtreemFS and job submission using AEM. These tests have been
performed for all three test units (programming languages) described below.

4.5.1.4 Features not to be Tested

The performance micro benchmarks do not address any other XOSAGA feature
not mentioned above. In particular, the SAGA Streams, Monitoring, and RPC
packages have been left out. The XOSAGA packages Sharing and DS have not yet
been available for these tests.

4.5.1.5 Overall Approach

4.5.2 Test Unit 01: Java XOSAGA – Performance

4.5.2.1 Responsibilities

WP3.1, Thilo Kielmann, Mathijs den Burger, and Emilian Miron from VUA.

4.5.2.2 Test Specification

Test Items

We have created a Subversion tag for each of the tested XOSAGA implementa-
tions, marking the exact version of the implementations that were used in the tests.
All XOSAGA implementations are located in subdirectories of the Subversion
URL svn://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga.
The Java XOSAGA implementation is located in SVN, relative to the above URL:

Implementation Tag relative to svn/xtreemos/grid/xosaga/
Java java/tags/benchmarks-D4.2.6

Features to be Tested

We test the following features of the Java SAGA API:

• Job submission.

Experiment: execute a simple job of known runtime (’/bin/sleep 60’) on an
XtreemOS node and wait for its completion using:

a) a program on top of AEM’s XATI API

b) a program on top of XOSAGA

Both a) and b) are performed 10 times and the average values are computed.
The difference between a) and b) shows the overhead of job submission via
the XOSAGA API.

77

• Namespaces.

Experiment: execute a set of namespace operations on an XtreemFS volume
using:

a) a program that explicitly mounts an XtreemFS volume and operates on
the locally mounted directory using Java’s native local file API via the
XtreemFS client

b) a program on top of XOSAGA

Both a) and b) perform the following set of operations on an (empty) XtreemFS
volume:

1. create 10 directories (’/dir000’ to ’/dir009’) with 10 subdirectories each
(’/dir000/subdir000’ to ’/dir009/subdir009’)

2. in each of the 100 subdirectories, create 10 text files (’file000’ to ’file009’).
The contents of each file is its own full path

3. print the type (file or directory) and size (in bytes) of all entries in the
volume

4. find all files and directories in the volume with ’01’ in their name

5. delete all files and directories

Repeat these operations 10 times and measure the total execution time. The
difference between the time for a) and b) shows the performance overhead
for namespace operations of the XOSAGA API.

• File I/O.

Experiment: execute a set of file I/O operations on an XtreemFS volume
using:

a) a program that explicitly mounts an XtreemFS volume and operates on
the locally mounted directory using the native local file API via the
XtreemFS client

b) a program on top of XOSAGA

Both a) and b) perform the following set of operations on an (empty) XtreemFS
volume:

1. create a binary file ’/foo’ of 100 MB size.

2. copy ’/foo’ to ’/bar’

3. read ’/bar’

4. delete all files

Repeat these operations 10 times and measure the total execution time. The
difference between the time for a) and b) shows the performance overhead
of the XOSAGA API.

78

Approach Refinements

The job submission tests have been performed on two nodes of the XtreemOS
testbed at VUA. These (rather old) nodes have the following characteristics:

• 1GHz Pentium-III

• 1GB RAM

• 20GB harddisk

• 100Mbit/s Ethernet

These machines were chosen to evaluate an XtreemOS installation, performing
job submission across two separate nodes. The exact performance of the machines
is not relevant as we are only interested in the added overhead of XOSAGA, com-
pared to the underlying software, here AEM’s XATI.

The namespace and file I/O tests have been performed on a standalone work-
station with the following characteristics:

• AMD Phenom X4 9600B

• 6GB RAM

• 500 GB harddisk, 7200RPM

• 1Gbit Ethernet

• Ubuntu Linux 9.10 x86_64

This machine was chosen as it was capable of running a local XtreemFS in-
stallation. As with the job submission tests, the actual performance numbers of
the underlying machine are not relevant as we are only interested in the overhead
added by the XOSAGA layer, here on top of the XtreemFS client. By using a ma-
chine with a local XtreemFS installation, we exclude all network influence on the
results.

4.5.2.3 Test Results

Figure 4.20 compares job submission for Java XOSAGA and AEM’s XATI. As the
completion time of the ’application’ was exactly 60 seconds, it can be seen that
AEM adds almost 10 seconds overhead on top. The overhead caused by XOSAGA
on top of AEM (XATI) is negligible.

Figure 4.21 compares namespace operations on a locally mounted XtreemFS
volume for Java XOSAGA and native Java using the XtreemFS client. In average,
XOSAGA adds about 5 seconds on top of native Java, accumulating the overheads
of the hundreds of operations invoked by this test.

79

Native Java and XATI
Java XOSAGA

 0

 10

 20

 30

 40

 50

 60

 70

 80

min max average

ti
m

e
 (

s
e

c
)

Figure 4.20: Comparing the job submission completion times for Java XOSAGA
and native Java/XATI.

Native Java
Java XOSAGA

 0

 5

 10

 15

 20

 25

 30

 35

 40

min max average

ti
m

e
 (

s
e

c
)

Figure 4.21: Comparing the completion time of namespace operations for Java
XOSAGA and native Java via the XtreemFS client.

Figure 4.22 compares file I/O operations on a locally mounted XtreemFS vol-
ume for Java XOSAGA and native Java using the XtreemFS client. In average,
XOSAGA adds about 3 seconds on top of native Java, indicating some moderate
overhead for passing the file data through the XOSAGA engine.

4.5.3 Test Unit 02: C++ XOSAGA – Performance

4.5.3.1 Responsibilities

WP3.1, Thilo Kielmann, Mathijs den Burger, and Emilian Miron from VUA.

80

Native Java
Java XOSAGA

 0

 5

 10

 15

 20

 25

 30

 35

 40

min max average

ti
m

e
 (

s
e

c
)

Figure 4.22: Comparing the file I/O operations for Java XOSAGA and native Java
via the XtreemFS client.

4.5.3.2 Test Specification

Test Items

We have created a Subversion tag for each of the tested XOSAGA implementa-
tions, marking the exact version of the implementations that were used in the tests.
All XOSAGA implementations are located in subdirectories of the Subversion
URL svn://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga.
The C++ XOSAGA implementation is located in SVN, relative to the above URL:

Implementation Tag relative to svn/xtreemos/grid/xosaga/
C++ cpp/tags/benchmarks-D4.2.6

Features to be Tested

We test the following features of the C++ SAGA API. These tests are equivalent
to the Java-based tests. The detailed descriptions of the Java-based tests also apply
here. Here, we merely summarize the software that has been compared to.

• Job submission.

Experiment: execute a simple job of known runtime (’/bin/sleep 60’) on an
XtreemOS node and wait for its completion using:

a) a program on top of AEM’s XATICA API

b) a program on top of XOSAGA

• Namespaces.

81

Experiment: execute a set of namespace operations on an XtreemFS volume
using:

a) a program that explicitly mounts an XtreemFS volume and operates on
the locally mounted directory using the Boost C++ filesystem library
via the XtreemFS client

b) a program on top of XOSAGA

• File I/O.

Experiment: execute a set of file I/O operations on an XtreemFS volume
using:

a) a program that explicitly mounts an XtreemFS volume and operates on
the locally mounted directory using the standard C++ I/O classes via
the XtreemFS client

b) a program on top of XOSAGA

Approach Refinements

The C++ tests have been performed on exactly the same machines as the Java-
based tests.

4.5.3.3 Test Results

Figure 4.23 compares job submission for C++ XOSAGA and AEM’s XATICA. As
the completion time of the ’application’ was exactly 60 seconds, it can be seen that
AEM adds almost 10 seconds overhead on top. The overhead caused by XOSAGA
on top of AEM (XATICA) is negligible.

Figure 4.24 compares namespace operations on a locally mounted XtreemFS
volume for C++ XOSAGA and native C++ using the Boost filesystem library and
the XtreemFS client. In average, XOSAGA adds about 8 seconds on top of na-
tive C++, accumulating the overheads of the hundreds of operations invoked by
this test. Thisindicates a higher runtime overhead of the C++ XOSAGA engine,
compared to its Java counterpart.

Figure 4.25 compares file I/O operations on a locally mounted XtreemFS vol-
ume for C++ XOSAGA and native C++ using the Boost filesystem library via the
XtreemFS client. In average, XOSAGA adds about 3 seconds on top of native C++,
indicating some moderate overhead for passing the file data through the XOSAGA
engine.

4.5.4 Test Unit 03: Python XOSAGA – Performance

4.5.4.1 Responsibilities

WP3.1, Thilo Kielmann, Mathijs den Burger, and Emilian Miron from VUA.

82

Native C++ and XATICA
C++ XOSAGA

 0

 10

 20

 30

 40

 50

 60

 70

 80

min max average

ti
m

e
 (

s
e

c
)

Figure 4.23: Comparing the job submission completion times for C++ XOSAGA
and native C++/XATICA.

Boost Filesystem library
C++ XOSAGA

 0

 5

 10

 15

 20

 25

 30

 35

 40

min max average

ti
m

e
 (

s
e

c
)

Figure 4.24: Comparing the completion time of namespace operations for C++
XOSAGA and native C++ using the Boost filesystem library via the XtreemFS
client.

4.5.4.2 Test Specification

Test Items

We have created a Subversion tag for each of the tested XOSAGA implementa-
tions, marking the exact version of the implementations that were used in the tests.
All XOSAGA implementations are located in subdirectories of the Subversion
URL svn://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga.
The Python XOSAGA implementation is located in SVN, relative to the above
URL:

83

Boost Filesystem library
C++ XOSAGA

 0

 5

 10

 15

 20

 25

 30

 35

 40

min max average

ti
m

e
 (

s
e

c
)

Figure 4.25: Comparing the file I/O operations for C++ XOSAGA and native C++
using the Boost filesystem library via the XtreemFS client.

Implementation Tag relative to svn/xtreemos/grid/xosaga/
Python python/tags/benchmarks-D4.2.6

Features to be Tested

We test the following features of the Python SAGA API. These tests are equiv-
alent to the Java-based and C++-based tests. The detailed descriptions of the Java-
based tests also apply here. Here, we merely summarize the software that has been
compared to.

The Python XOSAGA implementation is a layer on top of the Java implemen-
tation, based on the Jython interpreter of the Python language. All tests in this unit
have been performed using the Jython interpreter.

• Job submission.

Experiment: execute a simple job of known runtime (’/bin/sleep 60’) on an
XtreemOS node and wait for its completion using:

a) a Python program accessing AEM’s XATI API

b) a program on top of XOSAGA

• Namespaces.

Experiment: execute a set of namespace operations on an XtreemFS volume
using:

a) a program that explicitly mounts an XtreemFS volume and operates on
the locally mounted directory using the Python modules os, os.path,
shutil, and fnmatch via the XtreemFS client

84

b) a program on top of XOSAGA

• File I/O.

Experiment: execute a set of file I/O operations on an XtreemFS volume
using:

a) a program that explicitly mounts an XtreemFS volume and operates on
the locally mounted directory using the Python modules os, os.path,
and shutil via the XtreemFS client

b) a program on top of XOSAGA

Approach Refinements

The Python tests have been performed on exactly the same machines as the
Java-based and C++-based tests.

4.5.4.3 Test Results

Figure 4.26 compares job submission for Python XOSAGA and Jython with AEM’s
XATI. As the completion time of the ’application’ was exactly 60 seconds, it can
be seen that AEM adds almost 10 seconds overhead on top. The overhead caused
by XOSAGA on top of AEM (XATI) is negligible.

Jython and XATI
Python XOSAGA

 0

 10

 20

 30

 40

 50

 60

 70

 80

min max average

ti
m

e
 (

s
e

c
)

Figure 4.26: Comparing the job submission completion times for Python
XOSAGA and native Jython/XATI.

Figure 4.27 compares namespace operations on a locally mounted XtreemFS
volume for Python XOSAGA and native Jython modules via the XtreemFS client.
In average, XOSAGA adds about 7 seconds on top of native Jython, accumulat-
ing the overheads of the hundreds of operations invoked by this test. This indi-

85

cates a modest runtime overhead of the Python XOSAGA layer on top of the Java
XOSAGA engine.

Jython
Python XOSAGA

 0

 5

 10

 15

 20

 25

 30

 35

 40

min max average

ti
m

e
 (

s
e

c
)

Figure 4.27: Comparing the completion time of namespace operations for Python
XOSAGA and native Jython via the XtreemFS client.

Figure 4.28 compares file I/O operations on a locally mounted XtreemFS vol-
ume for Python XOSAGA and native Jython via the XtreemFS client. In average,
XOSAGA is about 7 seconds faster than native Jython, indicating some inefficient
file I/O in Jython. After further investigation, it turns out that Jython’s implementa-
tion of the method shutil.copy(from, to) for copying a file is about twice
as slow as the XOSAGA equivalent Directory.copy(from, to). Jython
performs marginally faster in reading and writing files, but its overall performance
suffers from the slow file copy implementation.

Jython
Python XOSAGA

 0

 5

 10

 15

 20

 25

 30

 35

 40

min max average

ti
m

e
 (

s
e

c
)

Figure 4.28: Comparing the file I/O operations for Python XOSAGA and native
Jython via the XtreemFS client.

86

4.5.5 Test Unit 04: Java XOSAGA – Applications

4.5.5.1 Responsibilities

WP4.2, Enric Tejedor from BSC.

4.5.5.2 Test Specification

Test Items

The test items include:

• SAGA for Java

• test applications downloadable from: svn://scm.gforge.inria.fr/
svn/xtreemos/grid/xosaga/java/trunk/test/src/test/xosaga/
job/JobAdaptorTest.java

Features to be Tested

We test the following features of the Java SAGA API:

• Job submission

• Job monitoring (callbacks)

Approach Refinements

The objective of this test is to check the correct execution of a simple job using
the Java SAGA API. The test is performed with the help of a simple application
that can be found in the Java SAGA distribution.

The application that has the following parameters:

• Input: the resource where to submit the job.

• Output: state transitions of the job (console prints), output file with the name
of the resource that runs the job.

The application performs the following steps:

• Creation of a job: the parameters are the /bin/hostname executable, number
of processes = 1, and the output and input files.

• Registration for the callbacks at each job state transition.

• Submission of the job to the user-specified resource.

• Wait for the completion of the job.

87

svn://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga/java/trunk/test/src/test/xosaga/job/JobAdaptorTest.java
svn://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga/java/trunk/test/src/test/xosaga/job/JobAdaptorTest.java
svn://scm.gforge.inria.fr/svn/xtreemos/grid/xosaga/java/trunk/test/src/test/xosaga/job/JobAdaptorTest.java

4.5.5.3 Test Results

Results for each step of the test application:

• Job creation, callback registration and job submission without error.

• Callback reception correct, finishing in a DONE state.

• Job completion without error, with the output file filled with the name of the
host where the job has run.

4.5.6 Test Summary Report

4.5.6.1 Summary of Tests and Results

The XtreemOS API (XOSAGA) has been implemented in three programming lan-
guages: C++, Java, and Python. For each of these three implementations, their per-
formance overhead (compared to directly using the underlying service interfaces)
has been investigated. With the micro benchmarks for each of the implementa-
tions, we have shown that the performance overhead caused by using XOSAGA is
negligible for job submission and modest for namespace operations and file I/O. In
the case of Python, file I/O was even faster than the native counterpart.

4.5.6.2 Directions for Future Work

Further evaluations with XOSAGA will be done with the ported versions of the
WP4.2 applications COMPSs (from BSC) and openTurns (from EDF). At the time
of writing this deliverable the application-centric experiments performed by WP4.2
failed because of bugs and missing documentation of XOSAGA. With the ported
applications it shall be possible to evaluate the usage of the interfaces and the scala-
bility and performance overhead from the application perspective. The prospected
tests should also include large-scale performance tests on Grid5000 and interoper-
ability tests with other Grid solutions.

88

4.6 Evaluation of Distributed Servers

Distributed Servers provide location transparent networked services [39]. Clients
connect to a single distributed server address for a service and may be moved trans-
parently among multiple locations. Mobile IPv6 (MIPv6) route optimization [22]
does the heavy lifting: all IPv6 connections from a client are atomically changed
directly to each location, avoiding triangular routing. The distributed server ad-
dress is simply an IPv6 [14] address. In the terminology of Distributed servers, a
client first connects to a contact node. A client may then be transparently handed
off —the server endpoint of all of the client’s connections are transferred—to differ-
ent servers for load-balancing or for client-specific processing. Distributed servers
are described in Deliverables D3.2.2, D3.2.6 and D3.2.11 [47, 48, 49].

Please note that all evaluation being reported here are duplicates of information
present in Deliverable D3.2.11 [49]. They are provided here for completeness.

4.6.1 Test Plan

4.6.1.1 Responsibilities

This performance evaluation is under the responsibility of VUA within WP3.2 (task
T3.2.1).

4.6.1.2 Test Items

These tests evaluate the Distributed Servers package as of their version from De-
cember 1st 2009 including comparisons to earlier versions.

4.6.1.3 Features to be Tested

The Distributed Servers provides the handoff of a client as a basic action. Char-
acteristics of this handoff are tested in the following sections. We first evaluate
handoff latency as seen by the client then we estimate the throughput at the server
for a handoff by measuring the CPU usage for a given handoff.

4.6.1.4 Features not to be Tested

Other aspects of the Distributed Servers package, such as initialization and group
management of server nodes are not evaluated. We also consider evaluating poli-
cies for performing handoffs, such as for load balancing, beyond the scope of this
document.

4.6.1.5 Overall Approach

Although the Distributed Servers package is not included in XtreemOS version
2.0, it is planned to be included in later releases. The functionality provided by

89

Distributed Servers is independent of other XtreemOS packages. We have thus
tested Distributed Servers in isolation.

We evaluated DS on a testbed of four machines connected by a 100 Mb/s eth-
ernet switch. The machines were identical with a single 1.5 GHz AMD Athlon
CPU and 500 MB of memory. One machine was configured as the client. Two
were configured as distributed servers (one contact node and one server node). The
remaining one acted as the network’s home agent. Note that there is only one home
agent for both servers, but the servers are configured to be in a different (foreign,
in MIPv6) network from the home agent. We evaluated the new implementation
of DS for latency and throughput and have included measurements from the pre-
vious implementation for comparison. Distributed servers are a unique feature of
XtreemOS so there is no other comparable system against which we can evalu-
ate distributed servers. Although the testbed used for these measurements is not
identical to that used for the evaluation of the previous version, the machines and
network are of equivalent capability. For a complete evaluation of the previous
version, please see [39]. For a discussion of the motivation for and development of
the new version, please see [49].

4.6.2 Test Unit 01: Handoff Latency

4.6.2.1 Responsibilities

This performance evaluation is under the responsibility of VUA within WP3.2 (task
T3.2.1).

4.6.2.2 Test Specification

We first evaluate the handoff latency seen by the client to determine the minimum
observed disruption to service. By providing a lower bound, application developers
can determine whether such disruptions are manageable for their particular cases.
The times for the old and new systems are provided in Figure 4.29. For the new
design, we use tcpdump to determine the time of the last and first packets arriving
from the donor and receiver of the handoff, respectively. For comparison with the
old system, we used the minimum times of the old system given when the socket
is first drained of data (that is, all data buffered in the kernel is sent to the client)
before performing the handoff. Our additional method tcpcp_flush provides this
functionality in the new implementation instead of the fixed wait time used in the
previous implementation.

Local handoff times are presented in Figure 4.29 when a host hands-off the con-
nection to itself, which does not require route optimization with the client or com-
munication with another server node. These numbers thus provide the network-
independent overhead and are quite similar to the previous design of DS.

90

LAN handoff Host-local handoff
Old 18.4 ms 9.4 ms

New 620 ms 13.4 ms

Figure 4.29: Handoff latency of connection as seen by the client. Time given is
between arrival of last packet from the server donating the handoff and the first
packet from the server receiving. The Old values are from [39] (ignoring RTT for
Route Optimization), while New values were obtained using the design described
in this document.

4.6.2.3 Test Results

The results of our handoff latency tests are presented in Figure 4.29 above. The re-
sults show quite similar local handoff times, showing that our TCPCP port is com-
petitive with earlier versions. However, the LAN handoff times of our new version
is an order of magnitude slower. This discrepancy is largely due to the use of the
Gecko library at the server end of the handoff. The Gecko library implementa-
tion initiates a new connection between the donor and accepter of a handoff before
sending the handoff data. The accepter also sends an acknowledgment before con-
tinuing to send data to the client. These high-level coordinating events need further
optimizations to be competitive with the low-level measurements done in [39].

4.6.3 Test Unit 02: Handoff Throughput

4.6.3.1 Responsibilities

This performance evaluation is under the responsibility of VUA within WP3.2 (task
T3.2.1).

4.6.3.2 Test Specification

In addition to the client perceived handoff latency, we measured the cost of DS
at the server side of the connection. To answer how many connections could the
server handoff per second, we measured the CPU time spent at both user and kernel
level on either receiving or donating a handoff over a LAN. The results given in
Figure 4.30 show that our current design is fairly expensive. Note that the latency
for donating or receiving is not given and may be longer depending on network
latencies. Fig. 4.30 provides the times spent on our rather dated 1.5 GHz AMD
Athlon CPU and can be expected to be lower on modern processors. Handoff
throughput is estimated between 3-4 clients per second, and we believe this will
also improve as we optimize the new implementation.

4.6.3.3 Test Results

The results of our throughput estimation tests are presented in Figure 4.30. Al-
though these tests show few connections per second, we note these measurements

91

Total Length Avg. Throughput
Donate 264 ms 3.8 conn. / sec

Receive 384 ms 2.6 conn. / sec

Figure 4.30: Handoff (over LAN) CPU time and estimated throughput as seen by
the server in an application. The time given is the CPU time spent in both the
system and user levels, not real-time. Donate and receive times are time spent by
Accept and Handoff functions, respectively, in the Gecko library.

use the Gecko library, as in the previous latency evaluation. In this library, hand-
offs require an extra connection setup and teardown. The additional work reduces
throughput significantly from that of a local handoff. Again, we believe this will
improve as we adjust and optimize the Gecko library.

4.6.4 Test Summary Report

4.6.4.1 Summary of Tests and Results

Distributed servers are a unique feature of XtreemOS so there is no comparable
other system against which we can evaluate them. We compared two implemen-
tations of distributed servers: an old, non-portable kernel-based version, and the
new portable user-level version. The user-level implementation is demonstrated to
work well, although it is in certain cases significantly slower than the old version.
However, no particular effort has been spent on optimizing it yet, so important
performance gains can be expected in future versions.

4.6.4.2 Conclusion and Directions for Future Work

In the remaining months of the projects our efforts will be directed to three main
topics:

• Performance improvements of the user-level implementation of distributed
servers

• Packaging and full integration within XtreemOS

• Building one or more demo applications

92

4.7 Evaluation of Virtual Nodes

Virtual Nodes is a replication framework for Java services that has been developed
within WP3.2 by Ulm University (ULM). All evaluations performed are also con-
tained in Deliverable D3.2.14 [12], so that we will only present a summary in this
document. The evaluations have been performed as part of a master thesis that
also presents a theoretical model of Virtual Nodes based on queuing theory and a
comparison of the practical evaluation with respect to this model [35].

In the following we present the results of the three classes of evaluations. We
first show the overhead of a single method invocation using Virtual Nodes in com-
parison to Java RMI and prove that our Java-RMI-compatible middleware layer
works. Second, we compare the performance of different replication protocols
provided by Virtual Nodes varying different system parameters such as state size
and workload. This test also proves that those protocols are working. Finally, we
measure the effect of node failures on service availability showing that our system
can handle failing and joining nodes.

4.7.1 Test Plan

4.7.1.1 Responsibilities

WP3.2, ULM

4.7.1.2 Test Items

Virtual Nodes 0.2.2
Virtual Nodes 0.3.0

4.7.1.3 Features to be Tested

• Java RMI-compatible middleware layer

• Implementation for passive replication

• Implementation for active replication

• Shutdown and restart of replicas

4.7.1.4 Features not to be Tested

• Dixi integration

• Protocol switch

• Parallel Joins

• Network partitions

93

Emma

Zenzi Hynreck

Betty Hykrion

Figure 4.31: Evaluation setup

4.7.1.5 Overall Approach

For our test scenarios we used a distributed set-up with up to five nodes shown in
Figure 4.31. We configured Virtual Nodes to use Jgroups 2.6.81 as a group com-
munication system. Using Jgroups’s SEQUENCER layer provides the required
total order property for all messages sent to the replica group. In order to obtain
comparable evaluation results we kept an identical startup order for all tests, so
that the sequence of sequencers used by Jgroups would always be identical. Un-
less mentioned, all machines ran Sun’s Java RTE 1.6.16. Please refer to [12, 35]
for more details about the hardware configuration of the individual machines and
the network connecting them. For all tests, the client was configured to wait for
replies of all correctly working replicas. For both active and passive replication the
client request is sent to one so-called contact replica and processed there accord-
ing to the replication protocol. For active replication the contact replica is chosen
in a random manner whereas in passive replication the contact replica is always
the leader replica. In order to allow a meaningful comparison between active and
passive replication, we decided to use sequential scheduling for active replication.
Sequential execution also is the only possible scheduling option for passive repli-
cation. Unless mentioned, client requests were issued concurrently.

1www.jgroups.org

94

RMI 2, 941 ms 0.5882 ms per request
Virtual Nodes 21, 096 ms 4.2192 ms per request

Table 4.9: Java RMI vs Virtual Nodes Invocation Time per Method Invocation

When discussing the evaluation we will use hykrion as a single replica, hykrion
and zenzi as the group of two replicas, and hykrion, zenzi and hynreck as three
replicas.

4.7.2 Test Unit 01: Comparison to Java RMI

4.7.2.1 Responsibilities

WP3.2, ULM

4.7.2.2 Test Specification

Test Items
Virtual Nodes 0.2.2 shipped with XtreemOS2.0. User documentation is available
in the XtreemOS user guide. Additional information on how to use Virtual Nodes
can be obtained from Deliverable [11].

Features to be Tested

• Java RMI-compatible middleware layer

Approach Refinements
For the comparions of a single method invocation of Virtual Nodes and Java RMI
we had a client application and a server application both running on different hosts.
For Java RMI, the server application hosted a single RMI object that was exported
via a Java RMI registry running in the same process. For Virtual Nodes the server
application hosted a single replica, that was also exported via a Java RMI registry
running in the same process. Both server applications provided the same interface
to the client so that the client application did not have to be changed for accessing
the servers. In both machines we used Sun’s SDK 1.6.12 to perform the tests.

For the comparison of Java RMI and Virtual Nodes we measured the time it
takes to invoke the remote service 5000 times, not counting another 5000 warm up
invocations we did in order to rule out effects of just-in-time compilation.

4.7.2.3 Test Results

As shown in Table 4.9 the overhead of using Virtual Nodes is almost one order of
magnitude. This is due to multiple reasons. First of all, the RMI protocol is highly

95

optimised. A single TCP connection is kept open all the time and requests are
multiplexed over this connection. Virtual Nodes, in contrast have no optimisation
integrated so far. That is, for each request a new TCP connection is opened and
closed again. Second, Virtual Nodes code contains logging operations which, even
though not printed, require a significant amount on operations on String objects
which are known to be highly inefficient. Finally, the protocol stack used for RMI
is smaller than the one for Virtual Nodes. This is due to the fact that requests in
RMI can simply be forwarded to the service implementation whereas in Virtual
Nodes the request has to pass through an additional layer containing replication
logic.

Even though one order of magnitude of overhead seems to be a high price to
pay for using Virtual Nodes we want to stress that this factor of 10 may be reduced
to probably 2− 3 and furthermore, the overhead introduced by group communica-
tion in multi-replica set-ups is much higher than for client-replica communication.

4.7.3 Test Unit 02: Comparison of Replication Protocols

4.7.3.1 Responsibilities

WP3.2, ULM

4.7.3.2 Test Specification

Test Items
Virtual Nodes 0.3.0. The version can be retrieved from the current development
trunk in the XtreemOS repository. Due to its development status, no user or instal-
lation guides are available.

Features to be Tested

• Implementation of protocol for passive replication

• Implementation of protocol for active replication

Approach Refinements
In active replication requests are executed by all replicas. In passive replication
only a single (primary) replica executes a request and informs all other (follower)
replicas about the state changes in application state caused by the request. Due
to their different approaches to fault-tolerance both strategies provide different
properties. For instance active replication has smaller delays after replica crashes
whereas passive replication is less demanding with regards to determinism.

For the sake of brevity, we only show results for a utilisation of 10%, 50%, and
90% and replica groups of one, two, or three replicas. Furthermore, we restrict our
results to the round trip delay time experienced by the client and do not present

96

Utilisation 1 Replica 2 Replicas 3 Replicas
0.1 14.50±11.54 29.69±23.85 31.04±22.62
0.5 104.46±101.55 114.09±102.06 114.16±101.74
0.9 1091.40±1092.98 1106.54±1093.97 1107.63±1085.37

Table 4.10: Evaluation Results for Active Replication

Utilisation 1 Replica 2 Replicas 3 Replicas
0.1 18.84±15.37 26.28±22.64 38.55±25.87
0.5 112.78±106.50 125.18±110.79 133.04±112.99
0.9 1302.43±1138.11 1338.35±1151.07 1392.85±1156.78

Table 4.11: Evaluation Results for Passive Replication and Application State 0MB

results for individual phases of request processing. Refer to [35] for such detailed
information.

For active replication we performed an evaluation over several group sizes and
utilisation factors. As the performance of active replication does not depend on
the state size of the application, our application used for evaluation had a size of 0
MB. For passive replication we run the same tests with identical input parameters.
However, we did one run with an application state size of 0MB and another with
.25 MB.

4.7.3.3 Test Results

The results for active replication are presented in Table 4.10. They show that the
response time heavily depends on the utilisation factor whereas the number of repli-
cas seems to play a less important role; the higher utilisation, the longer the exe-
cution takes. For a fixed utilisation going from one replica to two replicas adds
another overhead of 10 − 15ms whereas adding a third replica barely affects the
does total time. This effect is caused by the fact that in comparison to hynreck
which is the third replica added zenzi is so slow that hynreck’s reply is almost al-
ways faster than zenzi’s. The additional costs caused by reaching total order for
three instead of two group members is compensated by the fact that now zenzi is
only contact node for 1

3 of all requests, wheras before, it had to process half of
them.

The results for passive replication with an application size of 0MB are sum-
marised in Table 4.11. Just as for active replication, it shows that execution takes
longer the higher the utilisation is. Furthermore, adding new replicas increases
the time it takes to process a request. In comparison to active replication, passive
replication is clearly slower. It takes longer than active replication as the level of
concurrency allowed is smaller for passive replication. While active replication

97

Utilisation 1 Replica 2 Replicas 3 Replicas
0.1 23.98±24.54 33.21±25.00 54.73±30.03
0.5 122.27±112.55 134.45±114.96 171.83±121.02
0.9 1651.32±1334.88 1775.22±1370.86 1912.17±1394.03

Table 4.12: Evaluation Results for Passive Replication and Application State
.25MB

allows making the broadacast and collecting replies for different clients in parallel,
passive replication requires that execution for successive requests be blocked until
the state has been serialised. The evaluation for passive replication with a state size
of .25MB shown in Table 4.12 underlines the previous results.

It turned out that evaluations beyond a state size of .25 MB was impossible for
larger utilisations. This is due to the fact that for passive replication a full state
snapshot is serialised and sent to the backup replicas. This delays the execution of
subsequent requests so that more and more connections from the client are opened
leading to a TooManyOpenFilesError.

4.7.4 Test Unit 03: Effects of Node Failures

4.7.4.1 Responsibilities

WP3.2, ULM

4.7.4.2 Test Specification

Test Items
Virtual Nodes 0.3.0. The version can be retrieved from the current development
trunk in the XtreemOS repository. Due to its development status, no user or instal-
lation guides are available.

Features to be Tested

• Shutdown and restart of replicas

Approach Refinements
For scenarions that include node failures we evaluated utilisation ratios of .25 and
.75 for application state sizes of 0MB and .25MB. We used an average failure
of 1 : 500 per replica. That means, on average after 500 requests each replica
has failed once; or after all 5000 requests each replica has failed about 10 times.
The interval between failures and recovery is set to 6 seconds which is the default
time JGroups requires to recognise a node failure. Instead of execution time, we
measured service availability, that is the ratio of successfully processed request to

98

Utilisation/State Size 1 Replica 2 Replicas 3 Replicas
0.25/0MB .845 .977 .990
0.75/0MB .835 .972 .950
0.25/.25MB .845 .962 —
0.75/.25MB .824 .877 —

Table 4.13: Availability for Active Replication with Node Failures

Utilisation/State Size 1 Replica 2 Replicas 3 Replicas
0.25/0MB .847 .952 .978
0.75/0MB .846 .900 .962
0.25/.25MB .846 .913 .946
0.75/.25MB .850 .900 .972

Table 4.14: Availability for Passive Replication with Node Failures

the total number of requests sent to the service. For shutting down a replica we
used the shutdownReplica method that comes with each Virtual Node.

We assumed a stable and fault-tolerant registry, where replicas insert the most
up-to-date version of the contact addresses of the entire replica group. The client,
before executing a request, fetches the latest information from this repository and
uses this contact information for invoking the service. Even though this execution
model requires a third entity that provides additional fault-tolerance, we think it is
valid to use it. This is mainly because of the fact that the currently ongoing integra-
tion of Virtual Nodes in the Application Execution Manager uses the JobDirectory
service to provide a last ressort for contact addresses of replicas. In consequence,
a Virtual Node is only unavailable if all of its replicas have failed.

4.7.4.3 Test Results

The results for availability are shown in Tables Tables 4.13 and 4.14. Neither for
active nor passive replication it is possible to make a statement on whether or not
state size has an impact on availability. In contrast, however, the number of replicas
clearly has an impact on service availability. The more replicas we used the more
available the service was. The only exception to that rule is in active replication
where two replicas provide better availability that three replicas when the state size
is 0MB. So far, we have not been able to track down this anomaly, so that further
evaluation is required.

4.7.5 Test Summary Report

In this section we have provided an evaluation of the Virtual Nodes replication
framework regarding performance and availability.

99

4.7.5.1 Summary of Tests and Results

We have shown that our system is about one order of magnitude slower than Java
RMI. Furthermore, we have presented that the runtime overhead of passive repli-
cation as we implemented it, is slightly higher than for active replication. This
gap might turn out to be more serious in case deterministic schedulers are used for
active replication. Finally, our evaluation did show that an application’s state size
barely has an impact on service availability. Yet, for more replicas the availability
increases drastically.

4.7.5.2 Conclusion and Directions for Future Work

Evaluation has given us some hints on what to improve on our system. First of all
multiplexing of connections or at least re-using of open sockets would be beneficial
to the overall system performance.

Second, overload renders the system unusable or may even lead to the failure
of individual replicas or the entire Virtual Node. This makes the system vulnera-
ble for denial-of-service attacks. Thus, adding mechanisms that are able to handle
overload and support graceful degradation in such situations are desirable exten-
sion.

Third, it is not clear which set-up is the best alternative in case of node failure.
Here, further investigation and evaluation is required.

100

4.8 Evaluation of Application Execution Management

4.8.1 Test Plan

4.8.1.1 Responsibilities

SAP is responsible for the test plan evaluations performed by WP4.2.
Ramon Nou (BSC) is responsible for the evaluations performed by WP3.3.

4.8.1.2 Test Items

The test items related with this evaluation are the following:

• the release of AEM component that is shipped with the XtreemOS release
2.0.

• The hmmpfam application using COMPSs ported to the AEM XATI API.

• The documentation and distribution of SPECweb2005 application are avail-
able at http://www.spec.org/web2005.

• The Moderato application.

• The documentation and source of Globus Toolkit 4 may be found at http://www.globus.org/toolkit.

4.8.1.3 Features to be Tested

We tested the following features of the AEM XATI API:

• Job management: submission, state checking.

• Resource management: discovery, reservation.

Furthermore, we present a comparison of the aforementioned features of AEM
with the Globus middleware, as well as measuring the scalability of AEM.

4.8.1.4 Features not to be Tested

We test all the features offered by AEM components.

4.8.1.5 Overall Approach

To evaluate the AEM, we used the AEM job submission, job monitoring and job
reservation features. The execution of the tested applications generally begins with
the initial discovery and reservation of the needed resources to execute the applica-
tions themselves. Once the reservation is done, the applications submit jobs to the
previously reserved resources and check their state for completion. Finally, when
all the jobs are finished, the applications release the resources.

101

We also obtained basic results of AEM features to compare with other offer-
ings, i.e. Globus. In addition, we have performed scalability tests with the hard-
ware available to us. Globus is a standard Grid middleware implementation and
makes for a worthwhile comparison. We have compared the submission, execution
and job status query on one node, as this is allows us to perform our evaluations
without other components.

On the mobile device side, a test is included that compares the computation
power of the Grid based on the XtreemOS version that is invoked through AEM
API: XtreemOS PC flavour or XtreemOS MD flavour. The goal of this test is to
observe the performance of the AEM API as it is invoked from a XtreemOS-PC
client or from a XtreemOS-MD client.

4.8.2 Test Unit 01: COMPSs

4.8.2.1 Responsibilities

WP4.2, Enric Tejedor from BSC. The tests included here are partially submitted
in [31].

4.8.2.2 Test Specification

Test Items

We tested the following features of the Application Execution Management
(AEM) component:

• Job submission and monitoring

• AEM resource reservations

Features to be Tested

We tested the following features of the AEM XATI API:

• Job management: submission, state checking.

• Resource management: discovery, reservation.

Approach Refinements

The evaluation of the features enumerated above will be performed during the
execution of the hmmpfam application, with COMPSs on top of XtreemOS.

When COMPSs parallelizes hmmpfam, it creates a task dependency graph
based on the workflow of the application. The tasks will be submitted as jobs to
the XtreemOS grid and periodically checked for completion on nodes running the
application. In addition, COMPSs will perform an initial discovery of the available

102

Grid resources by means of the AEM XATI API and then it reserves a set of these
resources nodes to act as workers running the jobs in the application workflow. At
the end of the application, the COMPSs runtime will release the reservations.

The purpose of the tests is to verify the proper operation of the main AEM
functionalities and analyze its performance.

4.8.2.3 Test Results

In order to evaluate COMPSs-hmmpfam on top of XtreemOS-AEM, we conducted
tests to measure the execution time of the application. The testbed that we used is
composed of twelve single core VMs running XOS Core and XOS resource nodes.
This testbed is represented in Figure 4.32. For job execution, we used one VM as
the master node (the one that hosted the runtime) and a variable number of worker
VM nodes (from two to ten).

Figure 4.32: Testbed used in COMPSs-hmmpfam experiments.

In order to compare the XtreemOS performance with another Grid middleware
implementation, we ran the same series of tests using two different configurations
of the COMPSs runtime: first, the COMPSs runtime ported to XtreemOS, making
use of the AEM API; second, the same runtime using the JavaGAT [1] interface
and its SSH adaptor to submit jobs and transfer files. No distributed file system was
used in either case. Rather we copied the application files from node to node when
necessary, i.e. every time that a task needed a given input file, that file was SSH-
copied to the destination node before the task execution. This way, we achieved a
more direct comparison between AEM and SSH.

Figure 4.33 shows the performance and scalability results of running COMPSs-
hmmpfam, both using XtreemOS and SSH. For each number of workers and con-
figuration, we ran two tests and the average is plotted. There was no significant
difference between executions of the same number of workers and configuration.
We see how the results are quite similar for both configurations, which achieve
good scalability results.

103

Figure 4.33: Execution times of the hmmpfam application on top of COMPSs, both
with the XtreemOS and the SSH flavours.

4.8.3 Test Unit 02: SPECweb2005

4.8.3.1 Responsibilities

WP4.2, J. Oriol Fitó from Barcelona Supercomputing Center (BSC). The tests in-
cluded here are partially submitted in [31].

4.8.3.2 Test Specification

Test Items

We tested the following features of the Application Execution Management
(AEM) component:

• Job submission

• Job monitoring

• AEM resources reservations

Features to be Tested
The principal goal is the testing and evaluation of the AEM component of XtreemOS.
Our focus during the evaluation is on the following features: job submission, mon-
itoring and reservations.

104

Approach Refinements
In order to evaluate the AEM, we have decided to use its job submission, job mon-
itoring and job reservation features. We deplyed the SPECweb2005 application to
validate these features. Notice that we have decided not to change to the newest
version, that is SPECweb2009 [5], because it’s equal to the previous version except
the inclusion of the power workload. The rest of the benchmarks in this sotware is
exactly the same in both older and newer versions. In this case, the power work-
loads are not truly relevant for our purposes,so there are no advantages to using the
newer version.

Our test scenario is comprised of a web server, a back-end database server
simulator (i.e. BeSIM) and many client machines (see Figure 4.34).

Client 1 Client 2 Client N...

Web ServerPrime
Client

BeSIM

Figure 4.34: SPECweb2005 benchmark architecture.

In particular, we want to execute the benchmark by submitting the needed client
jobs and processes by the application itself. This submission will be done by using
a suitable reservation of an available resource node for the web server. In addition,
all the needed clients will be encapsulated into a job, each one having its own
processes inside. Then, when the application is launched, we will monitor it by
using a simple monitoring web interface developed by BSC. Via the web interface,
we are able to verify which nodes fulfill the requested resource requirements for
example, the number of available CPUs or amount of memory or available disk
space. The web interface also allows us to view prior job history, terminate running
jobs, as well as perform other tasks.

The test procedures are the following:

1. Make a reservation for the web server and submit the job which will execute
on it.

2. Make a reservation the BeSIM component of the benchmark and submit the
job to be executed.

3. Make a reservation for a job which will encapsulate all the clients, each one
as a process inside this job.

105

4. Make a reservation for the prime client, which is the component that ini-
tializes the environment, manages the benchmark execution, and collects the
results.

Specifically, we repeatdly execute the benchmark in order to observe the server
performance with varying input loads, expressed as simultaneous user sessions.
These repeated executions will be performed by using one and two CPUs allocated
to the resource reservation of the web server requested of the AEM. Through these
experimentats we will be able to see how the performance of the web server scales
up when we provide it with an increasing number of resources.

Finally, we check the output results of the application executions in order to
validate the proper functioning (i.e. job submission, monitoring and reservations)
of the XtreemOS component that is tested here, i.e. the AEM. In addition, we will
show the web server’s performance high-level metrics from the benchmark results:
throughput (requests per second), response time (seconds) and Quality of Service.

4.8.3.3 Test Results

The testbed used for performing the experiments presented in this section is illus-
trated in Figure 4.32. In order to evaluate the AEM component of XtreemOS, we
have repeated several executions of the SPECweb2005 benchmark [4] with differ-
ent input loads on the web server being evaluated. Actually, for each input load
(i.e. number of simultaneous user sessions), we have performed three execution
repetitions with the aim of obtaining stable results regarding the performance of
the web server. These tests were carried out using the appropriate number of client
machines needed to emulate the desired input load, i.e. simultaneous user sessions.
For this reason, we used horizontal scaling of the benchmark’s client component,
which involves testing this type of scalability around AEM reservations. To obtain
these results, we used a range of one to nine client machines, acquired through
the resource reservations as needed. The possibility to reserve efficiently as many
resources as needed is a remarkable strength of XtreemOS. In addition, we present
the vertical scalability results, in terms of the performance (i.e. throughput, re-
sponse time and Quality of Service metrics) offered by the web server running on
top of XtreemOS.

Web server’s performance metrics In Figures 4.36, 4.37 and 4.38 you can see
a graphical representation of the results regarding to the performance of the server.
Note that all of these results are expressed depending on the number of simultane-
ous user sessions emulated by the clients in the benchmark. In addition, the bench-
mark used a time-based Quality of Service (QoS). This means that QoS is based
on the amount of time that elapses between a web page request and the receipt of
the complete web page, including any image files. In this sense, the output results
of any benchmark execution can be assessed for “Aggregate QoS compliance”. It
consists of calculating the total amount of requests (expressed as a percentage of

106

the requests) that are within each of three different ranges: Good, Tolerable and
Fail. In particular, a configuration file of the benchmark establishes two response
time thresholds, called TIME_GOOD and TIME_TOLERABLE, that are used to
classify the amount of requests that are within each range: if the response time
of a given request is less or equal than TIME_GOOD, then the request is classi-
fied within the Good range; if it is greater than TIME_GOOD and less or equal
than TIME_TOLERABLE, the request is classified as Tolerable and, finally, if it is
greater than TIME_TOLERABLE the request is classified as Fail (see Figure 4.35).

0
 s

e
c

T
IM

E
_T

O
LE

R
A

B
LE

T
IM

E
_G

O
O

D

...
Good Tolerable Fail

Figure 4.35: SPECweb2005 QoS criteria. TIME_GOOD and
TIME_TOLERABLE which define the QoS ranges: Good, Tolerable and
Fail.

These percentages give us a quantitative overview of what level of QoS has
been reached during the execution of any test.

0

50

100

150

200

200 400 600 800 1000 1200 1400 1600 1800

re
pl

ie
s/

s

Number of simultaneous sessions

1 CPU
2 CPU

Figure 4.36: Banking throughput (requests per second) when running with one and
two processors.

These tests show that XtreemOS is a suitable environment in two different
ways, with regard to web servers:

• Testing platform This is a viewpoint around the setup process for the bench-
mark. Typically, a large number of clients are required to run an accurate
test on a web server. Acquiring and setting up these disparate resources can

107

0

2

4

6

8

10

200 400 600 800 1000 1200 1400 1600 1800 2000

se
co

nd
s

Number of simultaneous sessions

1 CPU
2 CPU

Figure 4.37: Banking response time (seconds) when running with one and two
processors.

be very time consuming. Thus having easy access to remote resources, as in
XtreemOS, will no doubt greatly help in this task. Actually, through the tests
performed, we check that we are able to execute tests on he web server with
a large variety of capabilities examined. Thus we are able to acquire the re-
quired resources (through XATI AEM) suficient client machines to emulate
the input load, i.e. the number of simultaneous user sessions.

• Evaluation platform The distributed nature of XtreemOS expands the range
of possibilities in terms of scalability and robustness for a service hosted on
the said OS. Therefore. even when taking into account the vertical scalabil-
ity results presented above, we verify that XtreemOS is a proper environment
for hosting web servers with their required services and deployed web appli-
cations. In fact, we are also able to replicate the web server services among
several XtreemOS resources, i.e. perform a horizontal scalability of the web
server. In this scenario, the performance capabilities of the pool of web
servers will be multiplied by the number of web servers minus the overhead
introduced by a load balancing mechanism.

For all these reasons, we think that we have successfully proven that XtreemOS
is a suitable environment for hosting web services and applications.

4.8.4 Test Unit 03: Customizable SSI Scheduler

4.8.4.1 Responsibilities

WP4.2, Guillaume Alleon of EADS.

4.8.4.2 Test Specification

Test Items

108

0

25

50

75

100

200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

ce
nt

ag
e

of
 r

eq
ue

st
s

Number of simultaneous sessions

1 CPU
2 CPU

0

25

50

75

100

200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

ce
nt

ag
e

of
 r

eq
ue

st
s

Number of simultaneous sessions

1 CPU
2 CPU

0

25

50

75

100

200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

ce
nt

ag
e

of
 r

eq
ue

st
s

Number of simultaneous sessions

1 CPU
2 CPU

Figure 4.38: Banking “Aggregate Quality of Service (QoS) compliance” when run-
ning with one and two processors. Good, tolerable and fail ranges, from top to
bootom.

For this test, EADS used the amibe software. Amibe is an open source software
that can be retrieved from http://jcae.sf.net. Amibe is the pre-processor
of the Elfipole Electromagnetics solver. It basically transforms a CAD (geometry)
in a set of triangles (discretized geometry). Amibe itself is written in Java but does
rely on a native library (OpenCascade). In order to provide a fair measure, we have
used an ideal CAD that provide the same amount of work per processing unit. The
CAD is made of a cube (box) made of 4056 patches which therefore allows to run

109

http://jcae.sf.net

up to 4056 processing units.

Features to be Tested

The main interest in this test is to evaluate the difference of performance be-
tween XtreemOS PC flavor and a grid running the Condor middleware. The feed-
back will be given for each of the module of the amibe software.

Approach Refinements

The meshing as handled by Amibe is a three steps process:

1. the meshing of the edges also known as 1d mesh [jcae1d],

2. the meshing of the patches also known as 2d meshing [jcae2d],

3. the assembly of the different patches in a global mesh also known as 3d
meshing [jcae3d].

The first part is fast and sequential, it ends up in a splitting of each and every
edge in segments of similar size. The results are stored in a single directory. The
second step is parallel since the code iterates over the patches. Each patch can be
processed independently and depends on the results of the first phase. Each result is
stored in a separate directory. The last phase aggregates the results of the previous
phase eliminating the redundant points (located on the edges). It is built upon all
the results of the step 2 runs.

As result, the measure of those different phases are kept and compared for
both XtreemOS and Condor. The runs are performed for both configurations on
Grid5000 resources. XtreemOS version 2 is used in its version provided by INRIA.

4.8.4.3 Test Results

The first test shows the performance of XtreemOS and Condor on 40 processors
for a mesh size of 1. Both configurations generate the same meshes: 23 MB for
the 1d mesh, 40 files and 98 MB for the 2d meshes and a final 3d mesh of size 5.3
GB. For XtreemOS, the total computing time is about 33 minutes while for Condor
it is 36 minutes. In both cases, the computing times are roughly the same i.e. 30
seconds for the 1d phase, about 11 minutes for the 2d phases and 20 minutes for
the 3d phase. The main difference is therefore in the management time by each of
the middleware. For XtreemOS, this time is about 1 minutes and 30 seconds while
it is roughly 5 minutes for Condor.

For a mesh size of 0.5, the time for the 1d phase remains the same while,
the 2d phase jumps to 43 minutes and the 3d phase goes up to 86 minutes. The
total execution time is respectively 130 minutes and 133 minutes. Therefore the
difference in management by the different middleware remains independant of the
mesh size.

110

4.8.5 Test Unit 05: Moderato

4.8.5.1 Responsibilities

WP4.2, Samuel Kortas from EDF.

4.8.5.2 Test Specification

Features to be Tested

We test the following features of the AEM:

• Job management: submission, state checking, cancellation.

• Resource management: discovery, reservation.

Approach Refinements

In order to make the evaluation of the AEM, we use its job submission, moni-
toring and reservations features. The Moderato Application launches a large num-
ber (up to several hundreds of thousands) of independent runs describing exten-
sively a given set of parameters. A typical case will use

• AEM reservation and discovery service to gather information on the resource
available in XtreemOS that can be used to execute these runs.

• AEM submission, monitoring and cancellation service to manage the runs

Correctness of obtained results will be checked in the end. The results will be
dumped either on shared XtreemFS, or on each local file system of participating
nodes and transfered back at the end of the execution.

Using the mockup of Moderato, we test the ability of XtreemOS to support a
high number of jobs and to load-balance them well on the available nodes. The test
input parameters are the number of submitted jobs. Jobs are gathered in chunks,
whose size is another varying input. Time of a given calculation is plotted with
respect to the number of resource nodes used.

Test were run on dual four-core processor Hewlett-Packard Desktop box run-
ning natively XOS version official 2.0.

4.8.5.3 Test Results

In order to test the robustness of the AEM scheduler, we used MODERATO to
submit hundreds of one-processor jobs to the XtreemOS grid at the rate of 30 jobs
per minute.

As for now, December 20th, we observe that only a part of the jobs submitted
reaches the “Done” final Status, others stays either in a “Running” or “LocalSub-
mitted” Status.

111

So far, this problem has not been solved yet and is under investigation. We also
noted that it doesn’t occurs when we submit a lighter number of jobs (typically less
than 15).

4.8.6 Test Unit 06: AEM vs. Globus Toolkit

4.8.6.1 Responsibilities

WP3.3, Ramon Nou from BSC. The tests included here are partially submitted
in [31].

4.8.6.2 Test Specification

Test Items

For this test BSC used a set of bash scripts that execute a time measuring the
time to do a xsub (normal xcommand included in XtreemOS Release). For the
query, xps is called.

Features to be Tested
We test the following features of the AEM interface:

1. Single job submission.

2. Job status query.

In this test, we compare the results with the same test in Globus Toolkit 4.2.

Approach Refinements

The evaluation of the features enumerated will be performed using the same
testbed for the two installations (Globus and AEM). The test will use synthetic
benchmarks. For the first feature, we submit a large number of jobs (1000) that
execute /bin/true. We wait until the job finishes and get the time that the job uses
from submission to finalization. Between every submission we wait one second.
There is no saturation of the middleware in this test.

The last feature uses a submission of a very large job (sleep) that will run during
the whole test. Then a job status query (1000 queries) is issued via the command
line interface. We record the time it takes to get an answer and wait 1 second
between queries. We ensure that the job is running by always recording the query
result.

We present all results with a c.i. of 95% of the 1000 repetitions showing stable
measures.

112

4.8.6.3 Test Results

The testbed in Figure 4.39 that we used is composed of two 2-way VM running a
XOS Core and a XOS Client. Another installation is setup on a 2-way VM with
a Globus Toolkit (core) and a client. The hardware is using a Core 2 Quad Intel
Processor (4 cores).

Figure 4.39: Testbed used in Globus vs AEM experiments.

First test, Figure 4.40, compares Globus and XtreemOS submission and exe-
cution. The test does not use any feature not found in Globus, so we are using
basically NSS-PAM and AEM; XtreemOS is not using resource location services
or XtreemFS. The test submits a job that executes /bin/true in one node. With
this kind of job we are measuring the performance of the middleware code.

 0

 0.5

 1

 1.5

 2

Globus Toolkit 4.2 XtreemOS 2.0

T
IM
E
(s
e
co
n
d
s)

c.i. 95%

Figure 4.40: Job Submission and execution on environment 1. One core, 1000
repetitions, /bin/true job.

The second test compares Globus job status (obtained from GRAM4) and
XtreemOS job status obtained from AEM. AEM job status includes the process
status. The test is measured on testbed 1 and consists of a large job (sleep) while

113

calling job status utilities. The results are shown in table 4.15.
The results obtained in the job submission and execution shows a great im-

provement over Globus in this basic unit.

Table 4.15: Performance of job Status in environment 1 with confidence interval
of 95%.

Globus Toolkit 4.2 XtreemOS
Mean (s) 0.2842714 0.04654
c.i. 95% [0.2832860,0.2852567] [0.04527204,0.04780796]

In conclusion, we can see the basic set of actions to submit and execute a
job faster than Globus with the same hardware, However, as we increase the set
of features in XtreemOS (reservations, different scheduling, enhanced security,
XtreemFS mount) excecution time can increase. The results also show how we
are apparently more stable in the results than Globus. Globus typically spends a lot
of time in SOAP processing [32] and unlike AEM, the middleware is not integrated
into the operating system. This makes processes like job status query more time
consuming for Globus.

4.8.7 Test Unit 07: AEM scalability

4.8.7.1 Responsibilities

WP3.3, Ramon Nou from BSC. The tests included here are partially submitted
in [31].

4.8.7.2 Test Specification

Test Items

For this test BSC used a set of bash scripts that execute a time command
measuring the time to perform a xreservation (when we have manual reservations),
xsub, and xps. All the xcommands are included on XtreemOS. The bash scripts
loops until all spawned processes are created via xsub -j. For the job status query,
a simpler script calling xps (several times to get noticable times by “time“) and
measuring the time is used.

Features to be Tested
We test the following features of the AEM interface:

1. Single job submission with multiple processes spawned over different nodes.

2. Different reservation methods used (automatic or manual with different num-
ber of resources).

3. Job status query in multiple nodes submission.

114

Approach Refinements

The evaluation of the features enumerated will be performed using a 12 VM
installation over two real nodes. The test will use synthetic benchmarks. For the
first feature (1 and 2) we submit a large number of jobs (100 each figure point)
that execute a sleeping process. A job is created, executed, and then a number of
n sleeping processes are spawned sequentially. We wait until the last process is
spawned. Between every job submission we wait one second deleting the reserva-
tion and cancelling the job.

The reservation can be automatic or manual, with a fixed number of resources
or a dynamic value. We record the time used from the creation of the reservation
(user call) to the submission of the last process.

The last feature (3) uses a submission of a similar set of jobs and processes
(using n resources) and send, via the command line interface, a set of job status
query (30 sets of 30 queries, to get measurable times as queries are small). We plot
the time we need to get an answer.

We present the results using a c.i. of 95%. We do not compare with GT as
Globus does not support these features.

4.8.7.3 Test Results

The testbed that we used is composed of twelve single core VMs running XOS
Core and XOS resource nodes. This testbed is represented in Figure 4.41.

Figure 4.41: Testbed used in AEM scalability experiments.

For comparison, we present the results in Table 4.16 of a Globus job submission
in this test environment.

First test (Testing features 1 and 2), shown in Figure 4.42, compares scala-
bility related to job submission. In XtreemOS, we can use the advance reservation
scheme (manual reservation) or an automatic reservation system based on the JSDL
requirements. In this test, we have automatic reservations for a fixed number of re-
sources, as 5 and 12 resources while submitting n processes to them. We also test
the reservation of n resources submitting and executing n processes inside them.

115

Table 4.16: Summary of Job Submission (no execution) in GT4.2 in one node (Test
Feature 1 and 2).

Globus Toolkit 4.2
Mean (s) 2.596
c.i. 95% [2.488,2.704]

Automatic reservations are faster as the reservation is managed inside the XOSD.
Other test lines are manual reservations where the user interacts with the system to
reserve in advance n resources and send n processes to the system. The time for
this test includes the whole stack: reservation and job submission. In table 4.17 we
summarize the different formulae that follow the lines.

Table 4.17: Environment 2. Submission behaviour. (Test Feature 1 and 2)
Submission Scenario Formulae
Automatic (12 Nodes) 0.7067n + 1.1728
Automatic (5 Nodes) 0.3560n + 0.9140
Automatic (n Nodes) 0.623886 ∗ n ∗ log(n) + 0.411018
Manual Reservation (n Nodes) 0.7168n + 5.5239

In the Figure 4.42, we have the resource finding and reservation overhead, but
we remain below Globus values in the same environment (Table 4.16), but with
higher capabilities (dynamic resource discovery in XtreemOS). To reproduce the
same scenario in Globus we will need a Job queue system like Condor or to send
multijobs JSDL (this will introduce external players, out of the scope of the test).
Execution time with fixed reservations are following a linear regression and mea-
surements are stable. In the case of the Automatic reservations asking for n re-
sources where n are the number of job and processes going to submit the result
is O(n ∗ log(n)) for the number of resources. We can reduce this time doing the
submission in parallel, also changing the scheduler to another one (we are using a
RR scheduler that makes a sort) can reduce (or increase if we are doing more tasks
to select a suitable node) this value.

These may change if many users are sending jobs through the same JobMng or
XOSD, but requests will be redirected to other JobMng to maintain the a respon-
sive service level. The same test is repeated, but using manual resource reservations
(measured inside the submission time, including removal of the reservation after
the submission), the result is similar in scalability terms. Performance is lower as
we are performing each step using separate processes which implies connecting
to the XOSD. We can see how the performance is proportional to the number of
resources requested (for that specific job) as the DHT needs to look for the re-
sources, match the JSDL and finally JobMng needs to guarantee a reservation for a
specified period. Future work on the different DHT overlays (concretely RSS) will
reduce this time via reduced network transactions. As a summary, scalability has a

116

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12

T
IM

E
(s

ec
on

ds
)

Nodes

Submission with Manual Reservation
S. with Automatic Res. (12 nodes)

S. with Automatic Res. (5 nodes)
S. with Automatic Res. (n nodes)

Figure 4.42: Job Submission scalability on environment 2. 12 Nodes, 100 repe-
titions for test. Without automatic reservations (requesting 5 nodes and 12 nodes,
and n nodes) and with manual reservations for n nodes. (Test Feature 1 and 2)

slope of 0.7067 when requesting 12 resources (although only 1 is used) and 0.3560
when we request 5 resources (in Table 4.17 there is a summary of the formulae that
follow the submission behaviour). Those times are based on local network times
and are bound to network latencies. Also O(n ∗ log(n)) is not exactly perfect as
long as Java sort is switching between insertion sort and merge sort when we are
in a low number of nodes.

The second test of scalability explores the scalability of job status using the
second testbed (Test feature 3). We create n jobs with 12 processes distributed
through the 12 nodes or n jobs with 12 processes distributed among 5 nodes. Then
we check the job and process status of a job. The user request should go to the
JobMng managing all job status and through all the nodes in the system (ExecMng)
to get process status. The results are the mean of 30 job status queries repeated 30
times.

In Figure 4.43 we have a limitation on the number of jobs that can be run
on each XOSD due to memory restrictions. We can see how the result does not
depend on the number of jobs running in the system as the time is almost constant,
and only depends on the number of nodes used for each job. We should remember
that we can ask only job status (excluding process status) resulting in a constant

117

time independent of the number of nodes running the job, as the JobMng does
not need to contact the ExecMng. Additionally as ExecMng requests are done in
parallel by the JobMng time asking the process status to all ExecMng is reduced.
Checking job status in a saturated system (with a large number of users, processes
or jobs) does not imply overhead and as far as we (or the system) can distribute the
load between different Job Managers we remain with low load levels.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T
IM
E
(s
e
c
o
n
d
s
)

Jobs

Process Status for a job (12 Nodes)
Process Status for a job (5 Nodes)

Figure 4.43: Scalability of a job Status when n jobs with 12 processes (using 12
nodes and 5 nodes) are in the system. (Test Feature 3)

4.8.8 Test Unit 08: Power computational Performance depending on
client flavour

4.8.8.1 Responsibilities

WP2.3, WP3.6, WP4.2 and TID as partner, are responsible for definition and exe-
cution of this test.

4.8.8.2 Test Specification

Test Items

We test the following features of the AEM interface:

• Submission of a job that executes a C program and a bash script in a resource
node.

118

Features to be Tested

The main goal of this test is to check the independence between the compu-
tational power of the Grid and the XtreemOS client used (PC or Mobile Device):
both clients should offer a similar performance. In addition, we want to demon-
strate the utility of XtreemOS on mobile devices, by comparing the results with the
ones obtained with a direct execution of the tests on the mobile device, not using
the Grid.

Approach Refinements

In order to execute the test, the xsub.sh XATICA command will be used to sub-
mit a job to the Grid. This job will consist of a C program (xos_performace.c) that
uses the gettimeofday utility of sys/time library to control the date and get
time statistics about the process executions.

A shell script will be launched from the xos-perfomance executable. This script
contains a simple counter implemented with a while loop. The loop will be able to
count until a numeric limit specified as a parameter has been reached.

The bash script will be invoked with a parameter indicating the numeric limit
for the loop (from 5 to 200). Also, the program will save initial execution date and
final execution date. For each numeric limit, the process will be repeated fifty times
and the corresponding results (time taken for the execution) will be processed. This
processing includes calculating the arithmetic average of the execution times and
presenting them as a text file.

This test will be executed in the same XtreemOS core, from a XtreemOS-PC
client (PC flavor), a XtreemOS-MD client, and directly on a Nokia N800 device.
The result will be a set of average execution times for each numeric limit and for
each different client type.

4.8.8.3 Test Results

This test has been executed using an internal XtreemOS testbed in TID headquar-
ters. The testbed contains a XtreemOS 1.0 core running as a VMware virtual ma-
chine, as well as, a XtreemOS 1.0 client running as a VMware virtual machine.
The XtreemOS-MD version has been run on a Nokia N800 connected to the testbed
network.

The test was run following this procedure for each device (PC client, MD client
on a Nokia N800 and Nokia N800 without XtreemOS):

119

Installation

The program xos-performance and the bash script are copied to the XtreemFS
(local disk in the case of Nokia without XtreemOS) volume of the user performing
the tests.

Set up

A JSDL file (test-performace.jsdl) is created to define the test job with the tag
“executable” specifying a file in the current directory, ./xos-performance.
Note that this step is not necessary for the Nokia without XtreemOS.

Executation

The XATICA command “xsub” is invoked with the following parameters and
options:
xsub -vf test-performance.jsdl
AEM returns the the ID of the job submitted.

Getting results

Once the process has finished, the file performance-results.txt ap-
pears in the XtreemFS volume of the user performing the tests. The file contains a
table with the measured times for each iteration and the final results.

Procedure Results

The execution of this test was successful. The results related to this job cor-
rectly presented using a graph, are shown in the figure 4.44

• Nokia label identifies the data related to execution of the test on a Nokia
device directly (without any XtreemOS flavor installed) using its own pro-
cessor.

• XOS-PC label identifies the data set related to execution of the test using the
Grid through XtreemOS client (PC flavour).

• XOS-MD label identifies the data set related to execution of the test using the
Grid through XtreemOS-MD installed on a Nokia device.

The figure 4.44 shows the job execution performance using the Grid from
XtreemOS-MD (running on the mobile Nokia N800) is similar to the performance
offered by using the Grid from the XtreemOS client PC flavour (running in a stan-
dard PC). By comparing the higher performance obtained by submitting the tests to

120

Figure 4.44: Comparison of job execution power among XOS-PC, XOS-MD and
using directly the Mobile device

the Grid from XtreemOS-MD rather than running them directly on the Nokia, we
can observe the benefit of using Grid solutions for executing computational jobs,
especially from mobile devices.

4.8.9 Test Unit 09: Customizable SSI Scheduler

The Customizable Scheduler is the component of the LinuxSSI operating system,
which manages balancing the processes between the cluster nodes. The scheduler
enables the user to replace the load-balancing policies in runtime without the need
of restarting the whole cluster.

4.8.9.1 Responsibilities

Both the developed code and the performance tests are the responsibility of XLAB
within the WP2.2.

121

4.8.9.2 Test Specification

Test Items

In this test unit we test the Customizable LinuxSSI scheduler. The scheduler is
installed as a part of LinuxSSI kernel and utilties, which are an installation option
within the XtreemOS installation. Installing and configuring LinuxSSI is outlined
in the XtreemOS Administration Guide.

Features to be Tested

As a part of this test unit, we will measure the following LinuxSSI scheduler
characteristics:

• The speedup that we gain by automatically balancing processes between
cluster nodes,

• The effect of the customizable scheduler overhead on the execution time of
parallel jobs. The scheduler overhead includes continuous resource polling,
measurements filtering and scheduling policies triggering.

Approach Refinements

For the purpose of testing the overhead induced by the LinuxSSI scheduler,
we have implemented "primes-solver-parallel", a simple parallel application for
searching the primes (i.e. the numbers that are divisible only by 1 and by itself)
in a given interval. We chose the algorithm for searching primes because it is
trivially paralellizable and it doesn’t require the parallel parts to exchange any info
among themselves. This way, we can get much more accurate measurements of the
scheduler overhead.

The plan is to execute the parallel application in 3 types of environments:

• In an environment where no load scheduling is enabled (i.e. the “no schedul-
ing” environment). This means all the parallel processes are executed on the
same node. By executing the tests in this type of environment, we estimate
the benefits of having the automatic scheduling in the first place,

• In an environment where the LinuxSSI scheduler is enabled (i.e. the “Lin-
uxSSI scheduler” environment). The processes are started on the same node
and are automatically migrated to other cluster nodes during the runtime,

• In an environment where parallel processes are already started on separate
nodes (i.e. the “manual scheduling” environment). In this scenario,the Lin-
uxSSI scheduler is not required, thus dropping any potential overhead from
the LinuxSSI scheduler.

122

We will execute the tests on the 3 nodes of the “paradent” cluster in Rennes
(this cluster is a part of the Grid5000 Grid system). The testing procedure will be
as follows:

1. Boot the LinuxSSI operating system on all testing nodes, but don’t start the
customizable scheduler at this time.

2. Execute the "primes-solver-parallel" program on a single node and measure
its execution time. All the execution times are measured for the interval
[2,1000000]:

primes-solver-sequential 2 1000000 1

3. After the sequential test is finished, perform a manual execution of the "primes-
solver-parallel" processes on separate nodes, each on a different subset of
numbers in the interval:

on node 1: primes-solver-parallel 2 1000000 NUM_NODES
on node 2: primes-solver-parallel 3 1000000 NUM_NODES
on node 3: primes-solver-parallel 4 1000000 NUM_NODES

...

on node NUM_NODES:
primes-solver-sequential NUM_NODES+1 1000000 NUM_NODES

After the programs on all nodes are finished, collect all the execution times.
The total execution time is equal to the longest execution (that is, we apply
the "MAX" function to all the execution times).

4. Enable the LinuxSSI scheduler by executing the “start_linuxssi_scheduler.sh”
command.

5. Execute the “primes-solver-parallel” on a single node. The LinuxSSI sched-
uler will take care of migrating the processes around the cluster nodes:

primes-solver-parallel 2 1000000 NUM_NODES

4.8.9.3 Test Results

The results of the LinuxSSI scheduler are presented in the table 4.18 and figure
4.45. We can see that scheduling (either manual or the one performed by Lin-
uxSSI) causes significant improvement in the parallel applications execution. With
scheduling enabled the “primes-solver-parallel” program was able to finish twice
as fast as with scheduling disabled.

123

Furthermore, we can see that the execution time with LinuxSSI scheduler en-
abled is only 1.06 seconds longer from the ideal case where all the processes are
balanced by the user from the beginning. This presents only the 0.95% overhead
when compared to the total execution time. From this data, we can observe the
LinuxSSI scheduler does not impose a significant performance overhead on the
cluster.

Table 4.18: Execution time for the “primes-solver-parallel” program in different
environments. The execution times are presented in seconds. There were in total
five repetitions of each test performed.

Testing environment Execution time (sec)
no scheduling 226.15
manual scheduling 111.58
LinuxSSI scheduler 112.64

 0

 50

 100

 150

 200

 250

no scheduling manual scheduling LinuxSSI scheduler

E
xe

cu
tio

n
tim

e
(s

ec
)

Testing environment

Execution time of the parallelized application
 for calculating prime numbers depending on the scheduling type

Figure 4.45: Graph of the execution times for the “primes-solver-parallel” pro-
gram. On the graph, the standard deviation of the measurements is also presented.

4.8.10 Test Summary Report

4.8.10.1 Summary of Tests and Results

We performed tests to validate AEM functional requirements, evaluate its perfor-
mance and compare it to the performance of Globus toolkit. Tests were performed
to assess the suitability of XtreemFS as a platform for running web server We also
performed tests to evaluate the difference of performance between XtreemOS PC
flavor and a grid running the Condor middleware. The robustness of the AEM

124

scheduler was also tested. Our tests also included comparative perfromance analy-
sis of job submission responce times of XtreemOS and Globus. We also evaluated
power computational performance depending on client flavour.

4.8.10.2 Conclusion and Directions for Future Work

Following our tests we conclude that that AEM in XtreemOS Release 2 are ad-
equate. We also have proven that XtreemOS is a suitable environment for host-
ing web services and applications. Our tests have shown that the perfromance of
XtreemOS and Condor system is comparable, and for some tests like testing man-
agement times, XtreemOS performs better. With regard to the robustness of AEM,
we discovered that only a part of the jobs submitted reaches the Done final Sta-
tus, which shows that the robustness of AEM scheduler still leaves the room for
improvement. The results of comparative performance analysis obtained in the
job submission and execution at XtreemOS and Globus show a great improvement
over Globus in this basic unit.

125

4.9 Evaluation of Data Management

4.9.1 Test Plan

This test plan covers the distributed file system XtreemFS developed by WP3.4.
and Object Sharing Service (OSS) provided by the XtreemOS release 2.0. XtreemFS
functionalities include:

• high-performance distributed file system for federated installations across
multiple organizations

• fully POSIX-compliant with extensions

• suitable for Wide Area Networks (WANs) with high latencies between sites

• suitable for environments with complex failure cases like network partition-
ing and similarities between slow and dead nodes

• support for replication and partitioning of metadata servers, replication and
striping at file/object level

• integration into Virtual Organizations

• self-monitoring and autonomous optimization of file distribution, layout and
access

• transparent object sharing service

kDFS functionalities include:

• kDFS aims at providing an integrated cluster file system for High Perfor-
mance Computing.

• fully POSIX-compliant.

• support replication and striping at file/object level

• cooperative caching strategies.

• self-monitoring and autonomous optimization of file distribution, layout and
access

4.9.1.1 Responsibilities

The test and evaluation execution is conducted under WP2.2, WP3.4 and WP4.2.
Below we provide the names of partners and a brief description of their test appli-
cations and suites:

• SAP: Enterprise data search and analytics (TREX), MaxDB database system
and the bonnie IO benchmark

126

• XLAB: Distributed financial modelling framework.

• UDUS: An interactive multi-user 3D virtual world application,

• CNR: The NTFS-3G suite for testing XtreemFS POSIX-compliance,

• ZIB: IOzone file system benchmark for parallel IO evaluation

• Kerlab: Bonnie IO benchmark to test performance of kDFS

4.9.1.2 Test Items

The test items include:

• The software to be tested is XtreemFS. Publications are available on the
XtreemFS website: www.xtreemfs.org. The XtreemFS version tested
is the release 1.1 from 2009-09-18. Source and documentation are available
from the internal XtreemOS SVN.

• Distributed file system kDFS and its documentation is available at http:
//www.kerrighed.org/wiki/index.php/KernelDevelKdFS.

• Bonnie is a benchmark which measures the performance of Unix file system
operations. The benchmark and its documentation is available at http:
//sourceforge.net/projects/bonnie, version 1.03.

• The MaxDB distribution and its documentation is available under https:
//www.sdn.sap.com/irj/sdn/maxdb.

• Information about TREX can be found under:
https://www.sdn.sap.com/irj/sdn/nw-search.

• Information about Wissenheim can be found under:
http://www.wissenheim.de.

• The Pawel Jakub DawidekŠs POSIX filesystem test suite (PJD-fstest) that is
part of NTFS-3G suite. The PJD-fstest suite software and documentation are
available at http://www.tuxera.com/community/posix-test-suite/.

• IOzone, a file system benchmark. Source and documentation are download-
able from http://www.iozone.org/.

4.9.1.3 Features to be Tested

The following features will be tested:

• POSIX compliance (open, read, write, close, ls, rm, touch, mv, cp, mkdir,
cd, rmdir)

127

www.xtreemfs.org
http://www.kerrighed.org/wiki/index.php/KernelDevelKdFS
http://www.kerrighed.org/wiki/index.php/KernelDevelKdFS
http://sourceforge.net/projects/bonnie
http://sourceforge.net/projects/bonnie
https://www.sdn.sap.com/irj/sdn/maxdb
https://www.sdn.sap.com/irj/sdn/maxdb
https://www.sdn.sap.com/irj/sdn/nw-search
http://www.wissenheim.de

• stability

• I/O performance

• scalability

• runtime of application benchmarks

• striping policies

• OSD and replica selection policies

• I/O performance of read/write operations for kDFS

• I/O performance of file metadat operations for kDFS

4.9.1.4 Features not to be Tested

The following features will not be tested as they are not supported by the current
official release or for other reason, that is pointed out near the feature:

• resilience to failure cases like network partitioning etc. The feature is not
tested since it is based on the read/write replication which is still not avail-
able.

• replication will not be tested since the current official release supports read-
only replication, while the test applications impose mixed read/write load.

• integration into Virtual Organizations will be done at the next test iteration.

4.9.1.5 Overall Approach

The purpose of the test is to provide feedback to developers about the implemented
features and about the fulfilment of requirements.

The performance of XtreemFS and OSS will be evaluated using applications
and benchmarcs. The tests will also provide comparative performance analysis of
XtreemFS and NFS file systems. The corresponding tests will be performed at the
same dedicated cluster environment without using virtualization layers, ensuring
accuracy, reproducibility and fairness of the comparison.
Benchmark Focus
We will start testing XtreemFS using Bonnie benchmark. It will be performed in
Test Unit 4.9.8. This benchmark is typically used for performance measurements
of Unix file systems. We will use it to test the basic functionality of XtreemFS and
evaluate its performance.
POSIX compliance of XtreemFS will be tested at Test Unit 4.9.6 using the Pawel
Jakub DawidekŠs POSIX filesystem test suite (PJD-fstest).

128

The performance evaluation of the XtreemFS software stack (client and server) and
the parallel I/O for striped files in a cluster environment will be done using IOzone,
a file system benchmark. The evaluation will be carried out by Test Unit 4.9.7.
The perfromance of kDFS will be assessed using Bonnie benchmark. It will be
performed in Test Unit 4.9.9. Bonnie benchmark will be used to test the basic
functionality of kDFS and evaluate its performance.
Application Focus
After testing XtreemFS using benchmarks, we will test XtreemFS using several
applications. Tests are performed by installing XtreemFS on testbeds of local ma-
chines and executing the maxDB replay and TREX (provided by SAP) and WISS
(provided by UDUS). It was decided to choose maxDB replay as reference appli-
cation since in typical multi-tier business solutions the great majority of file opera-
tions is transactional relying on a central database. In practical business scenarios,
end-user applications access this database via the middleware WEB Application
Server. In the experiments with XtreemFS, it was decided to stress the file sys-
tem via the maxDB replay (recorded accesses of maxDB to the filesystem) from
SAP which also allows to simulate multi-user access with parallel read and write
operations. These tests will be performed at Test Unit 4.9.2.

TREX is another SAP application that is used as an indexing and enterprise
search server. At the index stage, TREX typically indexes a large collection of
documents, generating a significant read load on the underlying file system. After
reading the input documents TREX produces a large amount of index data that is
written to a distributed file system in a number of phases. Thus at our experiments
TREX is used to generate two separate access loads: reading input documents and
writing the index files. The corresponding tests will be carried out in Test Unit
4.9.3.

Wissenheim is a distributed interactive 3D virtual world for edutainment and
entertainment. It utilises the Object Sharing Service (OSS) of XtreemOS to dis-
tribute its shared game state so that every participating node can alter the shared
data directly. Conflicting accesses are synchronised by an optimistic transactional
scheme provided by OSS. While the dynamic game data is distributed by OSS the
static graphical data is shared via XtreemFS. The experiments with Wissenheim
will be carried out at Test Units 4.9.4 and 4.9.5.

Whereas the SAP experiments test a database-centric and distributed search
engine scenarios, the experiments with WISS are file-based accessing the file sys-
tem via OSS. Table 4.9.1.5 summarizes different file system usage characteristics,
tested by the test applications.

4.9.2 Test Unit 01: MaxDB Replay

4.9.2.1 Responsibilities

This test unit and the included tests with MaxDB replay are the responsibility of
SAP (WP4.2).

129

Bonnie MaxDB TREX WISS
Distr. Trans. Load X
Distr. Random Read X X
Read only load X
Sequential access X
Standard FS ops. X X X
Size of files X 8.5G 0.3G <0.5MB
Overall file size X 200G 1.3G 8MB
Number of files X 37 85 50-100
OSS usage X
Directory structure tree tree tree

Table 4.19: File system usage characteristics

4.9.2.2 Test Specification

Test Items

The software to be tested is XtreemFS. Publications are available on the XtreemFS
website: www.xtreemfs.org.

The XtreemFS version tested is the release 1.1 from 2009-09-18. Source and
documentation are available from the internal XtreemOS SVN.

The MaxDB distribution and its documentation is available under https:
//www.sdn.sap.com/irj/sdn/maxdb.

Features to be Tested

The following features and requirements are the subject of this test design spec-
ification:

• creating directories using mkdir Unix command: R50, R76

• copying files using cp Unix command (the existing MaxDB data files are
copied from local file system to XtreemFS volume): R50

• opening/reading/writing/closing existing files (MaxDB data files) using POS-
IX/UNIX system calls: R1, R50, R79,

• using different striping degrees and number of OSDs for stability, scalability
and performance testing: R1, R50, R79

• running MaxDB tests against XtreemFS and NFS for comparative perfor-
mance analysis: R1, R50, R79

• adding and removing MRCs and OSDs to and from the working system to
test stability: R1, R50

130

www.xtreemfs.org
https://www.sdn.sap.com/irj/sdn/maxdb
https://www.sdn.sap.com/irj/sdn/maxdb

Approach Refinements

The goal of the test is to test and evaluate XtreemFS file system under a trans-
actional load that is generated by a typical business application. During the test we
will perfom comparative analysis of XtreemFS and NFS.

The testbed used in these tests is a 15 nodes cluster with SuSE Linux Enter-
prise 11 installed at each node. The nodes are connected via standard ethernet
which has a transfer rate of 1GB/s (E 1Gb/s). Performing the tests at the same ded-
icated cluster environment without using virtualization layers, ensures accuracy,
reproducibility and fareness of the comparison. We will use standard performance
metrics: latency and throughput of read and write file system operations.

This test uses recorded IO access traces that MaxDB generated while support-
ing a real-life application. During the test, IO load of a real-life SAP application
is applied to XtreemFS by replaying the recorded IO traces over XtreemFS. Re-
playing the traces, especially when they are concurrently replayed from several
nodes, generates a considerable amount of IO to the data files (called MaxDB vol-
umes). In the sequel we will refer to concurrently replayed traces as concurrent IO
streams. During the recording process, MaxDB ran over NetApp filer. We use the
performance of this filer as the baseline in our experiments. Note that since the filer
used SSD technology for non-volatile memory implementation to speed up write-
to-log operations, the baseline latency of the filer write operations is much better
than for other filesystems in our experiments. For the preparation of a MaxDB re-
play run on XtreemFS, one needs to copy the existing volume files created during
the MaxDB installation to XtreemFS and symbolically link the MaxDB volume
directory to the XtreemFS directory with the copied files.

In the experiments the number of OSDs equals the stripe width of the XtreemFS
volume. The test is repeated with several stripe widths and number of concurrent
IO streams to test the system’s reliability, scalability and performance. For each
combination of stripe width and number of concurrent IO streams, the IO latency
and throughput are measured and compared to learn if increasing stripe width (and
number of OSDs) improves the resulting performance of the system. Each test was
performed three times and for each performance characteristic (throughput and la-
tency) we report average value of the characteristic over the three test repetitions.

The same tests will also be conducted over two different filesystems: NFS
and XtreemFS for comparative performance analysis over the file systems as well
as how increasing striping width of XtreemFS affects the performance of the file
systems.

4.9.2.3 Test Results

Figure 4.46 presents the read latency results for the baseline filer technology, NFS
volume and XtreemFS volumes with Stripe Widths (SW) 1, 4 and 8. At our
experiments the number of OSDs equals the SW of each volume. When NFS
file system is compared with the XtreemFS in the case of 1 IO stream, NFS file

131

system provides the best read latency, reflecting the fact that it is a mature sys-
tem, widely spread in the industry. However when the number of concurrent IO
streams grows to 4 and 8, the latency of NFS grows sharply, showing bad scala-
bility. XtreemFS, however shows much better resilience to scaling IO load. We
explain this fenomenon by the fact that the accumulated working set of the concur-
rent IO streams grows lineary with the number of IO streams. Each OSD server
in XtreemFS stores its objects in the local file system. The local file system uti-
lizes its own cache capabilities to cache the results of the recent read operations.
Thus, when XtreemFS reads data, the read data is cached in all the caches of all
OSD servers that support the XtreemFS volume. Actually XtreemFS utilizes a dis-
tributed cache composed of the caches of the individual supporting OSD servers.
The size of the resulting XtreemFS distributed cache grows lineary with the num-
ber of OSDs and that is why this cache is able to incorporate the big working set of
several IO streams. Since NFS has the same cache size for the increasing numberf
of IO streams, once the size of this application work set grows beyond the NFS
cache size, the IO performance of NFS drops dramatically.

Note also that for SWs 4 and 8, XtreemFS is able even to get better latency
for 4 concurrent IO streams than for 1 IO stream. We explain this phenomenon
by the fact that while the concurrent IO streams run the same IO trace, they work
out of phase. In this situation the first IO stream that performs a specific IO access
that is recorded in the trace loads the corresponding file stripe to the cache of the
corresponding OSD. When the other IO streams perform the same access, they
find this file stripe already in the cache, avoiding the necessity to access the disk.
This interpretation gets more support from the fact that the latency improvement
is better for SW 8 than for SW 4, because the bigger distributed cache size of the
volume with SW 8.

Figure 4.47 shows the “mirror” effect of Figure 4.46, where the throughput
of each file system increases as function of the distributed cache size of the file
system.

Figure 4.48 shows write latency of the baseline filer technology, NFS volume
and XtreemFS volumes with SW 1, 4 and 8. All files in those experiments were
open with O_SYNC flag, blocking the calling process until the data has been phys-
ically written to the underlying hardware. Since the filer used SSD non-volatile
memory for the write operations, its latency is far below the latencies of the other
file systems. As with the latency of the read operations, the latency of write opera-
tions of NFS shows bad scalability with growing number of IO streams, while the
latency of write operations of XtreemFS volumes is more resilient for the growing
number of IO streams. Furthermore, it may be observed that a higher SW provides
with better resilience to the growing number of IO streams. Our interpretation
of this observation is that with growing number of SW (and respectively OSDs)
XtreemFS distributes the synchronous write operations among several OSDs and
thus affectively load balance the write load and reduces the collisions when several
write operations are executed at the same time.

Figure 4.49 shows write throughput in our experiments. As in the case of read

132

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8

IO
P

la
ye

r
R

ea
d

La
te

nc
y,

 m
ic

ro
se

co
nd

s,
 L

og
sc

al
e

Number Concurrent Streams

Comparing NFS and XtreemFS

Filer - Baseline
NFS

XTFS SW=1
XTFS SW=4
XTFS SW=8

Figure 4.46: Read Latency in MaxDB experiments.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 3 4 5 6 7 8

IO
P

la
ye

r
R

ea
d

T
hr

ou
gh

pu
t,

M
by

te
s

/ s
ec

on
d

Number Concurrent Streams

Comparing NFS and XtreemFS

Filer - Baseline
NFS

XTFS SW=1
XTFS SW=4
XTFS SW=8

Figure 4.47: Read Throughput in MaxDB experiments.

133

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8

IO
P

la
ye

r
W

rit
e

La
te

nc
y,

 m
ic

ro
se

co
nd

s,
 L

og
sc

al
e

Number Concurrent Streams

Comparing NFS and XtreemFS

Filer - Baseline
NFS

XTFS SW=1
XTFS SW=4
XTFS SW=8

Figure 4.48: Write Latency in MaxDB experiments.

operations, the graphs of throughput of write operations provide with the “mirror”
picture of the write latency. Note, however, that with SW 8, XtreamFS almost
approaches the throughput of the baseline filer inspite of the fact that the filer used
SSD non-volatile memory to shorten latency. This clearly shows the advantage of
the distributed XtreemFS filesystem to scale out with the commodity hardware, as
opposed to the scale-up capability of the filer technology.
Conclusions:
We performed the performance analysis measurements which show promising re-
sults that support the follwoing conclusions:

• XtreemFS effectively utilizes distributed cache whose size grows lineary
with SW of the volume. This distributed XtreemFS cache is capable to incor-
porate big application work sets and thus provide the base for data volume
scalability at high performance.

• Big distributed cache of XtreemFS enables low latences and high throughput
for applications with large work set.

• When an application uses synchronious write operations, XtreemFS effec-
tively distributes those write operations over several OSDs enabling low la-
tences and high throghput.

• XtreemFS may help to reduce TCO of running business applications: XtreemFS

134

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

IO
P

la
ye

r
W

rit
e

T
hr

ou
gh

pu
t,

M
B

yt
es

 /
se

co
nd

Number OSDs

Comparing NFS and XtreemFS

Filer - Baseline
NFS

XTFS SW=1
XTFS SW=4
XTFS SW=8

Figure 4.49: Write Throughput in MaxDB experiments.

scales out over commodity hardware - it runs over commodity hardware and
its peformance scales almost lineary with stripe width.

• Overall conclusion: our experiments show the potential of XtreemFS to ef-
fectively support transactional load. However more work should be done to
stabilize XtreemFS and to prove its ability to support business application
transactional load. It may be also required to utilize SSD-approach at each
OSD node to achieve low write latency, which is crucial for implementing
transactional write load.

4.9.3 Test Unit 02: TREX

4.9.3.1 Responsibilities

This test unit and the included tests with TREX are the responsibility of SAP
(WP4.2)

4.9.3.2 Test Specification

Test Items

The software to be tested is XtreemFS. Publications are available on the XtreemFS
website: www.xtreemfs.org.

135

www.xtreemfs.org

The XtreemFS version tested is the release 1.1 from 2009-09-18. Source and
documentation are available from the internal XtreemOS SVN.

Information about TREX can be found under:
https://www.sdn.sap.com/irj/sdn/nw-search.

Features to be Tested

The following features and requirements are the subject of this test design spec-
ification:

• creating directories using mkdir Unix command: R50, R76

• opening/reading/writing/closing existing files (TREX data and index files)
using POSIX/UNIX system calls: R1, R50, R76, R79

• using different striping degrees and number of OSDs for stability, scalability
and performance testing: R1, R50, R76, R79

• running TREX tests against two filesystems: XtreemFS and NFS: R1, R50,
R76, R79

Approach Refinements

The goal of the test is to test and evaluate XtreemFS file system under an IO
load that is generated by an enterprise search application. During the test we will
perfom comparative analysis of XtreemFS and NFS. The testbed used in these tests
is a 15 nodes cluster with SuSE Linux Enterprise 11 installed at each node. The
nodes are connected via standard ethernet which has a transfer rate of 1GB/s (E
1Gb/s). Performing the tests at the same dedicated cluster environment without
using virtualization layers, ensures accuracy, reproducibility and fareness of the
comparison. We will use application-oriented performence metric - the overall
time to complete the indexing operation.

This test includes running TREX index server on a large collection of doc-
uments, stored at XtreemFS. Reading the documents generates read accesses to
XtreemFS. The resulting index files are written back to XtreemFS. The two stages
produce read and write load respectively on XtreemFS. The elapsed time of index
creation operation is measured.

The test is repeated with several values of the input parameters (striping degrees
and number of OSDs) to test the system’s reliability, scalability and performance.
For each combination of the scalability factor values, the overall time of index
creation is measured and finally compared to find if changing scalability factor
values improves the resulting performance of the system.

The same tests will also be conducted over two different filesystems: NFS
XtreemFS for comparative performance analysis over the file systems as well as

136

https://www.sdn.sap.com/irj/sdn/nw-search

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 1 2 3 4 5 6 7 8

In
de

x
B

ui
ld

 T
im

e,
 s

ec
on

ds

Number OSDs

Comparing NFS and XtreemFS

NFS - Baseline
XTFS

Figure 4.50: Elapsed time to create TREX index.

how varying the input parameters for XtreemFS affects the performance of the file
system.

4.9.3.3 Test Results

Figure 4.50 presents the results of measuring the elapsed time to create the index
under NFS volume and XtreemFS volumes with Stripe Widths (SW) 1, 4 and 8.
Note that NFS file system provides a better result than XtreemFS volume with SW
1, which is explained by the fact that NFS is a mature file system that is present
at the industry for several year, while XtreemFS is still a research file system that
is not mature yet. However for SW 4 and 8 XtreemFS shows the improvement of
almost factor 2 as compared to the performance of NFS file system. We attribute
this performance improvement to two XtreemFS features:

• XtreemFS with SW at least 2 distributes IO load among several OSD servers.

• In addition to IO load distribution XtreemFS utilizes distributed cache, based
on the involved OSD servers, to incorporate large application work sets.

Note also that the performance of XtreemFS slightly drops at SW 8 as compared
to SW 4. We explain this phenomenon by the lease coordination mechanism that
XtreemFS uses to synchronize parallel IO accesses. This mechanism starts to im-
pose performance overhead for growing number of SW of the file system volumes.

137

4.9.4 Test Unit 03: Wissenheim - XFS

4.9.4.1 Responsibilities

WP4.2, UDUS

4.9.4.2 Test Specification

Test Items

The test item will be the XtreemFS component of XtreemOS which is part of
the XtreemOS 2.0 distribution. XtreemFS can also be obtained from www.xtreemfs.org
along with user and install documentation.

Features to be Tested
The following file system features and requirements will be tested:

1. creating XFS-volume for Wissenheim graphics data

2. initializing XFS-volume with Wissenheim graphics data (recursive directory
structure, mixture of small and medium size files)

3. mounting of XFS-volume on different nodes and testing data integrity and
availability using Wissenheim

Approach Refinements
The main purpose is to test XtreemFS as a mean to distribute the large amount of
graphics data used by Wissenheim throughout the XtreemOS grid. Therefore, a
blank volume will be created and initialized with the current Wissenheim media
data set. Parallel access from Wissenheim clients will check if the XtreemFS vol-
ume is accessible and if all data is in a consistent state. Using the netem network
simulator we will simulate packet loss and high latency to determine if access to
XtreemFS can be guaranteed under wide area conditions. Wissenheim will access
the data in a typical scene loading scenario generating random access to small and
medium sized files. We will measure the impact of latency and packet loss to the
overall load time for selected Wissenheim scenes. As an additional test we have
used the packet corruption feature of netem to check if XtreemFS provides error
detection for arbitrary bit errors in packets. More information about netem can be
found at: http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.
The consistency of the data retrieved from XtreemFS will be checked by the re-
source management of Wissenheim. Figure 4.51 gives an overview over the scenes
used in testing and about the data size and amount of files. We have selected the
two big scenes RainbowIsland and FATCave which are comparable in size and file
count to check if both perform similar. The DiffieHellman scene is roughly half
the size of the bigger scenes so we should see comparable faster load times with
increasing latency.

138

FATCave Rainbow Island Dif f ieHellman
0

1000

2000

3000

4000

5000

6000

7000

8000

0

20

40

60

80

100

120

f ile count
size in KB

ki
lo

 b
yt

es

co
un

t
Figure 4.51: Wissenheim scenes used.

4.9.4.3 Test Results

The results of the latency test are shown in figure 4.52. The load time increases
linearly with the increase in latency and both big scenes behave nearly the same.
No error occurred while increasing the latency. As you can see the load time of
the DiffieHellman scene is faster with increasing latency compared to the bigger
scenes. With no latency the load time is not limited by the disk transfers but by the
decoding process of the media data performed by Wissenheim.

The packet loss results are shown in figure 4.53. We used uniform distribution
with no variation in packet loss. All data could be read and was in a consistent state
throughout the test.

When activating the packet corruption feature of netem Wissenheim detected
several errors. This was expected because XtreemFS does not yet including mech-
anism to counter such corruption.

4.9.5 Test Unit 04: Wissenheim - OSS

4.9.5.1 Responsibilities

WP4.2, UDUS

4.9.5.2 Test Specification

Test Items

139

1ms 10ms 20ms 40ms 80ms 160ms
1

10

100

1000

FATCave
Rainbow Island
Dif f ieHellman

latency

lo
ad

 ti
m

e
(s

)

Figure 4.52: Load time with increasing latency.

Test item will be the Object Sharing Service provided by the XtreemOS release
2.0. Documentation can be found in the subversion repository of XtreemOS.

Features to be Tested

• OSS basic network setup.

• OSS distributed transactional memory.

Approach Refinements
Wissenheim is using OSS to share the game state of the world among all partic-
ipating nodes. To ensure synchronized access to the data speculative transactions
provided by OSS are used. All tests have been performed with the Wissenheim
scene DiffieHellman and two players.

OSS uses a token based mechanism to achieve the serialization of commit re-
quests so the latency for requiring a token will be directly responsible for the la-
tency experienced by a player in the game. As Wissenheim is optimized to reduce
transactional conflicts, aborts of transactions due to collisions can be neglected.
We have measured the token latency over time using two real world setups with
the following parameters:

Backbone: Connection between Düsseldorf and Ulm, both using the DFN back-
bone with at least 100MBit, low latency network links and public IPs.

DSL: Connection between Düsseldorf and Ulm with Düsseldorf connected via
DFN and Ulm connected via DSL with a downlink of 6Mbit and an uplink

140

1,00% 5,00% 10,00% 20,00%
1

10

100

1000

FATCave
Rainbow Island
Dif f ieHellman

packet loss

lo
ad

 ti
m

e

Figure 4.53: Load time with increasing packet loss.

of 1MBit. Additional the client at Ulm was connected via WLAN using the
802.11g protocol within a private network using NAT.

4.9.5.3 Test Results

The results of the wide area test are shown in figure 4.54. The peak at the be-
ginning marks the load time of the scene when the joining node is requesting the
shared game state and thus produces heavy network traffic. The measured average
roundtrip time for pings between Ulm and DÃijsseldorf using the backend con-
nection was about 13ms, the roundtrip time for the DSL connection about 80ms.
After joining, the latency remained nearly constant in case of the backbone con-
nection while the DSL connection shows significant more noise due to the DSL and
WLAN error rate and latencies. In both cases Wissenheim was perfectly playable
with almost no latency issues detectable.

4.9.6 Test Unit 05: POSIX Compliance

4.9.6.1 Responsibilities

This test unit and the included tests on the POSIX compliance are the responsibility
of CNR (WP3.4). Testing activity has been conducted in collaboration with BSC.

4.9.6.2 Test Specification

Test Items

141

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

backbone
dsl

run time in seconds

la
te

nc
y

in
 m

s

Figure 4.54: Token latency over time.

The software to be tested is XtreemFS. Publications are available on the XtreemFS
website: www.xtreemfs.org.

The XtreemFS version tested is the release 1.1 from 2009-09-18. Source and
documentation are available from the internal XtreemOS SVN.

The XtreemFS POSIX-compliance was tested by the NTFS-3G suite, that is a
freely and commercially available and supported read/write NTFS driver for the
most important operating systems. In particular, it includes a POSIX file sys-
tem test environment, namely the Pawel Jakub Dawidek’s POSIX filesystem test
suite (PJD-fstest). The PJD-fstest suite software and documentation are available
at http://www.tuxera.com/community/posix-test-suite/. The
PJD-fstest used for the tests is the latest stable release pjd-fstest-20080816 (re-
leased on August 16, 2008) and downloadable from http://tuxera.com/
sw/qa/pjd-fstest-20080816.tgz.

Features to be Tested

PJD-fstest suite performs 1957 regression tests that exhaustively check a wide
amount of different scenarios for the following system calls:

• chmod: changes the permissions of files or directories

142

www.xtreemfs.org
http://www.tuxera.com/community/posix-test-suite/
http://tuxera.com/sw/qa/pjd-fstest-20080816.tgz
http://tuxera.com/sw/qa/pjd-fstest-20080816.tgz

• chown: changes ownership of files or directories

• link: creates hard links

• mkdir: creates directories

• mkfifo: creates fifo files named pipes

• open: opens and eventually creates a file

• rename: changes file or directory names

• rmdir: removes directories

• symlink: creates symbolic links

• truncate: decrease/increase file size

• unlink: removes regular files, symbolic links, fifos and sockets

Approach Refinements

The goal of the test is to evaluate the POSIX compliance of XtreemFS. POSIX
(Portable Operating System Interface for Unix) is the name of a family of related
standards specified by the IEEE to define the application programming interface
(API), along with shell and utilities interfaces for software compatible with variants
of the Unix operating system.

The PJD-fstest suite performs a set of operations on files and directories, i.e.
create, remove, rename, truncate, permission and owner changes, as well as oper-
ations on special files, i.e. hard/symbolic links and fifos. For each system call, the
suite executes of a set of scripts. Each script performs a set of basic operations, like
the creation of a directory, the change of its access rights, etc., and it evaluates, for
each one, its execution and return value. If its manner of acting or its return value
are different than that expected (as specified by POSIX), an error is pointed out.
In particular, the suite is "system call-oriented", which means that the scripts per-
forming the tests for a particular system call are composed of operations targeted
for the evaluation of the (hopefully correct) behaviour of that system call.

To execute the tests, we implemented a tool that basically automatizes all the
process of updating, compiling, installing XtreemFS and running a basic scenario
with one Directory Service (DS), one Metadata and Replica Catalogue (MRC) and
one Object Storage Device (OSD), and creating a volume and mounting it on a
specific directory. Once this scenario is up and running, the tests are executed
in the mount-point where the volume has been mounted. We decided to execute
such kind of tests in such simple scenario because we consider it is sufficient for
the specified test purposes. In other words, the behaviour of XtreemFS (from the
POSIX compliance view point) is the same if a different number of OSD, MRC or

143

chflags
chmod

chown

link

mkdir

mkfifo

open

rename

rmdir

symlink

truncate

unlink

Figure 4.55: PJD test suite: number of tests performed on each system call.

DS are used. In fact, since the POSIX tests query and verify only metadata infor-
mation, they are affected only by the logic implemented in the MRC. Moreover, no
analysis on performances is undertaken in such kind of tests.

The testing activity consisted in the automatic execution of the scripts and in
the evaluation of the failure events. Then, in order to understand the cause of each
failure, it was needed to interpret the cause of the problem and reproduce manually
the scenario (the sequence of operations) causing it.

4.9.6.3 Test Results

As above described, the PJD-fstest suite executes, for each system call sc to be
tested, a set of scripts aimed at verifying the correctness of that operation. More in
detail, each script executes various tests and verifies their return value. In Figure
4.55 a plot of all the system call tested by the PJD test suite is reported. Moreover,
for each system call the number of tests performed on it is reported.

Before to report test results, it is relevant to make two observations. First,
we do say that XtreemFS actually does not support fifos mechanisms. For this
reason, in order to make our evaluation as much correct as possible, we skipped
tests performed by the PJD tests suite on the mkfifo system call (totally, 217
tests). Second, XtreemFS supports file names and directory names longer than 256
characters. Since this is considered as an error by the PJD tests suite (despite of the
fact that POSIX specifications do not limit arbitrary filename length), we removed

144

also such kind of tests (10 tests). For such reasons, we totally removed 227 tests
from the original PJD suite test set, resulting in 1730 final tests.

Now, let us report the results of POSIX-compliance evaluation on XtreemFS.
By considering all the 1730 tests performed by the PJD test suite, actually XtreemFS
passes exactly 1556 tests, corresponding to 89.94% of the total. In the following
table, a more detailed report of the test environment and obtained results is re-
ported. In particular, the table shows, for each system call, the number of scripts,
the total number of tests performed by the scripts, the number of tests satisfied and
the success rate (the tests passed w.r.t. the total number of tests executed).

system call no. of
scripts

no. of
tests

no. of success-
ful tests

% success
rate

chflags 14 14 14 100.00%
chmod 12 128 127 99.22%
chown 11 206 164 79.61%
link 18 167 161 96.41%
mkdir 13 101 101 100.00%
open 24 217 213 98.16%
rename 21 479 379 79.12%
rmdir 16 109 105 96.33%
symlink 13 90 90 100.00%
truncate 14 90 90 100.00%
unlink 14 129 112 86.82%

Total 183 1730 1556 89.94%

The activity aimed at making XtreemFS as much POSIX-compliant as possible
is a work in progress. Many errors have been detected and corrected, but others are
under evaluation.

4.9.7 Test Unit 06: Parallel I/O Evaluation

4.9.7.1 Responsibilities

This test unit and the included tests on the parallel I/O for striped files in a cluster
environment are the responsibility of ZIB (WP3.4).

4.9.7.2 Test Specification

Test Items

The software to be tested is XtreemFS. Publications are available on the XtreemFS
website: www.xtreemfs.org.

The XtreemFS version tested is the release 1.1 from 2009-09-18. Source and
documentation are available from the internal XtreemOS SVN.

145

www.xtreemfs.org

In such kind of tests XtreemFS was tested by IOzone, a file system benchmark
that generates and measures a variety of file operations. The IOzone version used
in such tests is the release 3.283. Source and documentation are downloadable
from http://www.iozone.org/.

Features to be Tested

Tests described in this unit are aimed at evaluating the performance of the
XtreemFS software stack (client and server) and the parallel I/O for striped files
in a cluster environment. In particular, the tests have two goals. The first one is
to evaluate the performance for parallel I/O with file sizes that fit into OSD main
memory. This means that the measured bandwidth is not limited by the hard disk
but by the speed of the XtreemFS implementation. The second goal is to test and
show the effect of caching with a single OSD and client.

Approach Refinements

The goal of the test is to evaluate the performance of the XtreemFS software
stack (client and server) and the parallel I/O for striped files in a cluster environ-
ment. All tests were conducted on nodes with eight cores (Xeon E5420, 2.5GHz),
16GB RAM and a single HD with approx. 60 MB/s read/write rate. The nodes
are connected via infiniband which has a transfer rate of 1.2GB/s (gigabit/s) via
TCP (IPoIB). We used one node for the XtreemFS DIR and MRC, ten nodes for
the IOZone clients and one to 15 nodes for the OSDs.

4.9.7.3 Test Results

As above mentioned, a first goal of these tests consists in evaluating the perfor-
mance for parallel I/O with file sizes that fit into OSD main memory. The test
environment contemplates the presence of twenty six physical nodes. Ten nodes
are used to host a varying number of clients (as described in the following), fifteen
nodes to host the OSDs and one node for both the MRC and the DIR.

IOZone is a widely used synthetic file system benchmark. It tests a file sys-
tem with sequential, random and stride read/writes. In particular, out tests were
aimed at evaluating performances of the read, re-read, write and re-write opera-
tions. Read consists in reading an existing file, write in writing a new file, re-read
in reading a file that was recently read and re-write in writing a file that already
exists.

We used a file size of 100MB per client and a record size of 256KB which is
also the stripe size of the volume. We conducted the IOzone throughput test and
measured the aggregated bandwidth of the IOzone client processes. For aggregated
bandwidth we mean the sum of bandwidth of all client processes. In particular, we
report in Figures 4.56 and 4.57 the results when 20 and 40 clients are running,
respectively.

146

http://www.iozone.org/

1 2 3 4 5 10 15

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

w rite
re-w rite
read
re-read

number of OSDs

a
g

g
re

g
a

te
d

 c
lie

n
t b

a
n

d
w

id
th

 in
 K

B
/s

Figure 4.56: Bandwidth of clients for an IOZone throughput test with 20 clients
(on 10 physical nodes) with 1-15 OSDs.

For what concerns the re-write, read and re-read performance, we notice that
they do scale well with the number of OSDs in Figure 4.56 up to five OSDs. The
lack of further increase in performance is due to the limits in the client. To justify
this assertion, we have to take into account that each client executes its read/write
operations sequentially. So, although the 20 clients are running in parallel, they do
not generate enough load to reach the maximum throughput offered by a number of
OSDs greater than five. Accordingly, the bandwidth scales better with number of
OSDs when using 40 client processes (Fig. 4.57). In both experiments, the initial
write bandwidth is much lower than the re-write or both read bandwidths. This is
due to the fact that for the initial write of a file, the OSDs need to allocate files on
disk and the client has to update the file size at the MRC. This is not necessary for
re-writing or reading the file.

For what concerns the write operation, we have to notice that write perfor-
mance does not scale at all with #OSDs greater than 3. This is due to the fact that
the current version of the XtreemFS client updates the file size after each write
operation, which results in the MRC being the bottleneck for writes. We guess that
this limit will be overcome in the upcoming XtreemFS release, which is expected
to cache file size updates and consequently achieve more scalable performance for
the write operation.

In a last experiment we measured the bandwidth for a single client process
using a single OSD for increasing file sizes. The results are reported in Figure
4.58. As expected, the read bandwidth assumes values under 60 MB/s (maximum
throughput of the HD) when the file size is larger than the available cache. The

147

1 5 10 15

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

w rite
re-w rite
read
re-read

number of OSDs

a
g

g
re

g
a

te
d

 c
lie

n
t b

a
n

d
w

id
th

 in
 K

B
/s

Figure 4.57: Bandwidth of clients for an IOZone throughput test with 40 clients
(on 10 physical nodes) with 1-15 OSDs.

bandwidth for write decreases earlier as the Linux kernel allows only a pre-defined
fraction of the page cache to be dirty. In fact, the Linux cache has a limit of pages
which can be dirty (which is expressed as a fraction of the total cache). If this limit
is exceeded, writes have to be flushed to disk before they are acknowledged to the
application.

4.9.8 Test Unit 07: Non-Parallel I/O Evaluation

4.9.8.1 Responsibilities

This test unit and the included tests using the bonnie IO benchmark are the respon-
sibility of SAP (WP4.2).

4.9.8.2 Test Specification

Test Items

The software to be tested is XtreemFS. Publications and installation files are
available on the XtreemFS website: www.xtreemfs.org.
The XtreemFS version tested is the release 1.1 from 2009-09-18. Source and doc-
umentation are available from the internal XtreemOS SVN.
At this test unit we used the bonnie++ benchmark to test the performance of
XtreemFS. The bonnie++ version used in our tests is the release 1.03. Source and

148

www.xtreemfs.org

64 128 512 1024 2048 4096 8192 16384

0

50000

100000

150000

200000

250000

w rite
re-w rite
read
re-read

file size in MB

b
a

n
d

w
id

th
 in

 K
B

/s

Figure 4.58: Bandwidth of a single client and a single OSD for increasing file sizes.

documentation are downloadable from http://sourceforge.net/projects/
bonnie/.

Features to be Tested

Bonnie++ tests the types of filesystem activity that have been observed to be
bottlenecks in I/O-intensive applications. The generated IO load is non-parallel.
Tests described in this unit serve for comparative performance analysis of NFS and
XtreemFS file systems. They are composed of the following tests:

• Sequential per-character output performance

• Sequential block output performance

• Rewrite performance. The data is read, dirted and written back. This should
test the effectiveness of the filesystem cache and the speed of data transfer.

• Sequential per-character input performance

• Sequential block input performance

• Random seeks performance - several parallel processes are doing a total of
8000 lseek()s to locations in the file specified by a random function. In 10%
of cases, the block is dirtied and written back.

149

http://sourceforge.net/projects/bonnie/
http://sourceforge.net/projects/bonnie/

Approach Refinements

The goal of the test is to evaluate the performance of the XtreemFS filesystem
and provide performance comparative analysis in a cluster environment. All tests
were conducted on nodes with two cores (Duo CPU E8400, 3GHz), 3.8GB RAM
and a single HD with approx. 60 MB/s read/write rate. The nodes are connected
via standard ethernet which has a transfer rate of 1GB/s (E 1Gb/s). We used one
node for the XtreemFS DIR and MRC, one node for the Bonnie client and one to
3 nodes for the OSDs.

4.9.8.3 Test Results

Bonnie provides performance tests for several filesystem operations over files of
the specified aggregated size. In our experiments the aggregated size of the files
is 16G. Initially Bonnie performs the sequential per-character writes, where each
character is written separately. Then it issues the test with sequential block writes.
Next it uses rewrite tests to check the effectiveness of the filesystem cache and the
speed of data transfer. Following write tests, Bonnie starts read tests that consist
of sequential per-character read and sequential block read tests. Finally is runs
random seek tests, using several parallel processes. In our experiments we used
three parallel processes for seek tests. In the most of the tests Bonnie imposes
non-parallel IO load on the filesystem in question. As Figure 4.59 suggests, in
the case of non-parallel IO load XtreemFS, as distributed-architecture file system,
performs worse than NFS. NFS is a mature filesystem that is present at the industry
for several years and it is well tuned for performance. Since in read/write tests there
is no a big and stable application work set that could fit into the distributed cache
of XtreemFS, such a cache is helpless.
Note also that the performance of XtreemFS degrades when the stripe width (and
correspondilgy the number of OSDs) grows. We attribute this observation to the
lease-based synchronization meachanism that XtreemFS uses to synchronize IO
accesses.
In contrast to the read-write tests, the seek test is performed using three processes
and in this case we anticipate that the distributed nature of XtreemFS architecture
and implementation will manifest in better performance as compared to NFS. And
indeed, looking at Figure 4.60 one can see that the performance of XtreemFS grows
sharply with the increase of stripe width (and number of OSDs), outperforming
NFS at stripe width 3.

4.9.9 Test Unit 08: kDFS

4.9.9.1 Responsibilities

WP2.2, Marko Obrovac (INRIA)

150

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 1.5 2 2.5 3

K
B

 p
er

 s
ec

on
d

Stripe Width

Bonnie read/write results

NFS Read per-char
NFS Read block

NFS Write per-char
NFS Write block

NFS Rewrite
XtreemFS Read per-char

XtreemFS Read block
XtreemFS Write per-char

XtreemFS Write block
XtreemFS Rewrite

Figure 4.59: Performance of read / write operations under NFS and XtreemFS
filesystems.

 80

 100

 120

 140

 160

 180

 200

 220

 1 1.5 2 2.5 3

K
B

 p
er

 s
ec

on
d

Stripe Width

Seak ops, per second

NFS
XTFS

Figure 4.60: Performance of seek operations under NFS and XtreemFS filesystems.

151

4.9.9.2 Test Specification

Test Items

In this test unit, we will test kDFS - the fully distributed symmetric cluster file
system which ships with LinuxSSI.

Features to be Tested

The main concern of this test is the performance of kDFS, specifically, the
read/write performance using different access patterns. In order to ensure unbiased
and reproducible test results, we used Bonnie++ - an industry-standard, POSIX-
compatible I/O benchmarking tool. Bonnie++ conducts the tests in a few steps:

• read/write access:

– sequential writing: per character, per block, rewrites

– sequential reading: per character, per block, random seeks

• file operations:

– sequential create, read, delete

– random create, read, delete

To make a qualitative evaluation of kDFS’ performance and capabilities, Bon-
nie will be run multiple times with different block sizes, which means kDFS will
not only be tested with different access patterns in mind, but it will also be evalu-
ated for different computing application types.

Approach Refinements

The purpose of this experiment is to benchmark kDFS’ performance and to
show its stability. The tests are carried out in the Grid5000 environment. Con-
cretely, the tests were performed on the Rennes cluster. Eight physical machines
were used, each having the following specifications:

• Dell PowerEdge 1950

• Intel Xeon 5148 LV 2.33 GHz x 2

• 8 GB RAM

• 2 x 300GB Raid0 / SATA

• Gigabit ethernet

Although the nodes are equipped with 8 GB of RAM, we used only 4GB in our
tests due to the kernel’s memory addressing limitations.

152

Setting up the environment

On those eight nodes we installed an XtreemOS 2.0 - LinuxSSI environment
adapted for the Grid5000 platform. The deployment was carried out with the help
of the xos-ssi-deploy script available in the XtreemOS GForge repository.
The script performs the following steps:

• deploy the xos20-i586-ssi environment

• configure the nodes:

– set up correct node and session ids

– set up the host names

– deliver a list of nodes involved in the cluster to all of the nodes

– change the default run level

– enable the nfs-server service on the head node and disable it on all
the other nodes

• reboot the nodes

• start the cluster services and mount NFS partitions

– on the head node: start_linuxssi

– on the worker nodes: start_linuxssi_as_worker

Next, we need to create and mount kDFS partitions. Again, a helper script is
used: ssi-mkfs-kdfs. The steps performed on every node are the following:

• create a directory to hold the partition

• run mkfs_kdfs

• after mkfs_kdfs has completed creating all of the partitions, mount every
one of them

Finally, we need to run the benchmark tool - Bonnie. We launch eight in-
stances of Bonnie in parallel - one on each node. That way, we can exploit kDFS’
cooperative cache. On every node, we launch the following command:

• bonnie++ -d /media/kdfs/tmp-node_id/ -s 8192:block_size
-n 1 -r 4096 -u root

The command launches the execution of Bonnie with the following parameters:

• directory to write to/read from: /media/kdfs/tmp-node_id/ (node_id
is substituted with the actual node’s id - that way any possible naming clashes
are avoided)

153

• file size: 8 GB

• block size: it changes with every iteration. We tested kDFS with the follow-
ing values: 512 B, 4096 B, 32768 B and 1048576 B

• number of files for the files creation test: 1024

• quantity of physical RAM: 4 GB

• the uid of the user which will execute the tests: root

4.9.9.3 Test Results

All the proposed Bonnie tests were successfully completed. They were performed
on the eight nodes in parallel and the results shown here represent the median
values obtained from the tests on each node.

Table 4.20 shows the results of sequential write operations for different block
sizes. As expected, when the data is written character by character, there are al-
most no variations in the results. When testing character write operations, Bonnie
ignores the block sizes. Thus, since the tests were executed on matching machines,
similar results have been obtained.

However, there is great disproportion in block writes, as well as in rewrites
(which are also block-size-dependant). With a 512-byte block size the perfor-
mance is really poor - not even one megabyte of data gets to be written per second.
On the other hand, we can see performance improvement with higher block sizes
(13.3MB/s with a 4096-byte block size, 13.4MB/s with a 32678-byte block size
and 12.7MB/s with a 1048576-byte block size). Although it seems there is almost
no difference in performance when (re)writing data with a 4096-byte, 32768-byte
or 1048576-block block size, we should keep in mind that all of the figures pre-
sented in these tables are medians over all tested nodes. Since kDFS is a parallel
cluster file system, we should keep in mind that all those writes happen in parallel.
kDFS handles all of the writes - it processes eight times the data presented in the
tables. Of course, the disks themselves have to handle the actual writes.

Table 4.20: Sequential write operations for different block sizes (in kB/s)
Block Size Character Write Block Write Rewrite

512 11403 803 805
4096 11443 13553 12944

32768 11263 13652 13312
1048576 11306 13003 13098

Although write operations seem somehow limited, we can see a real perfor-
mance boost in sequential read operations, for which the results are presented in
table 4.21. As in the case of single character write operations, the performance of
single character read operations are independent of the block size.

154

Naturally, block sizes higher than 1 give us better performance. With as low as
a 512-byte block size, the read performance has almost doubled (from 45.4MB/s to
84.2MB/s). It continues to rise and peeks at 241.8MB/s with a block size of 32768
bytes. Again, keep in mind kDFS actually reads eight times the size of data shown
in the table (since the results are per node).

Table 4.21: Sequential read operations for different block sizes (in kB/s)
Block Size Character Read Block Read Random Seek (per sec)

512 46468 86139 138.4
4096 48341 233111 349.9

32768 49438 247645 119.4
1048576 49124 238819 51

File creation and deletion tests are Bonnie’s last benchmark. They control sys-
tem stability and POSIX compliance. The results of those tests, presented in table
4.22, show kDFS has passed all of the tests, which means it is a stable and fully
POSIX-compliant file system.

Table 4.22: File creation and deletion tests
Access Type Create Read Delete
Sequential OK OK OK
Random OK OK OK

To put the figures represented in tables 4.20 and 4.21 into perspective, we ran
the same Bonnie tests (with more or less the same parameters) on NFS partitions
within the same environment. However, since we use NFS for comparison only,
Bonnie tested only the 4kB block size performance. The side-to-side comparison
between kDFS and NFS can be found in table 4.23. As the table shows, kDFS
outperforms NFS by over a double in block reading operations, and by almost
a double in block writing operations. Moreover, the difference between the two
becomes larger and larger as we add more machines to the cluster: while kDFS has
a global cooperative cache and is able to write data locally on disks, NFS not only
adds network traffic overhead, it also reads to/writes from only one disk.

Table 4.23: Side-to-side comparison of I/O characteristics of kDFS and NFS (in
kB/s)

File system Block Read Block Write
kDFS 48341 13553
NFS 21770 7298

Finally, we would like you to keep in mind that the figures presented in this
test are relative and are highly influenced by the backbone exploited by kDFS. The
more important include:

155

• hardware itself - any test, especially a file system performance test, cannot
be reproduced with the exact same results in a different environment

• underlying file system - kDFS is not a low-level file system. It does not write
nor read directly to/from the disk. It uses the VFS and the underlying file
system to do disk-level access. As such, even in the same environment, the
results could be quite different depending on which file system was chosen
as the local one.

4.9.10 Test Summary Report

4.9.10.1 Summary of Tests and Results

We performed tests to validate XtreemFS functional requirements, evaluate its per-
formance and compare it to the performance of NFS. The functional requirements
of XtreemFS were also tested in the simulated at real wan environment. Tests
were also performed to assess functional requirements of Object Sharing Service
provided by the XtreemOS. We also evaluated the performance of Object Sharing
Service provided by XtreemOS. The perfromance of kDFS was evaluated using the
Bonnie benchmark.

It was found that POSIX complience tests passes 89.4% of the adequate tests.
Non-parallel IO tests reveal that for sequential access pattern XtreemFS does not
provide performance improvements as compared to NFS. Parallel IO tests reviel
that the performance of XtreemFS scales well with the increase in the number of
OSDs. XtreemFS also shows very good scalability under transactional load and
the load generated by enterprise search application. It effectively caches big appli-
cation IO work set, utilizing its de-facto distributed cache based on OSDs. Even
without using SSD non-volatile memory, it enables to almost reach the through-
put of the baseline filer technology that uses SSD non-voletile memory. We also
found that applications using XtreemFS are capable to work under wan-simulated
latency. It was found that Object Sharing Service may be used to share the appli-
cation state among nodes in the wan conditions. With regard to kDFS perfromance
evaluation we found that the read/write performance improves when the block size
grows. kDFS successfuly passed the file creation and deletion tests of the Bonnie
benchmark, which control system stability and POSIX compliance. It means that
kDFS is a stable and POSIX-compliant file system. Tests were also performed to
compare the perfromance of kDFS and NFS. The tests show that kDFS outperforms
NFS almost by factor 2.

4.9.10.2 Conclusion and Directions for Future Work

Based on the tests we conclude that POSIX Compliance leaves the room for im-
provement. While currently the MRC is the bottleneck for writes, this limit will
probably be overcome in the upcoming XtreemFS release, which is expected to
cache file size updates. Write latency under the transactional load is still very

156

low as compared to the baseline NetApp filer technology. And most probably this
shortcoming may be overcome only by means of using SSD non-voletile mem-
ory at OSD nodes. Our experimental results under transactional load looks very
promising and suggest that XtreemFS may support transactional load. However
more experiments need to be performed to support this conclusion. We also ex-
perimentally assessed that XtreemFS does not yet include mechanism to counter
packet corruption in the wan conditions.

Based on the tests perfromed for kDFS we conclude that it is POSIX compliant.
We also conclude that the global cooperative cache of kDFS enables it to cache
the application work set and write the data locally to disk. As the result kDFS
outperforms NFS filesystem at our tests.

We can conclude that XtreemFS, Object Sharing Service in XtreemOS Release
2 and kDFS are adequate, with all major functional requirements met but perfor-
mance and some functional requirements leaving some room for improvement.
Further testing is required for features skipped in this iteration, most of which re-
late to comparative performance analysis of XtreemFS with kDFS and with other
advanced research file systems such as CEPH. Another set of tests to be performed
in the next iteration will target read/write replication and using it to overcome fail-
ures such as network partitioning and to improve performance of applications in
wan conditions.

157

4.10 Evaluation of Security Services

4.10.1 Test Plan

This test plan evaluates the security services of XtreemOS, developed in WP 3.5.
The features and components that have been evaluated are as follows:

• Identification of the major performance costs (e.g. issuing and verifying of
delegation tokens) of a new delegation technology, named DToken, being
developed for XtreemOS and preliminary evaluation of the technology

• Policy management including the insertion, removal, saving, evaluation and
storage

• Issuing of XtreemOS Certificates

The focus of testing in this deliverable is on performance and impact on com-
pute resources. There are various reasons for focusing on these two attributes:

• Security is often identified as a bottleneck and overhead in a system’s oper-
ation and maintenance

• Security services can add additional load to messages and interactions

• Security services may be targets of denial of service attacks, which seek to
exhaust the resources of the host the services are running on

4.10.1.1 Responsibilities

The tests reported were carried out within WP3.5 by STFC and XLAB, the de-
velopers of the security services evaluated here. SAP was responsible for review
of the experiments and interpretation. The experiments were also done in parallel
with the vulnerability assessment of XtreemOS in deliverable D3.5.14, performed
by SAP.

4.10.1.2 Test Items

The test items have been selected based on a) the availability of meaningful eval-
uation results and the nolvety of the technology; or b) the impact they have on a
node’s performance and resource usage.

• DTokens is a delegation certificate format and protocol designed for XtreemOS
but is not currently packaged in release 2.0 of XtreemOS. It has been pub-
lished by Yang and Matthews [55] at the 2009 IEEE Symposium on Reliable
Distributed Systems (SRDS)

158

• CDA (Certificate Distribution Authority) server, version 0.2.4. This is in-
cluded in release 2.0 of XtreemOS and is available as a patch for XtreemOS
1.0. The CDA server is a critical component of the XVOMS component
configured on a core node.

• VOPS (VO Policy Service) is a service under development at XLAB. It is
designed to support local and VO-wide policy administration, filtering and
multiple decision requests.

4.10.1.3 Features to be Tested

The DTokens will be tested against another more popular form of delegation cer-
tificate, which is incorporated in other Grid middleware. The essential features of
VOPS to be tested surround the operations to be performed by and administrator for
policy administration. However, the focus is on the compute time associated with
these operations being performed. Finally, the performance of certificate issuing
by the CDA will be tested, focusing on the impact of handling parallel requests.

4.10.1.4 Features not to be Tested

All notable features of VOPS are to be tested, as well as of the CDA. However,
given that DTokens is still under development, there are some features excluded
from this testing:

1. Communication overhead of dtokens

2. Chained delegation (delegation that involves more than two parties)

3. Multiple delegation (concurrent delegations to multiple parties)

4. Scalability, how does DToken scale with regards to:

(a) the number of processes within a single-level delegation to one delega-
tee

(b) the number of processes within a single-level delegation to more than
one delegatees

5. The relationship with SSL (DToken is built upon SSL, this is to investigate
whether the use of DToken has any implications to SSL and vice versa)

6. The detailed cost breakdown of various DToken protocols

7. The performance of this technology when packaged with XtreemOS

159

Figure 4.61: Overall approach for testing security services

4.10.1.5 Overall Approach

The approach to evaluating XtreemOS Security services is shown in Figure 4.61.
The first stage is the specification of atomic test cases. These define a sin-

gle usecase for the service under normal conditions. For example, the atomic test
case specification checks that a specific function or operation responds correctly
to a request. Secondly, the atomic test case is used to create a simulated load on
the component. This will include simulation of several users making the same re-
quest, varying payloads in the request or varying frequencies of the request. There
are then two branches of assessment that may be done; firstly, the simulated load
is used to test the performance of the XtreemOS security service under the load
conditions. The results are response times, CPU usage and memory consumption.
Secondly, depending on the test case, the simulated load is transformed for a differ-
ent environment, against which the XtreemOS security service is to be compared.
For example, the DToken technology was compared against another form of del-
egation technology (i.e. Proxy Certificate). However, it is not always relevant or

160

feasible to have comparative results of security services. In such cases the goal of
the test case is to show that the service will not be disruptive under normal, pro-
duction loads. Secondly, in the case of abnormal loads, the goal is to better predict
the changes in operational behaviour that will be observed.

4.10.2 Test Unit 01: DTokens vs. GSI Proxy Certificates

4.10.2.1 Responsibilities

We describe here a test carried out within WP3.5 by STFC comparing the DTokens
approach with GSI Proxy Certificates.

4.10.2.2 Test Specification

Test Items

In XtreemOS, a delegator and a delegatee jointly generate a a delegation to-
ken, named dtoken, to facilitate delegation. Through the token, a machine is able
to check whether a user has delegated to one (or more) machine(s) without di-
rectly contacting the user or any trusted on-line third-party service. The whole
approach has been called DTokens, it is under development in WP3.5 and will be
fully reported in deliverable D3.5.9. Description of the DTokens approach and
explanation of the test was published in [55].

Features to be Tested

We compare here XtreemOS DTokens with Proxy Certificates [41], a RFC
standard proposed as part of the Grid Security Infrastructure (GSI). We test the
following features for managing delegation tokens/proxy certificates:

• Creation of a delegation token/proxy certificate.

• Verification of authenticity of a delegation token/proxy certificate.

The evaluation focuses on a single-level delegation, in which the size of dele-
gation tokens is trivial (less than 3kb). Therefore, in this case, the communication
costs involved in the delegation is clearly not significant.

Approach Refinements

All the experiments are conducted on a Ubuntu OS (8.10) running on top of a
virtual box (2.1.4). The prototype is written entirely in C, is compiled using GCC
(4.3.2) and depends solely on the OpenSSL toolkit (0.9.8). The GSI proxy certifi-
cate performance data was collected using the command grid-proxy-init of
the latest globus toolkit (4.2.1). The source program of this command was slightly

161

modified to include performance measuring procedures. All the performance data
was collected by repeatedly executing the programs for one hundred times and the
average costs of the one-hundred runs are presented here.

4.10.2.3 Test Results

Figure 4.62 illustrates the major performance costs, namely creation and verifica-
tion of delegation tokens, involved in a single-level delegation scenario. The over-
all cost of creating a DToken, the major cost of the DToken delegation architecture,
is roughly 1/3, 1/5, and 1/10 of that of creating a proxy certificate when the certifi-
cate key size is 512, 1024, and 2048 bits, respectively. These results demonstrate
that our proposal provides significant performance gains than the proxy certificate
solution. They also show that the verification cost involved in both solutions are
significantly less than that of the creation cost.

The figure also indicates that the creation cost of a DToken of key size 2048
bits is comparable to that of a proxy certificate of key size 512 bits (a typical setting
in the current Grid deployment environment). From a performance perspective, it
suggests that it is much more affordable to employ highly secure cryptography keys
(e.g. of key size 2048 bits) in the DToken architecture than in GSI. From a security
point of view, the vulnerability introduced by employing the DToken architecture
(i.e. all delegation chains share the long-term credentials of a principal) can be
lessened by the use of highly secure keys.

162

400

500

600

700

m
il

li
se

co
n

d
s

(1
/1

0
0

0
 s

e
co

n
d

s)

DToken vs. Proxy Certificate Performance (average)

512 bits 1024 bits 2048 bits

DtokenCreate 15 22 52

DTokenVerify 4 4 5

GSICreate 48 107 602

GSIVerify 10 11 10

0

100

200

300

m
il

li
se

co
n

d
s

(1
/1

0
0

0
 s

e
co

n
d

s)

Figure 4.62: Overall Performance Cost Comparison between DToken and GSI
(Proxy Certificate).

163

4.10.3 Test Unit 02: VOPS evaluation

Virtual Organisation Policy Service (VOPS) is a server serving requests to other
VO services which take part in resource selection process. For such a service it is
essential to provide

• proper and effective policy administration,

• effective operations in policy filtering,

• be scalable and able to serve multiple request effectively.

In this section we present VOPS scalability tests and try to substantiate VOPS as
efficient entity providing upper requirements.

4.10.3.1 Responsibilities

VOPS is under development within WP3.5 under responsibility by XLAB.

4.10.3.2 Test Specification

We provide a list of tests which we have conducted with VOPS. The VOPS devel-
opment went two separate but side by side implementations. VOPS in the second
release of XtreemOS is implemented as a part of DIXI framework (see section 4.4:
Evaluation of the DIXI Message Bus) and its performance depends mainly on the
aforementioned framework. It does not implement any special database, policies
are stored internally in the memory. The second implementation is using XML
database implementation and can be used as a standalone service or as a part of
DIXI. In this section we provide tests of the former, the later is still in development
and therefore not stable and thoroughly tested.

Test Items

The focus of the tests is the main VOPS library, packaged in the security-
services-vops package. The client-side component in XATI is packaged in
the dixi-xati package, which provides client side methods.

Features to be Tested

We will test following features of VOPS:

• Policy insertion and deletion (locally on the same node and in two separate
nodes).

• Access request time while incrementing the number of policies on the server
(XATI client invoking will reside on a different node than the server).

164

• The invocation of the service calls defined by the service interface in an
synchronous manner from client service.

• Two services, one of which will act as a server (the invoked service), another
service, which will act as a client (the invokee service) and both will reside
on the same node.

• Two services, one of which will act as a server (the invoked service), another
service, which will act as a client (the invokee service), residing on two
separate nodes.

• Loading policies from policy storage and saving the policies from storage in
memory to disk.

VOPS Description
Policy insertion Inserting policies into VOPS policy storage
Policy removal Removing policies from VOPS storage
Access request Providing PDP to other VO services
Policy Save/Restore Dumping and loading policies into the storage

Table 4.24: Summary of main features tested in VOPS provided by the VOPS
server API.

Approach Refinements

Our assumption is that the system is properly installed and set up. Tests are
conducted in a way that the server is placed in different situations of congestion.
Various operations have been executed by the one client (repeated queries against
the server), as well as the juxtaposition of multiple clients creating queries in par-
allel to create racing conditions on the server.

Policy insertion

• Goal of the test is to benchmark performance of the policy insertion process.
We provide two benchmarks: first is running several numbers of benchmarks
while inserting different number of policies on the server. Benchmarks are
performed in two set-ups: client and server both reside on the same machine,
client and server are on different machines.

• Hardware: workstation and a laptop, both with the same DIXI installation,
second release.

• Test techniques: VOPS server running on the workstation, client running on
the laptop running XATI (VOPS client side). On the workstation there were
running mpstat and vmstat with a period of 1 second, which were doing
benchmarking of the CPU and memory usage.

165

• Input parameters: generic policies, generated by testing environment written
in Java.

• Metrics to be used: on the client side we are measuring time between several
operations, on the server we are measuring user CPU time, system CPU time,
and number of interrupts per second.

Policy deletion Is following the same techniques as described in Policy inser-
tion section.

Access request
• Goal of the test is to benchmark performance of the VOPS’ Policy Decision

Point. Benchmarks are performed in two set-ups: client and server both
reside on the same machine, client and server are on different machines.

• Hardware: workstation and a laptop, both with the same DIXI installation,
second release.

• Test techniques: VOPS server running on the workstation, client running on
the laptop running XATI (VOPS client side). On the workstation there were
running mpstat and vmstat with a period of 1 second, which were doing
benchmarking of the CPU and memory usage.

• Input parameters: generic policies on the server side, generated by testing
environment written in Java. We also need generic user and resource certifi-
cates and job description also provided by the testing environment.

• Metrics to be used: on the client side we are measuring time between opera-
tions, on the server we are measuring user CPU time, system CPU time, and
number of interrupts per second.

Policy Save/Restore This is a feature which enables VOPS to dump current
storage into XML files and vise versa - to load XML policies into VOPS memory.

• Goal of the test is to benchmark performance of the VOPS policy load/write
feature.

• Hardware: workstation with DIXI installation and VOPS running, second
release.

• Test techniques: VOPS server running on the workstation. On the worksta-
tion there were running mpstat and vmstat with a period of 1 second, which
were doing benchmarking of the CPU and memory usage.

• Input parameters: generic policies on the server side, generated by testing
environment written in Java. We also need generic user and resource certifi-
cates and job description also provided by the testing environment.

• Metrics to be used: on the server side we are measuring time between opera-
tions (load policies, save policies), we are measuring user CPU time, system
CPU time, and number of interrupts per second.

166

4.10.3.3 Test Results

Here we present test results for tests specified in former sections. We have already
mentioned the two set-ups of test: local machine running both server and client, and
two machines (one running VOPS server and other running client, XATI instaces).
In tables 4.25 and 4.26 1 client refers to tests on local machine meanwhile 5 and
10 clients refer to tests conducted on two machines, simulating several clients.

Num. of
policies

1 client st.dev 5 clients st.dev 10 clients st.dev

10 1147.2 418.37 2328.2 1923.1 5118.8 1867.8
100 24824.6 4510.5 107077.4 10704.1 353193.2 1299.5
1000 922788.2 9972.6

Table 4.25: Inserting policies into VOPS server simultaneously from different
number of clients. Numbers are in milliseconds. There were totally 10 repetitions
of each test performed.

Num. of
policies

1 client dev 5 clients dev 10 clients dev

10 1763.2 840.6 1376.6 447.4 2639.4 665.86
100 35099.4 306.2 112928.0 12724.2 336516.6 1280.84
1000 930784.6 19206.1

Table 4.26: Deleting policies from VOPS server simultaneously from different
number of clients. Numbers are in milliseconds. There were totally 10 repetitions
of each test performed

In tables 4.25 and 4.26 we conclude, that comparing times to insert and delete
policies is linear (approximately linear). Inserting 1000 generic policies into VOPS
database from a client takes about 37.1 times more time than inserting 100 generic
policies (comparing 100 to 10 policies it makes 21.6 times). Similar behaviour is
with deleting policies.

We have also measured other metrics:

• CPU utilization that occurred while executing at the user level (user),

• CPU utilization that occurred while executing at the system level (this does
not include time spent servicing interrupts or softirqs) (sys),

• percentage of time that the CPU or CPUs were idle and the system did not
have an outstanding disk I/O request (idle),

• total number of interrupts received per second by the CPU or CPUs (intr/s).

167

Measurements are showed in figure 4.63 while inserting and deleting 1000 policies
on one machine (server and client running on one machine). From time to time
we can see decrease in user CPU time and an increase in idle time. This happens
while the number of policies stored in the policy storage is decreasing/increasing.
Period between decrease/increase in figure 4.63 takes around 2000 seconds (1000
for insertion and 1000 for deletion, see tables 4.25 and 4.26).

Figure 4.63: user CPU time, system CPU time, idle CPU time and number of
interrupts per second obtained with mpstat while repeatedly inserting and deleting
1000 policies (x axis presents seconds, the whole axis presents 8065 seconds)

Figure 4.64 depicts memory consumption while inserting and deleting 100
policies. This experiment has been conducted on two machines with running server
on one workstation and client on different machine. It is expected that the mem-
ory usage is greater while entering new policies than while deleting policies from
the database (memory). Deleting policies is releasing memory since the garbage
collector frees dynamically allocated memory (policies in the memory). Test was
running for 67 seconds, in first 31 seconds 100 policies were inserted into database
from a single client. In next 36 seconds these policies were deleted.

Num. of policies Time (ms)
100 615
500 3587
1000 15288

Table 4.27: Time per request when number of policies on the server incrementally
increases.

In figure 4.65 we see time to evaluate a request towards VOPS Policy Decision
Point depending on the number of policies residing in the policy storage already.
Time is computed as an average time of 10 access requests containing 10 generic

168

Memory consumption

Time (s)

M
em

or
y

(M
B)

10 20 30 40 50 60
0.0

10.0

Memory consumption

Figure 4.64: Figure memory consumption while running 100 policy insertions (first
31 seconds) and deletion (next 36 seconds) respectively from a single client.

resources and job description. In table 4.27 we can see some actual figures taken
from the benchmark.

Time to evaluate a request

Number of policies in VOPS

Ti
m

e
(s

)

100 200 300 400 500 600 700 800 900 1e+03

10.0

Access Request Time

Figure 4.65: Time per request when number of policies on the server incrementally
increases.

We have conducted test for loading and saving different number of policies on

169

the server. Table 4.28 gives us figures for different number of policies.

Num. of policies Time to load (ms) Time to save (ms)
10 234 196
100 832 789
1000 6271 7576

Table 4.28: Time for an operation of loading and saving specified number of poli-
cies into and from storage respectively.

In figures 4.66 and 4.67 memory consumption and CPU utilization with the
same testing environment as in the tests before are depicted respectively. In figure
4.66 memory consumption is showed from starting the VOPS server. The reason
for larger consumption in the first 20 seconds is loading of the JVM and starting
the server in Java environment. Afterwards, during saving and reloading the 1000
policies, some variations can be observed. The reason is manly working of the
Java’s garbage collector, nevertheless memory consumption, while reloading the
policy storage, stays in the same interval through time.

Memory consumption

Time (s)

M
em

or
y

(M
B)

0 100
0

100

200

Memory consumption

Figure 4.66: Memory consumption from starting a VOPS server (first 20 seconds),
after that 10 iterations of reloading policy storage occurred.

In figure 4.67 CPU utilization, while performing saving and restoring the pol-
icy storage, is depicted. This test has also been conducted on two machines, one
triggering the save/restore operations, other machine running the server. 10 rep-
etitions of operations with 1000 policies are performed through the time of 151
seconds. First 20 seconds CPU is occupied for the reason of loading the server and

170

JVM. After loading the server, periodic CPU consumption can be seen and these
operations are triggering periodically:

• PolicyFactory.initializePDP(),

• PolicyFactory.updatePolicyStorage().

In first operation, Policy Decision Point, is initialized from the policy storage
as defined in VOPS configuration file. In our example policy storage points to a
directory of 1000 generic policies. This way 1000 generic policies are stored into
the memory and decision point is initialized with these policies. In the second op-
eration, PolicyFactory.updatePolicyStorage(), policies are copied back on the disk
storage (into policy storage as defined in VOPS configuration file) and afterwards
first operation is triggered again. This way CPU occupation is larger as expected
and similar samples of CPU utilization can be seen afterwards.

Policy Save/Restore

Time (s)

CP
U

us
ag

e

15 30 45 60 75 90 105 120 135 150
0

10

20

30

40

50

60

70

80

90

100

User CPU time
Sys CPU time
Idle CPU time

Figure 4.67: CPU utilization while performing save/restore operation on VOPS
server. 10 repetitions of loading policies from XML file into memory and saving
policies back to XML files are depicted.

171

4.10.4 Test Unit 03: Evaluation of CDA Server

4.10.4.1 Responsibilities

We describe here a test carried out within WP3.5 by STFC recording the time taken
by the CDA server to process 100 requests by the “get-xos-cert” command for an
XOS-Certificate.

4.10.4.2 Test Specification

The CDA server, version 0.2.4, runs on a node configured with the “task-xtreemos-
coreservices” package. The hardware is an Intel dual core processor running at
2.40GHz with 3GB RAM. XtreemOS 1.0 is installed directly onto this machine,
with the latest patches applied. There is no virtualisation software used.

Test Items

This test unit sends a large number of requests from a client node running the
CDA client to the CDA server.

Features to be Tested
The overall time taken by the CDA server to satisfy these requests is recorded. The
CPU load and memory utilisation of the CDA server while serving these requests
is recorded.

Features not to be Tested
The response time to individual CDA client requests is not recorded. The CPU
load and memory utilisation on the CDA client node is not recorded.

Configuration

1. XtreemOS must be installed and configured on the two test nodes. One node
is set up as a core node with the CDA server installed. The other node is set
up as a client node.

Test method The following steps are executed during the test:

1. On the core node, the “dstat” command is started. The invocation is “dstat
-tcm 5 > file.out”. This records CPU load and memory utilisation figures
every 5 seconds, along with a timestamp.

2. Wait for two minutes before starting the test from the client node.

3. On the client node, the “get-xos-cert” command is executed 100 times in a
shell “for” loop, under the control of the “/usr/bin/time” command.

172

4. Wait until this “for” loop has finished. The time taken is recorded.

5. Wait for two minutes.

6. On the core node, the dstat command is stopped and the output file preserved.

4.10.4.3 Test Results

The test was executed by Ian Johnson, STFC on 03-12-2009. The times taken on
the CDA client node for three successive runs of the test are shown in the table
below:

Run no. Num Requests Elapsed time (s)
1 100 101
2 100 97
3 100 99

The parameters measured on the CDA server for one of these test runs is shown
in the graph below:

Figure 4.68: CPU load (right axis) and reduction in free memory (left axis) while
CDA server is processing 100 requests.

173

Procedure Results The CDA client node was able to send 100 requests to the
CDA server in around 100s. This is in the expected range, as the CDA client
command “get-xos-cert” takes around 1 second to execute. The “get-xos-cert”
command is loaded and initialised every for every iteration of the invoking “for
loop”.

The CDA server CPU load and reduction in free memory during a test run are
shown in figure 4.68. (The reduction in free memory corresponds to an increase in
used memory.)

Before the test was started, CPU utilisation was around 3%. The CPU load while
the test was running was around 8%, apart from an initial spike of around 40%,
which may be associated with the CDA server servicing the first request (involving
loading classes and making the initial database connections). This represents an
additional CPU load of 5% due to the CDA server processing a single stream of
requests.

The amount of free memory before the test was around 200MB. During the test,
this reduced to around 150 MB. Hence, operation of the CDA server during this
test consumed about 50MB of extra memory.

4.10.5 Test Summary Report

4.10.5.1 Summary of Tests and Results

The goal of the security tests was to make sure that the security services do not
become bottlenecks and unjustified overheads for the other features of XtreemOS.
Moreover, it is critical to ensure that security services do not introduce security
problems for the overall system. Firstly, the DTokens used for delegation proved
to be more efficient than the standard proxy certificates used by more established
Grid infrastructures. Delegation is an important feature in any outsourced, service
oriented (*aaS) model of computation, as the owner of processes and data has to
delegate privileges to the owner of resources that executes the processes and ma-
nipulates/stores data. Secondly, the VOPS has linear performance with regards to
the number of simultaneous policies that can be handled. Finally, the impact on
CPU and memory of operating the CDA server was also tolerable, with consump-
tion between 3 and 8% during the servicing of 100 sequential requests. We do not
yet have reportable data giving an indication of the scalability of the CDA server.

4.10.5.2 Conclusion and Directions for Future Work

Further evaluation and ongoing improvement of the security services can only be
accomplished through the use of rigorous, runtime vulnerability assessment. There
is still some work to be done in the area of managing the processes of issuing and

174

updating policies and certificates. In addition, there is more scenario-based testing
to be done of the VOPS, where different cases like monitoring and usage control
will be investigated. This work will be done in conjunction with the demonstrator
activities.

175

4.11 Evaluation of Mobile Device Flavor

The component to be evaluated in this case is XtreemOS-MD, the XtreemOS Mo-
bile Device flavor, let’s say, the XtreemOS version for MDs. XtreemOS-MD soft-
ware includes:

• XtreemOS-MD F-layer, for VO support in Mobile Devices.

• XtreemOS-MD G-layer, including three main services: XtreemFS, AEM,
and CDA.

• The IMA and JobMA applications will be used for testing, but are not part
of XtreeemOS-MD software.

While the mentioned applications (IMA and JobMA) are described by this
work package (WP4.2), the use cases, architecture and features are described by
WP2.3 (focused on XtreemOS-MD F-layer) and WP3.6 (focused on XtreemOS-
MD G-layer). In every case, TID is responsible for the components, being also
WPLeader of the WPs in charge of the different parts of XtreemOS-MD software.

4.11.1 Test Plan

4.11.1.1 Responsibilities

WP2.3, WP3.6, WP4.2 and TID as partner, are responsible for defining and exe-
cuting the tests related to XtreemOS-MD and the reference applications associated
(IMA and JobMA)

4.11.1.2 Test Items

The software to be tested is XtreemOS-MD. The current version of the software (as
of the time of writing this test plan) is XtreemOS-MD Release 1.0, from April ’09.
Source and documentation are available on the internal XtreemOS SVN. IMA and
JobMA applications are still not released with XtreemOS-MD, but the development
versions could be used to run the tests if final versions of those applications are not
ready at the time agreed for testing. The advanced features of XtreemOS-MD that
will be included in next releases at that time will also be tested.

4.11.1.3 Features to be Tested

The following features will be tested:

• XtreemOS support in PDA and mobile phones (ARM arquitectures).

• VO support of XtreemOS-MD.

• Lightweight security support of XtreemOS-MD (considered also as a perfor-
mance test).

176

• XtreemOS-MD support of main services (XtreemFS, AEM, CDA).

• Typical application support including Grid features (the application to use
will be IMA).

• Support of specific applications created inside XtreemOS project (the appli-
cation in this case will be JobMA).

• Performance of AEM and XtreemFS in XtreemOS-MD.

4.11.1.4 Features not to be Tested

• Mobility and behavior when connectivity is lost

• Resource sharing and context awareness support

These features will be tested on later versions of the software, as those are not
requirements of the basic version, but the XtreemOS-MD advanced version, cur-
rently being implemented. Other proposed requirements like Java or web service
support will not be tested, as they are not natively supported by the terminals
planned to be used for testing. Those requirements will be considered as not appli-
cable.

4.11.1.5 Overall Approach

The purpose of these tests is to evaluate the current version of Mobile-Device soft-
ware (1.0), provide feedback to developers, and improve the next version which
fulfills the requirements listed in XtreemOS deliverable D4.2.5

We will thus focus on evaluating the higher-level design, features and us-
ability of each module rather than bugs in the implementation. Some additional
performance tests will be executed, in order to compare XtreemOS-MD and the
XtreemOS PC client version and also to demonstrate the benefits of the use of Grid
services from mobile devices respect to the alternative of not using a Grid (in this
case, there are no competitors to compare to, as the access to Grid services from
mobile devices, without using portal solutions, is something not covered yet in the
market)

The tests will be done on a Nokia N8x0 PDA and could also be passed on a PC
using Qemu to emulate an Angstrom platform, also supported by XtreemOS-MD.
Installation of XtreemOS-MD versions is really simple, so there is no need to de-
scribe the installation procedure here. Nevertheless, in case of any modification
needed with respect to the installation instructions supplied with the software, a
detailed description reporting those modifications will be included in the test doc-
umentation.

177

The test preparation requires the following tasks:

1. Install the software XtreemOS-MD on the terminal.

2. Install the IMA and JobMA applications that will be used for testing purpose.

Once installed the mentioned software, each test then consists of performing
the test, and documenting the full procedure. The individual tests can be executed
in any order, but the order of tasks during preparation and during execution of tests
must be as given here.

4.11.2 Test Unit 01: XtreemOS support on ARM architectures

4.11.2.1 Responsibilities

WP2.3 and WP3.6, and TID as partner, are responsible for definition and execution
of this test

4.11.2.2 Test Specification

Test Items
XtreemOS-MD software is in this case the item tested. XtreemOS-MD release
1.0 could be downloaded from the project repository (an advanced version will be
released together with XtreemOS release 2.1). The users guide and installation
guide could also be found in the project repository.

Features to be Tested
This test case tests the support of XtreemOS-MD on ARM architectures, the typical
used for PDAs and mobile phones. The test will basically verify the installation,
configuration and first use of XtreemOS-MD in one initially-clean MD.

Approach Refinements

The goal of this test is to verify that XtreemOS-MD software is supported by
ARM architecture devices. A Nokia N800 will be used for this test. No need of
special software pre-installed in the Nokia N800. The installation of XtreemOS-
MD will be part of the test, so this test case is also valid for installation testing
purposes.

The input of this test case consists of the XtreemOS-MD software that will be
installed in the mobile device.

A command uname -awill be executed as part of the test and the output should
be the usual one showing info about the system where the request is being executed
(name, OS, etc.). When executing this first command, the password of the user
configured by the installation will be requested.

178

Then the command date will be executed and the current date and time will
be shown. In this case, the user’s password will not be requested again, as the
certificate should have been already created in the previous step.

4.11.2.3 Test Results

The procedure was run following this procedure:

Installation

1. First, we should open the website where XtreemOS-MD software can be
downloaded.

2. Then, we will proceed to the download and installation of XtreemOS-MD
just clicking on the correspondent link.

Set Up No special configuration after the installation is needed.

Start The test is run by typing the command uname -a and then the command
date. In the first operation, the user’s password should be requested to generate
a new certificate. For the second operation, it should do it directly without any
furthers user’s interaction, as the credential should be already stored.

Procedure Results The installation of XtreemOS-MD from the web server has
been done succesfully. Then we have verified the installation following the proce-
dure steps described previously and the commands have been executed correctly,
requesting the user’s password to generate the certificate just the first time.

4.11.3 Test Unit 02: VO support by XtreemOS-MD

4.11.3.1 Responsibilities

WP2.3 and TID as partner, are responsible for definition and execution of this test

4.11.3.2 Test Specification

Test Items
XtreemOS-MD software is in this case the item tested. XtreemOS-MD release
1.0 could be downloaded from the project repository (an advanced version will be
released together with XtreemOS release 2.1). The users guide and installation
guide could also be found in the project repository.

Features to be Tested
This test case will test the management of VOs using VOLife from the mobile
device. Only authorized users shall be able to manage VOs from MDs.

179

Approach Refinements
The goal of this test is to verify that it’s possible to manage VOs using VOLife
from a mobile devices. A Nokia N800 with XtreemOS-MD pre-installed will be
used for this test.

This test requires as input a user certificate to authenticate the user in the Grid
and the output of the test will be the VOLife GUI for managing the VOs.

4.11.3.3 Test Results

The procedure was run following this procedure:

Installation XtreemOS-MD software should be previously installed in the termi-
nal used, but no other installation is requiered for this test case.

Set Up No special configuration needed.

Start The test is run by connnecting to VOLife web interface from the mobile
device (the Nokia N800 in this case), trying the different links and verifying that
the GUI is correctly displayed in the terminal screen.

Procedure Results The pre-installation of XtreemOS-MD was done success-
fully. The navigation throw VOLife GUI from the Nokia N800 has been successful,
and the interface is correctly displayed and adapted to the device screen.

4.11.4 Test Unit 03: Lightweight security for mobile devices

4.11.4.1 Responsibilities

WP2.3, WP3.6, WP4.2 and TID as partner, are responsible for definition and exe-
cution of this test.

4.11.4.2 Test Specification

XtreemOS-MD software is in this case the item tested. XtreemOS-MD release 1.0
could be downloaded from the project repository (an advanced version will be re-
leased together with XtreemOS release 2.1). The users guide and installation guide
could also be found in the project repository. Also CDAProxy, included as part of
XtreemOS release (For more information: https://gforge.inria.fr/plugins/scmsvn
/viewcvs.php/*checkout*/distribu
tion-mobile/doc/XtreemOSMDUserDocumentation.pdf?rev=2712&root=xtreemos
), will be needed in this test.

180

Features to be Tested
This test case tests the benefits of using a CDAProxy to obtain a new certificate
instead of doing it directly contacting the CDAServer. This is related with the
requirement of having some light security on Mobile Devices, taking into account
their CPU limitations and the high cost of resources associated to the processes
for generating a certificate. This requirement is fulfilled with the inclusion of the
CDA-Proxy in the XtreemOS-MD distribution.

The test will compare the time spent for the operation of generating a new
certificate when using CDAProxy and when contacting directly the CDA.

Approach Refinements
The goal of this test is to demonstrate the benefits of CDAProxy. A Nokia N800
with XtreemOS-MD pre-installed will be used for this test.

There are no special input parameters needed and the output of the test will be
the time spent in generating a certificate in each case.

4.11.4.3 Test Results

The test was run following this procedure:

Installation XtreemOS-MD software should be previously installed in the termi-
nal used, but no other installation is requiered for this test case.

Set Up No special configuration needed.

Start Configure XtreemOS-MD to contact directly the CDA server. Obtain a
new certificate and take note of the time spent in the operation. Repeat the process
at least 3 times to obtain an average time spent on the operation.

Configure XtreemOS-MD to contact the CDA through a CDAProxy that will
be already running. Obtain a new certificate and take note of the time spent in the
operation. Repeat the process at least 3 times to obtain an average time spent on
the operation.

Compare the average times in each case.

Procedure Results The commands used for measuring the time for obtaining
a new credential contacting directly with the CDA or through the CDAProxy are
time xos_getdumpcred cdabench and time xos_getdumpcred
cdaproxybench respectively.

We have executed 3 series of requests executing the commands in the previous
order. It’s important to alternate the obtainment of the credential with and without
the CDAProxy, in order to force the generation of a new credential each time (as
the command xos_getdumpcred will obtain the credential from the cache if
possible, which is not what we want to test).

181

The tests have been executed directly on a Nokia N800 and also on a PC run-
ning Qemu to emulate Angstrom, also supported by XtreemOS-MD.

An additional set of tests from the Nokia N800 have been carried out, to obtain
a value significant from a statistic point of view

The results obtained are shown in the next figures, where a table shows the
different times for obtaining the credential in each test, including also a graphic to
make more clear the advantage of using CDAProxy, reducing the average time for
obtaining the credential from more than 6 seconds (9 seconds in Angstrom over
Qemu) to around just one second.

Additionally, there are the figure 4.69 and 4.70 including a graphical represen-
tation of a large series of tests comparing the time for obtaining a credential with
and without the CDAProxy from the Nokia N800

Figure 4.69: CDAProxy comparison

4.11.5 Test Unit 04: Performance comparison with XtreemOS PC fla-
vor and no-Grid solutions

4.11.5.1 Responsibilities

WP2.3 and WP3.6, and TID as partner, are responsible for definition and execution
of this test

4.11.5.2 Test Specification

Test Items
XtreemOS-MD software is in this case the item tested. XtreemOS-MD release
1.0 could be downloaded from the project repository (an advanced version will be
released together with XtreemOS release 2.1). The users guide and installation

182

Figure 4.70: CDAProxy comparison results

guide could also be found in the project repository.
For this test, XtreemOS-MD will be installed in a mobile device: Nokia N800.
Also, a XtreemOS PC client and a Core included as part of XtreemOS 1.0 release,
will be needed for this test. Both nodes (core and client) are running as VMware
virtual machines on top of a Pentium IV machine.

Features to be Tested
This test case checks the performance of XtreemOS-MD compared to XtreemOS
PC flavor and direct operation on the MD. Some commands will be executed
from an MD using and not using XtreemOS-MD and from a PC connecting to
a XtreemOS node respectively. The same node will be used for every subtest.
Those tests will be based on some simple jobs executions (to test AEM) and file
system operations (to test XtreemFS), and finally a video conversion job, allowing
us to test simultaneously the performance of AEM + XtreemFS in a more useful
scenario.

Approach Refinements
The goal of this test is to demonstrate the benefits of using the Grid through
XtreemOS-MD from a mobile device, and also the fact that the performance of
XtreemOS-MD as a client is similar to the one offered by the XtreemOS PC client.

Some scripts for executing a simple job and for executing usual file system
operations (writing and removing operations) will be used for these tests. Finally,
some video files of different size will be used as input for the final test about video
conversion.

183

The time spent for the different operations (simple job execution and video
conversion), the number of bytes written for writing test and the number of files
created and removed in a concrete period of time will be the output of each of these
subtests, generating finally some comparison graphics. The shown data in these
graphics are the result of a statistic process consists of average of the obtained
values in different repetitions (10) for each subtests.

4.11.5.3 Test Results

The test was run following this procedure:

Installation
XtreemOS-MD software should be previously installed on the Nokia terminal used,
and also an XtreemPS client on a PC.

Start
The command used for these tests is xsub -vf conversion.jsdl, where
conversion.jsdl defines a job that converts an AVI video stored in the XtreemFS
and stored also in the XtreemFS the resulting converted video (optimized for a
Nokia N800 terminal).
We will convert 5 video files between 3 and 30 MB. The tests will be executed first
in the PC (testing performance in XtreemOS-PC flavour) and then on the Nokia
(XtreemOS-MD client). In both cases the same node in the Grid will be used for
executing the conversion.

Procedure Results
The results obtained are presented in the figure 4.71, where a graphic shows the dif-
ferent times for video conversion depending on the size of the input file, it shows
clearly that the result are similar using XtreemOS and XtreemOS-MD. The ob-
tained results take into consideration the conversion time plus the transfer to the
XtreemFS volume of the user. It serves us to conclude that the performance of
AEM and XtreemFS is independent of the client used, either it’s XtreemOS or
XtreemOS-MD.

• Nokia label identifies the data set related to the video conversion on a Nokia
device directly (without any XtreemOS flavor installed) using its own file
system and processor.

• XOS-PC label identifies the data set related to the video conversion using
the Grid through XtreemOS client(PC flavour)

• XOS-MD label identifies the data set related to the video conversion using
the Grid through XtreemOS-MD client installed on a Nokia device.

184

Figure 4.71: Video conversion performance

Anomalous Events
It seems that XtreemFS is a bit unstable in XtreemOS-MD 1.0, the version used
for these tests, as there were some problems forcing us to restart the system when
converting very heavy video files.

File creation performance
We will execute a bash script creates empty files in the XtreemFS volume. The test
will be executed first in the PC (testing performance in XtreemOS-PC flavour) and
then on the Nokia (XtreemOS-MD client). In both cases the same node in the Grid
will be used for executing the test. Moreover, the test will be repeated on the Nokia
device without XtreemOS in order to get the performance of the Nokia native file
system and to compare it with the two previous cases. The results are shown in the
figure 4.72

• Nokia label identifies the data set related to execution of the test on a Nokia
device directly (without any XtreemOS flavor installed) using its own file
system.

• XOS-PC label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS client(PC flavour)

• XOS-MD label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS-MD client installed on a Nokia device.

File removal performance
We will execute a bash script removes all empty files (created in the previous sub-

185

Figure 4.72: File creation performance

test) in the XtreemFS volume. The test will be executed first in the PC (testing per-
formance in XtreemOS-PC flavour) and then on the Nokia (XtreemOS-MD client).
In both cases the same node in the Grid will be used for executing the test. More-
over, the test will be repeated on the Nokia device without XtreemOS in order to
get the performance of the Nokia native file system and to compare it with the two
previous cases. The results are shown in the figure 4.73

• Nokia label identifies the data set related to execution of the test on a Nokia
device directly (without any XtreemOS flavor installed) using its own file
system.

• XOS-PC label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS client(PC flavour).

• XOS-MD label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS-MD client installed on a Nokia device.

Writing operation performance We will execute a bash script writes informa-
tion (zeros), in a text file of the XtreemFS volume, in a concrete period of time.
The test will be executed first in the PC (testing performance in XtreemOS-PC
flavour) and then on the Nokia (XtreemOS-MD client). In both cases the same
node in the Grid will be used for executing the conversion. Moreover, the test will

186

Figure 4.73: File removal performance

be repeated on the Nokia device without XtreemOS in order to get the performance
of the Nokia native file system and to compare it with the two previous cases.

The results are shown in the figure 4.74

• Nokia label identifies the data set related to execution of the test on a Nokia
device directly (without any XtreemOS flavor installed) using its own file
system.

• XOS-PC label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS client(PC flavour).

• XOS-MD label identifies the data set related to execution of the test using the
XtreemFS system through XtreemOS-MD client installed on a Nokia device.

Note that the shown data in these graphics are the result of a statistic pro-
cess consists of average of the obtained values in different repetitions(10) for
each subtests.

Each previous subtests result serves us to conclude that the performance of
AEM and XtreemFS is independent of the client used, either it’s XtreemOS or
XtreemOS-MD. In addition, the inclusion of the executed tests directly in the Nokia
and their results permit us to remark the benefits (in terms of performance) of
using grid solutions, as XtreemOS-MD, instead of native executions (directly in
the Nokia hardware) for operations on the mobile.

187

Figure 4.74: Writing operation performance

4.11.6 Test Unit 05: Creation of new jobs using JobMA application

4.11.6.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.6.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the creation of new jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to create new jobs using the
GUI offered by the JobMA application. A Nokia N800 with XtreemOS-MD and
JobMA applications pre-installed will be used for this test.

This test requires a JSDL file where a job (that will be created) is described.

188

We will check that the JobMA GUI works correctly and that it’s possible to
load JSDL files from JobMA.

4.11.6.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start Once JobMA application is installed, the next step is to start the JobMA.
To do this, type the next sentence in a X-Terminal:

jobma

A new window will appear in the terminal, requesting the CDA password,
which the user has in the VOlife. Then, the user has to click on the "OK" but-
ton in this window to send the password.

After introducing the password, the JobMA user interface will appear on the
X-terminal (not needing to load manually the certificate in this version)

Load jsdl It’s needed to load the job that the user wants to create. This job should
be in a .jsdl file and, to load it, is necessary to select the "File" tab in the menu and
then click on the "Open JSDL file..." option.

A new window will appear, where the user has to browse to select the job and,
after clicking on the "Open" button, a new message will appear at the bottom of
the JobMA window informing that the new job has been created automatically if
the load is successful.

Procedure Results The execution of this test was successful. The JobMA GUI
was correctly presented and a JSDL file was loaded using it.

189

4.11.7 Test Unit 06: Defining new jobs using JobMA application

4.11.7.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.7.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the definition of new jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to define new jobs using the
GUI offered by the JobMA application. A Nokia N800 with XtreemOS-MD and
JobMA applications pre-installed will be used for this test.

This test requires that the user introduces some fields to generate the JSDL file
that will create the job

We will check that the JobMA GUI works correctly and that the .jsdl file is au-
tomatically created when the job is defined filling the needed fields in the window
opened by the JobMA GUI.

190

4.11.7.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Define job Once installed XtreemOS-MD and JobMA application in our mobile
device, and after launching this JobMA application, user can define a job that will
be created. To do this, user has to do click on the "File" tab in the top menu and
then on the "Define job" option. After this, a new window will appear requesting
three fields to fill:

• Command: is the name of the job we want to create. E.g: "cal" is the com-
mand to create a calendar.

• Parameters: is the specification that we want to add to the job. E.g: "-3" in
the previous command will show the three last months.

• Output file: is the file in which the job will be stored once it will be created
and run.

After clicking on the "OK" button, the job will be created and a new message
will appear at the bottom of this JobMA window ("New job created"), also the
column "State" is set to "Created", explaining that the job has been created succes-
fully.

Procedure Results The execution of this test was successful. The JobMA GUI
was correctly presented and a JSDL file was loaded using it.

191

4.11.8 Test Unit 07: Using JobMA for monitoring jobs

4.11.8.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.8.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the monitoring of jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to monitor the current jobs
using the GUI offered by the JobMA application. A Nokia N800 with XtreemOS-
MD and JobMA applications pre-installed will be used for this test.

We will check that the JobMA GUI works and that the list of works in correctly
shown.

4.11.8.3 Test Results

The test was run following this procedure:

192

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start Once installed XtreemOS-MD and JobMA application in our mobile de-
vice, and after launching this JobMA application, user can consult all the existing
jobs in the Grid. To do this, user has to do click on the "Start" button in the top
right corner of the JobMA window. Note that in the JobMA window will appear
a message at the bottom explaining that in order to monitor jobs, user has to press
"Start" button.

After clicking on this button, a job list will be shown, displayed in rows, one
for each job. The number of columns can be different depending on the options
selected by the user. This is, in the "View" tab in the menu, users can select the
information about the job that they want to know. In this tab, users can consult the
"Job ID", "Command", "Name", "Owner", "State", "Sub. time" and the "Nodes"
related to each job.

The "Start" button is as well replaced by a "Stop" button, that will serve to stop
monitoring the jobs.

Procedure Results The execution of this test was successful. The list of jobs
was correctly presented using the JobMA GUI.

193

4.11.9 Test Unit 08: Using JobMA for viewing info about a job

4.11.9.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.9.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the “view info” feature offered by the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to view additional info
about a concrete job using the GUI offered by the JobMA application. A Nokia
N800 with XtreemOS-MD and JobMA applications pre-installed will be used for
this test.

We will check that the JobMA GUI works and that the job additional info is
presented when requested.

4.11.9.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start Once installed XtreemOS-MD and JobMA application in our mobile de-
vice, after launching this JobMA application, user has to create a job to view info
about it. This can be done from two different ways, loading a JSDL file or defining
a job.

After the job is created, user can consult all the information about it doing
double click on the created job or clicking on the "Action" tab in the top menu and
then in the "View info" option in it. After doing this, a new window will appear
in which some info about the job is shown, like "Job ID", "Command", "Name",
"Owner", "Status", "Sub.time" or "Node".

194

Procedure Results The execution of this test was successful. The additional info
related to a job correctly presented using the JobMA GUI.

4.11.10 Test Unit 09: Using JobMA for running a job

4.11.10.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.10.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the execution of jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to run jobs using the GUI
offered by the JobMA application. A Nokia N800 with XtreemOS-MD and JobMA
applications pre-installed will be used for this test.

An already created job is needed, as we will check that the JobMA GUI works
and that the job is correctly executed.

195

4.11.10.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start Once installed XtreemOS-MD and JobMA application in our mobile de-
vice, after launching this JobMA application and after creating a job, user has to
run it to get the expected result.

The first step to do this is selecting the job the user wants to run and then
clicking on the "Action" tab in the top menu and then in the "Run" option in it.
After doing this, column "State" change from the previous state to "Running" and a
new message will appear at the bottom of this JobMA window ("New job running")
explaining that we have run a created job.

If everything goes OK, a new file will be created in the XtreemFS with the
result of the execution.

Procedure Results The execution of this test was successful. The additional info
related to a job correctly presented using the JobMA GUI.

196

4.11.11 Test Unit 10: Using JobMA to suspend running a job

4.11.11.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.11.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the suspension of running jobs using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to suspend a running job
using the GUI offered by the JobMA application. A Nokia N800 with XtreemOS-
MD and JobMA applications pre-installed will be used for this test.

An already running job is needed, as we will check that the JobMA GUI works
and that the job is correctly suspended.

4.11.11.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start After launching JobMA application and clicking on the "Start" button in
the top right corner of this application, all the users jobs will be displayed. One
of the actions that the user can do with these jobs, but only with active jobs, is to
suspend them. This action could be done from the "Suspend" option in the "Action"
tab of the menu of the JobMA. After clicking on this option, "State" column of the
job will change to "SUSPEND" instead of the previous state.

Procedure Results The execution of this test was successful and the running job
was correctly suspended.

197

4.11.12 Test Unit 11: Using JobMA to resume a suspended job

4.11.12.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.12.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the feature of resuming a suspended job using the JobMA ap-
plication

Approach Refinements
The goal of this test is to demonstrate that it’s possible to resume a suspended job
using the GUI offered by the JobMA application. A Nokia N800 with XtreemOS-
MD and JobMA applications pre-installed will be used for this test.

An already suspended job is needed, as we will check that the JobMA GUI
works and that the job is correctly resumed.

4.11.12.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start After launching JobMA application and clicking on the "Start" button in
the top right corner of this application, all the users jobs will be displayed. One
of the actions that the user can do with these jobs, but only with jobs that have
been suspended or stopped, is to resume them. This action could be done thanks
to the "Resume" option in the "Action" tab in the menu of the JobMA application
window. After clicking on this option, "State" column of the job will change to
"RUNNING" instead of the previous state in which the job was.

198

Procedure Results The execution of this test was successful and the suspended
job was correctly resumed.

4.11.13 Test Unit 12: Using JobMA to cancel a job

4.11.13.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.13.2 Test Specification

Test Items
JobMA application in in this case the item tested. As the rest of the reference
applications, it’s not included at this moment as part of any XtreemOS release, but,
it’s possible to be downloaded from the project repository.

Features to be Tested
This test case tests the cancellation of a job using the JobMA application

Approach Refinements
The goal of this test is to demonstrate that it’s possible to cancel an existing job (in-
dependently of its current status) using the GUI offered by the JobMA application.
A Nokia N800 with XtreemOS-MD and JobMA applications pre-installed will be
used for this test.

An already existing job is needed, as we will check that the JobMA GUI works
and that the job is correctly canceled.

4.11.13.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, JobMA
application should also be installed in the terminal following the installation and
configuration instructions.

Set Up No special configuration after the installation is needed.

Start After launching JobMA application and clicking on the "Start" button in
the top right corner of this application, all the users jobs will be displayed. One
of the actions that the user can do with these jobs (active, stopped, suspended and
resumed), is cancel them. This action could be done thanks to the "Cancel" option
in the "Action" tab in the menu of the JobMA application window. After clicking
on this option, the job will appeared as "Canceled" in the list of jobs shown.

199

Procedure Results The execution of this test was successful and the job was
correctly canceled.

4.11.14 Test Unit 13: Communications using IMA application

4.11.14.1 Responsibilities

WP4.2, and TID as partner, are responsible for definition and execution of this test

4.11.14.2 Test Specification

Test Items
IMA application, based on the well-known Pidgin messaging application, is in this
case the item tested. As the rest of the reference applications, it’s not included at
this moment as part of any XtreemOS release, but, it’s possible to be downloaded
from the project repository.

Features to be Tested
This test case tests the communications using the IMA application

Approach Refinements
The goal of this test is to demonstrate that is possible to reuse common applications,
not coming directly from XtreemOS project, let’s say, “native” applications, even if
enhanced to make use of the Grid capabilities. A Nokia N800 with XtreemOS-MD
and IMA applications pre-installed will be used for this test.

A jabber account is needed, and we will check that the GUI and behavior of
the IMA application is the usual one out of the XtreemOS world.

4.11.14.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, IMA ap-
plication should also be installed in the terminal following the installation and con-
figuration instructions.

Set Up Log in in the Grid with a user/password valid.

Start Launch the IMA application, connect using a jabber account, and check
that it’s possible to receive messages, create conversations, etc. let’s say, check that
the messaging application behave in the same way that it will do out of XtreemOS-
MD.

200

Procedure Results The whole test was executed successfully, connecting with a
jabber account and being able to start a conversation with a contact, to exchange
messages, etc.

4.11.15 Test Unit 14: IMA and XtreemFS integration

4.11.15.1 Responsibilities

WP3.6 and WP4.2, and TID as partner, are responsible for definition and execution
of this test

4.11.15.2 Test Specification

IMA application, based on the well-known Pidgin messaging application, is in this
case the item tested. As the rest of the reference applications, it’s not included at
this moment as part of any XtreemOS release, but, it’s possible to be downloaded
from the project repository.

Features to be Tested
This test case tests the integration of IMA application and XtreemFS

Approach Refinements
The goal of this test is to demonstrate that it’s possible to integrate existing appli-
cations with the Grid services. In this case the integration of the IMA application
with the XtreemFS service, so that the configuration of the application and the
conversation logs can be stored in the Grid, in the XtreemFS. 2 Nokia N800 with
XtreemOS-MD and IMA applications pre-installed will be used for this test.

A jabber account is needed. We will check that the configuration of the appli-
cation (concretely the jabber account configured in the first terminal) is available
when launching the application from the second terminal and the logs of the con-
versations kept using the first terminal are available from the second terminal.

4.11.15.3 Test Results

The test was run following this procedure:

Installation Once installed XtreemOS-MD on the mobile device used, IMA ap-
plication should also be installed in the terminal following the installation and con-
figuration instructions.

Set Up Log in in the Grid with a user/password valid.

201

Start The user will start the IMA apllication and will configure a new jabber ac-
count. Then, he will connect using the new account and will launch a conversation
with one of the contacts of his contacts. Finally he will log out.

Then he will use a different Nokia N8x0 device, also provided with XtreemOS-
MD and IMA application. After logging in the Grid with the same username used
previously, he will launch the IMA application. The jabber account previously
configured in the first terminal should be already available. The user will connect
using that account, and he will check the logs of the conversations. The previous
conversation from the first terminal should appear in the logs.

Procedure Results The test was executed succesfully. After moving to a differ-
ent device (the second Nokia N800), we had available the account created from the
first terminal and once connected we could see the logs of the conversations kept
with this first terminal.

4.11.16 Test Summary Report

4.11.16.1 Summary of Tests and Results

The tests executed have been passed without major problems. The functionalities
promised by XtreemOS-MD, IMA and JobMA applications have been verified and
from the performance tests we can conclude that the performance of XtreemOS-
MD as a Grid client executed from a mobile device like a Nokia N800 is similar
to the one achieved by the XtreemOS PC client. On the other hand, execution of
jobs in the Grid and even access to the Grid file system are faster than the local
execution or local file system access to the terminal, making clear the benefits of

202

using the Grid from a mobile device (specially when thinklng on scenarios like the
video conversion one).

4.11.16.2 Conclusion and Directions for Future Work

XtreemOS-MD advanced version, including support for smartphones and some ad-
ditional features where the context awareness and resource sharing are the most
important ones, is currently under development. This new release will extend
XtreemOS-MD not only in the number of devices supported, but also on the scope
of the software, as the mobile device will become a light resource of the Grid and
not just a mere client. New tests will be designed and executed to evaluate the new
functionalities, specially concerning the “offline-mode” operation and the resource
sharing from the mobile device.

203

Chapter 5

Comparison of XtreemOS with
other Grid Solutions

This chapter presents the comparison of XtreemOS with alternate Grid solutions.
The subsequent sections start with an overview of the previous and current assess-
ments followed by a theorectical comparison of XtreemOS with a variety of other
Grid middleware solutions and Grid operating systems. Finally, a summary of the
comparative experiments is given.

5.1 Overview

The comparison between XtreemOS and other Grid approaches is conducted in
two ways:

1. Theoretical comparison (see Section 5.2)

2. Experimental comparison (see Section 5.3)

The theoretical comparison assesses the various appproaches first from a gen-
eral perspective, then XtreemOS is contrasted to various Grid middlware solutions
and related Grid operating systems.

The experimental comparison summarizes the results of the comparative exper-
iments with 1) XtreemOS-AEM and Globus-GRAM and 2) XtreemOS-DTokens
and Globus-GSI. Finally, the setup of currently executed application-centric large-
scale tests (on Grid5000) with Galeb (from XLAB) executed on XtreemOS and
Globus GT4.0 is described.

5.2 Theoretical Comparison

Table 5.1 compares the usage characteristics and the properties of classical Grid
computing tools with the extended scope of XtreemOS. It is differentiated between

204

application landscape, reach, job characteristics, data characteristics, performance
requirements, Service Level Agreements, legacy and main drivers.

Table 5.1: Comparison between classical Grid Computing tools
and the extended scope of XtreemOS

Classical Grid Infrastructures Extended Scope of
XtreemOS

application
landscape • automated batch pro-

cessing
• file-based

• multi-tier solutions
• database

reach
• targeting the world-

wide thing
• many administrative

domains within a
single administra-
tive super-domain
(hosting)

• dynamic VOs across
administrative do-
mains

job charac-
teristics • stateless batch jobs

• short deployment
times (< secs)

• limited execution
times

• highly mobile

• stateful sessions, ser-
vices and jobs

• long deployment times
(mins, hrs)

• possibly unlimited ex-
ecution time

• restricted mobil-
ity(licensing, sessions)

data charac-
teristics • relatively flat data

structures
• no transactional data

• large amounts of
highly structured data

• transactional data

performance
require-
ments

• high throughput
• high resource utiliza-

tion

• good response time for
all interactive requests

• high resource utiliza-
tion

205

Service
Level
Agreements

• performance isolation
of individual applica-
tions

• performance isolation
across applications,
middleware and DB

legacy
• do not care about

legacy
• legacy support is a

must

main drivers
• get the compute power
• get it done at al-

l/quicker

• improve administrative
flexibility

• get it done efficiently
(cost vs. customer-
specific quality)

The computation problems, which are typically tackled with classical Grid
tools require large amounts of either computation time or data, and they can be
reduced into several small parallel processes with only little inter-process com-
munication and a limited execution time (as opposed e.g. to interactive applica-
tions). The majority of the computations can be characterized as stateless batch
jobs mainly performing file-based input and output operations. Such jobs can be
deployed in a relatively short time as they are submitted in a self-contained man-
ner along with all input data files and executables required. Usually, the jobs do
not depend on locally available license files or user interactions and are therefore
highly mobile.

The applications characterized mainly stem from the scientific computing do-
main. XtreemOS tries to also address far more advanced requirements of applica-
tions from the business domain, where solutions often possess a multi-tier archi-
tecture and interact with a (normally central) database. Applications are executed
within a company consisting of many administrative domains belonging to a single
administrative super-domain. Here, the dynamic VO support offered by XtreemOS
targets business requirements and also allows to control VOs across administrative
domains. As mentioned above, to address business needs the Grid infrastructure
must be able to deal with databases and all related requirements. Thus, it is not
possible to hide the transport of data to the executing node by prefetching all data
before the job execution starts. In business scenarios, small sets of data must be
loaded from and stored to a database with random access patterns. This does not
only affect the execution time of the application itself, but also the scheduling de-
cisions as the node that executes a certain application cannot be allocated too far
from the database. Depending on its size the database remains static at a certain
location. Furthermore, many business applications are interactive, i.e. interaction

206

takes places within open and stateful sessions, small data packets are exchanged
frequently with the database, and no delays in data transmissions can be tolerated.
Application components can be migrated but the interactive session must remain
open.

Data management in classical Grid environments focuses on data modeling,
data movement, and handling of distributed and replicated files. Typically, data
is modeled in comparatively flat data structures, and data access is performed in
a non-transactional fashion. Resource management puts the main emphasis on
high throughput and high resource utilization whereas low response times are often
considered as less important. Security issues are commonly of minor interest since
confidentiality and integrity of data are not critical or computation resources and
networks are assigned exclusively to scientific project members.

XtreemOS, however, aims at the far more challenging security constraints as
imposed by business applications. Thus, the execution of the application itself must
be secured and also all the related data before, during, and after the processing.
Such security constraints also limit the allocation possibilities and the mobility of
data. XtreemOS allows to manage secured isolation on shared resources where
the degree and kind of isolation can be customized by the user ranging from name
space separation, container-based isolation up to physical isolation.

The following sections re-capture, update and extend the initial comparison
discussed in the XtreemOS Vision Paper [13]

5.2.1 Comparison with Grid Middleware

Figure 5.1 gives an overview of a classical Grid architecture consisting of multiple
layers and middleware levels [2].

The fabric level is composed of networked and distributed resources ranging
from computers, networks, storage systems, data sources to scientific instruments.
The computational resources can be very diverse like simple PCs, clusters or super-
computers. Local resource managers control the access to and provide information
about operating system, queuing system libraries and application or protocols used.

The core Grid middleware level includes services for remote process manage-
ment, co-allocation of resources, storage access, registration and discovery of in-
formation, security and QoS-aspects like resource reservation and trading. Such
services hide he complexity and heterogeneity of the fabric level and provide a
consistent interface for the access to distributed resources.

On the user level, the middleware utilizes these interfaces in order to deliver
higher level abstractions and services including e.g. application development and
programming tools, resource brokers for resources management and scheduling of
tasks to be executed on global resources.

Finally, applications and portals make use of programming languages and util-
ities. Grid portals offer Web-enabled application services which allows the user to
submit jobs and receive results from applications running on the web.

207

Fabric

scientific engineering collaboration problem solvers web applications

Applications and portals

languages and compilers libraries web tools

resource management, selection and aggregation

debuggers monitors

Develepment enviroments and tools

data processsecurity information trading QoS

distributed resources coupling services

security layer

operating systems queuing systems libraries and appl. kernels internet protocols

local resource manager

networkscomputers storage systems data sources scientific instruments

networked resources across organizations

Applications

User Level Middleware

Core Middleware

Figure 5.1: Layers and components of a typical Grid environment (based on [2])

XtreemOS primarily deflates the core middleware level into the operating sys-
tem which in turn is extended by kernel patches or kernel modules. These ex-
tensions represent services on the foundation layer (XtreemOS-F) providing for a
unified access to physical nodes through the node-level VO concept, and on the
grid layer (XtreemOS-G) offering higher level features for highly available and
scalable services, data management, application execution management and secu-
rity. Unified access to these services can be provided by the XOSAGA interface.
Application users and developers can use XtreemOS via six different ways: ex-
ecuting legacy application by issuing the familiar Linux commands, submission
into a VO with the ssh-xos command, submission through XOSAGA, submission
through AEM with xsub or submission though AEM using the SAGA AEM bind-
ings. The variety of interfaces makes the usage of XtreemOS very versatile for
different needs of the various applications. A Grid architecture as shown in 5.1
consists of many layers and tools which are often not well-integrated and a lot of
information is often lost on the way through the sub-subsystems or correlation is
lost which renders usage of such information very difficult. For instance, in such
Grid systems it may be difficult to determine why an application failed and on
which resources this application was executed actually. XtreemOS aims at inte-
grating all services in a single OS which shall facilitate usage and give the user
an execution environment with rich monitoring information and a powerful exe-
cution control. The classical approach also implies many scheduling levels which

208

may not be sufficiently coordinated such that decision made on one level may con-
tradict the decisions on another level. XtreemOS aims at reducing the amount of
scheduling levels which should result in overall more efficient execution sched-
ules. Finally, the classical multi-layered approach complicates accurate account-
ing, whereas XtreemOS will provide for detailed accounting information of the
resources used which is a more useful basis for billing or compensation.

Globus [16] offers an open source software toolkit used to construct compu-
tational Grids and Grid-based applications. Amongst others Globus provides ser-
vices for job submission, file staging, replica location and management, publishing
and querying of resource information etc. Installation, management and usage of
Globus is comparatively difficult due to the vast number of services and due to
the lack of consistent interfaces and the lack of a unifying model of the interaction
between services. Such issues must be treated by the programmer who spends valu-
able time on basic Grid functions thereby increasing development cost needlessly.
XtreemOS has been built with a completely different goal in mind to develop a
Grid-enabled OS. XtreemOS shall remove the burden from the application pro-
grammer who can rely on the native services of the operating system for tasks like
resource or process management. After the installation of XtreemOS on a machine,
the machine is ready to join a VO without the need to install additional software.
Nevertheless, modifications to the underlying OS are done carefully in order to
maintain backward compatibility with standard Linux. The services provided by
XtreemOS are roughly equivalent to Globus, however, they are offered in a more
consistent and integrated manner. For example, data management in XtreemOS
is based on the Grid file system XtreemFS which makes data available through
a POSIX API in a transparent manner and avoids the need to move files explic-
itly. Also file replication is supported to improve performance and fault tolerance.
One further major advantage of XtreemOS is the support of interactive applications
whereas Globus executes application in batch mode. Further large production Grid
system are built on Globus including, e.g. gLite [7] and the EU-project EGEE [6].

Zorilla [15] is a java-based Grid middleware which combines locality-aware
P2P resource coallocation with a scheduling system. A further P2P middleware
solution is Vishwa [37], which provides two layers, a structured and an unstruc-
tered layer. The structured layer is responsible for reconfiguring applications for
masking failures. The unstructured layer reconfigures applications to adapt them to
varying load. Common to these P2P middleware solution is that they do not offer
the complete software stack which would support all needed functionalities.

5.2.2 Comparison with other Grid Operating Systems

The first comparison shall be done with Legion [19] which is an object-based wide-
area operating system. Legion aims to be a virtual operating system (OS) for dis-
tributed resources and delivers a uniform API and object space for users and devel-
opers. Even though Legion exposes itself like an OS it still is a middleware running
on top of the OS hosting it. Furthermore, Legion can execute of various different

209

operating systems running on heterogeneous resources. Also XtreemOS provides a
common API (POSIX API), however, all resources must run XtreemOS with one of
the three different flavors: for PCs, clusters or mobile devices. Interoperability and
homogeneous programmability is offered by the XOSAGA interface. XtreemOS
and Legion also have several requirements in common with respect to security ser-
vices, global name spaces, ease of programming, interactivity, fault tolerance, per-
sistence, dynamicity, scalability and autonomy of sites. Different approaches are
followed regarding user and resource management. XtreemOS implements a native
support for Virtual Organizations (VOs) where users can be members of multiple
VOs, resources can be shared among multiple VOs with customizable mechanisms
for secure isolation. Legion supports the concept of autonomous domains manag-
ing their local users and resources. Larger systems can be created by combining
such domains where objects from one domain can call services of objects from
other domains.

Mosix2 [3] has many similarities with LinuxSSI, the cluster flavor of XtreemOS.
As management system Mosix2 targets high performance computing on Linux
clusters and multi-cluster organizational Grids. Both, Mosix2 and LinuxSSI virtu-
alize cluster nodes giving the impression of working with a single OS on a single
powerful machine. It is not required to modify applications, to link them to special
libraries, to copy files to remote nodes or to login to such nodes. The two oper-
ating system also share similar approaches to dynamic resource management and
automatic workload distribution. Opposed to Mosix, LinuxSSI is enabled with VO
support such that a cluster can join an XtreemOS Grid thereby appearing like a
large SMP node.

Also GridOS [34] is based on a Linux operating system extending it with fea-
tures of classical Grid middleware. It offers modules for communication, resource
management, process management, high performance I/O and a kernel ftp server
and client. These are basic functionalities integrated in the kernel which shall fa-
cilitate middleware support and also focuses on performance gains in data manage-
ment.

WebOS [42] provides services for resource discovery, global name spacing,
remote process execution, resource management, authentication and security. The
main difference to XtreemOS is that WebOS primarily aims at applications in wide-
area scenarios whereas XtreemOS also targets local or mixed scenarios and with
different flavors.

Globe [43] follows an approach similar to Legion as both are grid middle-
wares providing classes and objects to abstract from the host operating system and
the physical resources. Whereas Legion aims to be a virtual operating system for
Grids, Globe offers a distributed application environment.

9Grid [30] aims at extending the distributed operating system Plan 9 [36] into
the area of Grid Computing. Plan9 provides support for user authentication, re-
source discovery and data management in distributed environments. Whereas in
Plan9, administration is limited to a single domain, 9Grid also supports multi-
domain name spaces and remote authentication agents which resembles XtreemOS

210

managing multiple VOs on shared resources.
Running on Linux, Vigne [21] offers services for resource discovery, distributed

application management and automatic application life cycle management. Vigne
also aims at high scalability and transparency, however, it does not provide support
for VOs, security and no Grid file system.

5.3 Experimental Comparison

The following two sections describe the current status of the experimental compar-
isons between XtreemOS and Globus. A first set of experiments has been carried
out with the job submission and delegation features of XtreemOS and the Globus
Toolkit. Furthermore, the setup of a running application-centric comparison using
the Galeb application is described. Forthcoming evaluations will execute extended
scalability comparison tests on large scale systems.

5.3.1 Comparison of Job Submission and Delegation on Globus and
XtreemOS

Here the test results are briefly summarized. Detailed descriptions of the test spec-
ifications and interpretation of test results are given in sections 4.8.6 and 4.10.2. In
Section 4.8.6, job submission with XtreemOS through AEM was compared with
job submission with Globus using GRAM4. Here job submission through AEM
was more than six times faster than through GRAM4. One further test (see Section
4.10.2) examined the time needed for the creation and the verification of a token (in
the case of DTokens from XtreemOS) or of a proxy certificate (in the case of GSI
Proxy Certificates from Globus). The results demonstrate that DTokens provide
significant performance gains over the proxy certificate solution. They also show
that verification cost involved in both solutions are significantly less than creation
cost. From a performance perspective, the results suggest that it is much more
affordable to employ highly secure cryptography keys in the DToken architecture
than in GSI.

5.3.2 Comparison of Galeb on Globus 4.0 and XtreemOS

Galeb is one of the applications that have been previously adapted to run on Globus
Toolkit 4.0 and have been or are being ported to XtreemOS in WP4.2. As such it
is an appropriate choice for comparison of these two Grid paradigms, particularly
because performance tests on Globus have also been performed in the past [28].
In this deliverable we will compare Globus and XtreemOS from the perspective of
the developers and users of Galeb.

211

5.3.2.1 Application Summary

Galeb is a tool to fit analytical functions to an arbitrary set of data, primarily devel-
oped for financial analysis. It constructs functions from the basic unary (log, exp,
sqrt) and binary operators (+, -, *, /). It uses the genetic algorithm from the GaLib
library1 to minimize the mean squared error of the fitted function.

From the developer’s aspect, Galeb’s computational core is a C++ library with
one public function whose parameters include the name of the input data file and
multiple genetic algorithm parameters (number of generations, mutation probabil-
ity etc).

Being based on a genetic algorithm, Galeb can be trivially parallelized in a
master-with-multiple-slaves fashion by simply splitting it into one or more inde-
pendent runs on each processor and finally selecting the best solution obtained.
While this approach is in general not an optimal parallelization of the genetic algo-
rithm, our tests have shown that it performs well in case of Galeb. It also requires
no communication apart from the initial input distribution and final collection of
results.

The command-line version of Galeb simply calls the library function with the
supplied parameters. This version has also been parallelized for SMP machines
using multiple processes communicating through System V IPC message queues.
The latter version has in the past been successfully run on LinuxSSI flavour of
XtreemOS, although with some problems related to checkpoint/restart and migra-
tion [10].

5.3.2.2 Porting to Globus

Galeb was ported to Globus Toolkit 4.0 following [38]. The computational core
was exposed as a grid service (GS), which has to be deployed on all nodes con-
tributing to the calculation. An alternative approach would be to install the com-
mandline version of Galeb to all nodes and submit jobs running it, as described in
[17]. Both cited tutorials suggest implementing job scheduling within the applica-
tion.

Galeb Grid Service Because the individual runs of the genetic algorithm are
independent the GS can be stateless, thus the so called single resource implemen-
tation suffices, in contrast to a stateful multiple resource implementation that would
have each client communicate with its own instance of the GS and thus its own ver-
sion of internal service state. Our grid service consists of the multiple components,
each of them implemented by a Java class. Most of these components are related to
GS state management and thus trivial in our case. The only non-trivial component
is the GS implementation itself, which calls the Galeb library through JNI.

1http://lancet.mit.edu/ga/, the GAlib genetic algorithm package, written by Matthew
Wall at the Massachusetts Institute of Technology.

212

http://lancet.mit.edu/ga/

Deployment of the Grid Service in Globus Even such a simple GS requires
some effort to build and deploy. Source files of all the components have to be
put in appropriately named directories, as well as the web service definition file
(wsdl) and deployment parameter files (xml and wsdd files), after which the scripts
globus-build-service and globus-deploy-gar, both supplied with
Globus, are used to build and deploy, respectively. The process creates tens of
other files and directories. Although these files are automatically generated and do
not need any editing they still clutter the project.

Parallelization The described GS, even when deployed to many nodes, is not
distributed at all and cannot be called by the end user in a simple fashion. A proxy
application was thus written that takes care of both.

Figure 5.2: Architecture of Grid-Service-based implementation of Galeb on
Globus

The application acts as a distributor. It first copies the input file using GridFTP
to all the nodes where the GS is deployed. Then it distributes jobs, each of which
represents a single run of the genetic algorithm, to the nodes. The results are,
again, transferred to the master node using GridFTP, and the best of them is finally
returned. The architecture of the whole application is shown in Figure 5.2.

5.3.2.3 Porting to XtreemOS

Similarly to Globus, XtreemOS offers multiple ways to gridify a master-slave type
parallel calculation such as Galeb:

• running the slaves on selected resource nodes using ssh-xos,

• submitting the calculation jobs on selected nodes through XOSAGA, the
XtreemOS implementation of SAGA, the official XtreemOS API,

213

• submitting the jobs through AEM using the xsub utility, leaving resource
discovery and scheduling to XtreemOS rather than re-implementing it within
the application,

• submitting the jobs through AEM using the SAGA AEM bindings.

The first approach has been implemented in Galeb some time ago and is sim-
ilar to the Globus approach recommended in [17]. The second not only uses a
different API but also allows submission to any node accessible through SAGA,
not just XtreemOS nodes2. This approach has also been implemented in Galeb.
These two approaches do not differ significantly in terms of programming and de-
ployment effort. Both duplicate XtreemOS functionality, i.e. resource selection
and scheduling, in the application.

The third and fourth approaches are thus recommended. Likewise, they differ
significantly in the API used but not in effort required. The interoperability advan-
tage of SAGA does not apply here because XOSAGA is the only SAGA implemen-
tation that includes the AEM functionalities. The SAGA-AEM implementation of
Galeb is currently under development.

5.3.2.4 Galeb for XtreemOS vs. Galeb for Globus

In terms of programming effort the advantage of XtreemOS is that resource selec-
tion and scheduling does not have to be implemented in the application. Apart from
this the effort is similar, except if grid services are used in Globus, which increases
the effort significantly but offers other advantages. Note that such service-oriented
approach could also be used in XtreemOS and would even offer fault-tolerance
[11]; however, we did not explore this further because fault-tolerance of the slaves
is not beneficial in case of Galeb.

The benefit of XtreemFS, compared to GridFTP, is the lack of need to explicitly
copy files to any certain node. Moreover, in case of simple applications and homo-
geneous hardware architecture deployment to any resource nodes is not required.
Instead the executable is simply placed on VO user’s XtreemFS home volume,
where it can be read by any resource selected by AEM.

In a Globus grid the grid map file on each resource contains an explicit mapping
to a local account for each certificate subject, i.e. for each grid user. This presents
a significant administration burden for resource administrators. Mapping multiple
grid users to the same local account prevents isolation between users. XtreemOS
avoids these problems elegantly with the dynamic account mapping.

To be fair, one has to mention that Globus is currently a much more mature and
better documented platform than XtreemOS. For users outside the XtreemOS con-
sortium the apparent risk of the platform being simply discontinued in the future is
also greater for XtreemOS than for Globus.

2Note that SAGA for Globus is not yet available.

214

Chapter 6

Usability evaluation of XtreemOS
for Mobile Devices

WP4.2 evaluated the usability of XtreemOS for Mobile Devices. A first approach
consists of the usability evaluation of the XtreemOS-MD installer and the JobMA
application, which are probably the most graphical elements, and then the easiest
in order to apply the usual criteria for usability evaluation.

6.1 Introduction and goals

The main objective of the 1st XtreemOS usability report is to establish an initial
state of JobMA application and XtreemOS-MD installer in some mobile devices,
such as Nokia N800 and OpenmMoko Neo Freerunner, and to determine the level
of difficulty associated to the installation and management of these applications in
the tested devices.

Moreover, some problems about the installation and management will be ex-
plained and some possible solutions to them will be provided, besides other possi-
ble improvements or future work.

6.2 Methodology

In this 1st iteration the methodology followed consist in the analysis of the ease
of use of JobMA application (focusing on the main window and the operations
provided) and the ease of installation of XtreemOS-MD using the installer pro-
vided. In particular, these applications will be analyzed over the Nokia N800 and
OpenMoko Neo Freerunner devices.

The methodology followed to is based on a "Heuristic Evaluation", which is a
method to evaluate the possible usability problems of a user interface.

215

6.3 Results

6.3.1 JobMA

6.3.1.1 JobMA application Strengths

• Easy installation

• Graphical appearance is good

• Easy management of jobs

• Intuitive operation

• Contextual help and information

6.3.1.2 JobMA application Areas of improvement

• Concrete small details of the graphical interface

• Size of the main window depending on the mobile device

• Lack of tutorials or on-line help

6.3.1.3 Summary of the evaluated scenarios

The following figure shows the level of ease under six different scenarios, depend-
ing on the action the user wants to do: loading the certificate to authenticate, open-
ing a JSDL with the definition of a job, defining a new job, viewing more info
related to a concrete job, running the job or monitoring the status of a job. All
these aspects are shown in the next figure with values between 1 and 5 points,
depending on the ease of use in each case.

Figure 6.1: JobMA application result, scale 1-5 (1 very difficult and 5 very easy)

216

6.3.1.4 Initial User perception of JobMA over Maemo

Figure 6.2: JobMA main window on Nokia N800

1 First screen is too simple and a big part in
the center of the window is blank

Minor: It’s not really
good-looking

2 XtreemOS icon too small, the user cannot
see it

Minor: No function
associated to this icon

3 Start button should be more visible and
emphasized

Minor: Aspect improvement
recommended

Table 6.1: JobMA main window weaknesses

How this could be improved?

Figure 6.3: JobMA main window improved on Nokia N800

217

6.3.1.5 Opening a JSDL file with JobMA application

Figure 6.4: JobMA “Open a JSDL” window on Nokia N800

1 User has to load a JSDL file to create a
new Job, but end-user doesn’t know the

purpose of this file

Medium: Users could load a
JSDL file, without

knowledge of the job that
will be created

Table 6.2: JobMA “Open a JSDL” window weaknesses

How this could be improved?

Figure 6.5: JobMA “Open a JSDL” improved window on Nokia N800

218

6.3.1.6 Defining a job with JobMA application

Figure 6.6: JobMA “Define a job” window on Nokia N800

1 User has to type three sentences to create
a basic Job, but it will be more useful if
he could do it only with one sentence

Minor: It will be easier for
the user

2 More documentation is needed for some
parts of the application, explaining what

he is doing in each step

Minor: Lack of
documentation

Table 6.3: JobMA “Define a job” window weaknesses

How this could be improved?

Figure 6.7: JobMA “Define a job” improved window on Nokia N800

219

6.3.1.7 Initial User perception of JobMA over OpenMoko

Figure 6.8: JobMA main window on OpenMoko NeoFreeRunner

1 "View" tab allows selecting the job info
shown. If many fields are selected, not all

of them will be displayed

Major: The user will miss
some information

2 XtreemOS icon too small, the user cannot
see it

Minor: No function
associate to this icon

3 Initial screen is too simple and a big part
in the center of the window is blank

Minor: It is not really
good-looking

4 After creating a job, the user doesn’t
know what can be done with this created

job

Medium: Some contextual
help could be useful to solve

this problem
5 Field limits are not well differentiated Minor: One vertical line

could solve this problem

Table 6.4: JobMA main window weaknesses over OpenMoko

220

How this could be improved?

Figure 6.9: JobMA main window improved on OpenMoko NeoFreeRunner

221

6.3.1.8 Viewing job info with JobMA over OpenMoko

Figure 6.10: JobMA “View info” window on OpenMoko NeoFreeRunner

1 "View" tab allows selecting the job info
shown. If many fields are selected, not all

of them will be displayed

Major: The user will miss
some information

2 When a user selects "View" Job info
option, a message at the bottom of the

window is missed

Minor: It is not very
important, but it could be

useful to know the selected
action

3 In View info window all details about the
job do not appear because of the screen

size

Medium: It would be very
useful to include a horizontal

scroll bar to be able to
browse across all the
information provided

Table 6.5: JobMA “View info” window weaknesses

222

How this could be improved?

Figure 6.11: JobMA “View info” improved window on OpenMoko NeoFreeRun-
ner

223

6.3.1.9 Running jobs with JobMA over OpenMoko

Figure 6.12: JobMA “Run a job” window on OpenMoko NeoFreeRunner

1 Run operation appears when
double-clicking on a running job

Minor: Run operation should
be disabled in order to not

run again the job
2 When running a job, the user doesn’t

know the next step to follow
Minor: A message at the

bottom showing the different
possibilities could help

Table 6.6: JobMA “Run a job” window weaknesses

224

How this could be improved?

Figure 6.13: JobMA “Run a job” improved window on OpenMoko NeoFreeRunner

225

6.3.1.10 Canceling jobs with JobMA over OpenMoko

Figure 6.14: JobMA “Cancel job” window on OpenMoko NeoFreeRunner

1 After running a job, the user can cancel
the execution by clicking on the Action ->

Cancel option in the menu bar, but no
confirmation is required, and the job will

be automatically canceled

Medium: A new window
requesting the confirmation

could avoid some
unintentional job

cancellations

Table 6.7: JobMA “Cancel job” window weaknesses

226

How this could be improved?

Figure 6.15: JobMA “Cancel job” improved window on OpenMoko NeoFreeRun-
ner

6.3.1.11 Final Assessment

There are some operations associated to JobMA application: load user certificate,
open a JSDL, Define a Job, View Job info, run a Job and view this Job running. In
the figure below, the ease of those operations have been punctuated:

• Load user certificate: when a user launches JobMA application, the user
certificate is automatically loaded. This factor obtains a punctuation of 5
points out of 5 (this factor has been analyzed because in the first beta versions
of JobMA applications the certificate needed to be manually loaded).

227

• Open A JSDL: open a JSDL to create a job is very easy; user only needs
to click on the tab in the menu and find the file in the browser. This factor
obtains a punctuation of 4 points out of 5

• Define a Job: when a user tries to create a job defining it, three fields (not
very common for a end-user otherwise) should be filled. This factor obtains
a punctuation of 3 points out of 5

• View Job info: view job info is very easy, user only has to click on the menu
and a new window will appear. This factor obtains a punctuation of 4 points
out of 5

• Run a Job: run a job is easy too, clicking on the option "Run" on the menu.
This will run the job automatically, so this factor obtains a punctuation of 4
points out of 5

• Monitoring a running Job: user can consult info about the running jobs just
by clicking on the option in the menu or double-clicking on the job. This
factor obtains a punctuation of 4 points out of 5

Finally, we have concluded that managing JobMA application in a mobile de-
vice is very easy and it should not be a problem for the users.

228

6.3.2 XtreemOS-MD installer

6.3.2.1 XtreemOS-MD installer Strengths

• Very easy to find the installer

• Quick download thanks to the minimal installer size

• Very easy to install

• Quick installation, it is only necessary a few steps to install it

6.3.2.2 XtreemOS-MD installer Areas of improvement

• Not every device supported by this installer

• No graphical installer for every mobile devices

6.3.2.3 Summary of the evaluated scenarios

The following figure shows the level of ease in four different scenarios, depending
on the action the user does during the installation of the XtreemOS-MD installer:
getting the XtreemOS-MD installer, downloading it, trying to install it and finally
following the instructions and steps needed to finish the installation. All these
aspects are shown in the next figure with values between 1 and 5 points, depending
on the ease of use in each case.

Figure 6.16: XtreemOS-MD installer evaluation result, scale 1-5 (1 very difficult
and 5 very easy)

It’s worth noting that only Nokia N800 with Maemo has a graphical interface
to install XtreemOS-MD, so this will be the option we are going to analyze. How-
ever, Openmoko NeoFreerunner does not provide any graphical interface: the user
should just execute a script, previously created by the developers, and provide user
and password on the grid to fully install XtreemOS-MD.

229

6.3.2.4 Getting and downloading XtreemOS-MD installer on a Nokia N800

Figure 6.17: Downloading XtreemOS-MD on a Nokia N800

1 In some mobile devices, XtreemOS-MD
cannot be installed graphically. In these
cases, the user should execute a concrete

installation script

Medium: it’s easier
installing from a graphical

interface for a normal
end-user

Table 6.8: Downloading XtreemOS-MD weaknesses

6.3.2.5 Installation of XtreemOS-MD on a Nokia N800

Figure 6.18: XtreemOS-MD installer window on Nokia N800

230

1 When the user tries to install
XtreemOS-MD, he doesn’t know exactly

what it’s really being installed

Medium: Even if finally
XtreemOS-MD works, the

process is not much
transparent for end user

2 A user cannot install XtreemOS-MD
twice in the same mobile device without
re-flashing it, as there are problems while

uninstalling

Medium: Problematic if the
user uninstall

XtreemOD-MD
unintentionally

Table 6.9: XtreemOS-MD installer window weaknesses

How this could be improved?

Figure 6.19: XtreemOS-MD installer improved window on Nokia N800

6.3.2.6 Final Assessment

The main operations related to XtreemOS-MD installation are: getting the installer,
downloading it, installing it and following the steps to complete the installation. In
the figure below, the ease of those four operations have been scored. Let’s analyze
each operation and the score obtained:

• Getting XtreemOS-MD installer: getting this installer is really easy for end
user, who just needs to access to the web page for downloading the installer.
The punctuation obtained is 4 points out of 5

• Downloading XtreemOS-MD installer: downloading XtreemOS-MD installer
is very easy because, after the user has accessed to the previous page, he only

231

has to click on the icon provided to download the installer. The punctuation
obtained is 5 points out of 5

• Install XtreemOS-MD: installation is not very difficult and user can follow
it easily. The punctuation obtained is 4 points out of 5

• Steps to complete the installation: steps to complete installation are very
common and user only has to click on the install button. Moreover, he has
only to provide user and password to authenticate in the grid. The punctua-
tion obtained is 4 points out of 5

Finally, we have concluded that the installation of XtreemOS-MD in a mobile
device is very easy and it should not be a problem for the potential users.

232

Chapter 7

Conclusion

The deliverable introduced the new set of WP4.2 and then put the main emphasis on
the evaluation of XtreemOS. The evaluation was carried out in four different test
categories: evaluation of installation and configuration, evaluation of XtreemOS
components, comparison with other Grid solutions and usability evaluation of the
XtreemOS MD flavor. In the following, the test summaries of these test categories
shall be re-visited and directions for future work will be given.

The first category of evaluations conducted a long-term survey and gave in-
sights into the experiences with two public and three intermediate internal releases
from the end-user perspective. The survey examined the satisfaction with the in-
stallation, configuration and basic usage of the install CDs provided as well as with
the accompanying documentation. In all four categories, one could detect a re-
markable improvement with respect to end-user satisfaction. The ratings increased
monotonously along all XtreemOS versions examined, most noticeable, however,
is the leap made with the introduction of the public release of XtreemOS 2.0. Early
major problems with lacking integration, instability, complicated manual setup,
bugs and lacking synchronization between software development and documenta-
tion have been addressed to a far extend. Advancements with software integration
have been reported and also the automatized installation and configurations tools
have been added which render the adoption of the new OS much easier. One further
major reason for improved satisfaction was the revised documentation which pro-
vides for more clarity, completeness and corrected many errors. Also the separation
into a user and an admin guide is highly appreciated. Further ways for improve-
ments have been proposed. This includes debugging of various packages which
still fail to install. Also the number of manual steps and work-arounds should be
reduced, e.g. by introducing configuration scripts and further self-explaining GUIs,
e.g., for the xosautoconfig tool. Furthermore, it would be useful to introduce lower
level automation for certificate setup. Basic usage would benefit from more de-
tailed error outputs and from ensuring a proper startup of all services which would
avoid manual restart. And finally, it is suggested to further work on the quality of
the documentation, e.g. by adding more screenshots and by reducing the need to

233

jump between sections. It is planned to extend the long-term survey to also cover
forthcoming XtreemOS and to track the evolution of end-users ratings across the
XtreemOS history.

The second category of tests consists of the evaluation of XtreemOS compo-
nents including node-level VO support, checkpointing and restart, DIXI message
bus, XtreemOS API, Distributed Servers, Virtual Nodes, application execution
management, data management, security services and the mobile device flavor.
In the following, the results per component shall be summarized.

Among others, the tests covered the evaluation of the web interface VOLifeCy-
cle, which worked as expected and thus satisfied all the requirements. Some issues
have been detected, e.g., the command-line interface does not use the XtreemOS
user certificates nor has any provision to log in, resulting in local root being able
to do anything and no other user being able to use it at all. The former cannot be
avoided, as local root can also edit the database manually etc, thus VOlife must run
on a trusted node. The latter, however, limits the use of the command-line interface
to test environments only. This shows that the CLI is provided just as a test tool.
A VO administrator in a large grid environment thus has no practical means to
automate repetitive administrative tasks. Furthermore, the administrator will have
to scroll through long tables when managing users, groups, and roles because no
search method is provided. Only the list of VOs has the option of filtering. Fur-
ther tests have been done to analyze the performance test of VOlife, which shows
that its scalability over large databases is good but not excellent. However, VO-
life cannot really be a bottleneck of a grid environment because it does not affect
performance of other XtreemOS components. The account mapping performs as
expected in normal usage, i.e. until the account pool is used up. Distinct grid users
are mapped to distinct dynamically created local accounts. The same user acting
as a member of two distinct VOs is also mapped to distinct accounts to prevent
VO interference. Members of the same VO are mapped to the same local group.
The only detected problem was that once the account pool is used up two different
users can be mapped to the same local account, thus they are not isolated - e.g.,
one of them can control jobs created by the other. It can be can concluded that
the components for node-level VO support in XtreemOS Release 2 are adequate,
with all major functional requirements met but performance and usability leaving
some room for improvements. All tests will also be repeated on later releases of
XtreemOS to check for regressions.

The experimentation completed for checkpoint/restart functionality provided
good coverage of the features provided by XtreemOS. All main functions relating
to checkpointing worked adequately, despite a number of limitations: 1) kernel-
level checkpointing is unable to checkpoint complex, multi-process applications,
2) container functionality was not available in the 2.0 release, 3) graphical applica-
tions are not checkpointable in any form. Despite these limitations, checkpointing
has been shown to have good performance and scalability, as shown in the kernel-
level testing, and the functionality provided by the checkpointing and migration
of containers provides a useful alternative to larger virtualisation formats. This

234

functionality holds significant benefit for a number of WP4.2 applications, partic-
ularly Rule-based System Management (RBSM) from SAP. As the RBSM appli-
cation is able to make decisions based on the state of the systems under its control,
checkpointing and migrating processes and containers between nodes allows for a
powerful additional layer of control for the application. Later releases should use
a similar approach to testing for comparisons, and also include a wider range of
experimentation, including other test applications not used in these experiments.

The evaluation of the DIXI message bus and staging environment measured
the performance in terms of the time it takes to serve a request. The tests involved
various scenarios that we based on the features provided in the DIXI runtime. We
performed benchmarking in set-ups representing each of these scenarios. As com-
petitor middleware and messaging bus we used CORBA. The results show that in
the current version of DIXI there is a penalty for the middleware’s added function-
ality that manifests as increased time needed for each invocation to finish with a
result. This is due to the fact that, during the development of DIXI, a lot of em-
phasis was put on enriching the framework with features, while the optimising of
important aspects of the solution and speeding up the message exchange has been
planned for later stages of the development. The speed-ups can be achieved, for
instance, by replacing the generalised service message marshalling with a content-
aware one. It is also planned to examine the possibilities to speed up the Apache
Mina library used for the networking.

The XtreemOS API (XOSAGA) has been evaluated with the three program-
ming languages supported: C++, Java, and Python. For each of these implemen-
tations, their performance overhead (compared to directly using the underlying
service interfaces) has been investigated. With the micro benchmarks for each of
the implementations, it was shown that the performance overhead caused by using
XOSAGA is negligible for job submission and modest for namespace operations
and file I/O. In the case of Python, file I/O was even faster than the native coun-
terpart. Further evaluations with XOSAGA will be done with the ported versions
of the WP4.2 applications COMPSs (from BSC) and openTurns (from EDF). At
the time of writing this deliverable the application-centric experiments performed
by WP4.2 failed because of bugs and missing documentation of XOSAGA. With
the ported applications it shall be possible to evaluate the usage of the interfaces
and the scalability and performance overhead from the application perspective. The
prospected tests should also include large-scale performance tests on Grid5000 and
interoperability tests with other Grid solutions.

Further tests were carried out with Distributed Servers which are a unique fea-
ture of XtreemOS, so there is no comparable other system against which it coudl
have been evaluated. Instead two implementations of distributed servers have been
compared: an old, non-portable kernel-based version, and the new portable user-
level version. The user-level implementation is demonstrated to work well, al-
though it is in certain cases significantly slower than the old version. However,
no particular effort has been spent on optimizing it yet, so important performance
gains are expected in future versions.

235

The experiments with Virtual Nodes have shown that this component is about
one order of magnitude slower than Java RMI. Furthermore, it was presented that
the runtime overhead of passive replication (as implemented so far), is slightly
higher than for active replication. This gap might turn out to be more serious in
the case that deterministic schedulers are used for active replication. Finally, the
evaluation showed that an application’s state size barely has an impact on service
availability. Yet, for more replicas the availability increases drastically. Evaluation
has given some hints on what to improve. First of all multiplexing of connections
or at least re-using of open sockets would be beneficial to the overall system per-
formance. Second, overload renders the system unusable or may even lead to the
failure of individual replicas or the entire Virtual Node. This makes the system
vulnerable for denial-of-service attacks. Thus, adding mechanisms that are able to
handle overload and support graceful degradation in such situations are desirable
extension. Third, it is not clear which set-up is the best alternative in case of node
failure. Here, further investigation and evaluation is required.

The evaluatio with Application Execution Management (AEM) gauged the
functional requirements, evaluated its performance and compared it to the per-
formance of Globus toolkit. Tests were performed to assess the suitability of
XtreemFS as a platform for running web server We also performed tests to evalu-
ate the difference of performance between XtreemOS PC flavor and a grid running
the Condor middleware. The robustness of the AEM scheduler was also tested.
Our tests also included comparative perfromance analysis of job submission re-
sponce times of XtreemOS and Globus. We also evaluated power computational
performance depending on client flavour. Following our tests we conclude that that
AEM in XtreemOS Release 2 are adequate. We also have proven that XtreemOS
is a suitable environment for hosting web services and applications. Our tests have
shown that the perfromance of XtreemOS and Condor system is comparable, and
for some tests like testing management times, XtreemOS performs better. With re-
gard to the robustness of AEM, we discovered that only a part of the jobs submitted
reaches the Done final Status, which shows that the robustness of AEM scheduler
still leaves the room for improvement. The results of comparative performance
analysis obtained in the job submission and execution at XtreemOS and Globus
show a great improvement over Globus in this basic unit.

Test with XtreemFS have been carried out to examine the functional require-
ments, evaluate its performance and compare it to the performance of NFS. The
functional requirements of XtreemFS were also tested in the simulated at real
wan environment. Tests were also performed to assess functional requirements
of Object Sharing Service provided by the XtreemOS. We also evaluated the per-
formance of Object Sharing Service provided by XtreemOS. The perfromance
of kDFS was evaluated using the Bonnie benchmark. It was found that POSIX
complience tests passes 89.4% of the adequate tests. Non-parallel IO tests re-
veal that for sequential access pattern XtreemFS does not provide performance
improvements as compared to NFS. Parallel IO tests reviel that the performance
of XtreemFS scales well with the increase in the number of OSDs. XtreemFS

236

also shows very good scalability under transactional load and the load generated
by enterprise search application. It effectively caches big application IO work set,
utilizing its de-facto distributed cache based on OSDs. Even without using SSD
non-volatile memory, it enables to almost reach the throughput of the baseline filer
technology that uses SSD non-voletile memory. We also found that applications us-
ing XtreemFS are capable to work under wan-simulated latency. It was found that
Object Sharing Service may be used to share the application state among nodes in
the wan conditions. With regard to kDFS perfromance evaluation we found that
the read/write performance improves when the block size grows. kDFS success-
fuly passed the file creation and deletion tests of the Bonnie benchmark, which
control system stability and POSIX compliance. It means that kDFS is a stable and
POSIX-compliant file system. Tests were also performed to compare the perfro-
mance of kDFS and NFS. The tests show that kDFS outperforms NFS almost by
factor 2. Based on the tests we conclude that POSIX Compliance leaves the room
for improvement. While currently the MRC is the bottleneck for writes, this limit
will probably be overcome in the upcoming XtreemFS release, which is expected
to cache file size updates. Write latency under the transactional load is still very
low as compared to the baseline NetApp filer technology. And most probably this
shortcoming may be overcome only by means of using SSD non-voletile mem-
ory at OSD nodes. Our experimental results under transactional load looks very
promising and suggest that XtreemFS may support transactional load. However
more experiments need to be performed to support this conclusion. We also ex-
perimentally assessed that XtreemFS does not yet include mechanism to counter
packet corruption in the wan conditions. Based on the tests perfromed for kDFS
we conclude that it is POSIX compliant. We also conclude that the global coop-
erative cache of kDFS enables it to cache the application work set and write the
data locally to disk. As the result kDFS outperforms NFS filesystem at our tests.
We can conclude that XtreemFS, Object Sharing Service in XtreemOS Release 2
and kDFS are adequate, with all major functional requirements met but perfor-
mance and some functional requirements leaving some room for improvement.
Further testing is required for features skipped in this iteration, most of which re-
late to comparative performance analysis of XtreemFS with kDFS and with other
advanced research file systems such as CEPH. Another set of tests to be performed
in the next iteration will target read/write replication and using it to overcome fail-
ures such as network partitioning and to improve performance of applications in
wan conditions.

The goal of the evaluation of the security evaluation was to make sure that the
security services do not become bottlenecks and unjustified overheads for the other
features of XtreemOS. Moreover, it is critical to ensure that security services do not
introduce security problems for the overall system. Firstly, the DTokens used for
delegation proved to be more efficient than the standard proxy certificates used by
more established Grid infrastructures. Secondly, the VOPS has linear performance
with regards to the number of simultaneous policies that can be handled. Finally,
the impact on CPU and memory of operating the CDA server was also tolerable,

237

with a consumption between 3 and 8% during the servicing of 100 sequential re-
quests. Further evaluation and ongoing improvement of the security services can
only be accomplished through the use of rigorous, runtime vulnerability assess-
ment. There is still some work to be done in the area of managing the processes of
issuing and updating policies and certificates. In addition, there is more scenario-
based testing to be done of the VOPS, where different cases like monitoring and
usage control will be investigated. This work will be done in conjunction with the
demonstrator activities.

The tests with the mobile device (MD) flavor passed without major problems.
The functionalities promised by XtreemOS-MD, IMA and JobMA applications
have been verified and from the performance tests we can conclude that the per-
formance of XtreemOS-MD as a Grid client executed from a mobile device like a
Nokia N800 is similar to the one achieved by the XtreemOS PC client. On the other
hand, execution of jobs in the Grid and even access to the Grid file system are faster
than the local execution or local file system access to the terminal, which exempli-
fies the benefits of using the Grid from a mobile device (specially when thinklng on
scenarios like the video conversion one). The advanced version of XtreemOS-MD,
including support for smartphones and some additional features where the context
awareness and resource sharing are the most important ones, is currently under de-
velopment. This new release will extend XtreemOS-MD not only in the number
of devices supported, but also on the scope of the software, as the mobile device
will become a light resource of the Grid and not just a mere client. New tests will
be designed and executed to evaluate the new functionalities, specially concerning
the “offline-mode” operation and the resource sharing from the mobile device.

The third category, the comparison between XtreemOS and other Grid ap-
proaches, was conducted in two ways: As theoretical comparison and experimen-
tal comparison. The theoretical comparison assessed the various appproaches first
from a general perspective, then XtreemOS was contrasted to various Grid middle-
ware solutions and related Grid operating systems. The comparison showed that
XtreemOS unifies many Grid features in a operating system which avoids a com-
plex stack of middleware layers which could affect the speed and manageability
of the Grid system landscape. The experimental comparison summarized the re-
sults of the comparative experiments with 1) XtreemOS-AEM and Globus-GRAM
and 2) XtreemOS-DTokens and Globus-GSI, where XtreemOS could achieve su-
perior performance measure in both cases. Finally, the setup of currently executed
application-centric large-scale tests (on Grid5000) with Galeb (from XLAB) exe-
cuted on XtreemOS and Globus GT4.0 was described.

The forth and final evaluation category consisted of analyzing the usability of
the mobile device application JobMA from WP4.2 and with the mobile device fla-
vor installer. The following operations of JobMA application have been examined:
load user certificate, open a JSDL, Define a Job, View Job info, run a Job and view
this Job running. For all operations, the JobMA application received high usabil-
ity ratings and it can be concluded that managing JobMA application in a mobile
device is very easy and it should not be a problem for the users. The operations ex-

238

amined with XtreemOS-MD installation were: getting the installer, downloading
it, installing it and following the steps to complete the installation. Also here, best
usability ratings have been recorded and it was concluded that the installation of
XtreemOS-MD in a mobile device is very easy and it should not be a problem for
the potential users.

Forthcoming evaluations by WP4.2 will put further emphasis on evaluating the
requirements beyond the technical assessment. The test results so far in the de-
liverable have been quantitative and aimed at evaluating the functional correctness
and requirements satisfaction of the various XtreemOS features. However, there
are various reasons for qualitative evaluation of systems, especially new systems,
which cannot be obtained from pure quantitative study. As the project approaches
its end and the software product becomes increasingly mature and complete, we
plan to add a further business-oriented value-based assessment of the requirements.

The evaluation reports and in particular the results of the evaluation are be-
ing communicated through various channels, including wiki pages, mailing lists,
bug trackers, phone calls and finally this deliverable. All intermediate and final
test documents are made available on the internal SVN server. We hope that the
evaluation provides useful feedback to the development work packages and we are
looking forward to a successful continuation of the cooperation.

239

Chapter 8

Acknowledgments

We would like to thank the developers in SP2 and SP3 and in particular the re-
spective work package leaders for their cooperation regarding the identification of
interesting test scenarios and for their support during the XtreemOS installation.
We are looking forward to a successful continuation of this cooperation.

240

Bibliography

[1] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Sei-
del, and B. Ullmer. The Grid Application Toolkit: Towards Generic and Easy
Application Programming Interfaces for the Grid. Proceedings of the IEEE,
93(3):534–550, 2005.

[2] P. Asadzadeh, R. Buyya, C. L. Kei, D. Nayar, and S. Venugopal. Global grids
and software toolkits: A study of four grid middleware technologies. CoRR,
cs.DC/0407001, 2004.

[3] A. Barak and A. Shiloh. The MOSIX2 Management System for Linux Clus-
ters and Multi-Cluster Organizational Grids. Technical report, Hebrew Uni-
versity of Jerusalem, March 2007.

[4] SPECweb2005 benchmark. Specweb2005 benchmark. Website, 2008.
http://www.spec.org/web2005/.

[5] SPECweb2009 benchmark. Specweb2009 benchmark. Website, 2009.
http://www.spec.org/web2009/.

[6] R. Berlich, M. Hardt, M. Kunze, M. Atkinson, and D. Fergusson. Egee:
building a pan-european grid training organisation. In ACSW Frontiers ’06:
Proceedings of the 2006 Australasian workshops on Grid computing and e-
research, pages 105–111, Darlinghurst, Australia, Australia, 2006. Australian
Computer Society, Inc.

[7] S. Burke, S. Campana, P. Méndez Lorenzo, C. Nater, R. Santinelli, and
A. Sciabà. GLITE 3.2 USER GUIDE. EGEE, 2009. Document iden-
tifier: CERN-LCG-GDEIS-722398, https://edms.cern.ch/file/
722398/1.2/gLite-3-UserGuide.pdf.

[8] XtreemOS consortium. Design and implementation of node-level vo support.
XtreemOS deliverable D2.1.2, 2007.

[9] XtreemOS consortium. Evaluation report and revision of application require-
ments. XtreemOS deliverable D4.2.5, 2008.

241

http://www.spec.org/web2005/
http://www.spec.org/web2009/
https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.pdf
https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.pdf

[10] XtreemOS consortium. Evaluation report and revision of application require-
ments. XtreemOS deliverable D4.2.4, 2008.

[11] XtreemOS consortium. Reproducible Evaluation of a Virtual Node System.
XtreemOS Deliverable D3.2.9, 2008.

[12] XtreemOS consortium. Extended Version of a Virtual Node System.
XtreemOS Deliverable D3.2.14, 2009.

[13] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza, B. Matthews,
C. Morin, L. P. Prieto, and A. Reinefeld. Xtreemos: a vision for a grid oper-
ating system. Technical report, XtreemOS Technical Report # 4, 2008.

[14] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6). RFC 2460,
December 1998.

[15] N. Drost, E. Ogston, R. V. van Nieuwpoort, and H. E. Bal. ARRG: Real-
World Gossiping. In Proceedings of The 16th IEEE International Symposium
on High-Performance Distributed Computing (HPDC), Monterey, CA, USA,
June 2007.

[16] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In
IFIP International Conference on Network and Parallel Computing, LNCS
3779, pages 2–13. Springer-Verlag, 2006.

[17] Globus toolkit compute grid tutorial. Website, 2006. http://www.
globusconsortium.org/tutorial/.

[18] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf,
and C. Smith. A Simple API for Grid Applications (SAGA). Grid Forum
Document GFD.90, Open Grid Forum (OGF), 2007. Version 1.0 http:
//forge.ogf.org/short/saga-core-wg/saga-core-v1.

[19] A. S. Grimshaw, W. A. Wulf, and CORPORATE The Legion Team. The
legion vision of a worldwide virtual computer. Commun. ACM, 40(1):39–45,
1997.

[20] IEEE. IEEE standard for software test documentation, ieee 829-1998. IEEE
Computer Society, 1998.

[21] E. Jeanvoine, C. Morin, and D. Leprince. Vigne: Executing easily and effi-
ciently a wide range of distributed applications in grids. In Euro-Par, pages
394–403, 2007.

[22] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC 3775,
June 2004.

242

http://www.globusconsortium.org/tutorial/
http://www.globusconsortium.org/tutorial/
http://forge.ogf.org/short/saga-core-wg/saga-core-v 1
http://forge.ogf.org/short/saga-core-wg/saga-core-v 1

[23] S. Kortas. Résolution haute précision des équations de navier-stokes
sur machines parallèles à mémoire distribuée. Phd thesis, Univer-
sit’e de Provence, Centre de Mathematiques et d’informatique.I, France,
1997. http://samuel.kortas.free.fr/DOCS/THESE/these_
Samuel_Kortas.pdf.

[24] S. Kortas and P. Angot. Parallel preconditioners for a fourth-order
discretization of the viscous Bürgers equation. In P. E. Bjørstad,
M. Espedal, and D. Keyes, editors, Proceedings of the 9th interna-
tional conference on domain decomposition method, pages 387–405,
1998. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.23.4449&rep=rep1&type=pdf.

[25] Amazon Web Services LLC. Amazon elastic compute cloud (amazon ec2).
Website, 2009. http://aws.amazon.com/ec2.

[26] Amazon Web Services LLC. Amazon simple storage service (amazon s3).
Website, 2009. http://aws.amazon.com/s3.

[27] J. Mehnert-Spahn, T. Ropars, M. Schoettner, and C. Morin. The architecture
of the xtreemos grid checkpointing service. In Euro-Par ’09: Proceedings
of the 15th International Euro-Par Conference on Parallel Processing, pages
429–441, Berlin, Heidelberg, 2009. Springer-Verlag.

[28] E. Milošev, M. Novak, M. Pihlar, and G. Pipan. Grid-based solution for finan-
cial modeling. In MIPRO 2006. [Vol. 1], Microelectronics, Electronics and
Electronic Technologies/MEET. Hypermedia and Grid Systems/HGS, pages
253–256, Rijeka, Croatia, 2006.

[29] A. Mirkin, A. Kuznetsov, and K. Kolyshkin. Containers checkpointing and
live migration. In Ottawa Linux Symposium, 2008.

[30] A. Mirtchovski, R. Simmonds, and R. Minnich. Plan 9 – an integrated ap-
proach to grid computing. In International Parallel and Distributed Process-
ing Symposium (IPDPS), April 2004.

[31] R. Nou, J. Giralt, J. Corbalan, E. Tejedor, J. O. Fito, J. M. Perez, and T. Cortes.
Xtreemos application execution management: A scalable approach. In Sub-
mitted to CCGRID’10, 2010.

[32] R. Nou, S. Kounev, F. Juliá, and J. Torres. Autonomic QoS control in enter-
prise grid environments using online simulation. J. Syst. Softw., 82(3):486–
502, 2009.

[33] OpenVZ. Openvz. Website, 2009. http://wiki.openvz.org/.

[34] P. Padala and J. N. Wilson. Gridos: Operating system services for grid
architectures. In Timothy Mark Pinkston and Viktor K. Prasanna, editors,

243

http://samuel.kortas.free.fr/DOCS/THESE/these_Samuel_Kortas.pdf
http://samuel.kortas.free.fr/DOCS/THESE/these_Samuel_Kortas.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4449&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.4449&rep=rep1&type=pdf
http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://wiki.openvz.org/

HiPC, volume 2913 of Lecture Notes in Computer Science, pages 353–362.
Springer, 2003.

[35] M. Pfeil. Optimising and Self-adaptive Strategy Selection in a Replication
Framework. master thesis VS-D07-2009, Institute of Distributed Systems,
Ulm University, Germany, 2009.

[36] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey,
and P. Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–
254, 1995.

[37] M. V. Reddy, A. V. Srinivas, T. Gopinath, and D. Janakiram. Vishwa: A
reconfigurable p2p middleware for grid computations. In ICPP ’06: Pro-
ceedings of the 2006 International Conference on Parallel Processing, pages
381–390, Washington, DC, USA, 2006. IEEE Computer Society.

[38] B. Sotomayor. The globus toolkit 4 programmer’s tutorial. Website, 2005.
http://gdp.globus.org/gt4-tutorial/multiplehtml/
index.html.

[39] M. Szymaniak, G. Pierre, M. Simons-Nikolova, and M. van Steen. Enabling
service adaptability with versatile anycast. Concurrency and Computation:
Practice and Experience, 19(13):1837–1863, September 2007. http://
www.globule.org/publi/ESAVA_ccpe2007.html.

[40] Apache Tomcat. Apache tomcat. Website, 2008. http://tomcat.
apache.org.

[41] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet
X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile. RFC 3820,
June 2004.

[42] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P. E., and
C. Yoshikawa. WebOS: Operating system services for wide area applications.
In Proceedings of the Seventh Symposium on High Performance Distributed
Computing, 1998.

[43] M. van Steen, P. Homburg, and A. S. Tanenbaum. The architectural design
of Globe: A wide-area distributed system. Technical Report IR-422, Vrije
Universiteit, Amsterdam, Netherlands, 1997.

[44] VMWare. Vmware. Website, 2009. http://www.vmware.com.

[45] J. P. Walters, V. Chaudhary, M. Cha, S. Guercio Jr, and S. Gallo. A Com-
parison of Virtualization Technologies for HPC. In Proceedings of the 22nd
International Conference on Advanced Information Networking and Applica-
tions, pages 861–868. IEEE Computer Society, 2008.

244

http://gdp.globus.org/gt4-tutorial/multiplehtml/index.html
http://gdp.globus.org/gt4-tutorial/multiplehtml/index.html
http://www.globule.org/publi/ESAVA_ccpe2007.html
http://www.globule.org/publi/ESAVA_ccpe2007.html
http://tomcat.apache.org
http://tomcat.apache.org
http://www.vmware.com

[46] Xen. Xen. Website, 2009. http://www.xensource.com.

[47] XtreemOS. First prototype version of ad hoc distributed servers. Deliverable
D3.2.2, November 2007.

[48] XtreemOS. Reproducible evaluation of distributed servers. Deliverable
D3.2.6, December 2008.

[49] XtreemOS. Extended version of the distributed servers platform. Deliverable
D3.2.11, December 2009.

[50] XtreemOS Consortium. First Draft Specification of Programming Interfaces.
Deliverable D3.1.1, November 2006.

[51] XtreemOS Consortium. Second Draft Specification of Programming Inter-
faces. Deliverable D3.1.2, November 2007.

[52] XtreemOS Consortium. Third draft specification of programming interfaces.
Deliverable D3.1.5, November 2008.

[53] XtreemOS Consortium. Third Prototype of XtreemOS Runtime Engine. De-
liverable D3.1.8, May 2009.

[54] XtreemOS Consortium. Third Prototype of XtreemOS Runtime Engine. De-
liverable D3.1.8, May 2009.

[55] E. Y. Yang and B. M. Matthews. DTokens: A Lightweigth and Traceable
Delegation Architecture for Distributed Systems. In Proceedings of the 28th
IEEE International Symposium on Reliable Distributed Systems, pages 107–
116, 2009.

245

http://www.xensource.com

	Executive Summary
	Introduction
	Application Descriptions
	Overview
	Hmmpfam on COMP Superscalar
	openTurns
	SAP NetWeaver Search and Classification (TREX)
	SAP MaxDB Replayer
	Rule-based System Management
	Cloud Computing

	Evaluation of Installation and Configuration
	Survey Setup
	Survey Results
	Overview
	Installation
	Configuration
	Basic Usage
	Documentation

	Summary

	Evaluation of XtreemOS Components
	Evaluation Overview
	Evaluation of Node-level VO Support
	Test Plan
	Test Unit 01: Correctness of VOlife
	Test Unit 02: Performance of VOlife
	Test Unit 03: Correctness of account mapping
	Test Summary Report

	Evaluation of Checkpointing and Restart
	Test Plan
	Test Unit 01: Job checkpoint and restart
	Test Unit 02: Incremental checkpointing
	Test Unit 03: Channel flushing
	Test Unit 04: Kernel-level checkpointing of Java applications with RBSM
	Test Unit 05: Container checkpointing benchmarks with SPECweb
	Test Unit 06: Checkpointing with Zephyr
	Test Summary Report

	Evaluation of the DIXI Message Bus
	Test Plan
	Test Unit 01: co-located service staging
	Test Unit 02: distributed service staging
	Test Summary Report

	Evaluation of XtreemOS API
	Test Plan
	Test Unit 01: Java XOSAGA -- Performance
	Test Unit 02: C++ XOSAGA -- Performance
	Test Unit 03: Python XOSAGA -- Performance
	Test Unit 04: Java XOSAGA -- Applications
	Test Summary Report

	Evaluation of Distributed Servers
	Test Plan
	Test Unit 01: Handoff Latency
	Test Unit 02: Handoff Throughput
	Test Summary Report

	Evaluation of Virtual Nodes
	Test Plan
	Test Unit 01: Comparison to Java RMI
	Test Unit 02: Comparison of Replication Protocols
	Test Unit 03: Effects of Node Failures
	Test Summary Report

	Evaluation of Application Execution Management
	Test Plan
	Test Unit 01: COMPSs
	Test Unit 02: SPECweb2005
	Test Unit 03: Customizable SSI Scheduler
	Test Unit 05: Moderato
	Test Unit 06: AEM vs. Globus Toolkit
	Test Unit 07: AEM scalability
	Test Unit 08: Power computational Performance depending on client flavour
	Test Unit 09: Customizable SSI Scheduler
	Test Summary Report

	Evaluation of Data Management
	Test Plan
	Test Unit 01: MaxDB Replay
	Test Unit 02: TREX
	Test Unit 03: Wissenheim - XFS
	Test Unit 04: Wissenheim - OSS
	Test Unit 05: POSIX Compliance
	Test Unit 06: Parallel I/O Evaluation
	Test Unit 07: Non-Parallel I/O Evaluation
	Test Unit 08: kDFS
	Test Summary Report

	Evaluation of Security Services
	Test Plan
	Test Unit 01: DTokens vs. GSI Proxy Certificates
	Test Unit 02: VOPS evaluation
	Test Unit 03: Evaluation of CDA Server
	Test Summary Report

	Evaluation of Mobile Device Flavor
	Test Plan
	Test Unit 01: XtreemOS support on ARM architectures
	Test Unit 02: VO support by XtreemOS-MD
	Test Unit 03: Lightweight security for mobile devices
	Test Unit 04: Performance comparison with XtreemOS PC flavor and no-Grid solutions
	Test Unit 05: Creation of new jobs using JobMA application
	Test Unit 06: Defining new jobs using JobMA application
	Test Unit 07: Using JobMA for monitoring jobs
	Test Unit 08: Using JobMA for viewing info about a job
	Test Unit 09: Using JobMA for running a job
	Test Unit 10: Using JobMA to suspend running a job
	Test Unit 11: Using JobMA to resume a suspended job
	Test Unit 12: Using JobMA to cancel a job
	Test Unit 13: Communications using IMA application
	Test Unit 14: IMA and XtreemFS integration
	Test Summary Report

	Comparison of XtreemOS with other Grid Solutions
	Overview
	Theoretical Comparison
	Comparison with Grid Middleware
	Comparison with other Grid Operating Systems

	Experimental Comparison
	Comparison of Job Submission and Delegation on Globus and XtreemOS
	Comparison of Galeb on Globus 4.0 and XtreemOS

	Usability evaluation of XtreemOS for Mobile Devices
	Introduction and goals
	Methodology
	Results
	JobMA
	XtreemOS-MD installer

	Conclusion
	Acknowledgments

