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Abstract

This deliverable aims at presenting the prototype of the LinuxSSI-XOS kernel
checkpointer as it is in month 18 of the project. Functionality here is what is cur-
rently working, although more features are half way ready. After a short introduc-
tion we briefly describe the overall XtreemOS (XOS) checkpointing architecture
and how the LinuxSSI-XOS kernel checkpointer is integrated.

In the following section we first describe relevant concepts of LinuxSSI-XOS (Ker-
righed): Kerrighed Distribted Data Management (KDDM) and ghosts. Subse-
quently, we present the prototype implementation where several import and export
functions related to the ghost mechanisms had to be extended to include additional
process/kernel state information (e.g. system KDDM set objects) in file ghosts.
Furthermore, some system KDDM set objects needed to be created and initialized
manually during the restart phase of a process.

The current implementation fits smoothly in the existing KDDM and ghost mecha-
nisms and the LinuxSSI-XOS kernel checkpointer is able to checkpoint and restart
sequential processes and also supports SYSV IPC shared memory segments.

Finally, this deliverable also includes a description for users and a reference to
installation sources for LinuxSSI-XOS (Kerrighed).
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Chapter 1

Introduction

Reliability of applications can be improved by periodically saving checkpoints in
stable storage. In case of an error a backward error recovery can restart the appli-
cation from the last checkpoint, avoiding a fallback to the initial state. Saving a
checkpoint requires not only to save the application data but also relevant kernel
contexts, e.g. task structs, file descriptors, socket states etc. The latter is not a
trivial task but kernel state handling is mandatory to implement checkpointing and
restart in a transparent fashion.

When checkpointing a distributed and parallel application, all processes running
the application need to be checkpointed in a way that the set of checkpoints form
a consistent snaphot, e.g. messages in transit need to be recorded, too. There
are mainly two classes of checkpointing approaches: coordinated and independent
strategies. The first one stops all involved nodes. After all nodes have stopped the
application and kernel state of each node are recorded and written to disk. The lat-
ter one avoids the coordination overhead and each involved node saves checkpoints
independently to disk. Furthermore in this case a consistent snapshot has to be de-
tected during the recovery phase which may require analyzing a lot of checkpoint
combinations and may even fail thus requiring to restart the application from the
initial state (known as the domino effect). This worst case can be avoided by log-
ging received messages on each node to be able to recover single nodes in case of a
failure. Obviously, this is the well-known trade-off between costs during fault-free
operation and recovery phase. Which checkpointing strategy to choose depends on
the error frequency and as well as the application needs. The workpackage WP2.2
has decided to implement a coordinated checkpointing and recovery strategy for
the first prototypes, because implementation and debugging is less difficult.

In the XtreemOS project checkpointing and restart must support distributed and
parallel applications that run on several grid node types (a single PC or a cluster).
Checkpointing of single PCs is done with an extended version of BCLR (WP2.1;
more information can be found in the deliverable D2.1.3[?]) part of Linux-XOS.
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Clusters are managed by the LinuxSSI-XOS system that is an extended Kerrighed
version (WP2.2; more information can be found in the deliverable D2.2.1[?]). Li-
nuxSSI uses the Single System Image (SSI) approach at kernel level making the
cluster appear as one single powerful grid node. These two different kernel check-
point/restart services will be controlled, e.g. in a coordinated fashion, by the grid
checkpointer that will be developed within WP3.3 (ongoing development).

In this deliverable we describe the basic checkpointing/restart mechanisms that
have been implemented in LinuxSSI-XOS. Because of numerous kernel modifica-
tions and the SSI concept, a tailor-made kernel checkpointer became necessary to
save and restore all relevant LinuxSSI-XOS kernel structures.

Beside handling kernel and user process states, using the built-in ghost mechanism,
the current implementation is also able to checkpoint a process hierarchy where the
processes are spread over the cluster. This is a cluster specific optimization of the
LinuxSSI-XOS kernel checkpointer that benefits from the SSI properties.

The deliverable is organized as follows. Subsequently, we briefly describe the
overall XtreemOS (XOS) checkpointing architecture and how the LinuxSSI-XOS
kernel checkpointer is integrated. In section three we first present relevant concepts
of LinuxSSI-XOS (Kerrighed): Kerrighed Distribted Data Management (KDDM)
and ghosts. Then we present the prototype implementation and its status. Sec-
tion four is devoted to user commands and installation notes, followed by the last
section containing the conclusions and an outlook on future work.

XtreemOS—Integrated Project 6



Chapter 2

Overall XOS checkpointing
architecture

2.1 General XOS Overview

XtreemOS is composed of two parts: XtreemOS foundation (XtreemOS-F) and
XtreemOS grid services (XtreemOS-G), see figure [2.1]
LinuxOS-F comes in three flavours: Linux-XOS, LinusSSI-XOS, and Linux-XOS

XtreemOS

XtreemOS-G
DCistribvted sersices on top of the XtrcemCE-flavors
to provide unifisd resource sharing within 2 VO
[which gets dynamically joined and left by Linux™-X0S instances]

XtreemOS-F
(Linux plus embedded VO support)
Linu-X0S || Linuxssi-xos || SUxXOS
(XtreemOS-F (XtreemOS-F . -
far PCs) for federation nodes) | | . (XiresmO35-F
or mabile devices)

Figure 2.1: XtreemOS architecture

for mobile devices (MD). The Linux-XOS modifies the existing Linux operating
system (OS) to support virtual organizations. LinuxSSI-XOS is a cluster operating
system based on Kerrighed and Linux. These two XOS versions will be modified,

8
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extended and configured towards providing support for checkpointing of grid app-
lications. Currently, checkpointing and restart is not planned for Linux-XOS for
MD.

The XtreemOS checkpoint mechanism will be responsible for checkpointing/re-
starting a grid application. A grid application may consist of one or more jobs. A
job can consist of one or many job units. A job unit can consist of one or more
processes each executing one or more threads. On each grid node there may be one
job unit, only.

Checkpointing grid applications will be addressed by a hierarchical grid check-
pointing architecture consisting of:

e kernel checkpointers - responsible for node states (user and kernel level) on
each computing resource (handles processes, not job units),

e a job unit checkpointer and
e ajob checkpointer taking care of a job/jobs that constitute a grid application.

Two different kernel checkpointers are developed within XtreemOS, one within
WP2.1 for single PCs (Linux-XOS) and another one within WP2.2 for clusters
(LinuxSSI-XO0S). Both are implemented within XtreemOS-F. Linux-XOS extends
BLCR, the most advanced open source implementation of checkpoint/restart, for
Linux. LinuxSSI-XOS uses a custom checkpoint mechanism relying on the Single
System Image (SSI) properties provided by the Kerrighed system.

The job unit checkpointer implements periodic checkpointing, staged checkpoints
and garbage collection. It registers checkpointing strategies (e.g. coordinated
checkpointing or independent checkpointing as explained in the introduction). It
will take care about needed resources and will call the kernel checkpointer(s).

The job checkpointer is a distributed service that supervises checkpoints for a grid
application by applying the checkpoint strategy to all job units of a job. It there-
fore registers job units with the checkpoint service on the grid nodes that run the
job units. Furthermore, it provides resources to store checkpoints and detects node
failures and reacts on them if necessary.

2.2 Application Execution Management (AEM)

The AEM is a central component of XtreemOS-G where important parts of the
hierarchical grid checkpointing architecture will be implemented. AEM is im-
plemented within WP3.3 and manages jobs by realising per-job and per-resource
services (distributed and non-distributed) that will be run on the underlying grid
nodes (Linux-XOS and LinuxSSI-XOS).

XtreemOS—Integrated Project 8
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AEM is devided into client and system components. The client provides user com-
mands to initiate the execution of a job. Therefore the client calls the XtreemOS
system side for job execution and managment as well as resource management.
The system side implements the functionality offered to the client. The XOSD
(XtreemOS Daemon, see deliverable D3.3.2 [?] ) exists once per node executing
several threads, including:

e job manager
e resource manager
e execution manager .

Global services as the JobDirectory and a resource selection mechanism support
the job execution.

job manager

A job is described by a JSDL (Java Service Description Language) file that spe-
cifies a unique program file and initial requirements (checkpointing options in-
cluded). For each job there is one responsible job manager. A job manager can
manage one or more jobs. It receives and processes requests for various job ser-
vices (jMontoring, jScheduling, ...). It knows at all times all the resources on which
components of the job are running as well as the JSDL content. A job manager
serves as interface to the job. Having a job ID the address of the belonging job
manager can be retrieved from the Job Directory. The job can then be accessed.
Requests to jobs not managed by a local job manager will be redirected to the node
with the appropriate job manager.

resource manager
The resource manager handles all requests concerning resources.

execution manager

The execution manager is a distributed service that implements methods for ma-
naging the execution of jobs (or job units). Therefore it uses local services as
the system calls fork and exec to create processes and manages Linux signals. In
contrast to the Java Virtual Machine (JVM) the execution manager provides a com-
prehensive resource usage control that allows for example to export process IDs.

AEM will track the process hierarchy by monitoring fork system calls. The execu-
tion manager knows at all times the exact processes using a resource and belonging
to one job. For more information on AEM, see the deliverables D3.3.1 [?], D3.3.2
[?] and D3.3.3/D3.3.4 [?].

9 XtreemOS—Integrated Project
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2.3 AEM and Grid Checkpointing

The hierarchical grid checkpointing architecture will be integrated into XtreemOS
as an extension to AEM. In figure [2.2] the planned AEM extensions (blue boxes)

LinuxX0S Grid Node LinuxSSI Grid Node
X0SD X0SD
XJobMng XJobMng
XExecMng XExecMng
S XResMng S XResMng
E E
D D
A A
XJobCRMng XJobCRMng
XCRExecMng XCRExecMng
= =
Library Library
(LinuxX0Ss (LinuxSSsl
version) version)
Kernel Checkpointer ( BLCR ) Kernel Checkpointer ( SSI CP )

Figure 2.2: AEM and hierarchical checkpointing architecture

are presented as well as the relation of these new AEM services to the different
kernel checkpointers.

The new AEM service XJobCRMng (JobCheckpointingRecoveryManager) corres-
ponds to the grid checkpointer. The latter requires a strong interaction with the
XJobMng which knows always the exact resources used by a job unit. This al-
lows the XJobCRMng to coordinate checkpointing for a job. It will take into ac-
count checkpointing constraints/strategies that are provided in the JSDL file along
with job requirements. Furthermore, it will be responsible for detecting node fai-
lures and it will indirectly acquire resources needed for saving checkpoints within
XtreemFS.

The new AEM service XCRExecMng (CheckpointingRecoveryExecutionManager)

XtreemOS—Integrated Project 10
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corresponds to the job unit checkpointer. It needs a strong interaction with the
XExecMng. To enable the grid checkpointer to apply the checkpointing strategy
to all grid nodes where job units of a grid application are running - a job unit
checkpointer API is necessary. Such an API has been implemented for a job unit
checkpointer prototype, see [?] for more information. In the context of coordi-
nated checkpointing the job unit checkpointer will also need to send signals (STOP,
CONT) to all processes belonging to the job unit on the grid node by calling the
underlying kernel checkpointer.

The XCRExecMng uses an API to transparently call the underlying kernel check-
pointer (LinuxSSI-XOS CP or Linux-XOS CP) via a library. The library comes in
two versions (one for LinuxSSI-XOS and Linux-XOS). It implements the API ac-
cording to the calling semantics of the appropriate kernel checkpointer. LinuxSSI-
XOS and Linux-XOS will be configured with the appropriate library before system
start.

Both have to be augmented in order to support XtreemOS specific features as for
example Virtual Organization Management (VOM). (BLCR restart with new secu-
rity context - VO specific information, see [?]).

In the following section the design and implementation of the LinuxSSI-XOS ker-

nel checkpointer that has been implemented within the first 18 months will be
presented.

11 XtreemOS—Integrated Project
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Chapter 3

Basic Prototype: Checkpointing
and Restart in LinuxSSI

The base for the LinuxSSI kernel checkpointer is the Kerrighed Distributed Data
Management (KDDM) and the ghost mechanism. Both together provide a process
migration facility that provides core functions for our checkpointing and restart
implementation. Subsequently, we give a short overview of the relevant KDDM
and ghost concepts that have been implemented by KerLabs for Kerrighed.

3.1 KDDM and Ghost

3.1.1 KDDM Introduction

KDDM is the central abstraction for distributed data management and sharing
within a LinuxSSI cluster. A KDDM set is an instance of the KDDM mecha-
nism. It is used to store objects and to share them between cluster nodes. KDDM
set objects can correspond to physical process pages or blocks in the file cache but
also are used to store various kernel data structures. KDDM set objects are also
used by applications to transparently share a variety of resources (process address
space, memory segments, data streams and files). KDDM based data sharing is
realised by the concept of linkers. Linkers enable the transparent integration of
KDDM sets into the Linux kernel, see figure 3.1}

Interface linkers connect system services such as the Virtual Memory or the Virtual
File System with KDDM sets on one side.

I/0 linkers combine KDDM sets with device managers on the other side. Each
time a KDDM set is being created it is attributed a corresponding I/O linker that
fits the type of data to be shared. An I/O linker supporting shared files differs from
an I/O linker supporting a shared process address space. Linkers enable page faults
to be resolved in a different manner as Linux does. For example a page - mapped

13128
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@nterface Linker) [Interfacie Linkerj
!
(__ VOLinker ) __lOLinker |

Figure 3.1: KDDM linkers

by a shared memory region and not present in local memory - can be retrieved from
a remote node.

3.1.2 KDDM - Consistency Management

Object sharing via KDDM sets results in multiple copies of the same object in the
cluster. Consistency is implemented by a MESI-like (MESI = Modified, Exclusive,
Shared, Invalid) coherence protocol with write-invalidate semantic. The protocol
allows multiple readers but only one writer. In case of a write request for a KDDM
set object all existing copies of this object will be invalidated in the cluster before.
Read requests do not trigger object invalidations but create new replicas.

The so called first touch inserts a resource (e.g. memory page) into the memo-
ry section of a KDDM set. Therefore a new KDDM set object is allocated and
initialized with meta data and the resource data itself.

At any time there is exactly one node that is the owner of a KDDM set object.
The owner manages all replicas of a KDDM set object and is mainly responsible
for invalidating potential replicas before granting write access. The node who per-
forms a first touch on a resource, automatically becomes the owner of the resulting
KDDM set object. Ownership migrates to the node that performed the last write
operation on this object. Every KDDM set object request results in communica-
tion with its owner. In order to find the owner of a KDDM set object, a node has to
follow a so called chain of probable owners. If a node has already used an object,

XtreemOS—Integrated Project 14
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then the node has a reference to another node, a probable owner. This node will
be requested to deliver the object but this node may be no longer the owner but it
knows to which node it has granted the ownership. Of course this node might also
have lost ownership thus the request is forwarded again and so on.

If a node has never accessed an object it does not know a probable owner. In this
case the first owner (the node that performed the first touch) is contacted which has
a reference to the probable owner.

3.1.3 KDDM - Addressing a KDDM set object

In the following subsection we shortly describe how a KDDM set object is ad-
dressed. A KDDM set is identified by two levels of naming. Firstly, the namespace
allows the developer to define which KDDM sets should be grouped by using name
spaces. It can contain:

e all system KDDM sets related to a given Linux name space or,
e all KDDM sets linked to file address spaces, e.g. for a storage device or,

e a default name space is created during Kerrighed initialization. This name
space hosts all the system KDDM set which are not linked to a Linux name
space. Currently only the default name space is used.

Secondly, each KDDM set is identified by KDDM set index. Furthermore, a
KDDM set object, within a given KDDM set, is addressed by a 64 bit identifier
having a resource bound meaning. For example for retrieving a read copy of a PID
system KDDM set object one has to use following function call:
kddm_get_object (struct kddm_ns ns, kddm_set_id_t set_id, objid_t objid);
with ns being the default namespace, set_id being 55 (PID system KDDM set) and
objid being the process identification of the wanted pid KDDM set object.

To access KDDM set objects stored on remote nodes it is sufficient to know the
corresponding KDDM set id, the KDDM set namespace and the object identifier.
For efficiency reasons KDDM sets for some resources are created on demand only
(lazy allocation of KDDM sets).

3.1.4 KDDM - User and System KDDM sets

There are basically two kinds of KDDM sets: one to host user application data user
KDDM sets and another one to manage system resources system: KDDM sets that
are shared cluster wide.

There can be one or more user KDDM sets per user application e.g. exactly one

for sharing a process address space (memory user KDDM set) and one shared me-
mory user KDDM set per SYSV IPC shared segment. Resources are accessed via

15 XtreemOS—Integrated Project
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system services such as the virtual memory or the Virtual File System (VES). Me-
mory user KDDM objects equal process memory pages, they are identified by their
adress in the virtual memory address space. User KDDM sets are allocated lazily
per node and are addressed by a dynamically attributed KDDM set identifier and a
namespace.

Furthermore, there is one separate system KDDM set per system resource, e.g.
process identifiers, process descriptors, shared memory keys and identifiers, sig-
nals, signal handlers and so on. System KDDM set data are the key to support the
execution of a distributed application in LinuxSSI from the kernel point of view.
Relevant system KDDM objects are:

e The pid KDDM object serves for PID allocation and recycling. There is one
pid KDDM set object per process in the pid system KDDM.

e The task KDDM set object shares some fields of the Linux task_struct struc-
ture.

e The children_kddm_object KDDM set object supports reparenting of chil-
dren between (distributed) threads of a thread group.

e The signal_struct KDDM set object supports sharing of signals in connection
with distributed threads.

e The sighand_struct KDDM set object supports the sharing of signal handlers
in connection with distributed threads.

o The app_struct KDDM set object keeps track of those processes belonging
to one application.

System KDDM sets are being set up per node during system initialisation (not
lazily). Each system KDDM set is identified by a fixed ID and a namespace. Sys-
tem KDDM set objects are not accessed by the user application via system services
but directly by the system. Each system KDDM set object is identified by an iden-
tifier having a resource specific meaning referred to later on.

3.1.5 Ghost

Ghost is the base mechanism for process migration. An image of a process to be
migrated is put into a network ghost and sent via the network. At the destination
node another network ghost is set up and initialized with the transmitted data. This
ghost is used to recreate the process from the source machine.

Furthermore, the ghost mechanism can be used to support checkpointing and restart.
Instead of sending the process image via the network it is put into a file ghost and
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saved on disk (the image is persistent). This image is read during restart by another
file ghost that serves as source for process recreation. However, the information
stored within a file ghost was not sufficient (at the beginning of the project) for
process recovery, so more information needed to be included.

3.2 Prototype Implementation

3.2.1 Synergies between Migration and Checkpointing

Synergies between checkpoint and migration are obvious as both need to retrieve
an image of a process. In LinuxSSI-XOS a sequence of so called export functions
is issued by the kernel migration facility to extract data that represent a user level
application at kernel level. These export functions can be used for checkpointing
as well. However for checkpointing to work extensions had to be made to various
export functions. As described before - KDDM sets host application and system
data. These LinuxSSI-XOS kernel structures need to be saved persistently during
the checkpointing operation and must be restored carefully during the restart op-
eration of an application. On top of the existing checkpoint code (developed by
KerLabs), that was non-functional at project start (due to Linux kernel 2.6 porting
tasks), saving various KDDM set data has been the major contribution of WP2.2,
that lead to a working checkpointing functionality.

3.2.2 Exporting data for migration

Inherent to migration is to immediatly recreate an application on the destination
node. The network ghost abstraction is used to insert the system extracted data
into a ghost and to send it via the network. The ghost image is not saved persis-
tently on the source and destination node. Cluster-wide shared process data that
resides in user and system KDDM sets will not be saved persistently. Ghost data
and KDDM data that will not be saved at all since an interruption of the migration
procedure (from extraction till deployment) is not expected to happen. As a con-
sequence a node failure will result into loosing all KDDM set data needed to have
the application running at an advanced and not initial state.

The question is how can the destination node access the appropriate KDDM set
data (process address space, signal mask, pending signals, signal handlers and ot-
hers) of the source node without sending them using a network ghost. In case of
migration, only the user memory KDDM set is set up on the source node and ini-
tialised with the process address space. Only the user memory KDDM set identifier
is included in the network ghost instead of the memory content itself. With the help
of the identifier the appropriate local user memory KDDM set can be setup on the
destination node and objects can be retrieved from the cluster by lazily allocating
them in the local KDDM set. Migrating system KDDM set objects works the same.

17 XtreemOS—Integrated Project
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3.2.3 Exporting data for checkpointing

Checkpointing requires to save all relevant system data that is needed for an appli-
cation restart. Furthermore a checkpoint needs to be saved persistently to survive
severe failures, e.g. reboot. Unlike checkpointing, migration does not depend on
persistent data - such failures are not expected to happen. Instead of using a net-
work ghost (as with migration) - the extracted data (non-KDDM data e.g. register
content, virtual memory structure and stack as well as KDDM data) is inserted into
a file ghost and therewith saved on disk persistently. The most challenging task was
to recognise what application related user and system KDDM set content needed
to be saved in addition into the checkpoint for a successful restart. Applications -
especially distributed ones - heavily use KDDM set data in order to run in the clus-
ter. Therefore the export sequence had to be modified at multiple locations within
the kernel code. Extensions to some export functions were necessary to save the
following system KDDM set objects:

e The signal_struct KDDM set object and
o the sighand_struct KDDM set object.

The signal_struct and sighand_struct KDDM set object had to be stored within a
checkpoint because it is not sufficient to just save the KDDM set identifier like for
process migration. In case of a severe failure all KDDM set content might be lost
and cannot be addressed with the identifier. Nevertheless, it is not necessary to
save the data of all system KDDM set objects since some of them can be recreated
and reinitialized at process restart with runtime information.

Furthermore a new export function (export_process_pages) has been implemented
within WP2.2 to save all memory user KDDM set objects that constitute the pro-
cess adress space.

Checkpointing and restart of SYSV IPC shared memory segments has been im-
plemented by WP2.2 during the first 18 months, too. Both cases - local processes
and processes, distributed over several nodes, that share a segment - are supported
by LINUXSSI. During checkpointing operation the shared memory key and the
size of the shared memory file and of course the segment content itself needs to
be saved. The shared memory content resides in the shm user KDDM and had to
be exported into the file ghost explicitly (extension of function export_one_page).
Since it is unknown at checkpoint time which of the processes, sharing the segment,
will be restarted first, the whole segment content is attached to the checkpoint file
of each process.

Furthermore, there is no need to save the contents of following SYSV-IPC-related
system KDDM set objects: shmkey, shmid, and ipcmap. All these system KDDM
set objects will be recreated during the restart phase by using SYSV IPC system
calls, like done by the application before the failure. But the shared memory key
needs to be saved as it is required during restart to create the shmkey system

XtreemOS—Integrated Project 18



D2.2.3 IST-033576

KDDM set object whose object id equals the shared memory key. The shmkey
system KDDM object is initialized with the index of the shmid system KDDM set
object in the shmid system KDDM set. The shmid system KDDM object encapsu-
lates relevant IPC kernel structures. According to this - relevant kernel structures
for a segment can be accessed merely by having the shared memory key.

It is also necessary to save additional data for certain applications using SYSV IPC
shared memory segments (e.g. for parent-child-processes) that ensures only one
shared memory segment and one shared memory user KDDM set is being setup at
restart.

3.2.4 Synergies between migration and checkpointing-based restart

There are also synergies between restart and migration in terms of rebuilding a
process from an image. Analogous to the sequence of export functions there is a
sequence of so called import functions that extract data from a ghost that internally
represents an application and reset it in the system. Import functions are used by
the migration and the restart functionality.

On top of these import functions (developed by KerLabs) the major contribution
of WP2.2 was to recreate and reinitialize certain KDDM set objects that lead to a
working restart functionality.

3.2.5 Importing data for restart

In contrast to migration the whole process address space is stored in the file ghost
image. Using the recovered page table entries - the mapped physical addresses are
populated with the process address space content. If there was a memory KDDM
set before the checkpoint - no memory KDDM set needs to be set up right away at
restart (lazy KDDM allocation). This does not apply to SYSV IPC shared memory
and the shm user KDDM set (will be discussed later).

Two more steps have been mandatory referring to KDDM set data restoration. In
the first recovery stage it was necessary to recreate certain system KDDM set ob-
jects. For a process to be visible in the cluster different import functions had to be
modified. It was not easy to identify the appropriate locations in the kernel code
where modifications had to be applied to. In contrast to migration - the following
system KDDM set objects had to be created explicitly (via first touch) at restart:

e task
e pid

e child
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e sighand_struct
e signal_struct

e app_struct

System KDDM set objects do not vanish while a process is being migrated. How-
ever a node failure causes their inevitable loss. A successful process restart requires
these system KDDM set objects to be recreated. For recreating system KDDM set
objects one needs to know which object identifier is mapped to an object. Depend-
ing on the type of system KDDM set object, the object identifier has a resource
specific meaning. The following table indicates this relation:

System KDDM Object | Object Identifier Meaning
task process ID
pid process ID
child thread group ID
sighand_struct custom unique ID
signal_struct thread group ID
app_struct application ID

Especially for the sighand_struct system KDDM object the identifier had to be
inserted explicitly in the ghost image at checkpoint time, since it cannot not be
derived at restart time.

However, recreation is not enough. In the second recovery stage some of the
KDDM set objects had to be reinitialised explicitly. Therefore sighand and sig-
nal system KDDM set objects use data saved in the ghost image at checkpoint
time. For the child system KDDM set object only the list of children is initialized
if merely a single process (with no children, other threads) exists. The task and pid
system KDDM set object are reinitialized by using the current values of the task to
be restarted.

The approach to restart SYSV IPC shared memory is to emulate a subset of the
functionality called by the system calls shimget and shmat. At restart the first
restarted process of the shm application sets up a shm segment. The saved shm
key is used to recreate a shm file in the special shm file system with the same name
existed at checkpoint time. In the context of emulating shmget the shm user KDDM
set is created. Furthermore all pages constituting the shared memory file are allo-
cated in the Page Cache. This process initializes the allocated pages with the shm
content of the checkpoint. The following processes, that link to the segment, do not
initialize the segment, even if the content is available in their checkpoint file. Sa-
ving the shm segment content per process causes the processes to be independent
- at restart no process needs to wait for one process owning the shm content. The
existing functionality to read in process memory had to be extended for replaying
shared memory content.
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To avoid multiple set ups of the same shm segment, by e.g. a local child pro-
cess or distributed processes, the shmid_object system KDDM set object type had
to be extended.

For every SYSV IPC shared memory there is a kernel internal identification (shared
memory identification) that is inserted into a process’ namespace. This identifica-
tion does not need to be the same at restart. However it is sufficient for the shared
memory key to remain the same after restart since it is used at user level to address
the shared segment. That’s why no virtualisation of this kernel resource is neces-
sary for a successful restart.

More information related to checkpoint and restart in the context of KDDM is
provided under the Kerrighed Wiki page - EPM and Checkpoint [?].

3.3 Status of the current implementation

3.3.1 Checkpointing processes

The LinuxSSI Kernel Checkpointer is currently able to checkpoint and restart a
single process executing one thread. Furthermore, processes having parent-child
relation can be checkpointed and restarted as well. The following state information
is extracted and recreated:

o Thread state - the registers (instruction pointer, stack, ...).
e Process memory - the process address space.

e PID - Each task is identified by a PID. Restarting a task with the same PID
can be achieved using the pid system KDDM set because it supports PID
allocation and PID reservation.

o Pending signals and signal mask - Signals not yet delivered (pending sig-
nals) can be saved and restored using the signal_struct system KDDM set.

e Signal handler - The callback functions to be executed when signals are
delivered can be saved and restored using the sighand_struct system KDDM
set.
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3.3.2 Open Files

If a process has open files at checkpoint time, the file descriptors state can be saved
and recreated. However no snapshots of these opened files are taken. The latter is
planned to be supported by the new Kerrighed cluster file system kdfs.

3.3.3 Communication streams

It is planned to checkpoint/restart pipes and sockets, as soon as the implementation
of the Kerrighed Dynamic Stream facility will be finished.

3.3.4 SYSV IPC Shared Memory Segments

The current implementation is able to checkpoint and restart processes using SYSV
IPC shared memory segments. These processes may be in a parent-child relation-
ship or not, they may run on one or several nodes.
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Chapter 4

Installation and Configuration

For installing and configuring LinuxSSI please refer to XtreemOS Deliverable
D2.2.7, section installation and configuration [?] .
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Chapter 5

User Manual

5.1 Using Checkpoint/Restart

Before the checkpoint and restart functionality can be used some prerequisites have
to be met.

First, the directory /var/chkpt must be created by the administrator with read and
write permission enabled. After successfully taking a checkpoint, a directory will
be created under the mentioned directory. The PID of the checkpointed process
serves as directory name.

Second, a so called capability has to be set. Certain system features can be en/disabled
with capabilities. Such a capability has to be switched on for checkpointing to
work. The command for enabling the checkpointing functionality is:

krgcapset -d +CHECKPOINTABLE.This command must be executed in the shell
on which the process to be checkpointed will be started.

A checkpoint is created by issuing the following command: checkpoint PID.After
successfully taking a checkpoint, a directory (checkpointed process’ PID as direc-
tory name) should have been created under /var/chkpt. The following files will be
created in this directory each including the serial number (SN) of the checkpoint in
their name, e.g. 4711’ for the file names mentioned below:

o description_v4711.txt (ascii file): short overview description of all files be-
longing to the checkpoint.

o global_v4711.bin (binary file): app_kddm_object KDDM object values as
the applicationID, the serial number of the checkpoint and the kerrighed
node mask.

e node_5_v4711.bin (binary file): description of local tasks involved in the
checkpoint. The sample file belongs to node 5.
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o task_234_v4711.bin (binary file): per task (e.g. PID="234") kernel structures
such as registers, stack, signal mask, ...

o task_mm_234_v4711.bin (binary file): all pages of the process address space.

Repeated checkpointing of an application results in multiple files with the same
base name but an SN increased by one at each time acheckpoint is taken. Check-
points taken at different times can thus be distinguished.

An application is restarted by executing the following command: restart PID SN.
Providing a SN allows to specify one out of many checkpoints taken during appli-
cation execution.

For an application consisting of two or more processes, each of them having parent-
child relationship, the PID of the common ancestor has to be provided to the restart
command.

5.2 Limitations/Costs of Checkpointing Resources

The LinuxSSI-XOS kernel checkpointer development is an ongoing process. Cur-
rently, it is possible to checkpoint and restart applications: consisting of a sequen-
tial process (execution of one thread) and consisting of one or more sequential
processes that are local (not distributed) and that have parent-child relation. Fur-
thermore, the kernel checkpointer takes into account whether a process has open
files and recreates this state but does not take snapshots of files modified by the
process. It is planned that Kdfs (or KerFS) will provide a file snapshot functional-
ity. Furthermore, neither sockets nor pipes are recovered at the moment. However
both resources will be supported in future versions, depending on the development
progress of the Kerrighed dynamic stream facility (Pascal Gallard from KerLabs is
working on that).
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Chapter 6

Conclusion and Future Work

At the beginning of the XtreemOS project an existing checkpointing implementa-
tion for Kerrighed was not operational. The main reason was the Kerrighed port
to Linux kernel version 2.6 which required many changes in the Kerrighed kernel
code. The existing checkpoint implementation did not take KDDM sets and their
behaviour into account. The new approach is based on the integration of KDDM
set object data into the checkpoint file and rebuilding KDDM set objects at restart.
Thus KDDM-based checkpointing benefits from synergies between migration and
checkpoint/restart.

It took considerable time to analyze all Kerrighed-related structures and concepts,
especially the KDDM and ghost mechanisms. Several import and export functions
related had to be extended to include additional process/kernel state information
(e.g. system KDDM set objects) in the file ghost. Furthermore, some system
KDDM set objects needed to be recreated and reinitialized manually during the
restart phase of a process. The current implementation fits smoothly in the existing
KDDM and ghost mechanisms and the LinuxSSI-XOS kernel checkpointer is able
to checkpoint and restart sequential processes and also supports SYSV IPC shared
memory segments.

Future work includes checkpointing/restart of following resources: files, pipes,
and sockets. The latter two are both depending on Kerrighed’s dynamic streams
that are still under development. Another important goal is to also support parallel
applications. Finally, during the next months we will design and implement the in-
tegration of the LinuxSSI-XOS kernel checkpointer within the overal XOS check-
pointing/restart architecture. For example the LinuxSSI-XOS kernel checkpointer
is able to coordinate sequential processes having parent-child relation. On the other
hand the grid checkpointer is responsible for implementing a checkpointing stra-
tegy for grid nodes. Another example is kdfs (Kerrighed Distributed Filesystem)
which will support taking snaphots of files.
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It has to be analyzed to what extent there will be optimizations for the XOS SSI
cluster appearing as a single grid node and what additional functionality require-
ments will show up within the LinuxSSI-XOS kernel checkpointer.
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