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Executive Summary

Most of the available network file systems for clusters are built on the histor-
ical model compute nodes vs storage nodes. Available hard drives on compute
nodes are only used for the system and temporary files, wasting both a lot of space
and throughput, predominant criteria in the current High Performance Computing
context.

In this document, we present a kernel Distributed File System (kDFS) designed
to efficiently exploit storage resources within a cluster. Moreover to provide com-
mon distributed file systems functionalities, kDFS aims at providing an integrated
cluster file system dedicated to HPC. From our point of view, fine and efficient use
of storage resources can only be reached by combining all cluster services.

The first kDFS prototype has been implemented upon kernel Distributed Data
Manager (kDDM) mechanisms, a kernel DSM-like manager which allows consis-
tent data sharing clusterwide. Thanks to the kDDM set, kDFS provides a coop-
erative cache for both data and meta-data. To our knowledge, such an approach
is quite innovative since kDFS does not exploit any other mechanisms or network
protocol to exchange and synchronize data.

The first prototype implements basic file system functionalities. Advanced
mechanisms such as data striping, redundancy and I/O scheduling enhancements
are under heavily development.

Even though the current activities are done under the framework of XtreemOS
WP2.2 work, The majority of the concepts can be extended to traditional clusters.
Finally, kDFS evaluation is under progress, we hope to get preliminary results by
the end of 2007.
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Chapter 1

Introduction

The XtreemOS operating system is intended to be executed on all computers in
a Grid, making their resources available for use as part of virtual organizations.
There will be three XtreemOS flavours, one for each kind of Grid node: individual
computers (typically for PCs), clusters and mobile devices.

As described in the ”Description of Work” document [9], the XtreemOS cluster
flavour relies on the SSI approach. In a cluster all nodes work closely together so
that in many respects they can be viewed as though they were a single computer. A
Linux SSI operating system provides the illusion that a cluster is a virtual multipro-
cessor machine executing Linux. For XtreemOS grid services, a cluster executing
LinuxSSI-XOS will be seen as a powerful PC executing Linux-XOS.

Former investigations from WP2.2 work package [10] led to leverage the Ker-
righed SSI technology developed by INRIA in cooperation with EDF [14, 17, 21,
23, 32].

In this document, we present the design and the implementation of high perfor-
mance disk input/output operations within LinuxSSI-XOS. Major functionalities
that were implemented by the end of M18 are emphasized.

The most common approach for building a distributed file system in a cluster
context consists in exploiting specific nodes to provide the distributed/parallel file
system. If the existing systems offer many features, they strongly rely on the hy-
pothesis that they are deployed on dedicated nodes. Thus, the cluster nodes are
divided into two groups: the compute nodes and the I/O nodes. The hard drives
available on the compute nodes are only used for the system and temporary files,
thus wasting both a lot of space and throughput.

In our view of an SSI cluster OS, all nodes could potentially provide both CPU
and storage resources. Thus, our proposal should be able to efficiently exploit most
of the available storage and, in the meantime, take into account the resource usage
of the applications (CPU, memory, network and hard drive). Such an approach in
designing a file system for a Linux SSI should lead to several innovative works. In-
deed, our proposal should obviously provide the common features of a distributed

5/33



IST-033576 D2.2.5

file system but moreover it should exploit, cooperate with and complete the SSI
system itself by improving services and global performance.

Based on this assumption, we have designed and started to implement kDFS,
a kernel Distributed File System. The first prototype described in this document
aims to:

• Aggregate storage resources available within a cluster,

• Provide a unique clusterwide name-space,

• Provide efficient accesses to both small and large files.

Coordination and integration with other cluster services will be deeply ad-
dressed in a future document.

The deliverable is organized as follows. Chapter 2 presents major works done
in the distributed/network file system field. Chapter 3 is focused on kDFS design
and the implementation. Chapter 4 gives details about current investigations done
about integration and coordination of kDFS with other cluster services. Finally,
Chapter 5 concludes the document.
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Chapter 2

Background

I/O bottlenecks have always been a major issue in Computer Science. As early
as 1967, the issue of storage and computation efficiency has been addressed [1].
Almost forty years later, this lack of performances is confirmed [15] and this trend
is likely to continue as I/O hardware performance increases slower than CPU and
memory. Furthermore, this gap is amplified by the increasing use of clusters as well
as the number of scientific and commercial application developments (molecular
biology, climatology, nuclear physics, financial, web services . . . ) with ever more
demanding I/O requirements and different patterns of access.

As a consequence, lots of researchers have attempted to develop new I/O sub-
systems that take into account both hardware aspects and parallel computing ac-
cesses. These new systems address various issues like: security, efficiency, scala-
bility, . . . .

In this chapter, we first review the major solutions suggested by the community
and then we conclude by raising the major disadvantage of the current approaches
from our point of view. Most of the available solutions are built on the historical
model ”compute nodes vs storage nodes”. Available hard drives on compute nodes
are only used for the system and temporary files, thus wasting both a lot of space
and throughput, predominant criteria in the current High Performance Computing
context.

2.1 Distributed/Network File Systems

Distributed/Network file systems [19] have been suggested early in the eighties.
They aimed at providing a way of sharing files among computers.

Created by SUN Microsystems in 1985, the Network File System (NFS) be-
came the first widely used distributed file system. Nowadays, NFS is still the most
deployed solution to share data within a LAN or a cluster. The NFS consortium
composed of several institutes has finished the version 4.1 of NFS. This new ver-
sion extend the stateless client/server model to a parallel statefull one.

The AFS family (AFS, OpenAFS, CODA) is also a well known approach. It
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focuses on providing a secure way of sharing files within a campus for instance.
It offers an efficent way to share files securely on a large scale. Yet, for a safe
environment such as a protected cluster, this solution is not optimal since it adds
many features that are not necessary for a cluster and requires some not-so-obvious
tweaking. Such file systems are more suited for Grids.

The serverless network file system, xFS [2] is probably the most finalized so-
lution from conceptual point of view. This file system has been designed under
the framework of the Network of Workstation (NoW) project at Berkeley 10 years
ago. This is the first fully distributed file system (i e., all mechanisms are present
on every node, thus in case of a node failure, the file system would not be im-
pacted). Unfortunately, only one prototype had been implemented and it had not
been maintained.

Due to the large scope of constraints (LAN, WAN, security, high-availability,
scalability, . . . ), latter proposals were more focused on particular aspects. SAN
and parallel file system approaches have been introduced to mainly improve per-
formances in a cluster context.

2.2 SAN File Systems

SAN file system such as GFS [25], GPFS [26] and SGI XFS [29] are based on the
use of specialized technologies (e.g. RAID, fiber optics) as a means to increase
performance. This kind of systems relies on the concept of a dedicated network
(Storage Area Network) for storage messages (such as SCSI requests). Basically,
a SAN defines a com- mon storage ”device” composed of several physical devices.
Other projects like Petal/Frangipani [31] are built upon the concept of a distributed
virtual disk: a set of daemons running on a number of machines cooperate to form
the view of a single storage device. The Shared Logical Disk [13] follows the same
idea: the SAN is implemented in software over a network.

If such solutions increase performance in both cases (soft or hard SAN), effi-
ciency and scalability heavily depend on the underlying communication technol-
ogy.

2.3 Parallel File Systems

Parallel file systems were suggested to solve the cluster constraints. They exploit
hardware capabilities as efficiently as possible while taking into account distributed
file system constraints (coherency, fault tolerance, remote accesses, . . . ) in a cluster
context.

Several solutions have been suggested [7], [20], [27], . . . . Roughly in order
to achieve high performance on I/O operations, they distribute file system mech-
anisms across a set of nodes in a cluster. Two types of nodes are used: the I/O
server and the manager, which is a metadata server. Data is striped across several
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I/O nodes. Thus, clients can access files in parallel. The way the files are striped
is handled by the metadata manager, which is also responsible for managing file
properties and a global name space to applications. The server, however, does not
particpate I/O operations. The I/O servers are accessed directly by the clients to
deal with data transfers. Finally, users mount the file system using a POSIX inter-
face, and access to files as any other file systems.

Lustre [27] is currently one of the most powerful solution. It is an object-based
file system designed to provide performance, availability and scalability in dis-
tributed systems. It relies on the meta-data/I/O server model previously described.
Lustre runs on many of the largest Linux clusters in the world (as large as 25,000
nodes) [?].

2.4 Compute vs Storage Nodes Paradigm

Even if available solutions such as parallel file systems provide some ways to ex-
ploit distributed storage resources, they do not directly rely on resources available
within the cluster. Instead, a set of nodes (storage nodes) is dedicated to provide
file system mechanisms. Such a model is mainly historical: file management in
distributed environments has been mostly addressed by external and independent
solutions such as centralized or distributed servers. This approach makes a clear
separation between applications and data management and thus facilitates design
and implementation of file systems (cf. Figure 2.1). However, it wastes a lot of
both storage space and throughput.

The current architecture of the Rennes Grid5000 clusters relies on such a model.

Available throughput : 13 GB/sec

Maximum throughput: 125 MB/sec
Storage space: 1 TB

Rennes site
Grid5000

Available storage space : > 23 TB

I/O server (NFS)

Storage
node

P1 Pn... ...

interconnection
Network

P1

PnP1

Pn

  SMP 1

... ...

  SMP 2

... ...

  SMP 3

... ...

  SMP 4

... ...

  SMP n

... ...

P1

PnP1

PnP1

Pn

nodes
Compute

Figure 2.1: Compute nodes vs Storage nodes
Inefficient use of disk capabilities (space and througput)
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In a the same way as most of small and medium size clusters, the ”storage
nodes” group is composed by only one NFS server. This server is used to share
1TBytes with a maximum throughput of 125MBytes/sec1, whereas on the com-
pute nodes side, more than 23TBytes of space are available with an aggregated
throughput closed to 13GBytes/sec.

In a context where fine and efficient building blocks are required for building
higher level mechanisms, the design and the implementation of an highly efficient
file system exploiting all available hard drives in a cluster is needed. From our
point of view, such a file system should obviously provide common functionalities
but also exploit, cooperate with and complete the SSI system itself by improving
services and global performance.

The next chapter presents the design and the implementation of the first kDFS
prototype.

1In this typical NFS architecture, the bottleneck appears at network level on server side. In the
Rennes case, a GigaEthernet card.
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Chapter 3

Kernel Distributed File System
Based on Linux and implemented at kernel level, LinuxSSI offers a Posix com-
pliant interface. Hence legacy applications can be directly executed without any
modification or recompilation on top of the SSI. Kerrighed implements global and
dynamic resource management by a set of distributed services.

In this chapter, we first describe one of the key components of Kerrighed: the
Kernel Distributed Data Manager. This service is the building block of our pro-
posal, kDFS, presented in the second part. We have voluntary chosen to design
and implement a fully distributed file system based only on the kDDM service. By
reducing Kerrighed dependencies, we hope to facilitate the insertion of the Lin-
uxSSI mechanisms into the Linux mainstream development more easily.

3.1 Kernel Distributed Data Manager

The Kernel Distributed Data Manager, kDDM [21, 22], allows consistent data
sharing cluster wide. All operating system services access the physical memory
through the kDDM service. In a cluster, each node executes its own operating
system, which can be roughly divided into two parts: (1) system services and (2)
device managers. The kDDM is a generic service inserted between the system ser-
vices and the device managers layers in order to give the illusion to system services
that the cluster physical memory is shared as in an SMP machine. This concept was
formerly called container and has been renamed to kDDM to avoid confusion with
current kernel container mechanisms.

kDDM sets are integrated in the core kernel thanks to linkers, which are pieces
of software inserted between existing device managers and system services.

3.1.1 kDDM Sets

A kDDM set is a specific structure to store and share similar objects clusterwide.
Each set can store up-to 232 objects of 4KB. Each set is linked to high level services
(virtual memory, file system, ...) via interface linkers and to devices storing data
(memory, disk) via I/O linkers.
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Node A

Resource Manager

Node B

Resource Manager

System Service System Service

MemoryMemory

I/O Linker

Interface Linker

I/O Linker

kDDM

Interface Linker

Figure 3.1: kDDM overview

Thus, all kDDM sets are completely transparent to user level software. Data
is stored in a kDDM set on host operating system demand and can be shared and
accessed by the kernel of other cluster nodes. Pages handled by a kDDM set are
stored in page frames and can be used by the host kernel as any other page frame.

By integrating this generic sharing mechanism within the host system, it is
possible to give the illusion to the kernel that it relies on top of a physically shared
memory. On top of this virtual physically shared memory, it is possible to extend
to the cluster, traditional services offered by a standard operating system. Such
an approach allows first, to keep the OS interface which is known by users, and
second, to take advantage of the existing low level local resource management.
The figure 3.1 presents the general architecture.

Last but no least, the memory model offered by kDDM service is sequential
consistency implemented with a write invalidation protocol. This model is the one
offered by a physically shared memory.

3.1.2 Linkers

Many mechanisms in a kernel rely on the handling of physical pages. Linkers
divert these mechanisms to ensure data sharing through kDDM sets. Each kDDM
set is associated with one or several high level linkers called interface linkers and
a low level linker called input/output linker. The role of interface linkers is to
divert device accesses of system services to kDDM sets while an I/O linker allows
a kDDM set to access a device manager.
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System services are connected to kDDM sets thanks via interface linkers. An
interface linker changes the interface of a kDDM set to make it compatible with
the high level system services interface. This interface must give the illusion to
these services that they communicate with traditional device managers. Thus, it
is possible to "trick" the kernel and to divert device accesses to kDDM sets. It is
possible to connect several system services to the same kDDM set. For instance, a
kDDM set can be mapped in the address space of a process P1 on a node A and a
process P2 on a node B can access to it thanks to a read/write interface.

During the creation of a new kDDM set, an input/output linker is associated to
it. The kDDM set then stops being a generic object to become an object sharing
data coming from the device it is linked to. The kDDM set is said to have been
instantiated. For each semantically different data to share, a new kDDM set is
created. For instance, a new kDDM is used for each memory segment to share or
to be visible cluster wide.

Just after creation, a kDDM set is completely empty, i.e. it does not contain
any pages and no page frame contains data from this kDDM set. Page frames
are allocated on demand during the first access to a page. Similarly, data can be
removed from a kDDM set when it is destroyed or in order to release page frames
when the physical memory of the cluster is saturated.

3.2 kDFS Overview

In our vision of a fully distributed file system for cluster, all nodes can potentially
provide both CPU and storage resources. Thus, our proposal should be able to
efficiently exploit most of the available storage and, in the meantime, take into
account the resource usage of the applications (CPU, memory, network and hard
drive). In other words, in addition providing the common fonctionalities of a dis-
tributed file system, our proposal should exploit, cooperate with and complete the
cluster services itself by improving usage and global performance.

Keeping that in mind, we have designed and implemented a first prototype of a
distributed file system named kDFS (kernel Distributed File System). This section
gives an overview of the current implementation of the distributed file system. Pre-
liminary investigations on coordination with other cluster services are addressed in
Chapter 4.

The design of kDFS relies on two main concepts:

• Using the native file system available on each node (avoiding block device
management),

• Using kDDM sets to provide a unique and consistent clusterwide name space.

The use of kDDM sets makes the implementation of a global distributed cache with
Posix semantics easier since kDDM mechanisms directly insure meta-data and data
consistency.

Figure 3.2 illustrates the overall architecture of kDFS.
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Data/Inode

Application 
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I/O Linker
Data/Inode

I/O Linker
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Application 
1

Application Application 
n

Inodes / Directories / Files
kDDM

Figure 3.2: Overview of the kDFS system
3.2.1 Disk Layout

To avoid block device dependencies and make storage management easier, we have
chosen to build kDFS upon native file systems provided by the cluster nodes. As a
consequence, each node has to specificy if it takes part in the kDFS storage space
or not. Storage space provided by a particular cluster node is considered as a kDFS
partition only if it has been kDFS formatted. As kDFS does not directly manipulate
block devices, a kDFS partition actually refers to a local directory with a partic-
ular hierarchy. This section introduces different sub-directories and different files
contained in a kDFS partition. For instance, the ’...’ one which stores kDFS
superblock informations.

To get a storage space which can be used afterward in the kDFS physical struc-
ture, administrators has to use the mkfs.kdfs command1 [12]. This command
takes two arguments: DIR_PATHNAME and ROOT_NODEID. The former one cor-
responds to the absolute path to store kDFS meta-data an data, the latter one is the
node identifier for the kDFS root entry (the node that stores the kDFS root inode).

mkfs.kdfs, creates the kDFS ”superblock” file (...) for the node. This file
is stored on the local native file system in the given directory. If the current node
identifier (the IP generally) equals to the given id, mkfs.kdfs creates the root
entry.

1Associated to kDFS, a dedicated command, mkfs.kdfs has been implemented. This com-
mand formats a directory which can be used afterward in the kDFS physical structure.
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Table 3.1 describes the creation of a kDFS structure distributed between two
nodes:

On node A: (nodeid = 1) on Node B: (nodeid = 2)
mkfs.kdfs /PATH1 1 mkfs.kdfs /PATH2 1
Create kDFS local ’...’ Create kDFS local ’...’
Create kDFS root entry

Table 3.1: kDFS structure creation (two nodes)

For each entry (a directory or a file) of the kDFS hierarchy, a ”native” directory
is created on one kDFS partition. This directory contains two files:

• The .meta file stores meta-data associated with the entry (size, timestamp,
rights, striping informations, . . . )

• The .content stores real data.

The name of the ”native” directory is defined by the kDFS local inode identifier
(each kDFS superblock contains an identifier bitmap to define next free inode id).

To avoid large directory issue, we have arbitrarily chosen to sort each kDFS
partition on a one hundred range basis. For instance, when mkfs.kdfs creates
the kDFS root entry, (the first entry of the kDFS hierarchy) the command first
creates a sub-directory ’DIR_PATHNAME/0-99/’. Then, it creates the corre-
sponding ”native” directory which is the DIR_PATHNAME/0-99/1/ directory.
Finally, the file ’.meta’ and the file ’.content’ are created inside this latest
directory.
Every hundred entries, kDFS adds a new sub-directory corresponding to the appro-
priate range (’DIR_PATHNAME/100-199/’, ’DIR_PATHNAME/200-299/’,
’DIR_PATHNAME/300-399/’, . . . ).

To access kDFS file system, users has to mount it by using the following com-
mand:

mount -t kdfs ALLOCATED_DIR|NONE MOUNT_POINT
ALLOCATED_DIR: native file system directory formatted with mkfs.kdfs
MOUNT_POINT: traditional mount point.

The table 3.2 describes kDFS mounting procedure from two nodes:

On node A: (nodeid = 1) on Node B: (nodeid = 2)
mount /PATH1 /mnt/kfds mount /PATH2 /mnt/kdfs

Table 3.2: Mount kDFS partitions
/mnt/kdfs is now a global kDFS namespace for both nodes

Since files and directories are stored in a distributed way on the whole cluster,
we need mechanisms to find the kDFS entry point and thus be able to join the file
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system. kDFS provides two ways of retrieving the root inode. The first one is
based on the superblock file stored in the formatted kDFS partition. As mentioned,
the kDFS superblock file provides several informations including the kDFS root
inode id. Thus, when a mount operation is done, the ’...’ file is read from
’ALLOCATED_DIR’and the root inode id is used to retrieve the kDFS root entry.
The second mechanism concerns diskless nodes or nodes which do not want to take
part of the kDFS physical structure. In such a case, users do not give any device
but have to provide the kDFS root inode id as an additive mount parameter.

We stil have not extended the mount operations with specific kDFS parameters.
Thus, for the moment, There are few limitations:

• One kDFS partition per node

• Only one mount point per node

• Diskless mechanisms not available.

Moreover, we plan to take advantage of the kDFS superblock file to add some
QoS parameters such as allowed storage space, rights, . . . for each kDFS ”parti-
tion”.

3.2.2 File System Architecture

The first version of kDFS has been implemented by using three kinds of kDDM:

• Inode kDDM set, one clusterwide. It provides a cache of inodes recently
accessed by processes.

• Dir kDDM set, one per directory. each Dir kDDM set contains directory
entries (roughly names of subdirectories and files).

• File kDDM set, one per file. It stores data related to the file contents.

Figure 3.3 depictes the kDDM entities. To make read and understanding easier,
Table 3.3. gives a potential representation of the regular files for each kDFS entries
mentioned in the figure.

Next sections introduces each of these three kinds of kDDM sets. A fourth
kDDM set is depicted in Figure 3.3: the dentry kDDM set. This unique kDDM
set provides a distributed cache to manage all dentry objects. It is currently not
implemented and requires deeper investigations.

3.3 kDFS Inode Management

kDFS inode management relies on one global kDDM set. This set exploits a dedi-
cated I/O linker for inserting/removing and maintaining each kDFS entry on the
corresponding local file system (sub-direcory creation/deletion and updating of
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On node A: (nodeid = 1) on Node B: (nodeid = 2)
DIR_PATHNAME: /PATH1 DIR_PATHNAME: /PATH2

mount /PATH1 /mnt/kdfs mount /PATH2 /mnt/kdfs
/mnt/kdfs/ /mnt/kdfs/data/

/PATH1/0-99/1/.meta /PATH2/0-99/1/.meta
/PATH1/0-99/1/.content /PATH2/0-99/1/.content

/mnt/kdfs/lib /mnt/kdfs/data/xtreemos/
/PATH1/0-99/2/.meta /PATH2/100-199/104/.meta
/PATH1/0-99/2/.content /PATH2/100-199/104/.content

/mnt/kdfs/lib/xtreemos.so /mnt/kdfs/data/xtreemos/config
/PATH1/200-299/280/.meta /PATH2/100-199/105/.meta
/PATH1/200-299/280/.content /PATH2/100-199/105/.content
... /mnt/kdfs/lib/linuxssi.so
... /PATH2/100-199/180/.meta
... /PATH2/100-199/180/.content

Table 3.3: Translation between kDFS entries and regular files stored on harddrives
The global kDFS namespace is distributed on two nodes

Node BNode A

Virtual File System Virtual File System

NetworkNetwork

ApplicationApplication
P1

Application
Pn

kernel space

Application
P0

Application
PqP1

user space

Application
P0

kernel space

user space

Created and filled dynamically
(one for each directory/file)

Created during mount process
and filled dynamically

Dentry I/O linkerDentry I/O linker

Dentry kddm management

file content /usr/src/linux/.config

file content /home/alebre/presentation.pdf
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the ’.meta file’). The inode set is created during the first kDFS mount opera-
tion within the cluster. At the beginning, it only contains the kDFS root inode.
Then, when a process wants to access one file/directory, its corresponding kDFS
inode is added into the set (providing by this way a fully distributed inode cache).
All file/directory creations are performed locally whenever possible. That means,
when an process wants to create a new file or a directory, kDFS looks for a kDFS
partition. If there is one directly available on the node, a new inode identifier is get
from the superblock file otherwise, kDFS stores the new entry on the same node as
the parent directory.

When a mount operation is done, the root inode identifier is used to retrieve the
root inode structure directly inside the inode kDDM set. If the kDDM set already
exists, the structure is already cached and the inode is simply returned to the node.
In the opposite case, the I/O linker associated to the inode set exploits the inode
id to retrieve required informations from the relevant hard drive within the cluster.
KDFS inodes are currently based on 32 bits, the 8 MSB bits provide the node id
within the cluster and the 24 LSB ones correspond to the local id.

The inode management proposal has some scalability limitations due to our
current implementation of a 32 bits inode. kDFS can federate at most 256 nodes
and manage only one kDFS partition with a maximum of 224 files for each node.
We plan to fix such issue by extending the inode size to 64 bits as it is already done
by several file systems (XFS, NFS, . . . ).

3.4 kDFS Content Management

Since kDFS file hierarchy is based on native file systems, both directories and files
are simply stored as regular files. Thus, as contrary as traditional file systems, the
management of a large kDFS directory containing lot of directory entries is similar
to the management of a kDFS file content. Whatever the kDFS entry, its content is
stored in its respective ’.content’ file.

After briefly describing directory and file content manipulation, the section
focuses on optimization mechanisms such as read-ahead, write-behind orr I/O
scheduling and how they could be exploited to improve the overall performance
of kDFS. The last paragraph introduces data-striping and redundancy mechanisms.

3.4.1 kDFS Directory Management

When an application tries to list the contents of a directory stored in the kDFS
storage space, kDFS creates a new directory kDDM set. This new set is linked to
the inode object stored in the inode kDDM set and caches all directory entries
on a page basis. In other words, all file and subdirectory names stored in the
directory are loaded in objects of this new kDDM set (one object corresponding
to one page). After that, all filename manipulations such as create, rename and
remove apply modifications of these pages. The associated dir I/O linker is in
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charge of propagating changes to the proper hard drive (into the ’.content’ file)

3.4.2 kDFS File Management

In this first prototype, kDFS file management is similar to directory management:
when an application tries to access a file f , if f is not already ”cached”, kDFS
creates a new file kDDM set. As for directory management, this new set is linked
to the corresponding inode object of the file f . The associated file I/O linker is in
charge to read/write data from/to the .content file of f and remove/put pages in
the set.

3.4.3 Read-ahead and Write Behind

Caching is a widespread technique used to reduce the number of accesses to hard
drives and thus to improve performance of the I/O system [6]. In a local context,
such mechanisms mainly appear at high level in the OS I/O stack (in the VFS for
Linux, cf. Figure 3.4). Due to kDFS placement within the I/O stack and the kDDM
design, cache mechanisms could be applied twice in kDFS: at low level (when I/O
linkers access the native file system, cf. 1 on Figure 3.4) and at high level (when
linkers access kDFS, cf. 2 on Figure 3.4). At the first sight, it seems logical to
exploit such techniques to improve performance whatever the level they can be
applied. However, after a deeper study, the naive use of read-ahead and write-
behind at high level lead to a negative impact on both efficiency and consistency.
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Figure 3.4: Cache in kDFS
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At low level, read-ahead and write-behind strategies only depend on the local
file system and can be compared to an internal buffer cache available in hard drives.
In other words, if a process reads or writes in one kDFS file stored on a remote
node, cache mechanisms applied on the remote node at the I/O linker does not
change the consistency within the associated kDDM set. At high level, it is a bit
more sophisticated. Interest and impact of each strategy require to be tackled one
by one.

• The read-ahead strategy has been suggested to mask disk latencies. This
technique is mainly based on the sequential behaviour of readers and can
even decrease performance in case of random accesses (wrong pages are
prefetched). In a distributed context such as the high layers of kDFS, the
use of read-ahead can either improve performance in some cases or impact
network traffic in some other ones. Typically, for a distributed application,
some useless chunks of one file may be prefetched from several nodes. These
pages go through the network several times, increasing the network conges-
tion probability. Thus, a performance tradeoff between prefetch mechanisms
and network congestion should be defined. The disk latency is about 9ms in
current harddrives whereas network latency tends to be negligible at cluster
level (< 1 µs). So, we have chosen to leave aside read-ahead at high level for
the moment.

• The write-behind strategy at high level is a real issue. From the performance
point of view, such a technique is crucial to avoid page migration from one
node (high level) to a remote one (low level). Let’s consider a process that is
writing to a remote file byte per byte. A write-through strategy generates a
page migration to acknowledge each write operation whereas a write-behind
strategy significantly reduces network traffic by aggregating several writes
before flushing data to low level. However, in the event of a failure, such an
approach may lead to a consistency issue. Indeed if a crash occurs on a node
writing into the file, data contained in the write-behind buffer is simply lost,
although these writes have been acknowledged. To avoid such critical situa-
tions, we have decided to only implement a write through strategy in the first
version of kDFS: each write is directly propagated to the corresponding I/O
linker. We, currently work on the design of derived mechanisms to improve
kDFS performance in case of write requests.

3.4.4 I/O scheduling

Several scheduling algorithms have been proposed to minimize completion time of
a batch of I/O operations. These algorithms usually fall into two categories: disk
scheduling [28] and parallel I/O scheduling [8, 16]. The first one tends to limit
disk head movements while the second one distributes parallel I/O operations to
different I/O servers to minimize the overall response time.
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In order to provide a good tradeoff between performance and fairness in a
distributed context, we have to study the integration of both approaches: exploit
low level schedulers and complement them with new strategies more suited to dis-
tributed constraints. Indeed, recent work showed the importance of such strategies
in a multi-programmed cluster where several applications are executed concur-
rently, competing for accessing storage subsystems [18]. The I/O subsystem layer
has to perform optimizations that take advantage of accesses regularity from each
application while balancing storage access between them. Most of the available
file systems do not use I/O scheduling strategies as they are just built on schedulers
located in the block device layer. At this low level, due to kernel and file system
implementation applications information is not available and I/O access patterns
cannot be exploited for throughput optimization.

Based on the aIOLi work [18], we currently investigate a first approach to
add similar I/O scheduling strategies at I/O linker levels on each node. As Figure
3.5 shows, to be optimal, I/O scheduling strategies need to have a global point
of view. However such a global view only appears inside the kDDM manager
itself. Implementing such I/O scheduling mechanisms at this level will require
strong development efforts since it will directly impact the kDDM design itself.
For the moment, we have chosen to focus on the ”node basis” and expect that it
will contribute to improve throughput by maintaining a QoS for each application.

3.4.5 Striping and Redundancy

The objectives of striping and redundancy policies are twofold: first, to balance
I/O requests over several nodes in order to decrease the amount of requests per
node (and thus increase the scalability) and second to benefit from aggregating
throughputs provided by several nodes. Indeed in a conventional cluster, some
dedicated nodes attached to RAID devices are exploited to deliver the expected
bandwidth for each application. In an SSI cluster, each node can provide its storage
support which corresponds in most of cases to one traditional hard drive with a
throughput peak around 60MBytes/sec. In such a case, striping and replication
policies2 are mandatory.

As mentioned in the D2.2.1 deliverable [10], kDFS is designed to provide two
striping modes: the first one is automatic and transparent whereas the second one
is based on user parameters. Currently, we have almost finalized the design of the
automatic approach and the implementation is under heavily development. As a re-
minder, in the transparent mode, all data is stored locally. That is, all write requests
are propagated on local hardrives. Two cases should be considered, sequential and
parallel access:

• Sequential access: only large files (out-of-core) could suffer from such an
approach. A way to solve this issue is to stripe a file on multiple hard drives

2We distinguish striping policies to improve performance from the ones that target fault tolerance
aspects. Fault tolerant mechanisms are not addressed in this deliverable.
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when its size is bigger than a defined threshold.

• Parallel access: the performance should be excellent. For instance, in MPI
applications, each MPI instance writes its data locally according to the strip-
ing policy. This policy is selected by the application (CYCLIC, BLOCK/
BLOCK, . . . ). From the file system point of view, there is no fixed striping
size. This mode should improve the performance since it avoids all striping
issues which may appear when the file striping does not correspond to the
application one.

We have chosen to focus our effort on implementing the transparent mode since, in
contrast to the second mode, it does not require to extend the POSIX API3

All placement information for each file is stored within the associated kDFS
meta-data file (cf. Section 3.3). The striping geometry is based on an ”object”
granularity (from 1 to n block). For instance, the meta-data lists all objects: a first
object which is p blocks long is stored on the first drive of node x and a second
one, q blocks long, is available on the drive of node y, . . . (p "= q).

The use of replication is also a well-known approach to improve efficiency.
Instead of accessing only one file stored on one hard drive, clients are balanced
on replicas available on distinct nodes. In the particular case of kDFS such an ap-
proach is not required. Indeed, when a client accesses a file, this file is immediately
stored in the associated kDDM set. Thus, all subsequent accesses are directly satis-
fied by the clusterwide cache and do not reach hard drives. Based on current trend
of RAM memory size increasing, we can imagine that each node will have soon a
memory size close to 10 GB. Deploying the kDFS solution on such a cluster will
provide a large and efficient clusterwide buffer cache.

We expect to finalize the first mode of striping mechanisms by the end of 2007.

3In the ”user” mode, each user will be able to define a specific striping policy on a per file or per
directory basis.
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Chapter 4

kDFS: Towards an Integrated
Cluster File System
As we mentioned in Chapter 2, there has been a lot of work done on distributed
file servers [5, 19] since the early eighties with various issues tackled: security,
performance through caches, high availability, disconnected mode, consistency, . . .

By designing kDFS, we should look one step beyond providing just another
new distributed file system. We should take advantage of the XtreemOS framework
to suggest innovative contributions to the HPC file system field. From our point of
view, fine and efficient use of storage resources within a cluster can only be reached
by combining all cluster services. We expect from such an approach to improve
obviously storage performance but also global usage of the cluster. This chapter
addresses preliminary investigations regarding the integration and the coordination
of kDFS with other cluster services in the framework of LinuxSSI.

4.1 Linux SSI Scheduler and I/O probes

To increase global cluster performance, schedulers have to take into account re-
source usage by each process. In most of works done, schedulers take into account
processor load and in few case memory usage. The MOSIX operating system [3]
has probably suggested the most complete scheduler. However, all these stud-
ies consider CPU and memory monitoring mechanisms without taking I/O apsects
into account I/O aspects. From our point of view, one of the major contributions of
kDFS will consist in coordinating file system information and scheduler decisions.
Two work directions have been identified:

• First, we have to improve data locality. Processes should be launched where
required files have been stored. Moreover to increase I/O efficiency, such an
approach also impact network by significantly decreasing traffic.

• Second, we have to provide I/O probes which can measure average hard
drive load and hard drive usage per application (concurrency within a node).
In that sense, we plan to analyze how processes impact each other within
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a node when hard drives are stressed (network intensive process versus I/O
intensive process, CPU intensive versus I/O intensive, memory intensive ver-
sus I/O intensive, number of processes, . . . ). Moreover taking into account
the load generated by the ”user” processes, we should consider the resources
exploited by the SSI file system itself [4] (mainly swap impact). Such a
model will make design and implementation of the I/O probes easier. Fi-
nally, I/O probes will be also directly used by kDFS to define which nodes
are the best candidates for storing data.

In the context of LinuxSSI-XOS, kDFS will communicate with the new schedul-
ing framework implemented in task T2.2.4 [11]. This framework has been designed
for facilitating integration of new probes and customized scheduling policies. By
using such mechanisms, we expect to improve both performances and global usage
of the cluster.

As we mentioned, our main objective consists in going one step beyond tradi-
tional cluster file systems. We want to go toward an integrated cluster file systems.
To continue to improve efficiency and global usage of the cluster, we will combine
kDFS, SSI scheduler and migration mechanisms.

As an illustration, we present an example based on the execution of the well-
known IOR benchmark. The I/O Stress Benchmark Codes1 emulates the behaviour
of a parallel I/O intensive application. It consists of a parallel code developed by
the Scalable I/O project at Lawrence Livermore National Laboratory. This parallel
program performs parallel writes and reads to/from a file using the POSIX or MPI
I/O API and reports the throughput rates. Roughly, it repeats the two following
steps:

1. For each MPI instance:
Reads particular data from one common file (according to its MPI rank),
Processes them,
Writes results in a second common file

2. Permutation between processes is made

Restart step 1./ from last result file.

In a traditional distributed file system, such an experiment leads to both an
I/O and a network intensive application. Each MPI instance has to read and then
write data from/to the file system: data is read from I/O server(s) goes through the
network, is processed and results get back to the file system.

The use of local hard drives as it is implemented in kDFS already contributes
to the reduction of network traffic. For the first phase, the SSI scheduler launches
each MPI instance on the proper node where data is read and written. The use of,
in the first hand, I/O probes and in other hand, migration mechanisms contribute to
reduce network traffic. Instead of accessing remote data during the second phase,
I/O probes notify kDFS about remote accesses and kDFS informs the scheduler to
migrate processes on the appropriate nodes storing the data.

1http://www.llnl.gov/asci/purple/benchmarks/limited/ior/
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Distributed FS kDFS (no migration) kDFS (with migration)
HDD Net HDD Net HDD Net
8GB 8GB 8GB 2GB 8GB negligible

Table 4.1: IOR benchmark on a 2GBytes file size
Magnitude order of data exchange for one IOR iteration

(HDD: Hard Disk Drive)

Table 4.1 summarizes expecting I/O requests and network traffic for one iter-
ation of the IOR benchmark with a file-size of 2 GBytes (each MPI instance is
running on a dedicated node). As we can see, in addition avoiding congestion due
to the multi-application phenomena on the distributed file system, the integration
of migration processes mechanisms in kDFS should significantly improve perfor-
mance by directly exploiting hot cache present on each node.

4.2 Checkpoint/Restart Mechanisms

Checkpointing mechanisms are exploited to recover applications in the event of
failures. Unfortunately, most of available solutions consist in saving only the
process state without taking into account open files. Such a feature is needed to
restart processes in a consistent state from the files point of view. In this section,
we present preliminary investigations on the coordination between checkpointing
mechanisms and kDFS.

The major objective is to provide an efficient file checkpointing functional-
ity: file checkpointing mechanisms provide a way to reverse changes performed
in a file between two process checkpoints when an application is restarted from a
checkpoint. This feature is missing in the current checkpointing service.

An audit of different available solutions is currently in progress [13] [24] [30].
Our first investigations led us to propose an extension to Linux I/O API (more
precisely to the Virtual File System) by adding some calls which enable to give
specific states to files: ”normal” or ”checkpointable”. When the file is tagged
as a checkpointable file, a copy-on-write policy is associated with it. Thus, all
subsequent writes accesses on it trigger copying of the old data in another shadow
file. We choose to extend the POSIX API instead of just use traditional open flags.
So, it is possible to change the state of a file at any time. This could be useful to
checkpoint a whole application which did not anticipate to exploit checkpointing
services (for instance, when a system administrator makes a manual checkpoint
before stopping a node). When an application restarts from its last checkpoint,
another VFS call enables to reverse changes in the file and to restore the correct
image. We could imagine several versions of such a checkpointable file: the most
simple is based on one copy which is overwritten at each checkpoint and a more
sophisticated one might be an incremental checkpoint based on several shadow
files.
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A second aspect concerns placement of checkpointed daa. First, we have to
identify which nodes are susceptible to store the data. To solve this issue, kDFS
should consider the ”Mean Time Before Failure” value of each node but also cur-
rent I/O load. As for swap or other cluster services, checkpointing mechanisms
will impact I/O performances. Thus, the coordination between checkpoint services
and kDFS is also important to minimize overhead. Another issue will be to deal
with live migration implied by the scheduler: a process should not migrate where
its checkpointing data has been stored. More generally, placement of checkpoint
data requires deeper investigations. We expect to have first results by M24.
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Chapter 5

Conclusion

There have been a lot of works done in network/distributed file systems with vari-
ous issues tackled: security, efficiency, availability, consistency, . . . Most of avail-
able solutions are built on the historical model compute vs storage nodes wasting
a lot of space as well as throughput, predominant criteria in a HPC context.

In this document, we have presented kDFS, a new kernel Distributed File Sys-
tem. Based on several concepts suggested in KerFS (Kerrighed 1.02), the kernel
Distributed File System has been developed from scratch. The first challenges
consisted in developing a distributed file system pluggable under the VFS and only
based on the kernel Distributed Data Manager component of Kerrighed. kDDM is
used to build a cooperative cache for both data and meta-data.

The first prototype has been implemented with 3 kinds of kDDM sets: in-
ode, dir and files. It provides a simple clusterwide file system. Current efforts
are focused on efficiency aspects, mainly on cache page replacement and striping
policies.

Associated to kDFS, a dedicated command, mkfs.kdfs has been implemented.
This command formats a directory which can be used afterward in the kDFS phys-
ical structure. This command is released with the current kDFS prototype. Docu-
mentation of kDFS and mkfs.kdfs command appear in the D2.2.7 deliverable [12].

Our proposal has to go one step further than just being another new distributed
file system. Moreover to federate storage resources within a cluster, kDFS should
exploit, cooperate with and complete the SSI system itself by improving services
and global performances. In that sense, we have introduced our preliminary in-
vestigations on the integration and the coordination of kDFS with the other cluster
services. First results about kDFS, an integrated cluster file system for High Per-
formance Computing, are expected by M24. A dedicated section1 on the kerrighed
website has been created. It contains presentations, documentations and will give
latest news about kDFS.

Finally, this deliverable focuses on the design and the implementation of kDFS
1http://www.kerrighed.org/wiki/index.php/KernelDevelKdFS
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and thus we do not direclty address the integration with XtreemFS, the grid file
system. 2 The main issue for XtreemFS consists in exploiting the parallel bandwith
provided by kDFS. After several exchanges with WP3.4 members, it appears that
this issue has to be taken into account not only for kDFS but for all parallel file
systems (such as Lustre or PVFS for instance).

2As a remainder, the integration of kDFS within XtreemOS components only concerns XtreemFS
since other XtreemOS services do not interact with kDFS [10].
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